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Discrete Choices and Event Counts

_18.1 introduction

Chapter 17 presented most of the econometric issues that arise in analyzing discrete dependent
variables, including specification, estimation, inference, and a variety of variations on the basic
model. All of these were developed in the context of a model of binary choice, the choice
between two alternatives. This chapter will use those results in extendmg the choice model to
three specific settings:
r/f-" I

Mulﬂnomlal Chonce The individual chooses among more than two choices, once again, making
the choice that provides the greatest utility. Applications include the choice among political
candidates, how to commute to work, where to live, or what brand of car, appliance, or food
product to buy.

Ordered Choice: The individual reveals the strength of their preferences with respect to a single
outcome. Familiar cases involve survey questions about strength of feelings about a particular
commodity such as a movie, a book, or a consumer product, or self) assessments of social
outcomes such as health in general or self; assessed well, being. Aithough preferences will
probably vary contmuously in the space of mdwldual utility, the expression of those preferences
for purposes of analyses is given in a discrete outcome on a scale with a limited number of

choices, such as the typical five, > point scale used in marketing surveys.

&
{

Event (.ounts The observed outcome is a count of the number of occurrences. In many cases,
this is similar to the preceding settings in that the “dependent variable” measures an individual
choice, such as the number of visits to the physician or the hospital, the number of derogatory
reports in one’s credit, history, or the number of visits to a particular recreation site. In other
cases, the event count might be the outcome of some less focused natural process, such as
incidence of a disease in a population or the number of defects per unit of time in a production
process, the number of traffic accidents that occur at a particular location per month, or the
number of messages that arrive at a switch) per unit of time over the course of a day. In this
setting, we will be doing a more familiar sort of regression modeling. '

Most of the methodological underpinnings needed to analyze these cases were presented in
Chapter 17. In this chapter, we will be able to develop variations on these basic model types that
accommodate different choice situations. As in Chapter 17, we are focused on models with
discrete outcomes, so the analysis is framed in terms of models of the probabilities attached to
those outcomes.



18.2 MODELS FOR UNORDERED MULTIPLE CHOICES
Some studies of multiple-choice settings include the following:

1. Hensher (1986, 1991), McFadden (1974), and many others have analyzed the travel mode of

. urban commuters. In Greene (2007b), Hensher and Greene analyze commuting between

. Sydney and Melbourne by a sample of individuals who choose among air, train, bus .and car ag
the mode of travel. -

2. Schmidt and Strauss (1975a'b) and Boskm (1974) have analyzed occupational choice among
multiple alternatives.

3. Rossi and Allenby (1999, 2003) studied consumer brand choices in a repeated choice (panel
data) model.

4. Train (2003) studied the choice of electricity supplier by a sample of California Electrlclty
customers.

5. Hensher, Rose, and Greene (2006) analyzed choices of automobile models by a sample of
consumers offered a hypothetical menu of features.

In each of these cases, there is a single decision among two or more alternatives. In this and the - o
next section, we will encounter two broad types of multinomial choice sets, unordered chmceg,
models and ordered choices. All of the choice sets listed above are unordered. In ‘contrast, a’
bond rating or a preference scale is, by design, a ranking; that is. its purpose. Quite different
techniques are used for the two types of models. We will examined models for ordered choices in
Section 18.3. This section will examine models for unordered choice sets. General references on

the topics discussed here include Hensher, Louviere, and Swait (2009); Train (2009) and
Hensher, Rose, and Greene (2006).
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Unordered choice models can be motivated by a random utility model. For the /th
consumer faced with J/ choices. suppose that the utility of choice j is

Uy =10 + ).

If the consumer makes choice j in particular, then we assume that 1; is the maximum
among the f utilities. Hence, the statistical model is driven by the probability that choice
/ is made, which is

Prob{lf;; > _U_;,g-) for all other & # |.

The model is made operational by a particular choice of distribution for the distarbances.
As in the binary choice case, two models are usually considered. logit and probit. Be-
cause of the need to evaluate multiple integrals of the noirmal distribution, the probit
madel has found rather limited use in this setting, The logit model, in contrast, has been
widely used in many fields. including economics, market research, politics, finance, and
transportation engineering. Let ¥} be a random variable that indicates the choice made,
McFadden (1974a) has shown that if {and only if) the J disturbances are independent
and identically distributed with Gumbel (type 1 extreme value) distribution.

15~}
Fe;) = exp(—exp(—£;;)), (2338}
then
xpiz],0 182
Prob(¥; = j) = bt (2349
i j= 1*”‘?“7;.@) . £y
. which leads to what is called the cmldltmnal logit model. (1t is often labeled the mllltl- E]
( 12} T notnial | logit model, but this wcndmg conflicts with the usual name for the model dis- ol
cussed in the next section, which differs slightly, Although the distinction turns outto | || e SE
I 'r'\. II | | .
be purely ariificial, we will maintain it for the present.) \ ==

Utility depends on z;;. which includes aspects specific to the individual as well | (¢
as to the choices. It is useful to distinguish them. Let z;; = [x;;, w:] and partition ¢ b L 1
conformably into [B’, o’). Then x;; varies across the choices and possibly across the /770 A
individuals as well. The compongnts of x;; are typically called the atfribufes of the ~
choices. But Wi contains the ch.aractulﬂtlcs of the individual and is, thel ef01e the same

brid case ogours in whlch capfsumers refeal their own spccxﬁc ordering for the choicgs in an unor
, Cardell, 'md usman {1981) studied consumers' phnkings of differznd automobile vpe
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for all choices. If we incorporate this fact in the model, then (18-2) becomes

exp(x,B -+ w|o0) exp(x;B) exp(w )

- . (183)
Z- exp(x, B+ wi0r) [Z . exp(???,;ﬁ)}exp(ﬁ"?.‘?‘)

Prob(Y;=j)= Prob(¥, = f) =

Terms that do not vary across alternatwes—that is, those specific to the individual—fall out of
the probablhty This is as expected in a model that compares the utilities of the alternatives.

For example, in a mode! of a shopping center choice by individuals in various cities that depends
on the number of stores at the mall, S, the distance from the central business district, D; and the
shoppers’ incomes, 7, the utilities for three choices would be .

Up = DaPr+8ubs +a+v + e
Upg = DpBy + 8oy + o+l +&p;
Us = DgPpy + &3[32 +atyl+eg

The choice of alternative 1, for example, reveals that

Un— Uy = (Da—Dp)P1 + (S —Sp)p2 +{(en~¢p) > 0 and
Un —Us = (D~ Dg)Bi + (S —5:)Pa + (6a —83) > 0.

The constant term and Income have fallen out of the comparison. The result follows from the fact
that random utility model is ultimately based on comparisons of pairs of alternatives, not the
alternatives themselves. Evidently, if the model is to allow individual specific effects, then it
must be modified. One method is to create a set of dummy variables (alternative specific -
constants), A, , for the choices and multiply each of them by the common w. We then allow the
coefficients on these choice invariant characteristics to vary across the choices instead of the
characteristics. Analogously to the linear model, a complete set of interaction terms creates a
singularity, so one of them must be dropped. For this example, the matrix of attributes and
characteristics would be

The probabilities for this model would be

Stores,; B, + Distance,$,
Cxp A0y + A0, + 440
Ajincomeyy, + djIncomeyy, + AyIncome,y,

Prob(¥; = j |“Z__,_.) = Sy =Yy =0,

Stores B, + Distance,3,
3 .
APl Aoy + 4y, + Ay
A, Income;y, + Az-llncome,.'yz + A3;.:Income,.y3
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for all choices. If we in 11301 ate this fact in the rfiodel, then (‘2324‘9) becoptes
exp(x!; B +wo) exp(x’; )] exp(wie \ -3
\ Prob(¥; — 2 P L [, P 8)] exp(w; (f{;su)
y exp_.(xfjjﬁ +f 0t) [ijl £xp(x}; ) (wiar)
sefnatives—that is, those spegific to the individual—fall
v, if the model is to allow individual specific effects. then
- of dammy variables. A;, for the
. We then allow the coefficient to
i€s. Analogously to the linear model, a
larity, so one of them must be dvopped’
hoice by individuals in various cities pafght
tes of the shopping centers such as nyniber of
al business district, D;;, and income, which varies
1e choices. Suppose that there were the€e choices in
ach city. The three attribute/efiaracteristic vectors would be as follo
Stores Distance Income 0
Stores . Distance 0 Income

Stores Distance 0 0

Income; + oz Ay Income;) e
7 =
/21 1 exp(ﬁ; S+ ,BgD,j + a1 Ay Incomer+ as Az Income; + a3y Az Incopr;)

The nonexperimental data sets t ically analyzed by economistd do not contain
mixtures of individual- and choice-specific attributes. Such data woild be far too costly
to gather for most purposes. Wh they do, the preceding fra ork can be used. For
the present, it is useful to exampihe the two types of data sepayt tely and consider aspects
of the model that are specific to the two types of applicat

1¥.2 .2 EEFEE. THE MULTINOMIAL LOGIT MODEL

To set up the model that applies when data are individual specific, it will help to consider
an example. Schmidt and Strauss (1975a, b) estimated a mode! of occupational choice
based on a sample of 1,000 observations drawn from the Public Use Sample for three
vears: 1960, 1967, and 1970. For each sample, the data for each mdmdua[ in the sample
consist of the following:

1. Occupaiion: 0 = menial, 1T = blue collar, 2 = craft, 3 = white collar, 4 =
professional. {Note the slightly different numbering convention, starting at zero,
which is standard.)

2. Characteristics: constant. education. experience, race, sex.

The model for occupational choice is

-4
1)

A g
Prob(Y; = / |wi) = 4exp(v« i)
J_ﬂexp(w a,)

=014
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IF
(The binomial logit mode! in Sectaon&%? 3.ame257 is conveniently produced as the

g0 special case of f = 4
8 ..q = The model in (23=51) is a multinomial logit mnd«:l.’ﬂ The estimated equations pro-

vide a set of probabilities for the J 4 1 choices for a décision maker with characteristics
- w;. Before proceeding, we must remove an indeterminacy in the model. If we define
«f = &; + g for any vector g. then recomputing the probabilities defined later using

L instead of & ; produces the identical set of probabilities because all the terms involv-
mg g drop out. A convenient normalization that solves the problem is gy = 0. (This
arises because the probabilities sum to one, so only J parameter vectors are needed to

determine the J 4+ 1 probabilities.) Therefore, the probabilities are

Prob(¥; = j |w) = P = f=01,.,J, @p=p (2582)

1+ Y0 expwles) |
The form of the binomial model e*ammed in Sectlon ;’;‘4 resulis if J = 1. The model
implies that we can compute J Ing—odde £

In [;;f] =Wl —au) =Wy ifk=0.
From the point of view of estimation, it is useful that the odds ratio. F;/ Py, does not
depend on the other choices, which follows from the independence of the disturbances
in the original model. From a behavioral viewpoint, this fact is not very attractive, We
shall return to this problem in Section 25t 18.2. 9.

The log-likelihood can be derived by defining, for each individual, d;; = 1 if alter-
native j is chosen by individual i. and 0 if not, for the J -+ 1 possible outcomes. Then,
for each i, one and only one of the dj;’s is 1. The log-likelihood is a generalization of
that for the binomial probit or logit model:

- ne J
InL=Y"%"d;in Prob(¥ = j|w).

i=l j=D

The derivatives have the characteristically simple form

3ln L
a.u} _Z(.ddjhptj)w; fOl_[_l J
— n
_f'{': r | The exact second derivatives matrix has_ JK x K blocks“ v
T #2InL = o
80 _Z Pyl =1 = Palwiwi,

where 1(j =/} equatls 1 if j equals/ and 0 if not. Because the Hessian does not involve
d;;, these are the expected values. and Newton's method is equivalent to the method
of scoring, It is worth noting that the number of parameters in this model proliferates

% 4Ncﬂcn-'e and Press (1971},

7—' It the data were in the form of propaortions, su«.h as market shares, then the appropriate log-likelibood and
derivatives are ;X0 pij and Ty Epmi(pry — R )we, vespectively. The terms in the Hessian are multiplied
by 4y, v

exp(wia;) |85

)

by o) .

