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TABLE 24 Estimated Earnings Equations

- : Migrant Nonmigrant
" Migration - Earnings
1509 9.041 8.593
~0.708 (—5.72) —4.104 (—9.54) —4.161 (=57,
—1.A88 (—2.60) —

~0.790 (—2.24)
0212 (0.50)

0,927 (—935)
0.863 (2.84)

of income ipra sample of migrants must account fopthe incidental truncation of the mover
a positive net benefit. Likewise, the inpéme of the stayer is incidentally truncated
on a nefpositive net benefit. The model impiies’an income after moving for all observation
but wa observe it only for those who actually 4o move. Nakosteen and Zimmer {1980} appliéd
selectivity model to a sample of 9,223/ndividuals with data for 2 years (1971 and #973)
ampled from the Social Security Admiflistration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The i

ependent

The eamningg’equations included AS/C and SE. The4uthors reported the re;ults given in @
‘Table 24.4¢ The figures in parentheses are asympiptic ¢ ratios.

/9. .| 2%5F REGRESSION ANALYSIS OF TREATMENT EFFECTS =

The basic model of selectivity outlined earlier has been extended in an impressive variety | P R v
of directions3 An interesting application that has found wide use is the measurement -
of treatment effects and program effectiveness® o I

An earnings equation that accounts for the value of a college education is msp 7]

earnings; = X8 + 8C; + &, Wi

where C, is a dummy variable indicating whether or not the individual attended college.
The same format has been used in any number of other analyses of programs, experi-
ments, and treatments. The question is: Does § measure the value of a college education
(assuming that the rest of the regression model is correctly specified}? The answer is

4 S This s one of t—l—le.fun mental a
mostAongstapding and cojtenti
symposium fAngrist (200))]

\

A T i rm
annes. and is also the setting for th
/A Jourgal of Buskess and}Economiq Statlstirs
ighs on whegher and how it is-fossiple to

7

mgasure heatment cife



Bill
Sticky Note
no


i Greenc-50558  book  June 23,2007  13:17 ’9 ?jZ

890 PART VI 4 Cross Sections, Panel Data, and Microeconometrics

no if the typical individual who chooses to go to college would have relatively high
earnings whether or not he or she went to college. The problem is one of self-selection.
e If our observation is correct. then least squares estimates of § will actually overestimate
the treatment effect. The same observation applies to éstimates of the treatment effects
in other settings in which the individuals themselves decide whether or not they will
receive the treatment.
To put this in a more familiar context. suppose that we model program par ticipation
{e.g.. whether or not the individual goes to coltege) as

Ch=wy +u,

¥ g

Ci =1 if C} > 0,0 otherwise.

We also suppose that, cousistent with our previous conjecture, g; and g; are correlated.
Coupled with our earnings equation. we find that

EwlC =t 5l =xf+5+ E[s |G =15, 4] 19-3¢

19-24 — T %/ =XB A+ pod(=w ) {
once again. [See (@ ] Evidently, a viable strategy for estimating this model is to use
the two-step estimator discussed earlier. The net result will be a different estimate of 8
that will account for the self-selected nature of program participation. For nonpartici-
pants, the counterpart tof24-22) is "

¥ —p (Wi ] 935"
)9 -4 Eralg “O’f-"“"'-”"f’?"'-“p““[lm.@ufir_) (2
The difference in expected earnings between participants and nonparticipants is, then,
I{y . :JIE ¢1’- 'ﬂ'_36
FLii6 =i~ EDn1 G =03 ] =54 pou |52 ] (o
=" A il — @)

If the selectivity correction A; is omitted from the least squares regression, then this
difference is what is estimated by the least squares coefficient on the treatment dummy
variable. But because (by assumption) all terms are positive, we see that least squares
overestimates the treatment effect. Note, finally, that simply estimating separate equa-
tions for participants and nonparticipants does not solve the problem. In fact, doingso ... _;q._ i2
would be equivalent to estimating the two regressions of Exampl@by least squares,
which, as we have seen, would lead to inconsistent estimates of both sets of parameters.

xJ"'

. ,-5; There are many variations of this model in the empirical literature. They have been %
fo ;-.5 applied to the analysis of education. ¥ the Head Start program,® and a host of other - 36
8 e n o AT T * 4 i . itar o b 1 v 7 N
- 1. 1 ,5.*%!_ settings.”” This strand of literature is particularly important because the use of dummy

T variable models to analyze treatment effects and program participation has a long
y history in empirical economics. This analysis has called into question the interpretation

L S of a number of received studies.

