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141 INTRODUCTION
Time-series data often display au/tm;o.rrelatipn, or serial coirelation of the disturbances
across periods. Consider, for example, the plot of the least squares residuals in the

followin le.
) g exan’af ‘g 9

Example 38,1 ﬂ;}a{ey Demand Equation
Appendix Table F5.4 contains quarterly data from 1950.1 to 2000.4 on the U.S. money stock
(M1) and output (real GDP) and the price level (CPI_U). Consider a simple (extremely) model
of money demand;!

|H_M7¢ = +ﬂg'l"lGDP; + 85 InCPf; +£_=";.

2.0

T A plot of the least squares residuals is shown in Figure 1971. The pattern in the residuals
| A suggests that knowledge of the sign of a residual in one period is a good indicator of the sign of
N the residual in the next period. This knowledge suggests that the effect of a given disturbance

is carried, at least in part, across periods. This sort of “memory” in the disturbances creat 2o
the long, slow swings from positive values to negative ones that is evident in Figure}gﬂ'."dﬁg-’
might argue that this pattern is the result of an obviously naive model, but that is one of the
important points in this discussion. Patterns such as this usually do not arise spontaneously:
to a large extent, they are, indeed, a result of an incomplate ot flawed model specification.

One explanation for autocorrelation is that relevant factors omitted from the time-
series regression, like those included, are correlated across periods. This fact may be -
due to serial cotrelation in factors that should be in the regression model. It is easy to
see why thi% situation would arise. Example .2zft¢1,ows an obvious case.

Exampla .2 Autocorrelation induced by Misspecification
. ' of the Mode! :
L~ in Examples 2.3 and 6.7, we examined yearly time-series data on the U.S. gasoline market
from 1953 to 2004. The evidence in the examples was convincing that a regression model
of variation in In G/Pop should include, at a minimum, a constant, In P; and in income/Pop.
Other price variables and a time trend also provide significant explanatory power, but these
two are a bare minimum. Moreover, we also found on the basis of a Chow test of s%n.t’e%u:aL.——w
change that apparently this market changed structurally after 1974, Figure 1e-2 displays
o plots of four seis of least squares residuals. Parts (a) through (c) show clearly that as the
<) specification of the regression is expanded, the autocorrelation in the “residuals® diminishes.
Part (c) shows the effect of forcing the coefficients in the equation to be the same both before
and after the structural shift. In part (d), the residuals in the two subperiods 1953 to 1974 and
1975 to 2004 are produced by separate unrestricted regressions. This latter set of residuals
is almost nonautocorrelated. (Note also that the range of variation of the residuals falls as

o

+1Because this chapter deals exclusively with time -series data, we shall use the index ¢ for observations and T
for the sample size throughout.

-
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the modei is improved, i.e., as its fit improves.) The full equation is

G 1y
[n%;)— = By + fzIn Py +ﬁa|"——— +AaIn Puct + fsIn Pycr

+ s INPrri + 8710 Pro + ﬁs In Py + fo In Pse + Prot + &1

Finally, we consider an example in which serial correlation is an anticipated part of the

model. 1/0

Example 1}9’.3 Negative Autocorrelation in the Phillips Curve

The Phillips curve [Phillips (1957)] has been one of the most intensively studied relationships

in the macroeconomics literature. As originally proposed, the model specifies a negative re-
lationship between wage inflation and unemployment in the United Kingdom over a period of

100 years. Recent research has documented a similar relationship between unemployment

and price inflation. It is difficult to justify the model when cast in simple levels; labor market
theories of the relationship rely on an uncomfortable proposition that markets persistently

fall victim to money illusion, even when the inflation can be anticipated. Current research

[e.g., Staiger et al. (1996)] has reformulated a shortirun (disequilibrium} “expectations aug- "
mented Phillips curve” in terms of unexpacted inflation and unemployment that deviates from_ "/ |
a long, run equilibrium or “natural rate.” The expectatlons-augmented Phillips curve can

be written as

e

Apr — E[Ap | Woq] = Bl — U]+ &

where Ap; is the rate of inflation in year t, E [Ap | W] is the forecast of Ap: made in period
_t — 1 based on information available at time ¢ — 1,°,_,, &, is the unemployment rate and u*
is the natural, or equilibrium rate. (Whether u* can be treated as an unchanging parameter,
as we are about to do, is controversial.) By construction, [u, — u*] is disequilibrium, or cycli-
cal unemployment. In this formulation, & would be the supply shock (i.e., the stimulus that
produces the disequilibrium s:tuation) To complete the model, we, tequire a model for the
expected inflation. We will revisit this in some detail in Example }t{ 2. For the present, we'll
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assume that economic agents are rank empiricists, The forecast of next year's inflation is
simply this year's value. This produces the estimating equation

Apt — Apr—1 = P14+ Polir +- & 1

where 8; = g and gy = —pu*. Note that there is an implied estimate of the nafral rate of un-
employment embedded in the equation, After estimation, u* can be estimated(by —b, /b,. The
equation was estimated with the 1950.1-2000.4 data in Appendix Table F5.4 that were used

’__/ir%[_imp!}ﬂ1 (minus two quarters for the change in the rate of inflation). Least squares
0 estimates (with standard emors in parentheses) are as follows:
: < 2e®

APy — Apr_y = 0.49189 — 0.090136 Uy + &
(0.7405) (0.1257) R? = 0.002561, T = 201.

The implied estimate of the natural rate of unemployment is 5.46 percent, which is in line with
other recent estimates. The estimated asymptotic covariance of b, and b, is —0.08973. Using
the delta method, we obtain a standard error of 2.2062 for this estimate, so a confidence in-
terval for the natural rate is 5.46 percent +1.96 (2.21 percent) = (1.13 percent, 9.79 percent)
(which seems fairly wide, but, again, whether it is reasonable to treat thie as a parameter is at
least questionable). The regression of the least squares residuals on their past values gives
a slope of —0.4263 with a highly significant ¢ ratio of —6.725. We thus conciude that the
residuals (and, apparently, the disturbances) in this mode| gre highly negatively autocorre-
1] lated. This is consistent with the striking pattern in Figure

20
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FIGURE #9.3 Negatively Autocorrelated Resicuals.

The problems for estimation and inference caused by autocorrelation are simitar to
(aithough, unfortunately, more involved than) those caused by heteroscedasticity. As
before, least squares is inefficient, and inference based on the least squares estimates
is adversely affected, Depending on the underlying process, however, GLS and FGLS
estimators can be devised that circumvent these problems. There is one qualitative
difference to be noted. In Chapt/eVSf we examined models in which the generalized

regression model can be viewed as an extension of the regression model to the con-
ditional second moment of the dependent variable. In the case of autocorrelation, the
phenomenon arises in almost all cases from a misspecification of the model. Views differ
on how one should react to this failure of the classical assumptions, from a pragmatic
one that treats it as another “problem” in the data to an orthodox methodological view
that it represents a major specification issue—see, for example, “A Simple Message to
Autocorrelation Correctors: Don't” [Mizon (1995).]

We should emphasize that the models we shall examine here are quite far removed
from the classical regression. The exact or small-sample properties of the estimators are
rarely known, and only their asymptotic properties have been derived.

18.2 THE ANALYSIS OF TIME-SERIES DATA

The treatment in this chapter wﬂl be the ﬁl‘st sty uctuled analysis of time-series datainthe
PR -SERILH T TOTTS
ke e ; Ve Time-series analysis requires
some revision of the interpretation of both data genelatlon and sampling that we have
maintained thus far.
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A time-series model will typically describe the path of a variable vy, in terms of
contemporaneous (and perhaps lagged) factors x,. disturbances (mnuvatlons) g,and ~
its own past, V1, .. F01 e‘tample,

=B+ Bs+ Byt 8

The time series is a single occuirence of a random event. For example, the quarterly
series on real output in the United States from 1950 to 2000 that we examined in Ex-

/Wl is a single realization of a process, GDP,. The entire history over this period
constitutes a realization of the process. At least in economics, the process could not be
repeated. There is ho counterpart to repeated sampling in a cross section or replication
of an experiment involving a time-series process in physics or engineering, Nonetheless,
were circumstances different at the end of World War 11, the observed history could have
been different. In principle, a completely different realization of the entire series might /77
have occurred. The sequence of observations, {y;}/=% is a time-series process, which is =
characterized by its time ordering and its systematic correlation between observations
in the sequence. The signature characteristic of a time-series process is that empirically,
the data generating mechanism produces exactly one realization of the sequence. Sta-
tistical results based on sampling characteristics concern not random sampling from a
population, but from distribations of sta‘!istics constructed from sets of observations
taken from this realization in a time-window, 1 =1, ..., T. Asymptotic distribution
theory in this context concerns behavior of statistics consm cted from an increasingly
long window in this sequence.

The properties of y; as a random variable in a cross section are straightforward
and are conveniently summarized in a statement about its mean and variance or the
probability distribution generating y;. The statement is less obvious here. It is common
to assume that innovations are generated independently from one period to the next,
with the familiar assumptions

Elg] =0,
Var[g,] = o
and
Covig, 5] =0 forr#s. 2\

~.. In the current context, this distribution of &, is said to be covariance stationary or

' | weakly stationary. Thus, although the substantive notion of “random sampling” must
be extended for the time series 5;. the mathematical results based on that notion apply
here. It can be said, for example, that & is generated by a time-series process whose
mean and variance are not changing over time. As such, by the method we will discuss
in this chapter, we could, at least in principle, obtain sample information and use it to
characterize the distribution of £,. Could the same be said of v? There is an obvious
difference between the series & and y,: observations on v at different points in time
are necessarily correlated. Suppose that the ; series is weakly stationary and that, for
the moment, f2 = 0. Then we could say that

Eln]l=p+BE[va]+ Ela]=81/0 - 8)
and
Var[y] = £ Var[y_1] + Var|z],
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or
2 2
n = pfn+a;.
so that
2 -~
o
4
= .