Falll 1S
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with the number of choices, which is inconvenient because the typical cross section
sometimes involves a fairly large number of regressors, '

The coefficients it this model are difficuit to interpret. It is tempting to associate
& with the jth outcome, but that would be misleading. By differentiating (23=52), we
find that the &?‘i‘:ﬁ effects of the characteristics on the probabilities are 18-

3P, 4 _ (B-b6
wrd C =D
attial

Therefore, every subvector of & enters evel'y;&@hﬁl effect, both through the prob-
abilities and through the weighted average that appears in §;;. These values can be
computed from the parameter estimates. Although the usual focus is on the coefficient

estimates. equation (23753) suggests that there is at Jeast some potential for confusion.
Note, for example, that for any particular w, 8F,;/8w;« need not have the same sign as
k. Standard errors can be estimated using the delta method. (See Section 48,4.) For
purposes of the computation, let @ = {0, &f, &}, ..., g, ). We include the fixed 0 vector
for outcome 0 because although ep = 0, 8;0 = — P @. which is not 0. Note as well that
Asy. Cov[fig, &;] =0for j=0,.... /. Then - '

AR ATy 8,
- § P - i
Asy Var[fyl =3 % (-c;’-;f-) Asy. Covla}, & ] (5-&—&) .
- 1=0 m=0 ! = iR 2 s 5
23 mie
. G»Q-wf e W} =[G =1 — BALEN + 8] + Pyluyi].
Finding adequate fit measures in this setting presents the same difficulties as in
the binomialmodels. As before, it is useful to report the log-likelihood. If the model

contains no covariates and no constant term, then the log-likelihood will be

7
1
!nl{zgnjln (_J_'+'l)

where ; is the number of individuals who choose outcome j. If the characteristic vector
includes only a constant term, then the restricted log-likelihood is

Fi g
Inly= Zn_,-]n (%’-) o Zﬂjln P
j=0 ‘ j=0 .

where p; is the sample proportion of observations that make choice j. A useful table
will give a listing of hits and misses of the prediction rute “predict ¥; = j if P;; is the
maximum of the predicted probabilities,". ‘3; x B -

”mi-!It is common for this rule to predict atl observation with the same value in an unbalanced sanple or a model
with little explanatory power. This is not a contradiction of an estimated model with many “significant™
coefficients, because the coefficients are not estimated so as to maximize the number of correct predictions.
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Example 18.1 Hollingshead Scale of Occupations

Fair's (1977) study of extramarital affairs is based on a cross section of 601 responses to a
survey by Psychology Today. One of the covariates is a category of occupations on a seven =
point scale, the Hollingshead (1975) scale. [See, also, Bornstein and Bradley (2003).] The"
Hollingshead scale is intended to be a measure on a prestige scale, a fact which we'll ignore
(or disagree with) for the present. The seven levels on the scale are, broadly,

1. Higher executives,

2. Managers and proprtetors of medium,sized busmesses

3. Administrative personnel and owners of small businesses,;

4. Clerical and sales workers and technicians, -

5. Skilled manual employees,

6. Machine operators and semiskilled employees,

7. Unskilled employees
: Among the other variables in the data set are Age, Sex.and Education. The data are given in
/15 Appendix Table F18.1. Table 18.1 lists estimates of a multinomial logit model. (We
| 1%, ) emphasize that the data are a self,selected sample of Psychology Today readers in 1978, so
- it is unclear what contemporary population would be represented. The following serves as an

uncluttered numerical example that readers could reproduce. Note, as well, that at least by

~——._ some viewpoint, the outcome for this experiment is ordered.) The log, likelihcod for the model
(= ""is"770.28141 while that for the mode! with only the constant terms is <982.20533. The
likelihood ratio statistic for the hypothesis that all 18 coefficients of the model are zero is
423.85, which is far larger than the critical value of 28.87. In the estimated parameters, it
appears that only gender is consistently statistically significant. However, it is unclear how to
interpret the fact that Education is significant in some of the parameter vectors and not
others. The partial effects give a similarly unclear picture, though in this case, the effect can
be associated with a particular outcome. However, we note that the implication of a test of
sngntflcance of a partial effect in this model is itself ambiguous. For example, Education is not
“significant” in the partial effect for outcome 6, though the coefficient on Education in g is.
This is an aspect of modeling with multinomial choice models that calls for careful
interpretation by the model builder.

Ly,

Table 18.1 Estimated Multinomial Logit Model for Occupation (tratios in parentheses)

|ﬂo Iﬂl |ﬂ2 lﬂa |‘14 !f»'«s |tls
Parameters
Constant 0.0 3.1506 2.0156 -1.9849 -6.6539 -15.0779 -12.891%
{0.0) {1.14) (1.28) (-1.38) (-5.49) {~9.18) {-4.61)
Age 0.0 -0.0244 ~0.0361 -0.0123 0.0038 0.0225 0.0588
(0.0} (-0.73) {(-1.64} (~0.63) (0.25} {1.22) (1.92)
Sex 0.0 6.2361 4.6254 4.9976 4.0586 5.2086 5.8457
(0.0} {5.08} (4.39) {(4.82) {3.98) {5.02) {4.57)
Education 0.0 -0.4391 -0.1661 0.0684 0.4288 0.8149 0.4506
(0.0) (-2.62) {=1.75) (0.79) {5.92) (8.56) (2.92}
Partial Effects
Age ~0,0001 -0.0002 -0.0028 -0,0022 0.0006 0.0036 0.0011
{-.19) {-0.,92) (-2.23) {-1.15) {0.23) {1.89) (1.90)
Sex 1 -0.2149 0.0164 0.0233 0.1041 -0.1264 0.1667 0.0308
(-4.24) {1.98) (1.00} {2.87) {-2.15) (4.20) {2.35)
Education -0.0187 -0.006% -0.0387 -0.0460 0.0278 0.0810 0.0015 -
(~2.22) {-2.31} (-6.29) {(-5.1} (2.12) (8.61) {0.56)
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1 €.2.3 zs#¥=. THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of mdlwdtlal—spemﬁc char-

acteristics, the Wmﬁmodelwfop molation wov id be,
advro
1€-F

r
Prob(¥; = j [t 8. . i) = Prob(Y, = /[ X0 = By = = bll)__ (asgg)
' - 2 =1 EXPON]2)

Here, in accordance with the convention in the literature, we jet j =1,2,..., J fora
total of J alternatives. The model is otherwise essentially the same as the multinomial
logit. Even more care will be required in interpreting the parameters, however. Once
again, an example will help to focus ideas.

In this model. the coefficients are not directly tied to the marginal effects. The
marginal effects for continuous variables can be obtained by differentiating (255%)

with respect to a particular x,, to obtain -'-'r'
3k .
5—;1— =[Py(f =m) — P))B, m=1,....J.
H}I

It is clear that thr ough its presence in I}; and P, every attribute set x,, affects all the
probabilities. Hensher (1991) suggests that one might prefer to report elasticities of the
probabilities. The effect of attribute k of choice m on f3; would be

an P
3 In X

Because there is no ambiguity about the scale of the probability itseif. whether one
should lep(nt the derivatives or the el‘lSth!tICS is largely a matter of taste. Seanc-of
TR p il'\ C‘-rﬂTuut‘H-l"E"H"!\u b LMM
Estlmatlon of the conditionat | logit model is simplest by Newton'’s method or the
method of scoring. The log-likelihood is the same as for the multinomial logit model.

Once again, we define di; = 1if ¥; = j and 0 otherwise, Then

= Xl 10/ = 1) — ﬁ'm]ﬁ!{-

n 7
Inl= Z 2(!,7 In Prob(Y; = f).
i=l j=1
Market shale and frequency data are common in this setting. If the data are in this form,
then the only change needed is, once again, to define d;; as the proportion or frequency.
Because of the simple form of L. the gradient and Hessian have particular !v con-
venient forms: LetX; = Z} 1 £ixi;. Then,

I ., ",
3 og I . Z Zdu(x,; _ x,
i=l i=1 }3..8
Gzlog L ! 255)
883’ = _ZZ RI(“U — X xij — x,

i=1 je=l

The usual problems of fit measures appear here, The log-likelihood ratio and tabula-
tion of actual versus predicted choices will be useful. There are two possible constrained
log-tikelihoods. The model cannot contain a constant term. so the constraint B = Dren-
ders all probabilities equal to 1 /J The constrained log-likelihood for this constraint

13-9

/i
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is then 1, = —nlnJ. Of cownse, it is unlikely that this hypothesis would fail to be re-
jected. Alternatively. we could fit the model with only the J —1 choice-specific constants,

. which makes the constrained log-hkehhood the same as in the multinomial logit model,
In L} = Z 1 In p; where, as befo;e n;j is the number of individuals who choose
'lltematwe J: -

18.2.4 o THE INDEPENDENGE FROM IRRELEVANT ALTERNATIVES
ASSUMPTION

We noted earlier that the odds ratios in the multinomial logit or conditional logit
models are independent of the other alternatives. This property is convenient as re-
gards estimation. but it is not a particularly appealing restriction to place on consumer
behavior, The property of the logit model whereby £;/£,, is independent of the re-/ k! |
maining probabilities is called the jndependence frontirrelevant alternatives (IA). L‘

The independence assumption follows from the initial assumption that the distur-
bances are independent and homoscedastic. Later we will discuss several models that
have been developed to relax this assumption. Before doing so, we consider a test that
has been developed for testing the validity of the assumption. Hausman and McFadden
(1984) suggest that if a subset of the choice set truly is irrelevant, omitting it from the
model altogether will not change parameter estimates systematically. Exclusion of these
choices will be inefficient but will not lead to inconsistency. But if the remaining odds
ratios are not truly independent from these aiternatives, then the parameter estimates
obtained when these choices are excluded will be inconsistent. This observation is the
usual basis for Hausman’s specification test. The statistic is

= (B — BsY[Vs - .'C’ 17 Bs ~ B,
where s indicates the estimators based on the lestx icted subset, { indicates the estimator
e based on the full set of choices, and ¥, and A 7 are the respective estimates of the

T A asymptotic covariance matrices. The statistic has a limiting chi-squared distribution
AL with K degrees of fleedom\l"l-/

-

18.2.85 “FEmar= NESTED LOGIT MODELS

If the independence from irrelevant alternatives test fails, then an alternative ta the
multinomial logit model will be needed. A natural alternative is a multivariate probit
model: ‘

Uj=xB+ey, j=1,....0[en.e,...,e4] ~ N[O, ). (l ¢- ‘?)

We had considered this model earlier but found that as a general model of consumer
choice, its failings were the practical difficulty of computing the multinormal integral
and estimation of an unrestricted correlation matrix. Hausman and Wise (1978) point
out that for a model of consumer choice, the probit model may not be as impractical
as it might seem. First, for J choices, the comparisons implicit in U,, > Uy for m 5 j
involve the J —1 differences. &; — £,. Thus, starting with a J-dimensional problem, we
need only consider derivatives of (J — 1)-order probabilitics, Therefore, to come to a
concrete example, a model with four choices requires only the evaluation of bivariate

- ‘f A McFadden (1987) shows how this hypothesis can also be tested using a Lagrange multiplier test.
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normal mteglals. wh[ch 'llbelt still comphcated to CStlm’lte is well w:thm the received
technology. oz = whi=iSes
{arger models, howevet, other spectﬁcatlons have proved more useful.