L U

- %’—}Dﬁﬁlhs and Rosen (1979). , 200 =4
L FGoldberger (1972‘)"/
3‘:-'? -1 A useful summary of thc issues lS Bal now, Cain, and Goldberger (1981) Sce-aisoﬁeddala-@&?&—few-lﬂgw
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A To describe the problem created by selection on t_h'_é_{glil_lqbseryables, we will drop the
independence assumptions. The model with endogenous participation and different outcome
equations would be

C* =wy+u, C=1if C* >0 and 0 otherwise,
Yo = X;'Bo + &,
ya  =xPiten ' m -

It is useful to combine the second and third equﬁﬁc‘ms in
Y =Cx;Br+en) + (1~ Cr)(x/r'BO +&0)j=0,1.
f

We assume joint normality for the three disturbances;

U, )| ! P8y P16,

Eo [~ N[O P8y 6 By
Ein 0/ p8 8 t

The variance in the participation equation is normalized to one for a binary outcome, as described

carlier (Section 17.2). Endogeneity of the participation is implied by the nonzero values of the
correlations po and p;. The familiar problem of the missing counterfactual appears here in our
inability to estimate 8o;. The data will never contain information on both states simultaneously,

so it will be impossible to estimate a covariance of Vo and yy (conditioned on x; or otherwise). :
Thus, the parameter 0y, is not identified (estimable) L we normalize it to zero. The parameters of | [~}

this model after the two normalizations can be estimated by two,step least squares as suggested in | Brau e
Section 19.XX, or by full information maximum likelihood. The average treatment effect onthe |’ "' .
treated would be = = i "
) /s (rinds) |yeanen
3 o(wiy) | num el

| ot -
ATET = E[Vrilcjﬁilﬁrlfw_f] - EDolCr1Lxp ] (= %"(B1 - Bo) + (P16 = poBo) ——2 ',

@ (wiy) e

[See (19-34).] If the treatment assignment is completely random, then 1= po = 0, and we are left
with the first term. But, of course, it is the nonrandomness of the treatment assignment that
brought us to this point. Finally, if the two coefficient vectors differ only in their constant terms,
Boe and Py, then we are left with the same & that appears in (19-36)"%i the ATET would be
Bo.1 + CiBro 7 Boo)- '

P
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/9¢.) a “2Z55- THE NORMALITY ASSUMPTION

Some research has cast some skepticism on the selection model based on the normal
distribution. [See Goldberger {1983) for an early salvo in this literature.] Among the
findings are that the parameter estimates are surprisingly sensitive to the distributional
assuinption that underlies the model. Of course, this fact in itself does not invalidate the
eormality assumption, but it does call its generality into question. On the other hand,
the received evidence is convincing that sample selection, in the abstract, raises serious
problems, distributional questions aside. The literature—for example, Duncan (1986b),
Manski {1989,1990), and Heckman (1990)—has suggested some promising approaches
based on robust and nonparametric estimators. These approaches obviously have the
virtue of greater generality. Unfortunately, the cost is that they generally are quite
limited in the breadth of the models they can accommodate. That is, one might gain
the robustness of a nonparametric estimator at the cost of being unable to make use of
the rich set of accompanying variables usually present in the panels to which selectivity
models are often applied. For example, the nonparametric bounds approach of Manski
AR (1990) is defined for two regressors. Other methods [e.g.. Duncan (1986b)] allow more
3 & elaborate specifications.

w%esearch includes specific attempts to move away from the normality
assumption.i An examp]e is Martins (2001), building on Newey (1991), which takes

19-11 the core specification as given 1 (24-20as the platfmm “but constructs an alternative

to the assamption of bivariate normality. Martins's specification modifies the Heckman
model by employing an equation of the form

c’c fe fﬂ F[v,]z,_l,hx,,w,]_xﬁ-l—u(w’y)