Thus, w, the variance of v, is a fixed characteristic of the process generating y;. Note
how the stationarity assumption, which apparently includes |83} < 1,-has been used, The
assumption that |83] < 1 is needed to ensure a finite and positive variance:? Finally, the
same results can be obtained for nonzero B if it is further assumed that v, is a weakly
stationary series.®

Alternatively, consider simply repeated substitution of lagged values into the
expression for w:

=B+ BB+ Bay2+ &)+ & (W-1)

and so on. We see that, in fact, the current y is an accumulation of the entire history of
the innovations, &. So if we wish to characterize the distribution of v, then we might
do so in terms of sums of random variables. By continuing to substitate for y Yie2s then
¥r—3,...00 (N 1), we obtain an explicit representation of this idea.
'Lo
= Zﬂé(& +8-4)-
i=0

Do sums that reach back into infinite past make any sense? We might view the pro-
cess as having begun generating data at some remote, effectively “infinite” past. As long
as distant observations become progressively less important, the extension to an infinite
past is merely a mathematical convenience. The diminishing importance of past observa-
tions is implied by [83] < 1. Notice that, not coincidentally, this requirement is the same
as that needed to solve for yp in the plecedmg paragraphs. A second possibility is to as-
sume that the observation of this time series begins at some time 0 [with (xp, 80) called the
initial condltmns] by which time the underlying process has reached a state such that the
mean and variance of v, are not (or are no longer) changing over time. The mathematics
are stightly different, but we are led to the same characterization of the random process
generating y. In fact, the same weak stationarity assumption ensures both of them.

Except in very special cases, we would expect all the elements in the T component
random vector {v1, ..., yr) to be correlated, In this instance, said correlation is called
“autocorrelation.” As such, the results pertaining to estimation with independent or
uncorrelated observations that we used in the previous chapters are no longer usable.
In point of fact, we have a sample of but one observation on the multivariate ran-
dom variable [y, t =1, ..., T]. There is a counterpart to the cross-sectional notion of
parameter estimation. but only under assumptions (e.g., weak stationarity) that estab-
lish that parameters in the familiar sense even exist. Even with stationarity, it will emerge
that for estimation and inference, none of our earlier finité sample results are usable.
Consistency and asymptotic normality of estimators are somewhat more difficult to

““The current literature in macroeconometrics and time series analysis is dominated by analysis of cases in

which 83 =1 (or counterparts in different models). We will return to this subject in Chapter 22
ASee Section rﬂ.d.! on the stationarity assumption. z,g

2.0
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establish in time-series settings because results that require independent observations,
such as the central limit theorems, are no longer usable. Nonetheless, counterparts to our
earlier results have been established for most of the estimation problems we consider

here and in Chapters ZQ andN. -
W.S DISTURBANCE PROCESSES

The preceding section has introduced a bit of the vocabulary and aspects of time-series
specification. To obtain the theoretical resuits, we need to draw some conclusions about
autocorrelation and add some details to that discussion.

'LO \?.3.1 CHARACTERISTICS OF DISTURBANCE PROCESSES

In the usual time-series setting, the disturbances are assumed to be homoscedastic but
correlated across observations, so that

Elee’| X] = crzﬂ

where 2@ is a full, posnwe definite matrix with a constant o —*Vﬂl[é’, [X] on the
diagonal. As will be clear in the following discussion, we shall also assume that £, is
a function of |t — 5|, but not of ¢ or s alone, which is a stationarity assumption. (See
the preceding section.) It implies that the covariance between observations ¢ and sisa
function ouly of |t — 5|, the distance apart in time of the observations. Because o2 is not
restricted, we normalize 2, = 1. We define the autocovariances: (7 | )

Cov[.f;_,, ge—s | X] = Cov[erss. 6 | X] = crzﬂ,_;_s = Y = V_g.

Note that 628;; = yp. The correlation between g, and £,_, is their autocorrelation,

:COI'I‘[S;., e IX} _ COV[EJ‘; s | x] _ Y = s = pos.
+/ Varle, | X]Var[e; | X] Y0
We can then write Y =
Efee’'|X] =T =pR, \ L

)

. where T is an autocovariance matrix and R is an autocorrelation matrlx—the ts element| - awl

'is an autocorrelaﬂon coefficient

Yi—,
prg = L=

(Note that the matrix I = »R is the same as 2. The name change conforms to stan-
dard usage in the literature.) We will usually use the abbreviation p, to denote the
autocorrelation between observations s periods apart. '

Different types of processes imply different patterns in R. For example, the most
frequently analyzed process is a first-order autoregression or AR(1) process, [/

= P+ Ui,
where u, is a stationary, nonautocor lelated (white no:se) process and p is a parametetr.

We will verify later that for this process, p; = p*. Higher-order autoregressive processes. :

of the form
gr=e. + s o+ + Bptp+ih


Bill
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imply more involved patterns, including, for some values of the parameters, cyclical
AT behavior of the autocorrelations# Stationary autoregressions are structured so that
' the influence of a given disturbance fades as it recedes into the more distant past but
~ vanishes only asymptotically. For example, for the AR(1), Cov|s;, _,] is never zero, /-
but it does become negligible if |o] is tess than 1. Moving-average processes, conversely,
have a short memory. For the MA(1) process,

g = #; — All;_1,

the memory in the process is only one period: yy = a2(1 + 22), 3y = —AoZ,buty, =0
ifs > 1.

W\‘Q.a_z AR{1) DISTURBANCES

Time-series processes such as the ones listed here can be characterized by their order, the

s, values of their parameters, and the behavior of their autocorrelations.>We shall consider

k: various forms at different points. The received empirical literature is overwhelmingly

dominated by the AR(1) model, which is partly a matter of convenience. Processes more

involved than this mode! are usually extremely difficult to analyze. There is. however,

a more practical reason. It is very optimistic to expect to know precisely the correct

form of the appropriate model for the disturbance in any given situation. The first-order

autoregression has withstood the test of time and experimentation as areasonable model

for underlying processes that probably, in truth, are impenetrably complex. AR{1) works

as a first pass—higher, order models are often constructed as a refinement—as in the
following example.

. The first-order autoregressive disturbance, or AR(1) process, is represented in the

£ .
. autercgressive form as

- g = pg_1 + Uy, (Z'j»;’-Z)
where
Efu | X] =0,
Eluf | X] = a7,
and

Covlu ., u, | X] =0 ifi#s.

Because ¢, is white noise, the conditional moments equa! the unconditional moments.
Thus Ele, | X] = El¢] and so on.
By repeated substitution, we have
, w

S =P+ P M2+ (19-3)
From the preceding moving-average form, it is evident that each disturbance &, embodies
the entire past history of the u’s, with the most recent observations receiving greater
weight than those in the distant past. Depending on the sign of p, the series will exhibit

4This model is considered in more detail in Cimpterﬁ}.
+5See Box and Jenkins { 1984) for an authoritative study.
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20

10
clusters of positive and-t‘l;;?)‘egative observations or, if p is negative, regular oscillations
of sign (as in Example 1973). -
Because the successive values of «, are uncorrelated, the variance of £ is the vari-

ance of the right-hand side of (19-3): -
T 2, 22, 42 20
20 7 Vals,] = og + pPo; + plog + - (1-4)

To proceed, a restriction must be placed on p,

2

because otherwise, the right-hand side of (19:4) will become infinite. This result is the
stationarity assumption discussed earlier. With (}?fS). which implies that lim;_, o, 0°* =0,
Elg]=0and 2o

0'3 _ 02
1—p2 7%

With the stationarity assumption, there is an easier way to obtain the variance

lel <1,

20 .
Var[g, ] = (¥9-6)

Var[e,] = p* Var[e,_1] + orl_f

because Covlu,, 5] = 0if t > s. With stationarity, Var[e, ;] = Var[g]. which implies
(1#-6). Proceeding in the same fashion,

. pa2 29
Covle, &_1] = Elgigr1] = Ele_1(pec_1 + )] = p Var[g, 3] = Tt 514}

By repeated substitution in {1#-2). we see that for any s,

2P

sl

g=pest+y P

i=0

(eg.e = p3s,-,3 + pzu,...g + pu;_1 + 4;). Therefore, because g; is not correlated with
any «; for which ¢ > s (i.e.. any subsequent #, ), it follows that

p"az
Covle,, &r—s] = Eleies ] = 1 —;2.

Dividing by y = o2/(1 — p?) provides the autocorrelations:

0
Gote

57%)

With the stationarity assumption. the autocorrelations fade over time. Depending on
the sign of p. they will either be declining in geometric progression or alternating in
sign if p is negative. Collecting terms, we have '

Corrlg;, &..5] = ps = ¢°.

F1 p Pt p e pTh
.t v e Pt pt? 2.0
0_2_9 — laup2 p2 P 1 0 pT—3 (}9—10)
: : : p
[ pT=l T2 pT-3 P 1

20 _—ﬁ )
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19.4 SOME ASYMPTOTIC RESULTS FOR
ANALYZING TIME-SERIES DATA

Because £ is not equal to1, the now-familiar complications will arise in establishing the
properties of estimators of B, in particular of the least squares estimator. The finite sam-
ple properties of the OLS and GLS estimators remain intact. Least squares will continue
to be unbiased: the earlier general proof allows for autocorretated disturbances. The
Aitken theorem (Theorgm,&4) and the distributional results for normally distributed
q disturbances can still be established conditionally on X. (However, even these will be
complicated when X contains lagged values of the dependent variable.} But, finite sam-
ple properties are of very limited usefulness in time-series contexts. Nearly all that can be
said about estimators involving time-series data is based on their asymptotic properties.
As we saw in our analysis of heteroscedasticity, whether least squares is consistent

or not, depends on the matrices

Q= (1/T)X'X,
and
= (I/T)X'2X.