One way to relax the homoscedasticity assumption in the conditional logit model
that also provides an intuitively appealing structure is to group the alternatives into

subgroups that allow the variance to differ across the groups while maintaining the I1A (|

assumption within the groups. This specification defines a nested logit model, To fix
ideas. it is useful to think of this specification as a two- (or mme) level choice pmblem
{although, once again, the model arises as a modification of the stochastic specification
in the original conditional logit model, not necessarily as a model of behavior). Suppose,
then, that the J alternatives can be divided into B subgroups (branches) such that the
choice set can be written

[c1, ... 0] = [teap, ... 2Cn)s (€t e Cppd e (CTym e C:J'3|B)]'

- Logically, we may think of the choice process as that of choosing among the B choice

sets and then making the specific choice within the chosen set, This method produces
a tree structure, which for two branches and, say. five choices (twigs) might look as
follows:
Choice
i

Bra:\chl Branl cha

Crjt a1 Clya L2120 L3z

Suppose as well that the data consist of observations on the attributes of the choices

Xijjp and attributes of the choice sets z;3.

To derive the mathematical form of the model, we begin with the unconditional
probability -~
eXp(X; B+ Zip¥)
Y E?:l exp(x_:'_jmﬁ "|'l:b}’)

Pr ob[rwrt;,. branch,| = Py =
Now write this probability as
Fip = Pips P

_ ( exp(x;;p8} ) ( expl#/p¥) ) (Ejb:l exp(_xfﬂbﬂ)) (Eiitexp{#g?’))
Sl exp(xts8) | \ This exp(ipy) (Ch Shiexe e tzmy))

Define the__i_n_glusiﬁ value for the {th branch as
Ib
Wip=1In | exp(xi;sB)
j=1

Then, after canceling terms and using this result. we find

exXp(X};sB8) explra(zoy + 1 Vin)]
= and F=_—¢ ,
121 €XP(X];1,8) 2o explra(gy + Vi)

L =
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where the new parameters © must equal 1 to produce the original inodel. Therefore,
we use the restriction 1, = 1 to recover the conditional logit model, and the plecedmg
equation just writes this model in another form. The nested logit model arises if this
restriction is relaxed. The inclusive value coefficients, unrestricted in this fashion, allow
the model to incorporate some degree of heteroscedasticity. Within each branch, the
I1A restriction continues to hold. The equal variance of the disturbances within the jth

branch are now™ +5
2 J'Tz i (! ? - /0)

b = 6_1],
With t; = 1, this reverts to the basic result for the multinomial logit model.
Asusual, the coefficients in the model are not directly interpretable. The derivatives
that describe covariation of the attributes and probabilities are

8 In Problchoice = m, branch = b]
ax(k) in choice M and branch B
= (1 = B)[1¢n = M) — Pyig] + r[l(b = B) — Pg]Py| B)B,.

The nestedlogit model has been extended to three and higher leveis The complexity
of the model increases rapidly with the number of levels. But the model has been found
to be extremely flexible and is widely used for modeling consumer choice in thermm-

keting and transportation literatures, to name a few. T
There are two ways to estimate the parameters of the nested logit model. A ]umtcd

"'mformatlon, two-step maximum likelihood approach can be done as follows:

1. Estimate B by treating the choice within branches as a simple conditional logit
model.

2. Compute the inclusive values for all the branches in the model. Estimate p and
the T pafamieters by treating the choice among branches as a conditional logit
model with attributes z;, and /5.

Because this approach is a two-step estimator, the estimate of the asymptotic covariance
matrix of the estimates at the second step must be corrected. [See Section((6./Jand
McFadden (1984).] For full information | nkmmum likelihood (FIML) estimation of the
model, the log-likelihood is :

nl= ZIn[Piob(twrg{bmmh), e Pmb(bmnch),]
=1

[See Hensher (1986, 1991) and Greene (2007a).] The information matrix is not block
diagonal in 8 and (y, ). so FIML estimation will be more efficient than two-step esti-
mation. The FIML estimator is now available in several commercial computer packages.
The two-step estimator is rarely used in current research.

To specify the nested logit model, it is necessary to partition the choice set into
branches. Sometimes there will be a natural partition, such as in the example given
by Maddala (1983) when the choice of residence is made first by community, then by

See Hensher, Louviere, and Swaite (2000, See Greene and Hensher (2002) for alternative formulations of
the nested logit model.

| ¥ -12

14.73
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dwelling type within the community. In other instances. however, the partitioning of
the choice set is ad hoc and leads to the troubling possibility that the results might be

. dependent on the branches so defined. (Many studies in this literature present several
sets of results based on different specifications of the-tree structure.) There is no well;
defined testing procedure for discriminating among tree structures, which is a problem-
atic aspect of the model,

1€.2.4 -28FFS THE MULTINOMIAL PROBIT MODEL

A natwral alternative model that relaxes the independence restrictions built into the u ¥ )
multinomial logit (MNL) model is the multmomml  probit mudc.,l (MNP). The structural
equations of the MNP model are

Uj=xijB+ey, j=1,...1 [en,en. ... 65] ~ N8, Z].
The term in the log-].ike]ihood that corresponds to the choice of alternative qis
Prob|choice;q] = Prob[liy > Uy, j=1.....J. #q].
The probability for this occurrence is
Problchoice;g] = Problei) — &1y < (Xig —Xi1)'B, - 8 — &g < (Kig = XesV' 8]

for the J — 1 other cheices, which is a cumulative probability from a (J — 1)-variate
normal distribution. Because we are only making comparisons, one of the variances
in this J — 1 variate structureyrthat is, one of the diagonal elements in the reduced
E.l-must be normalized to 1. 0 Because oniy comparisons are ever observable in this
‘model, for identification, J — 1 of the covariances must also be normalized, to zero. The
MNP mode! allows an unrestricted {/ — 1) x { — 1) correlation structure and J —2 .
free standard deviations for the disturbances in the model. (Thus, a two-choice model \'_].'2
returns to the univariate probit modet of Sectiork23.73 For more than two choices, this
specification is far more general than the MNL model, which assumes that T =1. (The
scaling is absorbed in the coefficient vector in the MNL model.) It adds the unrestricted
correlations to the heteroscedastic mode! of the previous section.
‘The main obstacle to implementation of the MNP model has been the difficulty in
computing the multivariate normal probabilities for any dimensionality higher than 2.
Recent results on accurate simulation of multinormal integrals, however, have made
estimation of the MNP model feasible. (See Section(J7.3.3)and a symposmm—’_; ¢.2 b
November 1994 issue of the Review of Economics and Statistics.) Yet some practical
problems remain. Computation is exceedingly time consuming. It is also necessary to
ensure that T remain a positive definite matrix. One way often suggested is to construct
the Cholesky decomposition of X, LL'. where L is a lower triangular matrix, and es-
timate the elements of L. The nor malizations and zero restrictions can be imposed by
making the fast row-of the J x J matrix ¥ equal (0,0, ..., 1) and using LL' to create the
upper (/ — 1) x {/ — 1) matrix. The additional nor: mallzation restriction is obtained by
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'estr 1ct10n__B'd‘ent1hcat10n appears to be a seriou$ ploblem with the MNP

model. Although the unrestricted MNP modet is fully identified in principle, conver-

gence to satisfactory results in applications with more than three choices appears to-

require many additional restrictions on the standard deviations and correlations, such
as zero restrictions or equality restrictions in the case of the standard deviations.

e
Another variant of the multmomlal logit model is the random parameters logit model

" (RPL) (also called the mixed 1ogit model). [See Revelt and Tiain (1996); Bhat (1996);

Berry, Levinsohn, and Pakes (1995); Jain, Vilcassim, and Chintagunta (1994); and

Hensher and Greene (2004)] Train’s (2003) formulation of the RPL model (which- |/
encompasses the others) is a modification of the MNL model. The model is a random\'
/coefficients formulation, The change to the basic MNL model i is the parameter specifi-

»- 18-9
B I

cation in the distribution of the parameters across individuals, it
Bit = By + 0k + oxttis,

where sz, k = 1, ..., K, is multivariate normally distributed with correlation matrix
R, gy is the standald deviation of the kth distribution, By + 2,0 is the mean of the
distribution, and 7; is a vector of person specific characteristics (such as age and income)
that do not vary across choices. This formulation contains all the earlier models, For
example, if 8, = 0 for all the coefficients and oy = 0 for all the coefficients except for
choice-specific constants, then the original MNL model with a normal-logistic mixture
for the random part of the MNL model arises (hence the name).

The model is estimated by simulating the log-likelihood function rather than direct
integration to compute the probabilities, which would be infeasible because the mix-
ture distribution compaosed of the original £;; and the random part of the coefficient is
unknown. For any individual,

Prob[choice ¢ | u;] = MNL probability | 8; (w),
with all restrictions imposed on the coefficients. The appropriate probability is
Fy[Prob(choice ¢ |u)] = / - Prob[choice ¢ |u] f(u)du,
MYyl LD W

which can be estimated by simulation, using

R
. IS .
Est. E,[Prob(choice q jm] = B z Prob[choice g | #;(u;,)].

r=1 ==
where o is the rth of R draws for obsewatlon i. (There are nkR draws in total. The
draws for observation { must be the same from one computation to the next, which
can be accomplished by assigning to each individual their own seed for the random
number generator and restarting it each time the probability is to be computed.) By this
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method, the log-likelihcod and its derivatives with respect to (P, O, 06) k=1,.... K 7:

and Rare sn‘nulated to find the values that maximize the simulated log-likelihood. é&éﬁ

The mmed mode! enjoys two considerable advantages not available in any of the |
other forms suggested. In a panel data or repeated-choices setting (see Section 23.11.8), . |’

one can formulate a random effects model simply by making the variation in the coef- | A, [ [+

ficients time invariant. Thus, the model is changed to \
(j-l'f?:,};j[_ﬁit-l—eiﬂ‘ iﬂl,...,ﬂ, j=‘-1,...,.], !‘21,...,T,
Birg = Br + 1,8k + opitin.

The time variation in the coefficients is provided by the choice-invariant variables, which
may change through time. Habit persistence is carried by the time-invariant random
effect, ;.. If only the constant terms vary and they are assumed to be uncorrelated,
rl. then this is logically equivalent to the familiar random effects model. But, much greater
| |» | generality can be achieved by allowing the other coefficients to vary randomly across | 6,-
' individuals and by allowing correlation of these effects™Asecond degree of Hexibility 7
is in (23:36). The random components, #; are not restricted to normality. Other distribu- < | ‘

i

tions that can be simulated will be appropriate when the range of parameter variation
consistent with consumer behavior must be restricted, for example to narrow ranges or
to positive values,

I 8.2. 2 2XTFF  APPLICATION: CONDITIONAL LOGIT MODEL
FOR TRAVEL MODE CHOICE

Hensher and Greene [Greene (2007a)] report estimates of a model of travel mode

choice for travel between Sydney and Melbourne, Australia. The data set contains 210

observations on choice among four travel modes, air, train, bus, and car. (See Appendix

Table $23:2:)-The attributes used for their example were: choice-specific constants: two

choice-specific continuous measures: GC, a measure of the generalized cost of the travel

F/ -2 that is equal to the sum of in-vehicle cost, INVC, and a wagelike measure times INVT,

the amount of time spent traveling; and TTME, the terminal time (zelo for cal) and

P for the choice between air and the other modes, HINC, th me. A, =

S mary of the sample data is given in Tab? . The sample is choice based s0as to KT)
balance it among the four choicesthe true population allocation, as shown in the last

column of Tabl . is dominated by drivers.
| 8.2 e model specaﬁed Is

Uij = caidi,air + Craintly srain + bustly pus + B GCij + BrTTMEj + yud; s HING; + &5,

where for each j, g;; has the same independent. type 1 extreme value distribution,

Fi(&j) = exp(—exp(—e;))),

) which has standard deviation 72/6. The mean is absorbed in the constants. Estimates

LT3 of the conditional logit model are shown in Table 23247 The model was fit with and
) L 1% 3

v @ 55&3 Hensher {2001) for an application to transportation mode choice in which each individuat is observed

in several choice situations. A stated choice experiment in which consumers make several choices in sequence
V4 about automobile features appears in Hensher; Ros\ and Greene {2006).
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18.2.8 A Generalized Mixed Logit Model

The development of functional forms for multinomial choice models begins with the conditional
(now usually called the multinomial) logit model that we considered in Section 18.2.3.
Subsequent proposals including the multinomial probit and nested logit models (and a wide range
of variations on these themes) were motivated by a desire to extend the model beyond the IIA
assumptions. These were achieved by allowing correlation across the utility functions or
heteroscedasticity such as that in the heteroscedastic extreme value model in (18-12). That issue
has been settled in the current generation of multinomial choice models, culminating with the
mixed logit model that appears to provide all the flexibility needed to depart from the IIA
assumptions. [See McFadden and Train (2000) for a strong endorsement of this idea.]