C"’”‘_"a-whele the lattery “selectivity correction” is not the inverse Mills ratio, but some other
result from a different model. The correction term is estimated using the Klein and
_Spady model-discussed in Section(23.6.1)This is labeled a “semiparametric” approach.
‘Whether the conditional mean in the selected sample should even remain a linear index
function remains to be settled. Not surprisingly, Martins’s results, based on two-step
least squares differ only slightly from the conventional results based on normality. This ~ /¢)/ "
approach is arguably only a fairly small step away from the tight parameterization of

the Heckman model. Other non- and semiparametric specifications, e, - Honore and

Kyriazidou (1997, 2000) represent more substantial departures from the normal model, o i

P IJ but are much less operational® The upshot is that the issue remains unsettled. For | =

BP0
/ ?é / {3 2 BS-. ESTIMATING THE EFFECT OF TREATMENT
ON THE TREATED

- Heckman'’s original model builfaround the joint normal distribution. ‘ Its &

Consider a repression approach to analyzing treatment effects in a two-period setting.

- Y:r—-9t+x;rﬁ+l’c ti+ & L= 0,1,

’?’ 8 %gam Angrist (2001} is an important contribution to this literature.

= 29 A#This particular work considers setection in a “panel” (mainly two periods). But, the panel data setting for

<t sample selection models is more involved than a cross-section analysis, In a panei data set, the “selection™ is
likely to be a decision at the beginning of Period 1 to be in the data set for all subsequent periods. As such,
sonething more intricate than the model we have considered here is called for.

better or worse, the empirical {iterature on the subject continues to be dominated by | 7 pe 1
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where C; isthe treatment dummy variable and »; is the unobserved individual effect. The
setting is the pre- and postitreatment analysis of the sort consideredin thissection, where
we examine the impact of a job training program on post training earnings. Because
there are two periods, a natural approach to the analysis is to examine the changes,

Ay = (01 —00) ¥ VA + (Axy)'f + Acy
where AC; = 1 for the treated and 0 for the nontreated individuals, and the first differ-
ences eliminate the unobserved individual effects. In the absence of controls (regressors,
.55.'), or assuming that the controls are unchanged, the estimator of the effect of the treat-
ment will be
P =RAy[AG = 1)~ Ay (G =0,

which is the dlﬂgrcnce in differences estimator, This smphﬁes the problem consider-
ably, but has several shortcomings. Most important, by using the simple differences, we
have lost our ability to discern what induced the change, whether it was the program or
something else, presumably in Xir.

Evenwithout the normality a assumption, the preceding regression approach is more
tightly structured than many are comfortable with. A considerable amount of research
has focused on what assumptions are needed to reach that model and whether they
" are likely to be appropuate in a given setting.™ The overall objective of the analysis of
the preceding two sections is to evaluate the effect of a treatment, C,on the individual
treated, The implicit counterfactual is an observation on what the “response” (depen-
dent variable) of the treated individual would have been had they not been treated.
But, of course, an individual will be in one state or the other. not both. Denote by y
the random variable that is the outcome variable in the absence of the treatment and
by w the outcome when the treatment has taken place. The average treatment effect,
averaged over the entire population is

ATE = E[y - w].

This is the impact of the treatment on an individual drawn at random from the entire
population. However, the desired quantity is not necessarily the ATE, but the average
treatment effect on the treated, which would be

ATE|T = E[y — wiC=1].

The difficulty of measuring this is, once again. the counterfactual, E[yp | C = 1]. Whether
these two measures will be the same is at the center of the much of the discussion
on this subject. If treatment is completely randomly assigned. then £[y;IC = 1] =
i1 C = 0] = £[y|C = jl,j = 0,1. This means that with completely random
treatment assignment

ATE = E[n |C =1] - E[n|C=0].

To put this in our example, if college attendance were completely randomly distributed
throughout the population, then the impact of college attendance on income (neglecting
other covariates at this point)/could be measured simply by averaging the incomes of

A sampling of the more important parts of the literature on this issue includes Heckman (1992, 1997),
Imbens and Angrist (1994), Manski (1996}, and Wooldridge (2002a, Chapter 18).