In our earlier analyses, we were able to argue for convergence of Qr toa positive definite
matrix of constants, ), by invoking laws of large numbers. But, these theorems W
is

that the observations in the sums are independent, which as suggested in Section 2972,
surely not the case here. Thus, we require a different tool for this result. We can expand

the matrix Q7 as
. 0
7 ZZPLLXI ¢ (%Il)

:_! s=1
where x] and x! are rows of X and p;, is the autocorrelation between & and ;. Sufficient
conditions for this matrix to converge are that Q7 converge and that the correlations
between disturbances die off reasonably rapidly as the observations become further
apart in time. For example, if the disturbances follow the AR(1) process described
earlier, then g, = p!'=%! and if x, is sufficiently well behaved. Q% will converge to a
-~ positive definite matrix Q* as T — oo.

( [L2 Asymptotic normality of the least squares and GLS estimators will depend on the

behavior of sums such as

ﬁﬁr= ﬁ( Zx,a,) = (—I—TX' )
fazl

Asymptotic normality of least squares is difficult to establish for this generalmodel. The
central limit theorems we have relied on thus far do not extend to sums of dependent
observations. The results of Amemiya (1985). Mann and Wald (1943), and Anderson
{1971) do carry over to most of the familiar types of autocorrelated disturbances, in-
cluding those that interest us here, so we shall ultimately conclude that ordinary ieast
squares, GLS, and instrumental variables continue to be consistent and asymptotically
normally distributed, and, in the case of OLS, inefficient. This section will provide a
brief introduction to some of the underlying principles that are used to reach these
conclusions.
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W41 CONVERGENCE OF MOMENTS;_—THE ERGODIC THEOREM

The discussion thus far has suggested (appropriately) that stationarity (or its absence) is
an important characteristic of a process. The points at which we have encountered this
notion concerned requiremerits that certain sums converge to finite values, In particutar,
for the AR(1) model, & = p&_; + u;. for the variance of the process to be finite, we
require |p| <1, which is a sufficient condition. However, this result is only a byproduct.
Stationarity (at least, the weak stationarity we have examined) is only a characteristic

of the sequence of moments of a distribution.

DEFINITION 19.1 Strong Stationarity
A time-series process, {Z1;2%,, Is strongly stationary, or “siationary,” if the joint
probability distribution of any set of k observations in the sequence [Z, Ze41, .- .,

Zo4k | 15 the same regardless of the origin, L, in the time scale.

—— 28

; - _ For example, in (19-2), if we add g, ~ N[0, ¢, then the resulting process {&:}{=%,, can
St r o~ easily be shown to be strongly stationary.

DEFINITION %’QZ Weak Stationarity

A time-series process, {Z Y25, is weakly stationary {or covariance stationary) if
E[z] is finite and is the same for all t and if the covariances between any two
observations {labeled their autocovariance), Covlz,, z,_), is a finite function only
of model parameters and their distance apart in time, k, but not of the absolute

location of either observation on the time scale.

Weak staticnary is obviously implied by strong stationary, although it requires less
because the distribution can, at least in principle, be changing on the time axis. The
distinction is rarely necessary in applied work. In general, save for narrow theoretical
examples, it will be difficult to come up with a process that is weakly but not strongly
stationary. The reason for the distinction is that in much of our work, only weak sta-
tionary is required, and, as always, when possible. econometricians will dispense with
unnecessary assumptions.

As we will discover shortly, stationarity is a crucial characteristic at this point in _
the analysis. If we are going to proceed to parameter estimation in this context, w¢ | kT
will also require another characteristic of a time series, crgodicity. There are various ™
ways to delineate this characteristic, none of them particularly intuitive. We borrow one
definition from Davidson and MacKinnon (1993, p. 132) which comes close:

DEFINITION 1{3.3 Ergodicity

A strongly stationary time-series process, {5}l=%,, is ergodic if for any two
bounded functions that map vectors in the a and b dimensional real vector spaces
to real scalars, f: R* - R'and g: R® — _Rl,

3_6 1O — | . kl_‘)n;o ELf Gy 2e310 - 3 Ze40)8 ek Zeteidn oo+ Zgiera]]
' ' = E[f(z. 24ty oo B | IET8( 2k Zogter1s - s Zgiees)]] -

7

é—éﬂa +bh-) |
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The definition states essentially that if events are separated far enough in time, then they

are “asymptotically independent.” An implication is that in a time series, every obser-
- . vation will contain at least some unique information. Ergodicity is a crucial element of

our theory of estimation. When a time series has thisproperty (wnth stationarity), then
| we can consider estimation-of palametels in a meaningful sense.® The analysis relies
" la heavily on the following theorem:

4
THEOREM 19.1 The Ergodic Theorem
If {2 Y=, is a time-series process that is strongly stationary and ergodic and
Ellz]] is a finite constant, and if 7r = (1} T)Z,T:I z, then 7r <5 i, where
u = E[z] Note that the convergence is almost surely not in probability (which is
implied) or in mean square (which is also implied). [See White (2001, p. 44) and
Davidson and MacKinnon (1993, p. 133).}

What we have in the Ergodic theorem is, for sums of dependent observations, a coun-
terpart to the laws of large numbers that we have used at many points in the preceding
chapters. Note, once again, the need for this extension is that to this point, our laws of
large numbers have required sums of independent observations. But, in this context, by
design, observations are distinctly not independent.

For this result to be useful, we will require an extension.

THEOREM 19.2 Ergodicity of Functions

If (% Y22, is a time-series process that is strongly stationary and ergodic and if
= [} is a measurable function in the probability space that defines z;, then v,

is also stationary and ergodic. Let {2,Y,=%, define a K x 1 vector valued stochastic

process—each element of the vecior’is an ergodic and stationary series, and the

characteristics of ergodicity and stationarity apply to the joint distribution of the

elements of {,},=2%,. Then, the  Ergodic theorem applies to funciions of {£,}}=%,..

[See White (2001, pp. 44445) for discussion. ]

Theorem 14.2 produces the results we need to characterize the least squares (and other)
estimators. In particular, our minimal assumptions about the data are
2,0

ASSUMPTION 191 Ergodic Data Series: In the regression model. v, = Xt 1B+ &
[x,, &Ji=™,, is a jointly stationary and ergodic process.

Y SMuch of the analysis in later chapters will encounter nonstationary series, which are the focus of most of
the current litcrature.—tests for nonstationarity largely dominate the recent study in time-series analysis.
Ergodicity is a much more subtie and difficult concept. For any process that we will consider, ergodicity
will have to be a given, at least at this level. A classic reference on the subject is Doob (1953). Another
authoritative treatise is Billingsley (1995). White (2001) provides a concise analysis of many of these concepts
as used in econometrics, and some useful commentary. }
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By analyzing terins element by element we can use these results directly to assert that
averages of w; =X, &, Q,, =X X}, and Qf = szx,x’ will converge to their population coun-
- terparts, 0. Q and Q*.

@01»9{4.2 CONVERGENCE TO NORMALITY—A CENTRAL
LIMIT THEOREM '

To form a distribution theory for least squares, GLS, ML. and GMM, we will need a
counterpart to the central limit theorem. In particular, we need to establish a large
sample distribution theory for quantities of the form

ﬁ(rzzl:x,s,) VT

Asnoted earlier, we cannot invoke the familiar central limit theorems (Lindeberg_Levy,
Lindeberg_Feller, Liapounov) because the observations in the sum are not independent.
But. with the assumptions already made, we do have an alternative result. Some needed
preliminaries are as follows:

DEFINITION 1.4 Martingale Sequence
A vector sequence I, is a martingale sequence if Elz |51, %2, ...} = 21.

An important example of a martingale sequence is the random walk,
Zp == Zp 1 T Uy,
where Coviu,, ;] = 0 for all 1 # 5. Then

Elze|z-17%-2 -] = Elzs |zt z2, - ]+ Eltg | 2t 22, ) =21 + 0= 21,

Qo
DEFINITION 49.5 Martingale Difference Sequence
A vector sequence ¥ is a martingale difference sequence if Elz, |z,_1, L2, -- ]

=0,
%

With Definition 145, we have the following broadly encompassing result:

'
THEOREM 1.3 Martingale Difference Central Limit Theorem
If 1, is a vector valued stationary and ergodic martingale difference sequmce with
Elzz]=X. wlme X is a finite positive definite matrix, and if iz = (1/T) SFa,
. then /T Zr A, N0, E] [For discussion, see Davidson and MacKinnon (1993,
|_“( A  Sections. 4.7 and 4.8).

"TFor convenience, we are bypassing a step in this d:scuss;on—establ:shmgmulthmatc normality requires that
the result first be estabtished for the marginal normal distribution of each component, then that every linear
combination of the variables also be normaily distributed (See Theorems D.17 and D.18A.). Our interest at
this point is merely to collect the useful end results. Interested users may find the detailed discussions of the
many subtletics and narrower points in White (2001) and Davidson and MacKinnon (1993, Chapter 4).
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Theorem K3 is a generalization of the Lindeberg-Levy central limit theorem. It is not -
. : relation. but i : : o 20

yet broad enough to cover cases of autocorrelation, but it does go beyond Lindeberg=
Levy, for example, in extending to the GARCH model of Section mﬁﬁ:ﬂ?’
the theorem that surpass Lindeber g-Feller (D.19) and Liapounov {Theorem D.20) by
allowing for different variances at each time, {, appear in Ruud (2000 p. 479) and
White (2001, p. 133). These variants extend beyond our requirements in this treatment.]
But, looking ahead, this result encompasses what will be a very important application.
Suppose in the classical linear regression model, {x,}?;‘f’w isa st1tiona1y and ergodic
multivariate stochastic process and {g,}/=>°_ is an i.i.d. pr ocess—th'lt 18, hot autocorre-
lated and not heteroscedastic. Then, this is the most genelal case of the classical model
that still maintains the assumptions about & that we made in Chapter 2. In this case, the
process {W; =2, = (X6 =%, is a mar tingale difference sequence, so that with suffi-
cient assumptions on the moments of x; we could use this result to establish consistency
and asymptotic normality of the least squares estimator. [See. e.g., Hamilton (1994,
pp- 2081212).]