Recent research in choice modeling has focused on enriching the models to accommodate
individual heterogeneity in the choice specification. To a degree, including observable
characteristics, such as household income in our application to follow, serves this purpose. In this
case, the observed heterogeneity enters the deterministic part of the utility functions. The
heteroscedastic HEV model shown in (18-13) moves the observable heterogeneity to the scaling
of the utility function instead of the mean. The mixed logit model in (18-11) accommodates both
observed and unobserved heterogeneity in the preference parameters. A recent thread of research
including Keane (2006), Feibig, Keane, Louviere,and Wasi (2009), and Greene and Hensher
(2010) has considered functional forms that accommodate individual heterogeneity in both taste
parameters (marginal utilities) and overall scaling of the preference structure. Keane et al.’s
generalized mixed logit model is

Uy =xP + g
B: =0+ [y+to{l -7y,
O; = explo + qv‘]

where 0 <y <1 and w; is an additional source of unobserved random variation in preferences In
this formulation, the weighting parameter, y, distributes the individual heterogeneity in the
preference weights, v; and the overall scaling parameter o;. Heterogeneity across individuals in
the overall scaling of preference structures is introduced by a nonzero T while & is chosen so that

- Eu[0;] = 1. Greene and Hensher (2010) proposed including the observable heterogeneity already

in the mixed logit model, and adding it to the scaling parameter as well. Also allowing the
random parameters to be correlated (via the nonzero elements i in I'}, produces a multilayered form
of the generalized mixed logit model,

Bi 6B + Az} +[y+o(l-y)]Lv,
o; exp[G + &'h, ~I~1:w,]

i

Ongoing research has continued to produce refinements that will accommodate realistic forms of
individual heterogeneity in the basic multinomial logit framework.
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1$.72
‘TABLE £3:28 Summary Statistics for Travel Mode Choice Data
_ Number True
- GC TIME  INVC INVT HINC Choosing p Prop.
Air 102.648 61.010° 83522 133710 34548 58 0.28 .14
113.522 46534 7 97569 124828 41.274
Train 130.200 35.690 51338 608286 34.548 63 0.30 0.13
106.619 28.524 37460 532667  23.063
Bus 115.257 41 6‘30K 33457 629462  34.548 30 . . 014 0.9
108.133 2‘5.200 % 33733 618833 29700
Car 94414 20,995 573203 34,548 59 0.28 0.64
£9.093 ﬂ 15694 527373 42220
Note: The upper figure istheaverage forall 210 observations. The lower figure is the mean for the observations
that made that choice.
1B.3 .
TABLE 2524 - Parameter Estimates _
Unweiglted Sample Choice-Based Weighting
\h(nmme t Ratio Estimate t Rativ
Ba ——0.15501 —3.517 —0.01333 2.4 [{
Br —0.09612 —9.207 —0.13405 2 —5, 21k
Y 0.01329 1.295 —{1.00108 -0.057°§ 7.
iy 52074 6.684 6.5940 006 £ e 1S
Dgrain 3.8690 8731 36190 4,2
Cpus 3.1632 7.025 33218 56% 3 o '3
Log-likelihood at § =0 —291.1218 —291.1218 z2
Log-likelihood (sample shares) ~283.7588 2238578~ ~2 12,59 2 g
Log-likelihood at convergence  —199.1284 —147.5896

without the corrections for choice-based sampling, Because the sample shares do not
AT differ radically from the population proportions, the effect on the estimated param-
ek eters is fairly modest. Nonetheless, it is apparent that the choice-based sampling is
— not completely innocent. A cross tabulation of the predicted versus actual outcomes
Ie.q9 ~ 1S given In T'able 23257 The predictions are generated by tabulating the integer parts
of mj, = Z,_l Dijir, J, k=air, train, bus, car, where f;; is the predicted probability of
outcome j for observation / and ;. is the binary variable which indicates if individual

i made choice k.
Are the odds ratios train/bus and car/bus really independent from the presence of
the air alternative? To use the Hausman test, we would eliminate choice _air, from the

1€.4

TAB LE 253:2"-1" Predicted Choices Based on Model Probabilities (predlctmns i
: - based on choi¢e-based sampling in parentheses) .

Air Train Bus Car Total (A ctual)
Air 32 (30} 8(3) 5(3) S 13{23) 58
Train 7(3) 37(30) 5(H 14 (27) 63
Bus 3(1) 5(2) 154 6(12) 30
Car 16 (3) 13 (3) 6 (3) 25 {45) 59
Total (Predicted) 38¢39) 63 (40) sy L 39(108) 210

/

14
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|8, 5
TABLE X286 Results for A Test ,
Full-Choice Set Restricted-Choice Set
ﬁﬂ .ﬁT,, ] ) ffrruil i Ol pyey ﬂ,Cv ' ﬁT Civein g
Estimate  —(.0155 —0.0961. - 3869 3163 -0.0639 —0.06%9 4464 3105
Estimated Asymptotic Covariance Matriv Estimated Asymptotic Covariance Matrix
Bo 0.194e 3.4 09 0.000101
Br —046e R 0.000118 —0.0000813 0.000221 -
yrain ~0.00060  —0.0038 (.196 ~0.008244 ~0.00759 0410
bus ~0.00026  —0003X¥€ 0.161 0203 000813  —0.00753 033 0371

Note: 0.nnne-p indicates times 10 to the negative p power.
H = 33.336%, Critical chi-squared[d} = 9.488,

3
choice set and estimate a three-choice model. Because 58 respondents chose this mode,
we would lose 58 observations. In addition, for every data vector left in the sample,
the air-specific constant and the interaction, ¢4, x HINC; would be zero for every
remaining individual. Thus, these parameters could not be estimated in the restricted
model, We would drop these variables. The test would be based on the two estimators
of the remaining four coefficients in the model, {Bg, Br, @rain, ms). The results for the
N, test are as shown in Table 2¥26.) 8. 5§ '
ol The hypothesis that the odds ratios for the ather three choices are independent
it from gir would be rejected based on these results, as the chi-squared statistic exceeds
the critical value. :
Because 11A was rejected, they estimated a nested logit model of the following

type:
Travel Determinants
i
- - I !
. FLY GROUND (Income)
—t+—
AIR  TRAIN BUS CAR (Gcost, Ttime)
Note that one of the branches has only a single choice, so the conditional proba- \2. b
-

A bility, Pyg, = Pujpy = 1. The estimates marked “unconditional” in Table 33-2%are
' the simple conditional (multinomial) logit (MNL) model for choice among the four
alternatives that was reported earlier. Both inclusive value parameters are constrained

(by construction) to equal 1.0000. The FIML estimates are obtained by maximizing the

full log-likelihood for the nested logit model. In this model,

Prob(choice | branchy = P(0airdey + ®uraintiran + ﬂ‘f_i_:_usd!ms + ﬁ_GGC + aB_TTTM E),
Prob(bran.gh) =_f2 (Y‘fm‘r_-H] NC + '{n‘iy‘T v,;‘iy 4 Tgra_:md I Vgrom_rd)s
Prob(choice, branchy = Prob(cheice | branch) x Prob(branch).

The likelihood ratio statistic for the nesting (heteroscedasticity) against the null hy-
pothesis of homoscedasticity is —2[—199.1284 — (—193.6561)] = 10.945. The 95 percent
critical value from the chi-squared distribution with two degrees of freedom is 5.99, so
the hypothesis is rejected. We can also carry out a Wald test. The asymptotic covariance
matrix for the two inclusive value parameters is [0.01977/0.009621, 0.01529]. The Wald
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8.6
TABLE 2327 Eslimates of a Mode Choice Model {standard
errors in parentheses) '

,”/g—fﬁi

i Paranieter . FIML Estimate Unconditional
e 6.042° - (1.199) 5.207 {0.779)
Dpus 4.096 {0.615) 3.163 (0.450)
D prain 5.065 (0.662) 3.869 {0.443)
Boc ~{1.03139 (0.00816) —~(.1550 {0.00441)
Brmz ~0.1126 {0.0141) ~0.09612 . (0:0104)
Yy 0.01533 {0.00938) 0.01329 (0.0103)
Ty 0.5860 {0.141) 10000 (0.000)
Teround 0.3890 (0.124) 1.0000 (0.600)
agy 2.1886 (0.525) 1.2825 {(.000)
L o— 3.2974 (1.048) 1.2825 {0.000)
InL —193.4361 —199,1284

statistic for the joint test of the hypothesis that Iy = Tground = 1, i8

0.009621]_1 (0.586 -1.0

W.=(0586—-1.0 0.389-1.0) [ 0.1977 0.01520 0.389 — 1.0

0.009621

) = 24.475,

The hypothesis is rejected, once again.
agsumpiions

Ce IOt Wi TEssTimaled under the ag
treme valyde (H;’i‘yﬂ model. [See i JAhi
0',-2 = 74 (69?)f each g;; in (2808 hoa-resulis-fve

gl the heteroscedastfc ex-

I ®F
TABLE 2328  Estimates of a Heteroscedastic Extrerne Value Model
.7 . (standard efrors inparéntheses) - . -
N Heteroscedastic Restricted
Parameter HEV Model HEV Model HEY Model Nested Lagit Model
i 7.8326  (10.951) 51815  (6.042) 2973 (0.995) 6.062 (1.199)
s 7.1718 (9.135) 51302  (5.132) 4.050  (0.494) 4.0% (0.613)
rain 6.8655 (8.829) 48654 (5.071) 3042 (0.429) 5.065 (0.662)
Boc —0.05156  (0.0694) —0.03326 (0.0378) 00289 (0.00580) —0.03159 (0.00816)
Prrme —0.1968 (0.288) —0.1372  (0.164) —0.0828 (0.00576) —0.1126 (0.0141)
¥ 0.04024  (0.0607y 0.03537 (0.0451) 0.0238 (0.0186) 0.01533  (0.00938)
7 0.5860 (0.141)
Toround 0.3890  {(0.124)
Coir 0.2485 (0.369) 02890 (0.321) 0.4959 (0.124)
Derain 0.2595 {0418)  0.3629  (0.482) 1.0000  {0.000)
Bous 0.60635 {1.040)  0.6895  (0.945) 1.0000  {0.000)
Boar 1.0000  {0.000) 1.0000  (0.000} 1.0000  (0.000)
¢ {.0000 (0.000)  0.00552 (0.00573) 00000 {0.000)
Fmplied Standard
Deviations
Fair 5.161 {7.667)
Crain 4.942 (7.978)
s 2,115 (3.623)
Toar 1.283 {0.000)
InL ~105.6605 —194.5107 2003791 —193.6561




-

(18 -2

The choice model was reestimated under the assumptions of a heteroscedastic extreme
value (HEV) specification. In its simplest form, this model allows a separate variance,

= 1:2/(69_,2) (18-12)

for each g, in (18-1). (One of the es must be normalized to 1.0 because we can only compare __ |- .':

=\ ratios of variances.) The results for this model are shown in Tble 18.7. This model is less i ble

restrictive than the nested logit model. To make them comparable, we note that we found that Cair
= nf(’cﬂy\f_ 6) = 2.1886 and ctram Opus = Ocar = m’(’zgmund\/_ 6) = 3.2974. The HEV model thus
relaxes an additional restriction because it has three free variances whereas the nested logit model
has two. On the other hand, the important degree of freedom is that the HEV model does not
impose the IIA assumptions anywhere in the choicese; whereas the nexted logit does, within each (116 (0€% |
branch. Table 18.7 contains two additional results for HEV specifications. In the one denoted
“Heteroscedastic HEV Model,” we have allowed heteroscedasticity across individuals as well as
across choices by specifying

0, = 8, x exp(¢HINC). éA < (18-13)

In the “Restricted HEV Model,” eml=Variance of g, is allowed to differ from the others.
Finally, the nested logit model has different variance for 4ir and (Trgig,lBu,s‘:, Car).