|
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college attendees and subtracting the average income of nonattendees. The preceding
theory might work for the treatment “having brown eyes.” but it is unlikely to work
for college attendance. Not only is the coilege attendance treatment not randomly
distributed, but the treatment “assignment” is sulely “related to expectations about »
VErsus . and. at a minimum, w itself. (College is expensive.) More generally, the
researcher faces the difficulty in calculating freatment effects that assignment to the
treatment might not be exogenous. 19-34  19.36
The control fumtmn approach that we used in (%ﬁé)-»(%) isused to account for
the endogenelty of the treatment assignment in the regression context. The very specific
assumptions of the bivariate normal distribution of the unobservables somewhat simpli-
fies the estimation, because they make explicit what control function (4;) is appropriate
to use in the regression. As Wooldridge (2002a, p. 622) points out. however, the binary
variable in the treatment effects regression Iepleserjns simply an endogenous variable
in a linear equation, amenable to instrumental variable estimation (assuming suitable
instruments are available). Barnow, Cain, and ‘Goldberger (1 081) proposed a two-stage
least squares estimator, with instrumental variable equal to the predicted probabil-
ity from the probit treatment assignment model. This is slightly less parametric than
T {22-24) because, in principle, its validity does not rely on joint normality of the distur-
bances. [Woo]dudge (2002a, pp. 6215633) discusses the underlying assumpt;ons]
A gn pletely 1gnoTable)” e, 75 TioTes, © io
; plified. Suppose, as well, that thepare observable
that influence both the efitcome and the treatment asgighment. Suppose it

athers™ suggested. instead, matchifig on the propensity score, F(x;) = Prob(C; =
;. Individuals with similar propehsity scores are paired and the average treatment
Effect is then estimated by the différences in outcomes. Various strategies are suggested
by the authors for obtaining the€ necessary subsamples and for verifying the conditi
under which the procedurg§ will be valid. {See, e.g.. Becker and Ichino (200
Greene (2007¢).]

Example 24.10 Peatment Effects on Earnings
LaLonde (1986) andlyzed the results of a labor market experiment, TheNational Supported

given work exgerience and counseling in a sheltered environmel
assigned toffaining positions randomly. The treatment group
gram. Tho$e in the control group “were left to fend for the

eckman, LuLonde, and Smlth (1999), Heckman,
(2000).
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19.6.2 Propensity Score Matching

If the treatment assignment is “completely ignorable,” then, as noted, estimation of the treatment
effects is greatly simplified. Suppose, as well, that there are observable variables that influence
both the outcome and the treatment assignment Suppose it is possible to obtain pairs of
individuals matched by a common x,”, one with C; = 0, the other with C; = 1. If done with a,- 7
sufficient number of pairs so as to average over the population of X's, then a matclpng ——
estimator, the average value of (y; . =1) = (4 |C; =0),would estimate E[y] o], which is what
we seek. Of course, it is optimistic to hope to find a large sample of such matched pairs, both
because the sample overall is finite and because there may be many regressors, and the “cells” in
the distribution of x; are likely to be thinly populated. This will be worse when the regressors are

. continuous, for example, with a “family income” variable. Rosenbaum and Rubin (1983) and

/ o'thers,H suggested, instead, matching on the propensnty score, F(x) = Prob{(C; = 1|x).
Individuals with similar propen51ty SCoTes are palred and the average treatment effect is then
estimated by the differences in outcomes. Various strategies are suggested by the authors for
obtaining the necessary subsamples and for verifying the conditions under which the procedures
will be valid. [See, e.g., Becker and Ichino (2002) and Greene (2007¢).]

Example 19.15 Treatment Effects on Earnings

LaLonde (1986) anaiyzed the resuits of a iabor market experiment, The National Supported
Work Demonstration, in which a group of disadvantaged workers lacking basic job skills were
given work experience and counseling in a sheltered environment. Qualified applicants were
assigned to trammg positions randomly. The treatment group received the benefits of the
program. Those in the control group “were left to fend for themselves.” [The demonstration

was run in numerous cities in the mid-1970s. See Lalonde (1986, pp. 605—609) for — =
institutional—

“ Other important references in this literature are Becker and Ichino (1999), Dehejia and Wahba (1999),
LaLonde (1986), Heckman, Ichimura, and Todd (1997, 1998), Heckman, Ichimura, Smith and Todd
(1998), Heckman, LaLonEie and Smith (1999), Heckman, Tobias, and Vytlacil (2003), and Heckman and
Vytlacil (2000).
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detalls on the NSW experiments.] The training period was 1976-1977; the outcome of in-
terest for the sample examined here was posttraining 1978 earnings. LalLonde reports a
large variety of estimates of the reatment effect; for different subgroups and using different
estimation methods. Nonparametnc estimates for the group in our sample are roughly $900
for the income increment in the. post-tralmng year. (Bee Lalonde, p. 609.) Similar results
are reported from a two-step regression-based estimator similar to to 24-24) (See
Lal.onde's footnote to Table 6, p. 616.)