We now consider a central limit theorem that is broad enough to include the
case that interested us at the outset, stochastically dependent observations on x, and
autocorrelation in &% Suppose as before that {#}i=_ is a stationary and ergodic
stochastic process. We consider v/ Zr. The following conditions are assumed:*

1. Asymptotic uncorrelatedness: £z, Vl—tes Z1—ttn - .} converges in mean square to
zero as k— co. Note that is similar to the condition for ergodicity. White (2001)
demonstrates that a {(nonobvious) implication of this assumption is E{z,] =0

2. Summability of autocovariances: With dependent observations,

(- . =] (=]
fion Vol VT3] = 3 D o) = 3 BT
=l 5= =G
To begin, we will need to assume that this matrix is finite, a condition called

ettt

If the sum is to be finite, then the & == 0 term must be finite, which givesus a
necessary condition

E [1,7’ | = Iy, a finite matrix.
3. Asymptotic negligibility of innovations: Let
= Elt |t tipto. o = Elr |2 g1, Brot2e - -]

An observation z, may be viewed as the accumulated information that has entered the
process since it began up to time £. Thus, it can be shown that

e
A= Z[rs-
0

The vector 1y can be viewed as the information in this accumulated sum that entered
the process at time 1 — k. The condition imposed on the process is that 3 o/ E[r]¥s]
be finite. In words, condition (3) states that information eventunally becomes negligible
as it fades far back in time from the current observation. The AR(1) model (as vsual)

8Detailed analysis of this case is quite intricate and well beyond the scope of this book. Some fairly terse
analysis may be found in White (2001, pp. 122-133) and Hayashi (2000).

+#See Hayashi (2000, p. 405) who attributes the resuits to Gordin (1969).
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helps to illustrate this point. If.z, = pz-1 4 ;. then
ro = Elz |2 21, ..} = Elz 21,22, .. ] = 2 — plct =t
ry = Elz | Ze-1. 222 RS A A PSS AN §
= Elpz;1 +uy| %t 2. )= Elplpa—a +ti—1) + | Z—2, Z-3. ...}
= HZ—1 — £Zi-2)

= pl..1.
By a similar construction, 7y = o*u,_ from which it follows that 2, = 3 oo p*tt—s, Which
R we saw earlier in (19-3). You can verify that if |p| <1, the negligibility condition will

be met.

With all this machinery in place, we now have the theorem we will need:

20
THEOREM 1.4 Gordin’s Central Limit Theorem
Ifz is str -ongly stationary and ergodic and if conditions (1) (3) are met, then

VT3 zr—> N[o Tl

We will be able to employ these tools when we consider the least squares, IV, and GL.S
estimators in the discussion to follow.

o

A4.5 LEAST SQUARES ESTIMATION

The least squares estimator is

— X'y lyr X'X) _5’_(_3
b=XX)"Xy= ﬁ+(T T )

Unbiasedness foliows from the results in Chapter 4—no modification is needed. We
know from Chaptep8that the Gauss-Markov theorem has been lost--assmnmg it ex-
9 T ists (that remams to be estabhshed), the GLS estimator is efficient and QLS is not.
How much information is lost by using least squares instead of GLS depends on the
data. Broadly, least squares fares better in data that have long periods and little cyclical
variation, such as aggregate output series. As might be expected, the greater is the auto-
correlation in g, the greater will be the benefit to using generalized least squares (when
this is possible). Even if the disturbances are normally distributed, the usual F and ¢
statistics do not have those distributions. So, not much remains of the finite sample prop-
erties we obtained in Chapter 4. The asymptotic properties remain to be established.

19.5.1 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

The asymptotic properties of b are straightforward fo establish given our earlier results.
If we assume that the process generating X, is stationary and ergodic, then by Theo-
rems 1p.1 and (1/ T X'X) converges to Q and we can apply the Slutsky theorem
to the inverse ffi, is not serially correlated, then w, = x,& is a martingale difference
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sequence, so (1/T)(X'g) converges to zero. This establishes consistency for the simple
_ case. On the other hand, if [x,, &] are jointly stationary and ergodic. then we can invoke
N . the Ergodic theorems 14.1 and 1.2 for both moment matrices and establish consistency.
20 v symptotic normahty is a bit more subtle. For the case without serial correlation in g,,
we can employ Theorem49.3 for VT W. The involved case is the one that interested us at
20 the outset of this discussion, that is, where there is autocorrelation in ¢ and dependence
20— _inx. Theorem-494 is in place for this case. Once again, the conditions described in the
precedimg section must apply and, moreover, the assumptions needed will have to be
established both for x, and £,. Commentary on these cases may be found in Davidson
and MacKinnon (1993), Hamilton (1994), White (2001), and Hayashi (2000). Formal
presentation extends beyond the scope of this text, so at this point, we will proceed,
and assume that the conditions undertying Theorem .4 are met. The results suggested - O
here are quite general, albeit only sketched for the gemeral case. For the remainder
of our examination, at least in this chapter, we will confine attention to fairly simple
processes in which the necessary conditions for the asymptotic distribution theory will
be fairly evident.
There is an important exception 1o the results in the preceding paragraph. If the
Tegression contains any lagged values of the dependent variable, then least squares will
no longer be unbiased or consistent. To take the simplest case, suppose that

Y =Bv_1+¢, @12)

& = P& + Hy,

and assume |B| <1, |p} <1. In this model, the regressor and the disturbance are corre-
lated. There are various ways to approach the analysis. One useful way is to rearrange
(J9712) by subtracting py,_; from y,. Then, 20

20 Ye=(B+0)¥—1 — Bpyi-2 +ty, (19413)

which is a classical regression with stochastic regressors. Because 4, is an innovation in
period ¢, it is uncorrelated with both regressors, and least squares regression of y, on
(¥—1, ¥i—2) estimates p) = (8 + p) and pr = —Bp. What is estimated by regression of y, on
-1 alone? Let . = Cov[y, ¥—k] = Cov[. viik] By stationarity, Var]y] = Var|y_1],
and Cov[w, w—1] = Cov[w_1. w—2]. and so on. These and (%13) imply the following

relationships: yA
W= pn + o + oz o
¥ = o1y + pav, (09-14)
7 [ .\ }’2 = Pl}’] + p2}’0- ‘ZZ

(These are the Yllltz_iWalkér equations for this model. See Section 2(2.3.) The slope
in the simple regression estimates 4 /yp, which can be found in the solutions to these
three equations. { An alternative approach is to use the lefi-out variable formula, which
is a useful way to interpret this estimator.) In this case, we see that the slope in the
short regression is an estimator of (8 + p) — Bp{y1/yp). In either case, solving the three
equations in @9{14) for yy. 31, and y, in terms of py, 3, and o7 produces

20 limb= PP
Ty )

20
(19215)
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This result is between 8 (when o =0) and 1 (when both g and p = 1). Therefore, least
squares is inconsistent unless p equals zero. The more general case that includes regres-
sors, X, involves more complicated algebra] but gives essentially the same result. This
is a general result: when the equation contains a lagged dependent variable in the pres-
ence of autocorrelation, OLS and GLS are inconsistent. The problem can be viewed as
one of an omitted variable.

Vrsis.2 ESTIMATING THE VARIANGE OF THE LEAST

SQUARES ESTIMATOR

As usual, s2(X’ X)‘l is an inappropriate estimator of ‘:rzt{_X’X)'1 X'2XH(X' X)~1, both
because 52 is a biased estimator of o2 and because the matrix is incorrect. Generalities
are scarce, but in general, for economic time series that are positively related to their
past values, the standard errors conventionally estinrated by least squares are likely to
be too small. For slowly changing, trending aggregates such as cutput and consumption,
this is probably the norm. For highly variable data such as inflation, exchange rates,
and market returns. the situation is less clear. Nonetheless, as a general proposition,
one would normatly not want to rely on_s2(X'_X)" as an estimator of the asymptotic
covariance matrix of the least squares estimator.

In view of this situation, if one is going to use least squares, then it is desirable to
have an appropriate estimator of the covariance matrix of the least squares estimator.
There are two approaches. If the form of the autocorrelation is known, then one can
estimate the parameters of £ directly and compute a consistent estimator. Of course,
if so, then it would be more sensible to use feasible generalized least squares instead
and not waste the sample information on an inefficient estimator. The second approach
parallels the use of the White estimator for heteroscedasticity.

The extension of White's result to the more general case of autocorrelation is much
more difficult than in the heteroscedasticity case. The natural counterpart for estimating

N n 1)

=2,

11}1

G

in Section 2“.2.3 woutld be

1 S S
r_l s=1
But there are two problems with this estimator, one theoretical, which applies to Q, as
well, and one practical, which is specific to the latter. =
Unlike the heteroscedasticity case, the matrix in (19-16) is 1/ 7T times a sum of
T? terms, so it is difficult to conclude yet that it will converge to anything at afl. This

application is most likely to arise in a time-series setting. To obtain convergence, if is
necessary to assume that the terms involving unequal subscripts in (9-16) diminish in

importance as T grows. A sufficient condition is that terms with subscript pairs {f — 5|
grow smaller as the distance between them grows larger. In practical terms, observation
pairs are progressively less correlated as their separation in time grows. Intuitively, if
one can think of weights with the diagonal elements getting a weight of 1.0, then in the
sum. the weights in the sum grow smaller as we move away from the diagonal. If we
think of the sum of the weights rather than just the number of terms, then this sum falls
off sufficiently rapidly that as # grows large, the sum is of order T rather than 72 Thus,

20
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/:l {-.
TABLE 19.1 Robust Covariance Estimation
Variable OLS Estimate OLS SE Corrected SE
. Constant ~_ —1.6331 0.2286 0.3335
InOutput - - . 0.2871 0.04738 0.07806

InCPI - - -, 09718 0.03377 0.06385
R =0.98952, d=0.02477, r =0.98762. :

we achieve convergence of (3, by assuming that the rows of X are well behaved and
that the correlations diminish with increasing separation in time. (See Sections 4.9.6

and ¥1.2.5 for 2 more formal statement of this condition.)
The practical problem is that Q* need not be positive definite. Newey and West
(1987a) have devised an estimator that overcomes this difficulty:
L

N 1
Q. =8+ = Z Z Wi €t (Xe X7y + Xe—iX1),

33,
s (e - Q%)fﬂ)

/
q (L+1) Ry
[See (8°26).] The Newey—-West antocorrelation consistent covariance estimator is sur-
prisingly simple and r elatlvely easy to implement:* There is a final problem to be solved.
It musi be determined in advance how large L is to be. In general, there is littie the-
oretical guidance. Current practice specifies L = T'/*. Unfortunately, the result is not
quite as crisp as that for the heteroscedasticity consistent estimator.