J:.Sce Sq\\s‘borﬂa and Fe,h()u-s (2,0560 anad Lovviere and Swa,t (z_oﬁ)
foc om opelidatiom oF §his fape o HEY maddd. ]
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found that

an the nested logit

ir = R/(tﬁ‘,\/—)

2.1886 and oprgn = Opys =
The het oscedastlc extleme vajde (HEV) model thus ¥elaxes one varian

ighce parameters instegd of two. On the offier hand, th
here is th: inyfose the I%

ar =T/ (fgraamd ‘\/— 0)

Festriction,

ch bran

A pnmaly virtue of the HEV model, the nested logit model, and other alternative
models is that they relax the 11A a qssumptlon This assumption has implications for

the cross elasticities between attributes in the different probabilities. Table 2329 Tisls

the estimated elasticities of the estimated probabilities with respect to changes in the
generalized cost variable. Elasticities are computed by averaging the individual sample
values rather than computing them once at the sample means, The implication of the [IA
assumption can be seew in the table entries. Thus, in the estimates for the maitinomial
logit (MNL) model, the cross elasticities for each attribute are all equal. In the nested
logit model. the IIA property only holds within the branch. Thus, in the first column, the
effect of GC of air affects all ground modes equally, whereas the effect of GC for train
is the same for bus and car, but different from these two for air. All these elasticities

ary freely in the HEV model.

lists the estimates of the parameters of the multinomial probit and

ranclom parameters logit models. For the multinomial probit model. we fit three spec-
ifications: (1) free correlations among the choices, which implies an unrestricted 3 x 3
correlation matrix and two fiee standard deviations:, {2) uncorrelated disturbances,
but free standard deviations, a model that parallels the heteroscedastic extreme value
model; and (3) uncorrelated disturbances and equal standard deviations. a model that
is the same as the original conditional logit model save for the normal distribution of
the disturbances instead of the extreme value assumed in the logit model. In this case,

- 18.%

TABLE 2329”7 Estimated Elasticities with Respect

to Generalized Cost
Cost Is That of Alternative

Effect on Air Train Bus Car
Multinomial Logit
Air —1.136 0.498 0238 0418
Train 0.456 —1.520 0.238 0418
Bus 0.456 0.498 —~1.549 0418
Car 0.456 0.498 0.238 —1.061
Nested Logit
Air —0.858 0.332 0.179 0308
Train 0.314 —4.0758 0.887 1.657
Bus 0.314 1.595 —4.132 1657
Car 0.314 1.595 (1887 —2.498
Heteroscedastic Extreme Value
Air — 1040 (.367 0.221 0441
Train 0.272 ~1.495 0.250 0.553
Bus 0.688 0.858 -6.562 3.384
Car 0.690 0.930 1.254 -2.717

)8.%
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the scaling of the utility functions is different by a factor of (72 /6)"’2 = 1.283, as the
probit model assumes ¢; has a standard deviation of 1.0.

We also fit three variants of the random pal ameters ]oglt In these cases, the choice:
specific variance for each utlllw function is ch + 92 where cr is the contribution of the
logit model, which is 7% /6 =1.645, and 6? is the esnmated constant specific variance
estimated in the random parameters model. The combined estimated standard devi-
ations are given in the table. The estimates of the specific parameters. 8, are given

in the footnotes, The estimated models are (1) unrestricted variation and correlation’

among the three intercept palametels—thls parallels the general specification of the
muhtinomial probit model: (2) only the constant terms randomly clistributed but uncor-
related, a model that is parallel to the multinomial probit model with no cross-equation

correlation and to the heteroscedastic extreme value model shown in Table 2328 and
(3) random but uncorrelated parameters. This model is more general than the others,””

but is somewhat restricted as the parameters are assumed to be uncorrelated. Identi-
fication of the correlation matrix is weak in this model;after all, we are attempting
to estimate a 6 x 6 correlation matrix for all unobserved variables. Only the estimated

parameters are shown in Table 2330, Estimated standard errors are similar to (although
generally somewhat larger than) those for the basic multinomial logit model,

'The standard deviations and correlations shown for the multinomial probit model
are parameters of the distribution of ;. the overall randomness in the model. The coun-
terparts in the random parameters model apply to the distributions of the parameters.
Thus, the full disturbance in the model in which only the constants are random is
iy + Hap Tor air, and likewise for train and bus. Likewise, the correlations shown

TABLE 28:89 Parameter Estimates for Normal-Based Multinomiai Choloe Models

a_n.'r
Dair
Crain
Ciraln
by
Fhus
ear
Degr
Bc
UBG
Br
1T, AT
Yy
Oy
Oar
LaB
8T

18.7 Mualtinomial Probit Random Parameters Logit
Parameter  Unrestricted Homoscedastic Uncorvelated  Unrestricied  Constants  Uncorrelated
1.358 3.005 3.171 5.519 4.807 12.603
4.940 1.000%- 3.629 40094~ 32050 2,803
4298 2409 4277 5.776 5.035 13.504
1.899 Looor 1.581 1.904 1.2908~ 1.373
3.609 1.834 3.533 4.813 4.062 11.962
1.000° 1.0002 1.0002 1.424 31478 1.287
0.000% {0000 00002/ (.0000.~ 0.6002 0.000
1.000" 1.000 1.000° 1.2838 1.2832 1.283]
—0.0351 ~0.0113 —0.0325 -0.0326 —0.0317 —0.0544
— — — 0.000% 0.0002- 0.00561
—0.0769 —0.0563 —0.0918 —0.126 —0.112 ~(0.2822
- — — 0.0008 0.000%- 0.182
0.0593 (.0126 0.0370 0.0334 0.0319 0.0846
— — — 0.000% 0.000* 0.0768
0.581 .0002 0.0002- 0.543 0.0002 0.008
0.576 0.000% 0.0002 0.532 0.0003 0.0002
0.718 0.000% 0.000% 0.993 0.000° 0.0008
—196.9244 —2(8.918! —199.7623 —193.7160 —199.0073 —175.5333

log L

#Restricted to this fixed value.
bComputed as the square root of (/6 sz). Bair = 2.959, Blpuin = 0.136, 8y = 0.183, 8y = 0,000
Chir = 2,492, Bppgin = 0480, Bpus = 0.108, Aggr = 0.000.
~$Derived standard deviations for the random constants are By = 3798, Bppgiyy == 1.182, 8y = 00712, 6, = 0.000.

/8. F
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for the first two models are directly comparable, although it should be noted that in the
random parameters model, the disturbances have a distribution that is that of a sum
of an extreme value and a normal variable, while in the probit model, the disturbances
are normally distributed. With.these considerations, the “unrestricted” models in each
case are comparable and are.-in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The
likelihood values are not comparable, so a direct test is precluded. Both relax the 1A
assumption, which is a crucial consideration. The random parameters model enjoys
a significant practical advantage, as discussed earfier, and also allows a much richer
specification of the utility function itself. But, the question still warrants additional
study. Both models are making their way into the applied literature.

: 'lctually available and othef

Panel data in the
sequeutial choicg

ne ar more that are

preferences over a series of hyf
t}. Hensher, Rose, and

Efancisco Bay area. The dj n-.-:l'rumlg_ of state(l cheice data is 41 they are hypothetical.
‘Particutarly when they#fire mixed with revealed preferencg#data, the researcher must
assume that the sape preference patterns govern both tyfics of outcomes. This is likely
to be a dubious gfsumption. One method of accommogiting the mixture of underlying,
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18.2.10 Estimating Willingness to Pay

attributes of the choices. Recall that we are not able to observe the scale of the utilities in the
choice model. However, we can use the marginal utility of income, also scaled in the same
-unobservable way, to effect the valuation. In principle, we could estimate =

One of the standard applications of choice models is to estimate how much consumers value the ' @

WTP = (Marginal Utility of‘Attribute/c) / (Marginal Utility of Income/c) o
= (Pattibute / G) / ('YInAcoxrie'/ o), . [ e

where ¢ is the unknown scaling of the utility functions. Note that ¢ cancels out of the ratio. In
our application, for example, we might assess how much consumers would be willing to pay to
have shorter waits at the terminal for the public modes of transportation by using

| .'II WTPtime = 'BT—'}[’I\&E/ Yincome-
(We use the negative because additional time spent waiting at the terminal provides disutility, as
evidenced by its coefficient’s negative sign.) In seftings in which income is not observed,
researchers often use the negative of the coefficient on a cost variable as a proxy for the marginal
utility of income. Standard errors for estimates of WTP can be computed using the delta method
or the method of Krinsky and Robb. (See Sections 4.4.4 and 15.3.)

In the basic multinomial logit model, the estimator of WTP is a simple ratio of

parameters, In our estimated model in Table 18.3, for example, using the household income

-, coefficient as the numeraire, the estimatc of WTP for a shorter wait at the terminal is

“720.09612/0.01329 = 7.239. The units of measurement must be resolved in this computation, since
terminal time is measuored in minutes while the cost is in $1000/year. Multiplying this result by
$60 minutes/hour and dividing by the equivalent hourly income of income times 8760/ 1000 gives
$49.54 per hour of waiting time. To compute the estimated asymptotic standard error, for %]
convenience, we first rescaled the terminal time to hours by dividing it by 60 and the income —
variable to $/hour by multiplying it by 1000/8760. The resulting estimated asymptotic | [-/i/

distribution for the estimators is V2 itaid

ZmE] Bz ~5.76749Y ( 0.392365  0.00193095
L Rk O = . ""‘N , .
-' ¥ s 0.11639 }’(0.00193095 0.00808177
[ Vs T

[MF (67 The derivatives of WTP v = “Brovie/fu are *1/yy for Brrvs and ~WTP/yy for v, This provides
- _an estimator of 38.8304 for the standard error. The confidence interval for this parameter would
" be-26.56 to +125.63. This scems extremely wide. We will return to this issue below: |0 ¢
In the mixed logit model, if either of the coefficients in the computation is random, then
| thessimple computation abeve will not reveal the heterogeneity in the result. In many studies of
41 WTP using mixed logit models, it is common to allow the utility parameter on the attribute
(numerator) to be random and treat the numeraire (income or cost coefficient) as nonrandom. -
Using our mode choice application, we refit the modsl with BrmsE: = Brovs + Srmamv: and all other
coefficients nonrandom. We then used the method described in Section 15.10 to estimate
ElPraz | Xschoice;)fyg to estimate the expected WTP for each individual in the sample. Income
and terminal time were scaled as above. Figure 18.1 displays a kernel estimator of the estimates
. of WIP, by this method. Note that the distribution is roughly centered on our earlier estimate of
1% N $49.53. The density estimator reveals the heterogeneity in the population of this parameter.
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Willingness to pay measures computed as suggested abeve are ultimately based on a ratio |

of two asymptotically normally distributed parameter estimators. In general, ratios of normally

| distributed random variables do not have a finite variance. This often becomes apparent when

using the delta method, as it seems abpve. A number of writers, notably, Daly, Hess and Train
(2009), have documented the problem of exireme results of WTP computations, and why they
should be expected. One solution suggested, €;g:, by Train and Wecks (2005), Sonnier, Ainsle,
and Otter (2007), and Scarpa, Thiene, and Train (2008), is to recast the original model in

Ty “wﬂlmgness to pay space.” In the multinomial logit case, this amounts to ‘a trivial

reparameterlzatlon of the model. Usmg our application as an example, we would write

U,

y + Boc [GCi+ Prms/Boc TTME il + YedarHINC: + g
0‘1 + Boc [GCi + l?TME TTME il + YrAd apHINC, + €.