Lal.onde’s data are fairly well iraveled, having been usedin replicatlons and extensmns in,
e.g:, Dehejia and Wahba (1999), Becker and lchino (2002), and Greene (2007b ¢}. We have
reestimated the matching estimates reported in Becker and Ichino. The data in the file used
there {(and here} contain 2,430 control observations and 185 treatment observations on the
following variables:

t = treatment dummy variable,’

age = age in years, ?
aguc — education in years,.”

mart = dummy varlable for marred, -
black = dummy variabla for black,

hisp = dummy variable for Hispanic,’

nodegres = dummy for no degree (not used),’

re74 = real earnings in 1974,

re75 = real sarnings in 1975,

ra78 = real earnings in 19785

Transformed variables added to the equation are

agé?’= age squared,’
educ2-= educ squared,.-
re742'= re74 squared,”
re752'= re75 squared, .-
_blacku74 = black times 1{re74 = 0)..*

We also scaled all earmings variables by 10,000 before beginning the analysis, (See Appendix
Table(F24,2> The data are downloaded from the webisite hitp//www.nber.org/%7Erdehejia/

©wdata.htrnl. The two specific subsamples are in http://www.nber.org/% 7Erdehejia//
psid_controls.ixt and http://www.nber.org/%7Erdehejia/nswre74_treated.ixt.) (We note that
Becker and Ichine report they were unable to replicate Dehejia and Wahba's results, al-
though they could come reasonably close. We, in tumn, were not able {o replicate sither set
of results, though we, likewise, obtained quite similar results))

The analysis proceeded as foliows: A logit model in which the included variables were a
constant, age, age?, education, education®, marr, black, hisp, re74, re75, re742, re752, and
black74 was computed for the treatment assignment. The fitted probabilities are used for
the propensny scores. By means of an iterative search, the range of propensity scores was
partitioned into B regions within which, by a simple F fest, the mean scores of the treat-

ments and controls were not statistically different. The partitioning is shown in Table 24:8~ /9.)0

The 1,347 observations are all the treated observations and the 1,162 control observa-
tions are those whose propensity scores fell within the range of the scores for the treated
observations.

Within each interval, each treated observation is paired with a small number of the nearest
control observations. We found the average difference between treated observation and
control to equal $1,574.35. Becker and Ichino reported $1,537.94.

As an experiment, we refit the propensity score equation using a probit model, retaining
the fitted probabilities. We then used the two-step estimator described earlier to fit (24-22)

19-34

#
i

I

\I_

YR

ja -8

)]



* Greene-30558 book  June 23, 2007 13:17 ¥ I
| [ q - J_QE

CHAPTER 24 4+ Truncation, Censoring, and Sample Selection 895

/9./0
TABLE 245 Empirical Distribution of Propensity Scores
N Percent Lower Upper

0-5 0.000591 - (:000783 Sample Size = 1,347

5510 0.000787 - 0001061 : - Average score = 0.137238
10-15 0.001065 0001377~ Std. Devscore = 0.274079
1520 0.001378 0.001748
20:25 0.001760 0.002321 Lower Upper # obs
25:30 0.002340 0.002956 1 0.000591 0.098016 = 1041
3035 0.002974 0.004057 2 0.098016 .195440 63
3540 0.004059 0.005272 3 1195440 0.390289 65
4045 0.005278 0007486 4 .390289 0.583138 36
45-50 0.007557 0.010451 5 (1585138 0.779986 32
50-55 0.010563 0.014643 6 0.779986 0.877411 17
55%60 0.014686 0.022462 7 0.877411 0926123 7
6065 0.022621 0.035060 8 0.926123 0.974835 86

65-70 0.035075 0.051415
70-75 0051415  (.076188
75580 0.076376  0.134189
80-—85 0.134238  0.320638
3%-90 0321233 0.616002
90495 0.624407  0.94941%
95-100  0.949418  0.974835