We have the result that b and biv are asymptotically normally distributed, and
we have an appropriate estimator for the asymptotic covariance matrix. We have not
specified the distribution of the disturbances, however, Thus, for inference purposes,
the F statistic is approximate at best. Moreover, for more involved hypotheses, the
likelihood ratio and Lagrange multiplier tests are unavailable. That leaves the Wald
statistic, including asymptotic * ratios,” as the main tool for statistical inference. We
will examine a number of applications in the chapters to follow.

The White and Newey=West estimators are standard in the econometrics literature.
We will encounle1 them at many points j 21 the discussion to follow.

wy = 1

Example JG’ 4 Autacorrelat:o Consistent Covariance Estimation
For the model shown in Example the regression results with the uncorrected standard
efrors and the Newey-Waest autocorrelatlon robust covariance matrix for lags of five quarters
are shown in Table 1@ .1. The effect of the very high degree of autocorrelation is evident.

10 20
7%’6 GMM ESTIMATION
M}

The GMM estlmator in the regression model with autocorrelated disturbances is pro-
duced by the empluca] morment equations

T Zx, (8 —XBoum) = ?_X'.é (Boum) = M(Boum) = 0. 0‘9"18)
—1 -

1PBoth estimators are now standard features in modern econometrics computer progeans. Further resubts on
different weighting schemes may be found in Hayashi {2000, pp. 406.410).


Bill
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The estimator is obtained by minimizing

q= i.ﬁ'(ﬁGMM)Wﬁ(ﬁGMM)

where Wis a positive deﬁ'nite-i\{ejghting matrix. The Sptimal weighting matrix would be
W = {Asy. Var[VTm(8)]} ",

which is the inverse of

Asy. Var[«_/?_fﬁ(ﬂ)] = Asy. Var { Z X; s,] = plim .TZEG p,,x,x =)

1...1 Ji=>00 r=1 s=1

The optimal weighting matrix would be [o2Q*]~!. As in the heteroscedasticity case, this
minimization problem is an exactly identified case, so, the weighting matrix is actually o
irrelevant to the solution. The GMM estimator for the regression model with autocor- 1
related disturbances is ordinary least squares, We can use the results in Section (6?2/'
to consiruct the asymptotic covariance matrix. We will require the assumptions in Sec-
tion ]#.4 to obtain convergence of the moments and asymptotic normality, We will wish

0 extend this simple result in one instance. In the common case in which x, contains
lagged values of y,, we will want to use an instrumental variable estimator. We will
return to that estimation problem in Section 1£9.3.

20

9.7 TESTING FOR AUTOCORRELATION

The available tests for autocorrelation are based on the principle that if the true distur-
bances are autocorrelated, then this fact can be detected through the autocorrelations of
the least squares residuals. The SImplest indicator is the slope in the artificial regression

e =re1+ v,

& = Yy —Xb, 20

(15-19)
T -1
Fa=— (Z(’,t’,_l)/(ZL’?).
=2 =1

If there is autocorrelation, then the slope in this regression will be an estimator of

o = Cort[g, £;_1]. The complication in the analysis lies in determining a formal means 20
of evaluating when the estimator is “large,” that is, on what statistical basis to rej

the null hypothesis that p equals zero. As a first approximation, treating (919) as a
classical linear model and using a ¢ or F (squared t) test to test the hypothesis is a

valid way to proceed based on the Lagrange multiplier principle. We used this device

in Example 193, The tests we consider here are refinements of this approach.

2
’1/‘195'.7.1 LAGRANGE MULTIPLIER TEST

The Breusch (1978)_Godfrey (1978) test is a Lagrange multiplier test of fip: no auto-
corvelation versus Hi:g =AR(P) or & =MA(P). The same test is used for either
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structure. The test statistic is 5

r ! —lyr :
LM = T( £ XoXoXo) -XG") = TR}, gﬁ’-zm
S e

where X is the original X matrix augmented by P additional columns containing the
tagged OLS residuals, €1, . . ., ¢,—p. The test can be carried out simply by regressing the
ordinary least squares residuals ¢, on Xy (filling in missing values for lagged residuals
P with zeros) and referring TR"' to the tabled critical value for the chi-squared distribution
N with P degrees of frcedom. 1 Because X'e =0, the test is equivalent to regressing ¢, on
the part of the lagged residuats that is unexplained by X. There is therefore a compelling
logic toit: if any fit is found, then it is due to correlation between the current and lagged
residuals. The test is a joint test of the first P autocorrelations of &, not just the first.

qﬂﬂ?.2 BOX AND PIERCE’S TEST AND LJUNG’'S REFINEMENT

An alternative test that is asymptotically equivalent to the LM test when the null hy-
_pothesis, p = 0. is true and when X does not contain lagged values of y is due to Box
and Pierce (1970). The Q test is carried out by referring
w

Q= TZ . @9-21)
j=1

wherer; = {31 i et i /L ed). to the critical values of the chi-squared table with
7 degrees of freedom. A refinement suggested by Ljung and Box (1979} is
2

P
Q@ =TT+2)} =
j=1

20
(16:22)

The essential difference between the Godfrey-Breusch and the Bax_Pierce tests
is the use of partial correlations (controlling for X and the other variables) in the
former and sunple correlations in the latter. Under the null hypothesis, there is no
autocorrelation in £, and no correlation between X and g, in any event, so the two tests
are asymptotically equ:valent On the other hand, because it does not condition on x;,
the Box-Pierce test is less powerful than the LM test when the null hypothesis is false,
as intuition might suggest.

(]
%7 .3 THE DUHBIN~—WATSON TEST

TN The Dur bm—-W'ltson statlstlv::]2 was the first formal procedure developed for testing for
autocorrelation using the least squares residuals. The test statistic is

o = z:’=2(£’;___——t;;"._l) =2(1=r)— %, (10.23)

Zr:] o Er:l L'_r
where 7 is the same first-order autocorrelation that underlies the preceding two statis-
tics. If the sample is reasonably large, then the last term will be negligible, leaving

A warning to practitioners: Current software varies on whether the lagged residuals are filled with zeros
or the first P observations are simply dropped when computing this statistic. In the interest of replicability,
users should determine which is the case before reporting results.

2Dwrbin and Watson (1950, 1951, 1971).
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d == 2(1 — r). The statistic takes this form because the authors were able to determine
the exact distribution of this transformation of the autocorrelation and could provide
tables of critical values. Usable critical values thatdepend only on T and X are presented
in tables such as those at the end of this book. The one-sided test for Ho: p = 0 against
Hy: p > (Qis carried out by. comparing. € to values d,(T, K) and dy (T, K). If d < d; . the
null hypothesis is rejected: if d > dy;. the hypothesis is not rejected. If d lies between d;,
and.dy, then no conclusion is drawn.

WWTA TESTING IN THE PRESENCE OF A LAGGED

DEPENDENT VARIABLE

The Dunbm—-W'ltson test is not likely to be valid when there is a lagged dependent
variable in the equation:"* The statistic will usually be biased toward a finding of no
autocorrelation. Thiee alternatives have been devised. The LM and Q tests can be used
whether or not the regression contains a lagged dependent variable. (In the absence
of a lagged dependent variable. they are asymptotically equivalent.) As an alternative
to the standard test. Durbin (1970) derived.a Lagrange multiplier test that is appro-
priate in the presence of a lagged dependent variable. The test may be carried out by

referring
20
ho=ryfT/(1~Ts3), A9-24)

where s is the estimated variance of the least squares regression coefficient on y,_.
to the standard normal tables. Large vakues of /1 lead to rejection of Fy. The test has
the virtues that it can be used even if the regression contains additional lags of ¥, and
it can be computed using the standard results from the initial regression without any
further regressions. If s2 > 1/ T, however, then it cannot be compuied. An alternative
is to regress ¢; on L N0 O DY /3 B and any additional lags that are appropriate for ¢
and then to Test the joint s:gmﬁcance of the coefficient(s) on the lagged 1esxdu'11(s) with
the standard £ test. This method is a minor modification of the Bleusch—Godfley test.
Under Hg, the coefficients on the remaining variables will be zero, so the tests are the
same asymptotically.

U

19/7.5 SUMMARY OF TESTING PROCEDURES

The preceding has examined several testing procedures for locating autocorrelation in
the disturbances. In all cases, the procedure examines the least squales residuals, We
canh summarize the procedures as follows:

LM test. LM = TR“ ina leglession of the least squares residuals on [x;, e.1, ...
e_pl. Reject Ho if LM > x2[ P]. This test examines the covariance of the residuals
with lagged values contr ollmg for the intervening effect of the independent variables.

/ 7_4_ Z Qtest Q= 'I ]_1 ;/(r— /). Reject Hpif O > x*[P] This test examines

‘the raw correlationsBetween the residuals and P lagged values of the resicuals.