This obviously returns the original model, though in the process, it transforms a linear estimation
problem into a nonlinear one. But, in principle, with the model reparameterized in “WTP space,”
we have sidestepped the problem noted earlier — Az is the estimator of WTP with no further
transformation of the parameters needed. As noted, this will return the numerically identical
results for a multinomial logit model. It will not return the identical results for a mixed logit
model, in which we write Ay, = lm.ﬂ: + BWEVJTMgp Greene and Hensher (2010b) apply this
method to the generalized mixed logit model in Section 18.2.8.
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| 2.2, ss=t+=5r PANEL DATA AND STATED GHOIGE EXPERIMENTS

Panel data in the unorderedfdiscrete’ choice setting typically come in the form of
sequential choices. Train ( . Chapter 6) reports an analysis of the site choices of
258 anglers who chose among 59 possible fishing sites fototal of 962 visits. Allenby and
Rossi (1999) modeled brand choice for a sample of shoppers who made multiple store
trips. The mixed logit model is a framework that allows the counterpart to a random
effects model, The random utility mode! would appear

oF
Uf’].! =.?};j,r1,3_i + Eijs

where conditioned on g;. a multinomial logit model applies. The random coefficients
carry the common effects across choice situations. For example. if the random co-
efficients include choice-specific constant terms, then the random utility model be-
comes essentially a random effects model. A modification of the model that resembles
Mundlak’s correction for the random effects model is

- Bi = 4"+ Az + Iu;,

where, typically. z; would contain demographic and socioeconomic information.

The stated choice experiment is similar to the repeated choice situation, with a
crucial difference. In a stated choice survey. the respondent is asked about his or her
preferences over a series of hypothetical choices, often including one or more that are
actually available and others that might not be available (yet). Hensher, Rose, and
Greene (2006) describe a survey of Australian commuters who were asked about hypo-
thetical commutation modes in a choice set that included the one they currently took
and a variety of alternatives. Revelt and Train (2000) analyzed a stated choice experi-
ment in which California electricity consumers were asked to choose among alternative
hypothetical energy suppliers. The advantage of the stated choice experiment is that it
allows the analyst to study choice situations over a range of variation of the attributes or
a range of choices that might not exist within the observed, actual outcomes. Thus. the
original work on the MNL by McFadden et al. concerned survey data on whether com-
muters would ride a (then-hypothetical) underground train system to work in the San

e

Francisco Bay area. The disadvantage of stated choice data is that they are hypothetical.

Particularly when they are mixed with rf:_‘%églg_'t_l prqf_erpnc'q";t'ld,ta, the researcher must

assume that the same preference patterns govern both types of outcomes, This is likely
to be a dubious assumption. One method of accommodating the mixture of undertying
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preferences is to build different scaling parameters into the model for the stated and
revealed preference components of the model. Greene and Hensher (2007) suggest a
nested logit model that groups the hypothetical choices in one branch of a tree and the
observed choices in anotheér. -

o
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18.2.12 Aggregate Market Share Data — The BLP Random Parameters Model

We note, finally, an important application of the mixed logit model, the structural demand model .

of Berry, Levinsohn, and Pakes (1995), (BLP. Demand models for dlfferentlated:,I such as el ]S
. automobiles [BLP (1995), Goldberg (1995)], ready; to, eat cereals [Nevo (2001)].and consumer

electronics [Das, Olley,and Pakes (1996)] have been constructed using the mixed logit model

with market share data#A basic structure is defined for }
Markets, denoted ¢ = 1, N7 -
Consumers in the markets denoted i =1, LB
Products, denoted j = 1,., J

~ The definition of a market varies by application; BLP analyzed the U.S. national automobile
market for 20 years; Nevo examined a cross section of cities over 20 quarters so the clty-quarter
is 2 market; Das et al. defined a market as the annual sales to consumers in parttcular income
levels.
For market ¢, we base the analysis on average prices, py, aggregate quantities gy,
consumer incomes y; observed product attributes, x; and unobserved (by the analyst) product
attributes, Ay. The indirect utility function for consumer i, for product j in market £is

e = 04V = D) + X Bit Ay + gy, (18-14)

where o is the marginal utility of income and ; are marginal utilities attached to specific
observable attributes of the products. The fact that some unobservable product attributes, Ay will
be reflected in the prices implies that prices will be endogenous in a demand model that is based
on only the observable attributes, Heterogeneity in preferences is reflected (as we did earlier) in
the formulation of the random parameters,

o) _(a), (F ™, |
[-‘?J_[E]J{H}g‘ +[1:v_,.] (18-15)

where d; is a vector of demographics such as gender and age while o B,&',H y,and I are structural
parameters to be estimated (assuming they are identified). A utility function'is also defined for an
“outside good” that is (presumably) chosen if the consumer chooses none of the brands l J _

Wioe = O+ Ag + ', + Sigr,

-+

We draw heavily on Nevo (2000) for this discussion.



Since there is no variation in income across the choices, a,y; will fall out of the logit probabilities,
as we saw earlier. A normalization is used instead, Yo = Eip, SO that comparisons of utilities are
against the outside good. The resulting model can be reconstructed by inserting (18-15) into
(18-14),

Uy = Oy y; * 8,,; (X,;,pﬂ,Aﬁ 'Ot l3) + ty:(xﬂ,pﬁ,vl,w, /4 H,Y,l") + &y

E.Sﬂ= XJIB CCp;:'*'A;:
== -, A YW
w” [“‘””’-"f'][(_njd" b H
iwadel '
The preceding) defines the random utility model for consumer i in market £. Each
consumer is assumed to purchase the one good that maximizes utility. The market share of the > jth
product in this market is obtained by summing over the choices made by those consumers. With

the assumption of homogeneous tastes (' = 0 and y = 0) and i.id., type I extreme value
distributions for &, it follows that the market share of product / is

exp(xﬂﬁ a’pﬂ + Aﬂ)
I+ Ek =1 exp(x,aB Py + Akr)

=

The IIA assumptions produce the familiar problems of peculiar and unrealistic substitution
pafterns among the goods. Alternatives considered include a nested logit, a “generalized extreme
value” model and, finally, the mixed logit model, now applied to the aggregate data.

Estimation cannot proceed along the lines of Section 18.2.7 because Ay is unobserved and
Py is, therefore, endogenous. BLP propose, instead to use a GMM estimator, based on the
moment equations /

EA1Sy ~sp(prloaP)lz =0 M

for a suitable set of mstruments infAhe random parameters specification, we obtain an
estimation based on smaximyri=sing paets, rather than a maximum simulated log
likelihood. The simulated moments Would be based on ' '

E,,ls,x ool jy |0‘; ’IBJ N= J‘w,y {5 Jt [x i P f OFr(W),rﬁg(V)]}dF (w)dF(v).

These would be simulated using the method of Section 18.2.7.
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18.3 Random Utility Models for Ordered Choices

The analysts at bond rating agencies such as Moody’s and Standard and Poor provide an
evaluation of the quality of a bond that is, in practice, a discrete listing of the continuously

varying underlying features of the security. The rating scales are as follows:

Rating . S&P Rating Moody’s Rating
Highest quality ™ 5 AAA Aaa

High quality o - AA Aa

Upper medium quaity A A

Medium grade BEB Baa .

Somewhat speculative BB Ba

Low grade, speculative B B

Low grade, default possible CCC Caa

Low grade, partial recovery possible CcC Ca

Default, recovery unlikely C C

i A

For another example, Netflix (www.netflix. com) is an internet company that rents movies.
Subscribers order the film online for download or home delivery of a DVD. The next time the
customer logs oni_to the website, they are invited to rate the movie on a five,point scale, where
five is the highest, most favorable rating. The ratings of the many thousands of subscribers who
rented that movie are averaged to provide a recommendation to prospective viewers. As of April
3, 2009, the average rating of the 2007 movie National Treasure: Book of Secrets given by
apprommately 12,900 visitors to the site was 3.8. Many other internet sellers of producg and
services, such as Barnes and Noble, Amazon, Hewlett Packard ‘and Best Buy, employ ratings
schemes such as this. Many recently developed national survey data sets, such as the British
Household Panel Data Set (http://www.iser. essexacukfsurvcyfbhps) (BHPS),and the German
Socioeconomic Panel (http:/www.diw. de/en/soep) (GSOEP) contain questions that elicit self -
assessed ratings of health, health satisfaction, or overall well;being. Like the other examples
listed, these survey quigstions are answered on a discrete scale, such as the zero to ten scale of the
question about health satisfaction in the GSOEP. Ratmgs such as these provides applications of
the models and methods that interest us in this section’®

'} Greene and Hensher (2010) provide a survey of ordered choice modeling. Other textbook and mono graph

treatments include) DeMaris (2004), Long (1997), Johnson and Abbot (1999),and Long and Freese {2006}~
Introductions to the mode! also appear in journal articles such as Winship and Mare (1984), Becker and
Kennedy (1992), Daykin and Moffatt (2002} and Boes and Winkelmann (2006).
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For any individual respondent, we hypothesize that there is a continuously varying
strength of preferences that underlies the rating they submit. For convenience and consistency
with what follows, we will label that strength of preference “utility,” U*. Continuing the Netflix
example, we describe utility as ranging over the entire real line;

-0 < U,-m* < 40

where 7 indicates the individual and m mdlcatcs the movie. Individuals are invited to**tate* the
movie on an integer scale from 1 to 5. Logically, then, the translation from underlying utility to a
rating could be viewed as a censoring of the underlying utility,

Rim =1 if -0 < er'm*.‘s His
Rzm =2 if 5] < Drrm*S Ha,
.Rfm = 3 lf HZ < []Im*s Pa,
Rim = 4 if p3 < Upn* < ju,
Rm =5 if py < Up* < w,

The same mapping would characterize the bond ratings, since the qualities of bonds that produce
the ratings will vary continuously and the selfjassessed health and well being questions in the
panel survey data sets based on an underlying ut111ty or preference structure. The crucial feature
of the description thus far is that underlying the discrete response is a continuous range of
preferences. Therefore, the observed rating represents a censored version of the true underlying
preferences. Providing a rating of five could be an outcome ranging from general enjoyment to /
wild enthusiasm. Note that the thresholds, p, number (J1) where J is the number of p0331ble

i"ratmgs (here, five) | — J1 values are needed to divide the range of utility into J cells. The

thresholds are an important element of the model; they divide the range of utility into cells that
are then identified with the observed outcomes. Importantly, the difference between two levels of

a rating scale (e.g., one compared to two, two compared to three) is not the same as on a utility | ]
Py |

scale; hence we have a strictly nonlinear transformation captured by the thresholds, which are
estimable parameters in anh ordered choice model.