7-35’
and (24-23) using the entire sample. The estimates of 4, p, and o were (—1 .01437, 0.35519,
1.38426). Using the results from the probit model, we averaged the result in (34-24) for the
entire sample, obtaining an estimated treatment effect of $1,476.30. kA

é4.5.7 SAMPLE SELECTION IN NON

EAR MODELS

The preceding analysis has focused gn-an extension of the linear regression (or the
estimation of simple averages of thedata). The method of analfsis changes in nonlinear
models. To begin. it is not neceSsarily obvious what the imyiact of the sample selection
is on the response variable; or how it can be accommogéted in a model. Consider the
model analyzed by Beves, Hoffman, and Lowe (1989]:

i1 = 1 if individual { defaults op’a loan, 0 otherwise,

¥ = 1 if the individual is grafited a loan, 0 otherwise.

Aind and van Praag (1981) also used ghis framework to analyze consumer insurance

Greene (1992) applied the same mddel to y; = default on credit ¢
¥i2 denotes whether an applicatigh for the card was accepted opfiot. {Mohant

= 1. Following the lead
roach might seemto be t
using a univariate plg})' _
first equation as an additional “control” vari
[This is the approag E used by Wynand aifd van Praag (1981).] problems with this
control function approach are, first.it'is unclear what in the mod#| is being “controlied™
and, second, assuming the first'mode! is correct, the apptc;p iate model conditioned

T /



-l

then

19.6.3 Regression Discontinuity

There are many situations in which there is no possibility of randomized assignment of
treatments, Examples include student outcomes and policy interventions in schools. Angrist and
Lavy (1999), for example, studied the effect of class sizes on test scores. Van der Klaauw studied

financial aid offers that were tied to SAT scores and grade point averages. In these cases, the

natural experiment approach advocated by Angrlst and. Plschke (2009) is an appealing way to
proceed, when it is feasible. .The regression dlscontmmty des1gn presents an alternative
strategy. The conditions under which the approach can be effective are|(1) The outcome, y, is a

continuous variable; (2) the outcome varies smoothly with an assignment variable, A,, 3) an

treatment is “sharply” assigned based on the value of 4, specifically, C=1(4 > A*) where A* isa
fixed threshold or cutoff value. [A “fuzzy desngn is based on Prob(C = 1|4) = F(A4). The
identification problems with fuzzy demgn are much more complicated than with sharp design.
Readers are referred to Van der Klaauw (2002) for further discussion of fuzzy design.] We
assume, then, that

2 = fAO e

Suppose, for example, the outcome variable is a test score, and that an administrative treatment
such as a special education program is funded based on the poverty rates of certain communities.
The ideal conditions for a regression discontinuity design based on these assumptions is shown in

Figure 19.8. The logic of the calculation is that the points near the threshold value, which have

“essentially” the same stimulus value, constitute a nearly random sample of observations which
are segmented by the treatment.
The method requires that E[g|4, C'] Elel4] = the assignment varlable 1s exogenous to the
experiment. The result in Figure 19.8 is consistent with

y=fd)+aC +e,
where o will be the treatment effect to be estimated. The specification of fl4) can be
problematic; Assuming a linear function when something more general will bias the estimate of
a. For this reason, nonparametric methods, such as the LOWESS regression (see Section 12.3.5)
might be attractive. This is likely to enable the analyst to make fuller use of the observations that
are moer| distant from the cutoff point. [See Van der Klaaus (2002).) Identification of the
treatment effect begins with the assumption that £4) is continuous at 4*, so that

lim f(4) = lim f(4)= f(4*).

AT 4

. R H I= E H — % .

;iT,E{yIA] A%ggE[ylA] _f({4)+a+}11?‘£[8|{4] S (4% _d!lTrg,E[elA]
=0

With this in place, the treatment effect can be estimated by the difference of the average
outcomes for those individuals “close” to the threshold value, 4*. Details on regression
discontinuity design are provided by Trochim (1984‘2000) and Van der Klaauw (2002).

19-80
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19.7 SUMMARY AND CONCLUSIONS

This chapter has examined settings in which, in principle, the linear regression model of Chapter
2 would apply, but the data generating mechanism produces a nonlinear form: truncation,
censoring, and sample selection or endogenous sampling. For each case, we develop the basic
theory of the effect, then use the results in a major area of research in econometrics.