Dnrbiu;Watson test. 4 = 2{1 —r). Reject Hy:p = 0if d < d7. This test looks di-
rectly at the first-order autocorrelation of the residuals.

“43This issue has been studied by Nerlove and Wallis (1966), Durbin {1970}, and Dezhbaksh { 1990).

/20-21)
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Durbin'stest.  Fp =the Fstatistic for the joint significance of P lags of the resicluals
in the leglessmn of the least squares residuals on [X;, -1, ... Y= Rs €~1. - - - €1—P}
Reject Hy if Fp> F[P, T — K — P]. This test examines the partial correlations be-
tween the residuals and the lagged residuals, contrelling for the intervening effect of
the independent variables and the lagged dependent variable.

The Durbin-Watson test has some major shortcomings. The inconclusive region is large
if T is small or moderate. The bounding distributions, while free of the parameters g
and ¢, do depend on the data (and assume that X is nonstochastic}. An exact version
based on an algorithm developed by Imhof (1980) avoids the inconclusive region. but is
rarely used. The LM and Box—Pierce statistics do not share these shortcomings---their
limiting distributions are chi-squared independently of the data and the parameters.
Far this reason, the LM test has become the standard method in applied research.

,1,{3/.8 EFFICIENT ESTIMATION WHEN @ IS KNOWN

As a prelude to deriving feasible estimators for # in this model. we consider full gen-
eralized least squares estimation assuming that £ is known. In the next section, we will
turn to the more realistic case in which @ must be estimated as well.

If the parameters of £ are known, then the GLS estimator, ZO
f=xe X xely, (%-25)
and the estimate of its sampling variance,
Est. Var[ 8] = 62[X'2~'X]~", Eg?-zs)
where
. 2 = LB QX ?ﬁ-z‘n

can be computed in one step. For the AR(1) case, data for the transformed model are

/1= 02y ] (/T p2x, |
Y- oy X2 — pX1 0
: g

Ye=1 m—pe | Xi=1| x3—px; g.28)

| Y7 — PVT-1 ] XT—p'ir 1] 17 =
These transformations are vanously tabeted partial dlftcrences, quasi (l:ﬁ'(.rem‘es. or
pscudo-differences. Note that in the transformed model. every abservation except
the first contains a constant term. What was the column of Is in X is transformed to
[(1 = o572, (1 = p), (1 — p)....]. Therefore, if the sample is relatively small, then the
problems with measures of fit noted in Section 3.5 will reappear.

The variance of the transformed disturbance is

= {see (}4(-6)}. This can be estimated using

(1- 2)0;. ”/
20

Varls, — pe;_ | = Var[y] = af.
The variance of the first disturbance is also o.2;
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Corresponding results have been derived for higher-order autoregr essive processes.
For the AR(2) model

JE = ey + bogy oz taty, 7@'29)
the transformed data for ‘gene‘l‘.alized,least squares are obtained by
A+ 8 — o2~ 67]]"

Iyl = 1—6, Zy, .- 20

6 (1 —01)” e
2o = (1 —922)1 I3 — —‘E(—l—‘_—glz)—.'.ﬂl,

T =M Ot~ B2, >2,

where z; is used for v, ot .x,. The transformation becomes progressively more complex
for higher-order processes.'*~

Note that in both the AR(1) and AR({2) models. the transformation to v, and X,
involves “starting values” for the processes that depend only on the first one or two
observations. We can view the process as having begun in the infinite past. Because the
sample contains only T observations, however, it is convenient to treat the first one
or two {or P) observations as shown and consider them as “initial values.” Whether
we view the process as having begun at time t = 1 or in the infinite past is uitimately
immaterial in regard to the asymptetic properties of the estimators.

The asymptotic properties for the GLS estimator are quite straightforward given
the apparatus we assembled in Sectiop49.4. We begin by assuming that {x,, &} are

20

jomtly an ergodic, stationary process. Then, after the GLS transformation, {X,;, £.}
is also stationary and ergodic. Moreover, g4 is nonautocorrelated by construction. In
the transformed model, then, {wy]={Xu£w} is a stationary and ergodic martingale
difference series. We can use the ergodic theorem to establish consistency and the central
limit theorem for martingale difference sequences to establish asymptotic normality for
GLS in this model. Formal arrangement of the relevant results is left as an exercise.

439’9 ESTIMATION WHEN @ lS UNKNOWN

For an unknown £, there are a variety appl oac ?Any consistent estimator of R(p)
will suffice~—recall from Theorem 4£.5) in Section £.3.2, all that is needed for efficient
estimation of 8 is a consistent estlmatm of 2(p). The complication arises, as might be
expected, in estimating the autocorrelation parameter(s).

Z’ 1’6’.9.1 AR(1) DISTURBANCES

The AR(1) modei is the one most widely used and studied. The mostcommon procedure
is to begin FGLS with a natural estimator of p, the autocorrelation of the residuals.
Because b is consistent, we can use r. Others that have been suggested include Theil’s
(1971) estimator.y[( T— K)/(T—1)] and Durbin’s (1970). the slope on y,_1 in aregression

148ee Box and Jenkins (1984) and Fuller (1976).

20 -2 3)
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of v on y_1, X, and x,_1. The second step is FGLS based on%«% 25)— (}9’28) Thls is the

TS Pr&m and Winsten (1954) estlmat(‘;r. The Cochrancand Orcutt (1949) estimator (based

20

’L‘D

on computational ease) omits the first observation.

It is possible to iterate any of these estimators toconvergence. Because the estima-
tor is asymptotically efficient at every iteration, nothing is gained by doing so. Unlike
the heteroscedastic model. iterating when there is autocorrelation does not produce the
maximum likelihood estimator. The iterated FGLS estimator, regardiess of the estima-
tor of p, does not account for the term (1/2) In(1 — p2) in the log-likelibhood function

[see the following (19-31)].
aximum likelihood estimators can be obtained by maximizing the log-likelihood

with respect to #, o2, and p. The log-likelihood function may be written

T : 20
InL=——Z—’=‘ﬂ+lln(l—p2)—-—;—(an:r—l-Inof), L 35-31)

202 2
where, as before, the first observation is computed differently fl%/the others using )df
,(»1’9’—28). The MLE for this model is developed in Sectiony169.2.d"Basedonthe MLE, -

the standard approximations to the asymptotic variances of the esfimators ares

L

Est. Asy. Var{By,] = 62,0, [X'@71,X] ",
Est. Asy Var[32 ., ] = 260 4,/ T, ap-32)
Est. Asy. Var[pa] = (1 — p3;) /T

All the foregoing estimators have the same asymptotic properties, The available evi-
dence on their small-sample properties comes from Monte Carlo studies and is, unfor-
tunately, only suggestive. Griliches and Rao (1969) find evidence that if the sample is
relatively small and p is not particularly large. say, less than 0.3, then least squares is as
good as or better than FGLS. The problem is the additional variation introduced into
the sampling variance by the variance of r. Beyond these, the results are rather mixed.
Maxinmum likelihood seems to perform well in general, but the Plaxs—Wmsten estimator
is evidently nearly as efficient. Both estimators have been incorpor rated in all contem-
porary software. In practice, the Prais and Winsten (1954) and Beach and MacKinnon
{1978a) maximum likelihood estimators are probably the most common choices,

10

AF.9.2 APPLICATION: ESTIMATION OF A MCDEL
WITH AUTOCORRELATION : Z

‘The model of the U.S. gasoline market that appears in Example 6.Xis

1

A
po =+ Hln wop + 8310 Poi + Baln Pucy + BsIn Pucy + Bl + &
The results in Figure 1272 suggest that the specification may be incomplete, and. if so.
there may be autocorrelation in the disturbances in this specification. Least squares esti-
mates of the parameters using the data in Appendix Table F2.2 appear in the first row of

/_j_a_tﬂ/e}?Z [The dependent variable is In(Gas expenditure | {price x population)). These

are the OLS results reported in Example 6,%.] The first five autocorrelations of the least W
squares residuals are 0.667, 0.438, 0.142,(—0.018, and —.198. This produces Box—Plel ce

1
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TABLE %2 Parameter Estimates (standard errors in parentheses)

5 _ B2 Ba B1 As B¢ P
- OLS —-2643 16017 —0.06166 —0.1408 _ —0.001293 —0.01518  0.0000
R*=1096780  (1.835) (0.1790) . (0.03872) (0.1628) (0.09663) (0.004393) (0.0000)
Prais— —1858  0.7447 —0.0138  —0.1364 —0.008956 0.006689  0.9567
Winsten (1.768) (0.1761)  (D.03689) (0.1528)  (0.07213)  (0.004974) (0.04078)
Cochrane—  —1876  0.,7300 —0.1080 —0.06675 0.04190 -0.0001653 0.9695
Orcutt (1.382) (0.1377)  (0.02885) (0.1201) (0.05713)  (D004082) (D.03434)
Maximum  —1625 04690 —0.0387 —0.09682 -0.001485 0.01280 09792 &~ -©284,
Likelihood (1.391) (0.1350)  (D.02794) (0.1270)  (D.05198)  (0.004427) (0.02844)
AR(2) ~1945  0.8116 —0.09538 —0.09099 0.0409] —0.001374 0.8610

{(1.495) (0.1502) (0.03117) (0.1297) (0.06558) (0.004227) (0.07053)

X

and Box—Ljung statistics of 36.217 and 38.789, 1espe<,t%)oth of which are larger than
the critical value from the chi-squared table of 11.00"We regressed the least squares
residuals on the independent variables and five lags of the residuals. {The missing val-
ues in the first five years were filled with zeros.) The coefficients on the lagged residuals
and the associated t statistics are 0.741 (4.635),0.153 (0.78%), —0.246 (—1.262), 0.0942
(0.472), and —0.125 (—0.658). The R? in this regression is .549086, which produces a
chi-squared value of Z8.55. Thisis larger than the eritical value f 11.0 WM
null hypothesis of zero autocorrelation is rejected. Finally, the Dur ln—Wﬂtson stafistic
is 0.425007. For 5 regressors and 52 observations, the critical value of dL is 1.36.s0 on
this basis as well, the null hypothesis p = 0 would pe rejected. The plot of the residuals
shown in Figure J#4 seems consistent with this conclusion.
2.0

AC
FIGURE 19.4 [east Squares Residuals.
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C1- 3/2) (sec Sectron 20.7. 39

The Prais and Winsten FGLS estimates appear infthe second row of Table .2 fol- 1.

lowed by the Cochrane and Orcutt results then thegfaximum likelihood estlmatem
R autocorrelation coefficient computed using.{ } is 0.78750. The MLE is computed ( Y

using the Beach and MacKinnon algorithm. See Settion 169.7b.) Finally, we fit the
AR(2) model by first regressing the least squares residuals, ¢;. on ¢,_; and ¢;_» (without
a constant term and filling the first two observations with zeros). The two estimates are
0.751941 and —-0.022464, respectively. With the estimates of 8; and 6, we transformed
the data using v = y; —8) 371 —6 v, and likewise for each regressor. Two observations
are then discarded, so the AR(2) regression uses 50 observations while the Prais-
Winsten estimator uses 52 and the Cochrane—~Orcutt regression uses 51. In each case,
the autocorrelation of the FGLS residuals is computed and reported in the last column
of the table.