The model as suggested thus far provides a crude description of the mechanism
underlying an observed rating. Any individual brings their own set of characteristics to the
utility function, such as age, income, education, gender, where they live, family situation and so
on, which we denote x;, xp,...,xix  They also bring their own aggregate of unmeasured and

unmeasurable (by the statistician) idiosyncrasies, denoted g, How these features enter the utility

function is uncertain, but it is conventional to use a linear function, which produces a familiar
random wtility function,

Um® = Po+ Bixn + Paxn + + BxXix + €im.

Example 18. 2 Movie Ratings (/)
The website www,imdb.com invites visitors to rate movies that they have seen, in the same
' fashion as the n site. This site uses a ten point scale. On December 1, 2008, they
. reported the following results for the movie noted-above for 41,771 users of the site: The

b | panel at the left below shows the overall ratlngs The panel at the rlght shows how the =

average rating varies across age, gender and whether the rater is a US,viewer or not.


Bill
Sticky Note
no

Bill
Sticky Note
change "the following results" to "the results in Figure 18.2"


Userra}ingsfor
National Treasure: Book of Secrets

- Votes Average
Your Vote 5 bl Males 33,544 mmm s
T ——— Females 5.464
- AL7T1 IMDb users have given a weighted average vote of 6.6 / Aged under 48 2.492
. . Males under 18 1,795
Demographic breakdowns are shown helow. : Females under 18 695
Votes Percentage " Rating Aged 18-28 26,046
4,795, T8k 0 - qg . Males Aged 18-29 22,603
3,286 7.9%, i { b g Females Aged 18-28 3,372
7.17% T 79% | | 8 Aged 3044 8,21 0smssamn
10,636 ‘ o) 525_5% 7 Males Aged 30-44 7,216 b
7.729, - 1&_5=)r i 6 Females Aged 3044 97 6muomien
3,646 8i7% | 5 + 2,25Buwses
1,788 4.3% | | o 4 Males Aged 45+ 1,84
O o 2 3%, Do ; i 3 Females Aged 45+ 420
5But3% | ;oo or .| 2 IMQb staff 8
1,23 umee 3.0 0 | 1 oo 1 op 1000 veters  309msen
; ' o US users 14,79 2wmms
Arithmetic mean = 6.9, Median =7 Non-US userg 24,283

IMDb users 41,771 mwesme:
Figure 18.2 IMDb.com Ratings (i imdb coritertiodssssdiatings)

The rating mechanism we have constructed is

Ri
R

fl

I

3if i < xB +eEm< s,

R = 1 if <0 <x/B.+&m< p, AV Nowes Dxereanshats soe frrdesnd
2w < xB tem< C oA ddbz= e reconhgueed i Ato
Rm = 4 if ps < X/B +em< o, a t"l;zJ‘,Q/l:;)b\'&’(f%’”g"L , (¢ W_W

m = 5 if ;B + &m . . p
LR R i itle ol

Relying on a central fimit to aggregate the innumerable small influences that add up to the
individual idiosyncrasies and movie aftraction, we assume that the random component, &, is
normally distributed with zero mean and (for now) constant variance. The assumption of
nermality will allow us to attach probabilities to the ratings. In particular, arguably the most
interesting one is

Prob(Rim = 5|x;) = Prob[gm > pu — X/Bl.

The structure provides the framework for an econometric model of how individuals rate movies
(that they rent from Netflix). The resemblance of this model to familiar models of binary choice
is more than superficial. For example, one might translate this econometric model directly into a
probit model by focusing on the variable

E,‘ = ] ifR,-m =35
Ep = 0 if Ry < 5.

Thus, the model is an extension of a binary choice model to a setting of more than two choices.
But, the crucial feature of the model is the ordered nature of the observed outcomes and the
correspondingly ordered nature of the undetlying preference scale.

The model described here is an ordered choice model. (The choice of the normal
distribution for the random term makes it an ordered probit model.) Ordered choice models are
appropriate for a wide variety of settings in the social and biological sciences. The essential
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ingredient is the mapping from an underlying, naturally ordered preference scale to a discrete
ordered observed outcome, such as the rating scheme described above. The model of ordered
choice ploneered by Aitcheson and Silvey (1957), Snell (1964), and Walker and Duncan (1967)
and articulated in its modern form by Zavoina and McElvey (1975) has become a widely used
tool in many fields. The number of applications in the current literature is large and increasing
rapidly, including;

. Bond ratings [Terza (1985a)], : B

» Congressional voting on a Medlcare bill. [McElvey and Zavoina (1975)],-

» Credit ratings [Cheung (1996) , Metz and Cantor (2006)];

* Driver injury severity in car accidents [Eluru, Bhat,and Hensher (2008)],’

¢ Drug reactions [Fu, Gordon, Liu, Dale and Christensen.(2004)],

e Education [Machin and Vignoles (2005), Carneiro, Hansen and Heckman (2003),

Cunha, Heckman and Navarro (2007)},/~

s Financial failure of firms [Hensher and Jones (2007)],./

¢ Happiness [Winkelmann (2005), Zigante (2007)],~

e Health status [Jones, Koolman and Rice (2003)],.7

» Life satisfaction [Clark, Georgellis and Sanfey (2001), Groot and ven den Brink

(2003)], -

* Monetary policy [Eichengreen, Watson and Grossman (1985)],

¢ Nursing labor supply [Brewer, Kovner, Greene and Cheng: (2008)],

* Obesity [Greene, Harris, Hollingsworth and Maitra (2008)],

s Political efficacy [King, Muiray, Salomon and Tandon [2004)],.

e Pollution [Wang and Kockelman (2009)],

¢ Promotion and rank in nursing [Pudney and Shields [2000)],"

» Stock price movements [Tsay (2005)],/

e Tobacco use [Harris and Zhao (2007), Kasteridis, Munkin and Yen (2008)],.!

e Work disability [Kapteyn et al. (2007)].-

18.3.1 THE ORDERED PROBIT MODEL

The ordered probit model is built around a latent regression in the same manner as the binomial
probit model. We begin with

Yt =xBre
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As usual, v* is unobserved. What we do observe is
y=0 ify*<0
<=1 0 < vt <y
=2 it pi < ¥ <y

= J if My < _)_"*,

which is a form of censoring. The @'s are unknown pammetem fo be estlmated with ﬁ

presents their, 9-

=) Jrebetom, \ub assume that ¢ is normally distributed across observation: }9‘1301 the

A EAR same reasons as in the binomial probit model (which is the special case of J = 1), we

\ 2t normalize the mean and variance of & to zero and one. We then have the following
probabilities:

Prob(y = 0] x) = ®(—x'),
Prob(y = 11%) = ®(u1 —x'8) - ®(-x B),
Prob(y = 2| x) = ®(pz — X'8) — B (111 — X B),

Prob(y = J |%) = 1~ ®(us1 ~xf). W

Far all the probabilities to be positive, we must have | |

O<py<pr <ot <y,
G0N £3

Figure 23 &shows the implications of the structure, This is an extension of the univariate |
Inc La;&e ~ probit model we examined €8lier. The log-likelihood function and its derivatives can
1 E be obtained readily, and optimization can be done by the usual means.

5 As usual, the marginal effects of the regressors x on the probabilities are not equal
to the coefficients. It is helpful to consider a simple exampie. Suppose there are three
categories. The model thus has only one unknown threshold parameter. The three
probabilities are

Prob(y = 0{x) = 1— &(x'8).
Prob(y =1(x) = ®(u —x'8) — D(-¥'8),
Prob(y=2|x) =1 & —x'g).

‘f g /-‘EOthcr distributions, particularly the logistic, could be used just as casily. We assume the normal purely for
convenience. The logistic and normal distributions generally give similar results in practice.
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18.3

For the three probabilities, the marginal effects of changes in the regressors are
8 Prob(y =0 [x)

o = —¢(x 8)B,
_0(;;_}.,}3 =[¢(~XB) — P — ¥'B)18,

8 Prob(y =2 {x)
- IEOEEAN  b(u—xB)B.
A J8t£ 2%

Figure 235 illustrates the effect. The pr obablhty distributions of y and y* are shown in
the solid curve. Increasing one of the x's while holding 8 and ‘constant is equivalent
to shifting the distribution slightly to the right, which is shown as the dashed curve.
The effect of the shift is unambiguously to shift some mass out of the leftmost cell.
Assuming that 8 is posmve (for this x), Prob(y = 0|x) must decline. Alternatively,
from the previous expression, it is obvious that the derivative of Prob(y = 0{x) has the
opposite sign from 8. By a similar logic, the change in Prob(y = 2| x) [or Prob(y = J |x)
in the general casa] must have the same sign as 8. Assuming that the particular B is
positive, we are shifting some probability into the rightmost cell. But what happens
to the middle cell is ambiguous. It depends on the two densities. In the general case,
relative to the signs of the coefficients, only the signs of the changes in Prob(y = 0|x)
and Prob(y = J|x) are unambiguous! The upshot is that we must be very careful
in interpreting the coefficients in this model. Indeed, without a fair amount of extra
calculation, it i quite unclear how the coefficients in the ordered probit model should
be interpreted.

seems unif ly to be overlooked jh the received Hteratdre. Authors often report cgefficients
and t 1atl occasionally with some commentapf about significant cffécts, but rarely suggest upongvhat or in
what dirgction those cf ts are exerted.
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Example 2T F7 Rating Assignmenis
Marcus and Greene {1985} estimated an ordered probit model for the job assignments of
new Navy recruits. The Navy attempts to direct racruits into job classifications in which they
will be most productive. The broad classifications the authors analyzed were technical jobs
with three clearly ranked skill ratings: “medium skifled,” “highly skiled,” and “nuclear quali-
fied/highly skilied.” Because the assignment is partly based on the Navy's own assessment
and needs and partly on factors specific to the individual, an ordered probit model was
used with the following determinants: (1) ENSPE = a dummy variable indicating that the
individual entered the Navy with an “A school” {technical training) guarantee, (2) EDMA =
educational level of the entrant's mother; (3) AFQT = score on the Armed Forces Qualifying
Test; (4) EDYRS = years of education completed by the trainee; (5) MARR = a dummy variable
indicating that the individual was married at the time of enlistment; and (6) AGEAT = trainee’s
age at the time of enlistment. (The data used in this study are not available for distribution.)
The sample size was 5,641. The results are reported in TablgsR6:44. The extremely large f
ratio on the AFQT score is to be expected, as it is a primaryfsorting device used to assign
job classifications. 19.10

120 _

TABLE 23949 Estimated Fating

it N Assignment Equation

Mean of
Variable Estimate t Ratio Variable
Conslant ~4,34 — s
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 121
AFQT 0.039 39.9 71.2
EDYRS 0.190 87 12.1
MARR .48 ~9.0 0.08
AGEAT 0.0015 0.1 18.8
" 1.79 80.8 -
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8.4
TABILE 2sE80  Margingl Effect of a4 Binary Variable , _
—fx p=fx Probly = 0] Probly = 1] Probly = 2]
MARR =0 —0.8863. - 0.9037 0187 - 0.629 0.184
MARR =1 ~0.4063 | 13837 0.342 0.574 0.084
Change . LI5S ~0.055 —0.100