" In the truncated regression model, the range of the dependent variable is restricted
substantively. Certainly all economic data are restricted in this way —aggregate income data
cannot be negative, for example. But when data are truncated so that plausible values of the
dependent variable are precluded, for example, when zero values for expenditure are discarded,
the data that remain are analyzed with models that explicitly account for.the truncation. The
stochastic frontier model is based on a composite disturbance in which one part follows the
assumptions of the familiar regression model while the second component is built on a platform
of the truncated regression.

When data are censored, values of the dependent variable that could in principle be
observed are masked. Ranges of values of the true variable being studied are observed as a single
value. The basic problem this presents for model building is that in such a case, we observe
variation of the independent variables without the corresponding variation in the dependent
variable that might be expected. Consistent estimation, and useful interpretation of estimation
results are based on maximum likelihood or some other technique that explicitly accounts for the
censoring mechanism, The most common case of censoring in observed data arises in the context
of duration analysis, or survival functions (which borrows a term from medical statistics where
this style of model building originated). It is useful to think of duration, or survival data, as the
measurement of time between transitions or changes of state. We examined three modeling
approaches that correspond to the description in Chapter 12} nonparametric (survival tables),
semiparametric (the proportional hazard models), and parametric (various forms such as the
Weibull model),

Finally, the issue of sample selection arises when the observed data are not drawn
randomly from the population of interest. Failure to account for this nonrandom sampling
produces a model thaf describes only the nonrandom subsample, not the larger population. In
each case, we examined the model specification and estimation techniques which are appropriate
for these variations of the regression model. Maximum likelihood is usually the method of choice,
but for the third case, a two-step estimator has become more common. The leading contemporary
application of selection methods and endogenous sampling is in the measure of treatment effects.
We considered three approaches to analysis of treatment efficets regression methods, propensity
score matching and regression discontinuity. K o
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stricted substantively. Certaihly all economic data are red{ricted in this way—aggregate
income data cannot be negativa, for example. But when da¥a are truncated so that play-
sible values of the dependent varlghle are precluded, for exaple, when zero values for
expenditure are discarded. the datathat remain are analyzed with models that explicitly
accott for the truncation. When daty are censored, values of the dependent variable
that conld in principle be observed are™mpasked. Ranges of vatues\pf the true variable
being studied are observed as a single vahig. The basic problem this pyesents for model
building ist '%tli:such a case, we observe varistion of the independent variables without

the cotrespon {ng variation in the dependent ‘u‘iable that might be ex cted. Finally,
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Exercises

1. The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040  0.00000  0.00000 44132 8.0230
57971 7.0828 0.00000 0.80260 13.0670 43211
0.00000 8.6801 54571 0.00000 81021  0.00000
1.2526 5.6016
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The applicable model is
- ) . ,“‘,‘* =p + 5:;',
o=y oifu+t £ > 0,0 otherwise,
& ~ N0, 57

Exercises 1 through 4 in this section are based on the preceding information. The
OLS estimator of u in the context of this tobit model is simply the sample mean.
Compute the mean of all 20 observations. Would you expect this estimator to over:
or underestimate u? If we consider only the nonzero observations, then the trun-
cated regression model applies. The sample mean of the nonlimit observations
is the least squares estimator in this context. Compute it and then comment on
whether this sample mean should be an overestimate or an underestimate of the true
mean. |

2. We now consider the tobit model that applies to the full data set.

a. Formulate the log-likelihood for this very simple tobit model.

b. Reformulate the log-likelihood in terms of 8 = 1 /0 and y = u/o. Then derive
the necessary conditions for maximizing the log-likelihood with respect to 9
and y.

¢. Discuss how you would obtain the values of # and y to solve the problem in
part b.

d. Compute the maximum likelihood estimates of p and o.

3. Using only the nonlimit observations, repeat Exercise 2 in the context of the trim-
cated regression model. Estimate 4 and ¢ by using the method of moments esti-
mator outlined in Example 2427 Compare your results with those in the previous
exercises. /%2

4. Contimiing to use the data in Exercise 1, consider once again only the nonzero
observations. Suppose that the sampling mechanism is as follows: y* and another
normally distributed random variable z have population correlation 0.7. The two
variables, y* and z, are sampled jointly When z is greater than zevo, v is re-
ported. When z is less than zero, both z and y are discarded. Exactly 35 draws
were required to obtain the preceding sample. Estimate p and o. (Hint: Use The-

‘ orem 24:5.) pa r4iak
} 7. 5 5. Derive the mearpimat effects for the tobit model with heteroscedasticity that is

described in Section 2434e— /2, 3,5 . 0-.