One might want to examine the residuals after estimation to ascertain whether the
AR{1) model is appropriate. In the results just presented, there are two large antocorre-
lation coefficients listed with the resicdual based tests, and in computing the LM statistic,
we found that the first two coefficients were statistically significant. If the AR(1) model
is appropriate, then one should find that only the coefficient on the first lagged residual
is statistically significant in this auxiliary. second-step regression. Another indicator is
provided by the FGLS residuals, themselves. After computing the FGLS regression,
the estimated residuals,

&=y —xiﬂ

will still be autocorrelated. In our resuits using the Prais;'«_Winsten estimates, the auto-
cotrelation of the FGLS residuals is 0.957. The associated Durbin—Watson statistic is
0.0867. This is to be expected. However, if the model is correct, then the transformed
residuals

n

iy =& — pliy

should be at least close to nonautocorrelated. But, for our data, the autocorrelation of
these adjusted residuals is only 0.292 with a Durbin.Watson statistic of 1.416. The value
of dy, for one regressor (#;_,) and 50 observations is 1.50. It appears on this basis that,
in fact, the AR(1) model has largely completed the specification.

49.9.3 ESTIMATION WITH A LAGGED DEPENDENT VARIABLE

In Sectionzg.s.l. we considered the problem of estimation by least squares when the
model contains both autocorrelation and lagged dependent variable(s). Because the
QLS estimator is inconsistent, the resicluals on which an estimator of p would be based
are likewise inconsistent. Therefore, p will be inconsistent as well, The consequence
is that the FGLS estimators described earlier are not usable in this case. There is,
however, an alternative way to proceed. based on the method of instrumental variables.
The method of instrumental variables was introduced in Section JZ37 To review, the
general problem is that in the regression model, if 832

plim(1/7)X’e # 0,
then the least squares estimator is not consistent. A consistent estimator is

by = @X)"HZ'y),
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where Z is a set of K variables chosen such that plim(1/ T)Z’e = @ but plim(1/ THZ'X #

0. For the purpose of consistency only, any such set of instrumental variables will suffice.

v The relevance of that here is that the obstacle to consistent FGLS is, at least for the

present, is the lack of a ¢onsistent estimator of p. By uSing the technique of instrumental
variables, we may estimate 8 consistently, then estimate p and proceed.

Hatanaka (1974, 1976) has devised an efficient two-step estimator based on this prin-

ciple. To put the estimator in the current context, we consider estimation of the model

M =XB+yvo1+&,
8 = PE| + Uy

To get to the second step of FGLS, we require a consistent estimator of the slope
parameters. These estimates can be obtained using an IV estimator, where the column
of Z corresponding to ¥,_; is the only one that need be different from that of X. An
appropriate instrument can be obtained by using the fitted values in the regression of
v on X; and x;..1. The residuals from the IV regression are then used to construct

T aa . 20
. Vo Bb_
p= _Z:_r—_}_’_;l (19-33)
pIRT
t=3 “t
where
ér = 'Vr — b;vx_; - C]'V__\’r_‘].

FGLS estimates may now be computed by regressing v,, = ¥, — p¥,—1 oh

Xy, =X — PXr—1,
Yo = Nt — ﬁ)’r-—%
By = vt — blyXi—1 — v ve—2.

Let d be the coefficient on &_; in this regression. The efficient estimator of p is
p=p+d.

Appropriate asymptotic standard errors for the estimators, including p. are obtained
from the s*[ X% X,]~! computed at the second step. Hatanaka shows that these estimators
are asymptotically equivalent to maximum likelihood estimators.

310 AUTOCORRELATION IN PANEL DATA

The extension of the AR(1) model to stationary panel data would mirror the procedures
for a single time series. The standard model is

r . )
Vo=XBH+citen ey =petuedi=1...ont=1.. 1.

[See, e.g.. Baltagi (2005, Section 5.2).] The same considerations would apply to the fixed
and random effects cases, so we have left the model in generic form. The practical issues
are how to obtain an estimate of p and how to carry out an FGLS procedure.
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Assuming for the moment that p is known. the Prais and Winsten transformation,

vh = (1 - p2)1/2\f,-1. x5 = (1 — pH)V3xy,

| o , w.

\,,'— Yir = PYia-1. Xy = Xit = PXir—1.
produces the transformed model 0
4 i
= (x:;)'ﬁ + C::r + Yigs Vir le ~ 05 J;' L. (3-35)

[See (1#-28).] This would seem to restore the original panel data model, save for a

potentlally complicated loose end. The common effect in the transformed model. ¢f,.

is treated differently for the first observation from the remaining T; — 1. hence the

20 Tiecessity Tor The double subscript in ( #-35). The resulting model is no longer a “com-

mon effect” model. Baltagi and Li (1991) have devised a full FGLS treatment for the

balanced panel random effects case, including the asymmetric treatment of ¢;. The

method is shown in detail in Baltagi (2005. pp. 84-85). The procedwe as documented

can be generalized to the unbalanced case fairly easily! but overall is quite complicated,

again owing to the special treatment of the first observation. FGLS estimation of the

fixed effects model is more complicated yet, because there is no simple transformation
comparable to differences from group means that will remove the common effect in 20

-%5) For least squares estimation of 8 in (}9-35), we would have to use brute force,

with ¢f, = a;di; where djy = (1 — pH)172 for individual / and 7 = 1 and di; = 1 — p for

?O 1nd1v1dua1 fandt > 1. (In prineiple, the Fusch—W"eugh result could be applied group by

group to transform the observations for estimation of 8. However, the application would

involve a different tranformation for the first observation and the mean of observations

2 — T; rather than the full group mean.)

For better or worse, dropping the first observation is a practical compromise that
produces a large payoff. The different approaches based on 7; — 1 observations remain
consistent in #. just as in the single time-series case. The question of efficiency might be
raised here as it was in an eatlier literature in the time-series case [see, e.g., Maeshiro
(1979)]. In a given pzmel 7; may well be fairly small. However, with the assumption
of common p, this case is likely to be much more favorable than the single time-series
case. because the way the model is structured, estimation of 8 based on the Cochraner
Orcutt transformation becomes analogous to the random effects case with -1
observations. If 1 is even moderately sized, the efficiency question is likely to be a moot
point.

There remains the problem of estimation of p. For either fixed or random effects
case, the within (dummy variables) estimator produces a consistent estimator of 8 and
a usable set of residuals, ¢;, that can be used to estimate p with [ Y2} S eirer - 1}/
[ 3oF, ¢ ]. [Baltagi and Li (1991a) suggest some alternative estimators that may
have betier small sample properties. |

Examplie 'S5 Panel Data Models with Autocorrelation
Munnell (1990) analyzed the productivity of public capital at the state level using a Cobb;
Douglas production function. We will use the data from that study to estimate a log-linear
regression model

Ingspy; = a + f1 In p.capy, + p2In hwy;, + Bain watery
+84 In ulil; + fsIn emp;, + fg unemp;, -+ &ir +u;,
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TABLE ¥9.3 Estimated Statewide Production Function.

oLS Fived Effects Rarndom Fffects FGLS
p=0 AR p=0 AR p=10 AR(L)
Estimate Esﬁm‘mc: U Estimate Estimate Estimare Extimate
(Std. Erc®y  (Std. Err) * (Sid. Err) (Std. Err) {Std. Err.} {8td. Err}
o 1.9260 2.1463 2.1608 2.8226
{0.2143) (0.01806) 01380y {0.153T)
B 0.3120 0.2615 0.2350 0.04041 0.2755 0.1342
(0.04678)  (0.01338)  (0.02621) {0.02383) (0.01972) {0.01943)
i 0.05888 0.06788 007675 —{0.05831 0.06167 004585
(0.05078)  (0.01802)  (0.03124) {0.06101) {0.02168) (0.03044)
B 0.1186 0.09225 0.0786 0.04934 0.07572 0.04879
{0.0345) {0.01464) {0.0150) {0.02098) (0.01381) (0.01911)
B 0.00856  —0.006299 —0.11478 —0.07459 ~0.09672 —0.07977
{0.0406) (0.01432)  (0.01814) (0.02759) (0.01683) {0.02273)
Bs (1.5497 0.6337 0.8011 1.0534 0.7450 0.08931
(0.0677) (0.01916)  (0.02976) (0.03677) (0.02482) (0.03011)
Bs  —000727  —0009327 0005179  -0.002924 ~0.005963 ~0.005374