To obtain the marginal effects of the continuous variables, we require the standard normal
density evaluated at -¥X'8 = —0.8479 and & —-X'ﬁ_: 0.9421. The predicted probabilities are
$(-0.8479) = 0.198, ${0.9421) — &(—0.8479) = 0.628, and 1 — $({0.9421) = 0.174. (The
actual frequencies were 0.25, 0.52, and 0.23.) The two densities are ¢(—0.8479) =0.278 and
$(0.9421) = 0.255, Thetefore, the derivatives of the three probabilities with respect to AFQT,
for example, are

3Fy

SAFGT = (~0:278)0.039 = ~0.01084,
3P,

SaFgT = (0278 - 0.255)0.039 =0.0009,
8% __o 255(0.030) = 0.00995

3AFQT T = '

Note that the marginal effects sum to zero, which follows from the requirement that the
prebabilities add to one. This approachis not appropriate for evalualing the effect of a dummy

variable. We can analyze a dummy variable by comparing the probabilities that result when

=g the variable takes its two different values with those that cccur with the other variables hald
* % at their sample means. For example, for the MARR variable, we have the results given in

i Il ' Table 23-29.
Ty~ 1%l

BIVARIATE O

3.5

There are several extenSions of the ordered probit el that follow the logic gt the
bivariate probit medel we examined in Section23%. A direct analog to the base case
two-equation nodel is used in the study in Exdample 2348~ /9 2
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stimation approach involved theé foliowing strategy. (We are stylizing the/brecise formulation
a bit to compress the descrigtion.} Step 1 involved a direct applicatiopr’of the ordered probit
model of Section 5 v o the level of calculus achievement, whicl is coded 0,1, ... ,6:

I

= X8 e e % ~ NI
my =0if —oo<m <0
=1if0<m}“ = (Y

=6fpus <mf <+

The authors argued that although the various calcylis courses can be ordered discretely by
the material covered, the differences between the'levels cannot be measuredirectly. Thus,
this is an application of the ordered probit modgl. The independent variableyin this first step
model included SAT scores, foreign language/proficiency, indicators of infénded major, and
several other variables related to areas of s
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18.3.2 A Specification Test for the Ordered Choice Model

The basic formulation of the ordered choice model implies that for constructed binary variables,
wy = Lif i 2 j, 0 otherwise, j= 12411, . (18-16)
Prob(w; = 1| x) = F(x/B ).

The first of these, when j = 1, is'the bindrjz dhoicc model of Section 17.2. One implication is that

we could estimate the slopes, but not the threshold parameters, in the ordered choice model just

by using w; and x; in a binary probit or logit model. (Note that this result also implies the
validity of combining adjacent cells in the ordered choice model.) But, (18-16) also defines a set

Although it is merely an implication of the model specification, this has been viewed as an
implicit restriction on the model. [See, e.g., Long (1997, p. 141).] Brant (1990) suggests a test of
the paraliel regressions assumption based on (18-16). One can, in principle, fit J-1 such binary
choice models separately. Each will produce its own constant term and a consistent estimator of
the common . Brant’s Wald test examines the linear restrictions B =5 :. = Br1, or

Ho: B~ B =0, 9=2J4} ._I—‘}lf. _The Wald statistic will be

[
(a8 s

2K = (R8*) [Ri{asyvar[pr Y] (mB*).

where ﬁ* is obtained by stacking the individual binary logit or probit estimates of B (without the

constant terms). [See Brant (1990), Long (1997), or Greene and Hensher (2010, ﬁagc 187) for |

details on computing the statistic.]
Rejection of the null hypothesis calls the model specification into question. An

alternative model in which there is a different B for each value of y has two problems; it does not |
force the probabilitiesto be positive and it is internally inconsistent. On the latter point, consider |

the suggested latent regression, y* = x'B; + . If the “B” is different for each j, then it is not
possible to construct a data generating mechanism for y* (or, for example, simulate it); the
realized value of y* cannot be defined without knowing y (i.e., the realized j), since the applicable

B depends on j, but y is supposed to be determined from y* through, €.g:, (18-16). There is no
‘parametric restriction other than the one we seek to avoid that will preserve the ordering of the

probabilities for all values of the data and maintain the coherency of the model. This still leaves
the question of what specification failure would logically explain the finding. Some suggestions
in Brant (1990) include! (1) misspecification of the latent regression, x/B; (2) heteroscedasticity of
&;| (3) misspecification of the distributional form for the latent variable, -ize., “nonlogistic link
function.”

:"'!-

“of J1 binary choice models with different constants but common slope vector, . This equality”
of the parameter vectors in (18-16) has been labeled the “parallel regression assumption.”

|
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EXAMPLE 1 8.3( Brant Test for an Ordered E&%‘lﬁdel of Health Satisfaction
n Example 17.4, we studied the health care usage of a sample_of households in the .

German Socioeconomic Panel (GSOEP). The data include a self;reported measure of : -
‘health satisfaction,” (HSAT) that is coded 0 = 10. This variable provides a natural application

of the ordered choice models in this chapter. The data are an unbalanced panel. For

purposes of this exercise, we have used the fifth (1984) wave of the data set, which is'a cross

section of 4,483 observations. We then collapsed the ter cells into five [(0:2),(3-5),

(6_}!8),(9),(1 0)] for this example.: The utility function is ! i

HSAT? = Br  + BJAGE; + BsiNCOME; + B4KIDS,
+ BsEDUC,; + BeMARRIED; BIWORKING; + e,

Variables KIDS, MARRIED.and WORKING are binary indicators of whether there are children

in the household, marital status, and whether the individual was working at the time of the

survey. (These data are examined further in Example 18.6following.) The model contains ., Sy
six variables, and there are four binary choice models fit, so there are (J2)K) = (3)6) =18 =
restrictions. The chi squared for the probit mode! is 87.836. The critical value for 95%. 18 et
28.87, so the homogeneity restriction is rejected. The corresponding value for the logit model '

is 77.84, which leads to the sarme conclusion.
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TABLE 2355 rginal Effect of a Bihary Variable ,
Ch'x f—g Probly = 0] Prob[y = 1)/ Prob[y = 2]

'MARR =10 —0.8863.  0.90% 0187 - 0.184
MARR =1 —0.4063 H37 (.342 0.084
Change ; 0.155 —0.100 Y,

= -0.8479and 5 —X'B =0. 21. The predrcted probabiiities are
&{—0.8479) = 0. 1)33 (b{O 9421} — &{-0.8478) = 0.628, and 1 — $({0.9421) = 0A74. {The
actual frequencies were 0.25, 0.52, and 0.23,) The densuttes are ¢{—0.8479) £0.278 and

¢(0.9421) = Q£55. Therefore, the derivatives of thé three probabilities with regpect to AFQT,
for example /Are

3Py
AFQT

3P,
AAFQT
JAFQT /
Note that the marginal effec

probabilities acld to one. Thi
variable. We can analyze & clummy variable by comparing the probabilities that result when

the variable takes its twf different values with those that occur with the otheyvariables held
at their sample meang’. For example, for the M variable, we have thefresults given in

= {—0.278)3.039 = —0.01084,

= (0.278 — 0.255)0.039 = 0.0009,

255(0.039) = 0.00995.

able 23720,

3

1.3, 2xrme BIVARIATE ORDERED PROBIT MODELS _|'7. &

There are several extensions of the ordered probitfmodel that follow the logic of the
bivariate probit model we examined in Section . A direct analog to the base case
two-equation model is used in the study in Example 2338~ /g 2

Example = Calculus and Intermediate Econamics Courses
Butler et al. (1994) analyzed the relationship between the level of calculus attained and
grades in intemediate economics courses for a sample of Vanderbilt students. The two-step
estimation approach involved the following strategy. (We are stylizing the precise formulation
a bit to compress the description.) Step 1 involved a direct application of the orderad problt
model of Saction 2316+ to the level of caiculus achievement, which is coded 0,1, .

1830 mf = X8+ e, &% ~ N[O, 1],
m =0if —co<m' <0
=100 <mf =4

= 6if us < M < +oo.

The authors argued that although the various calculus courses can be ordered discretely by
the material covered, the differences between the levels cannot be measured directly. Thus,
this is an application of the ordered probit model. The independent variables in this flrstlstep
model included SAT scores, foreign language proficiency, indicators of intended major, and
several other variables related to areas of study.
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The second step of the estimator involves regression analysis of the grade in the interme-
diate microeconomics or macroeconomics course. Grades in these courses were translated
. to a granular continuous scale (A 4.0, A; = 3 T etc.). A finear regression is specified,

Grade; = 28 -+, where ‘u,«lz; ~NJo, s, - @

Independent variables in this regression include, among others, (1) dummy variables for iye 512
which outcome in the ordered probit model applies to the student (with the zero reference I [ PR :
case omitted), (2) grade in the last calculus course, (3) several other variables related to prior | B Tt
courses, (4) class size, {5} freshman GPA, ete. The unobservables in the Grade equationand | S ['e ! e

the math attainment are clearly correlated, a feature captured by the additional assumption 1" L
that (&, 4 1%, 2)) ~ Nz2[{0, 0), (1, 62), pay]. A nonzero p captures this “selection” effect. With £
this in place, the dummy variables in (1) have now become endogenous. The solution is a

“selection” correction that we will examine in detail in Chapter 24. The modified equation

becomes /4

Grade; |my = 28 + Elu | m]+
= 28 +{pau) MK B, i1 .o s)]+ .

They thus adopt a “control function” approach fo accommodate the endogensity of t I
attainment dummy variables. [See Section(Z3.2ran -4 for ancther application of this [3.3.5" (l'-l-—3-3>
method.] The term A(X;8, i1, ..., us) is a generalized Tesidual that is constructed using the 7\

estimates from the ﬁrst-staga orderad probit model. [A precise statement of the form of this

variable is given in Li and Tobias (2006).] Linear regression of the course grade on z anc this

constructed regressor is computed at the second step. The standard etrors at the second

step must be corrected for the use of the estimated regressor using what amounts to a

Murphy and Topel (2002) correction. (See Section &7 —~¥."F - .
Li and Tobias (2006) in a replication of and comment on Butler et al. (1924), after roughly | E]

replicating the classical estimation results with a Bayesian estimator, observe that the/Grade  [1ve (s |

_——_ @quation above could also be treated as an ordered probit model. The resulting bivariate } o Y i -
g_’ 1 i “ordered probit model would be K Y/ fl!-u-"' KT
o =t and  gr=zd+u, et
m=0f—~c0<m <0 g =0if—cc<g*<0 [ ,'-:.'.'-" (gL le
..—_1if0<n1‘*.5u1 21&0(_;5&1 . _-'-'|'."_|:'_ |:£._I_
[,-__-._l;l-ll | @
= 6 if us < M < +oo0. =M if ug < g* < 400 | S
where ANef o Vo
(?I’ t fx"'z’) B -Nz [(0’ 0. (1’%2)’ pd!‘]' | [T I.' v 1§ ]

i and Tobias extended their analysis fo this case simply by “transforming” the dependent

variable in Butler et al.'s second equation. Computing the log-likelihood using sets of bi-

variate normal probabilities is fairly straightforward for the bivariate ordered probit model.

[See Greene (2007).] However, the classical study of these data using the bivariate ordered

approach remains to be done, so a side-by-side comparison to Li and Tobias’s Bayssian -
alternative estimator is not possible. The endogensity of the calculus dummy variables in (1)

remains a feature of the model, so both the MLE and the Bayesian posigtior are less straight-

forward than they might appears: Whether the results in &cﬁonM

bivariate probit model extend to this case also remains to be determined. l 7- g. LY

The bivariate ordered probit model has been applied in a number of settings in the
recent empirical literature, including husband and wife’s education levels [Magee et al.
(2000)]. family size [(Calhoun (1991)], and many others. In two early contributions to
the field of pet econometrics, Butler and Chatterjee analyze ownership of cats and dogs
(1995) and dogs and televisions (1997).
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