6. Prove that the Hessian for the tobit model in (24-44) is negative definite after
Olsen’s transformation is applied to the parameters. \

Applicéﬁ;—_\
3

/9..“1

was a count, Fair used the tobit moglel as the platform for his ftudy. Our analysis

i _
n inSection-das-2wil the gtudy, using a Poisson modg for coyfits instead.
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Applications

1. We examined Ray Fair’s famous analysis (Jowrnal of Political Economy, 1978) of a
Psychology Today sutrvey on extramarital affairs in Example 18.9 using a Poisson regression
model. Although the dependent variable used in that study was a count, Fair (1978) used the tobit
model as the platform for his study. You can reproduce the tobit estimates in Fair’s paper easily
‘with any sofiware package that contains a tobit estimator 5 ‘most do. The data appear in
Appendix Table F18.1. Reproduce Fait’s least squares and tobit estimates. Compute the partial
effects for the model and interpret all results. .

2. Fair’s original study also included but did not analyze a second data set that was a similar 1+ 2
survey conducted by Redbook magazine. The data are reproduced in Appendix Table F}977. (Our

thanks to Ray Fair for providing these data.) This sample contains observations on 6,366 women

and the following variables:

id = an identification number,

C = constant, value = 1,

yrb = a constructed measure of time spent in extramarital affairs,
vI = a rating of the marriage, coded 1 to 4,
vg = age, in years, aggregated, -

v3 = number of years married, -

¥4 = number of children, top coded at 5,

¥5 = religiosity, 1 to 4, 1 =not, 4 = very,

¥6 = education, coded 9, 12, 14, 16, 17, 20,.+
v7 = occupation,

v8 = husband’s occupation.”

Three other variables were not used. Details on the variables in the model are given in Fair’s
(1978) Journal of Political Economy paper. Using these data, conduct a parallel study to the
Psychology Today study that was done in Fair (1978). Are the results consistent? Report all
results, including partial effects and relevant diagnostic statistics.

3. Continuing the analysis of the previous application, note that these data conform precisely to
the description of “corner solutions™ in Section 19.3.4. The dependent variable is not censored in
the fashion usually assumed for a tobit model. To investigate whether the dependent variable is
determined by a two-part decision process (yes/no and, if yes, how much), specify and estimate a
two-equation model in which the first equation analyzes the binary decision 4 = 1 if yrb > 0 and
0 otherwise and the second equation analyzes yrd | yrb > 0. What is the appropriate model? What
do you find? Report all results. (Note; if you analyze the second dependent variable using the
truncated regression, you should remove some extreme observations from your sample. The
truncated regression estimator refuses to converge with the full data set, but works nicely for the
example if you omit observations with yrb > 5.)



4. StochasticFrontier Model, Section 10.5.1 presents estimates of a Cobl?'-Douglas cost function
using Nerlove’s 1955 data on the U.S. electric power industry. Christensen and Greene’s 1976
update of this study used 1970 data for this industry. The Christensen and Greene data are given
in Appendix Table F4.3. These data have provided a standard test data set for estimating different
forms of production and cost functions, including the stochastic frontier model discussed in
-Section 19.2.4. It has been suggested that one explanation for the apparent finding of economies
of scale in these data is that the smaller firms were inefficient for other reasons. The stochastic
frontier might allow one to disentanglé these cffects. Use these data to fit a frontier cost function
which includes a quadratic term in log output in addition to the linear term and the factor prices.
Then examine the estimated Jondrow et al. residuals to see if they do indeed vary negatively with
output, as suggested. (This will require either some programming on your part or specialized
software. The stochastic frontier model is provided as an option in Stata, TSP and LIMDEP. Or,
the likelihood function can be programmed fairly easily for RATS, MatLab, or GAUSS.'iNo_té;' for
a cost frontier as opposed to a production frontier, it is necessary to reverse. the sign on the
argument in the @ function that appears in the log-likelihood.)