(0.002946)  (D.00083)  (0.000980)  (0.H00817)  (0.0008814)  {0.0007513)
o. 00854228 0105407 00367649  0.074687 <.0366974‘3 0.0746875

b : /
Oy IT ,()8756;5_2 /'-’f 0.074380¢
#Rabust {cluster) standard errors in, parenthesss \ (.,_l
PBased on OLS and LSDV residuals VO
*Based on OLS/AR(1) and LSDY/AR(1) residuals 0B 16 5 } L 3% }? ‘
0301 | Jwol
where the variables in the model are L - db 4 ¥
- .ﬂ, )
- asp = gross state product,. i “3 '\.\., (2] Wo g
_ . . o caqY L
p.cap = public capital, ('L 0 LE (€2 Y a;l"’r ,‘/k Py

hwy = highway capital,

. !” nel - n
wafter = water utility capital,’ (J Us‘.h:)khb i e_b 2\ n‘\';\:\ . ,..a+°(
utff = utility capital, P m ! } A ¢ A Ae r " [-f, 0
pc = private capital, 4 fat Lot G-Z 3 by
emp = employment {labor),” Y met é'\\" e é n"\’ ) CIJ)
110 unemp = unemployment -0 we 5 amff’f ?P e Y

efmodel under the fixed and random
.3. Using the fixed effects residuals, 20
e reestimated the two models usin

In Example 987 we estimated the parameters of
effects assumptions. The resuits are repeated in Tabl
the estimate of ¢ is 0.717897, which is quite large)

the Cochrane-Orcutt transformation. The results are shown at the right in Table 12:37 The
estimates of o, and o, in each case are obtained as 1/(1 —r)? times the estimated variances
in the transformed model. w~ l {__'2_)

There are several strategies available for testing for serial correlation in a panel
data set. [See Baltagi (2005, pp. 93-103).] In general. an obstacle to a simple test against
the null hypothesis of no autocorrelation is the possible presence of a time-invariant
cominon effect in the model,

Y =0 +XL 8+ g
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Under the alternative hypothesis, Corr(e;. £;,-1) = p. Many variants of the model,
based on AR(1), MA(1). and other specifications have been analyzed. We consider the
first, as it is the standard framework in the absence of a specific model that suggests

" another process. The LM statistic is based on the within-groups (LSDV) residuals from

the fixed effects specification,

NT2 . it T 2
IM= (_,.._..,.,) (; lz;—zirrhr 1)
L1 E:_l r_l (’H

Under the null hypothesis that p = 0. the limiting distribution of LM is chi-squared
with one degree of freedom. The Durbin;—\-’\f’atson statistic is obtained by omitting [N T2/
(T — 1)] and replacing eq e 0.7 with (e, — &, D% Bhargava et al. (1982) showed that
the Durbin-Watson version of the test is locally most powerful in the nEIgthIhood of
p = 0.In the typlcal panel, the data set is large enough that the advantage over the sim-
pler LM statistic is unlikely to be substantial. Both tests will suffer from a loss of power if
the model is a random effects model. Baltagi and Li {1991a,b) have devised several test
statistics that are appropriate for the random effects specification. Wooldridge (2002a)
proposes an alternative approach based on first differences that will be invariant to the
presence of fixed or random effects.

16.1 1 COMMON FACTORS

We saw in Example 42 that misspecification of an equation could create the appear-

ance of serially correlated disturbances when, in fact, there are none. An orthodox
(perhaps somewhat optimistic) purist might argue that autocorrelation is afiwvavs an
artifact of misspecification, Although this view might be extreme [sce. e.g., Hendry
(1980) for a'more moderate, but still strident statement], it does suggest a useful point.
It might be useful if we could examine the speaﬁcatlon of a model statistically with
this consideration in mind. The test for common fﬂcmrs is such a test. [See, as well, the
aforementioned paper by Mizon (1995).]
The assumption that the correctly specified model is

Y =xB+e, g=p5_q+d, t=1,....T
implies the "reduced form,”
ng:y = py.1+ (X — ,0_1&..1)’,6 Hu, t=2,....°T

where i, is free from serial correlation. The second of these is actually a restriction on
the nrodel

M v = pyra +x§ﬂ_ X, =2, 1)

in which, once again, 4, is a classical disturbance. The second model contains 2K 41
parameters, but if the mode! is correct, then & = ~gg and there are only K + 1 para-
meters and K restrictions. Both M, and M, can be estimated by least squares, although
Mg is a nonlinear model. One might then test the restrictions of M using an £ test. This
fest will be valid asymptotically, although its exact distribution in finite samples will not
be precisely F. In large samples, K F will converge to a chi-squared statistic, so we use
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the /° distribution as usual to be conservative. There is a minor practical complication
in implementing this test. Some elements of & may not be estimable. For example, if x;
contains a constant term, then the one in & is unidentified. If X, contains both current
and hgged values of a variable, then the one period-lagged value will appear twice in
M. once in x, as the lagged va!ue and once in X,_; as the current value. There are other
combinations that will be problematic. so the actual number of restrictions that appear
in the test is reduced to the number of identified parameters in ¢.

2 L
Example #9.6 Test for Common Factors
We will reexamine the model estimated in Section $9.9.2. The base model is

G I
In Po,:) =B+ Bzln —p + Baln P + BainPucs + BsIn Fact + Bt + &1,
If the AR(1) model is appropriate for &, thatis, &, = pe;_y + 44, then the restricted model,
Gf Gf-1 !3 fr 1
e In =1 -
In Pop; o ( Popr.. ) + 81+ e (lﬂ Pop, POP:—1) + 82 {InFyat — pin Pas)

+ Ba(In Puct — £I0 Puci) + Bs{In Puct — 0N Puca—1) + Bs It~ ot — 1)] 41,
with 7 free coefficients will not significantly degrate the fit of the unrestricted model,

G _ (In Gi.q {11
Popr_i P pf—‘l

+ 84N By + s N Pucr—1 + Bs N Pyt + a5 INPucs-1 + Pet + aelt — 1) +14,

which has 13 coefficients. Note, however, that ¢, and «g are not identified [because f=
{f — 1) + 1]. Thus, the common factor restriction imposes four restrictions on the model. We
fit the unrestricted model [minus one constant and (t — 1)} by ordinary least squares and
obtained a sum of squared residuals of 0.00737717. We fit the restricted model by nonlinear
least squares, using the OLS coefficients from the base model ag starting values for 8 and

W zero for p. [See Section $:2:59 The sum of squared residuals is 0.01084939. This produces
an F statistic of
(010184939 — 0.00737717) /4

3.2.6 B.o07TaTTIz B =) = o

which is larger than the critical value with 4 and 40 degrees of freedom of 2.606. Thus, we
would conclude that the AR(1) model would not be appropriate for this specification and
these data.

I
)+ﬁ1+ﬂf1+ﬁaln Pop, +azln +BnPg+azinPg; 4

¥8.12 FORECASTING IN THE PRESENCE
OF AUTOCORRELATION

For purposes of forecasting, we refer first to the transformed model,
Vi, = x;r B+ By,

Suppose that the process generating & is an AR(1) andfthat p is known. This mode!
is a classical regression model. so the results of Section4.6 may be used. The optimal
forecast of _vfm, given x5 41 and X (i.e.._XEm-——,x% +1— PXT) 08

0 0 5
Yern Ty B
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0

er,y» We find that

Disassembling, ¥

=0 R ¢ S-S ' g
Yo —pyr =X 8 — px78.
or "

P =xY B+ oy —x4H)
= xg!_'_lﬂ + per.

Thus, we carry forward a proportion p of the estimated disturbance in the preceding
period. This step can be justified by reference to

Jo
(19-36)

E[ST.,_l iET] = psT.
It can also be shown that to forecast # periods ahead, we would use

0 O 4 "
YFyn z.-“"]‘-{-nﬂ +p ‘:’T-

The extension to higher-order autoregressions is direct. For a second-order model, for

example, 9 20
jr?, o = ﬁ’x'} yn 0181 + B2l T2 (1%9-37)

For residuals that are outside the sample period, we use the recursion 20
€ = B1e;_1 + 6253, (19.3%)

beginning with the last two residuals within the sample.
Moving average models are somewhat simpler, as the autocorrelation lasts for only
( periods. For an MA(1) model, for the first postsample peried.,

0 0 'a -
- V11 =X B+ Erpts
where
Eryt = fr41 — My

Therefore. a forecast of £y will use all previous residuals. One way to proceed is to
accumulate 74 from the recursion

ﬁ'r = ér + A-f:'r—h
with firyt =fp=0and & = (v — x:ﬁ). After the first postsample period.
g']"+n = ﬂ'T-f-n - )‘-&T-l-n—-i =0,

If the parameters of the disturbance process are known, then the variances for
the forecast errors can be computed using the results of Section 5.6. For an AR(1)

disturbance, the estimated variance would be 20
.s‘} = &2 4 (%, — px,—1)'{Est. Var [ﬁ]}(;@,_— PXi—_1). @Y-39)

For a higher-order process. it is only necessary to modify the calculation of x,, ac-
cordingly. The forecast variances for an MA(1) pracess are somewhat more involved.
Details may be found in Judge et al. (1985} and Hamilton (1994). If the parameters
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10
of the disturbance process, p, A, §;. and so on./re estimated as well, then the forecast
variance will be greater. For an AR(1) model the necessary colrection to the forecast
variance of the n-period-ahead forecast erroyis 625° p%= D/T. [For a one-period-ahead
* forecast, this melely addsaterm, 82/ Tin( —39)] Higher-order AR and MA processes
are analyzed in Baillie (1979) Finally, if the regressors are stochastic, the expressions
become more complex by another order of magnitude.

20 If p is known, then (}9-36) provides the best linear unbiased forecast of ;1
If. however, p must be estimated, then this assessinent must be moclified. There is
A1 information about €1, embodied in ¢,. Having to estimate p, however, implies that

some or all the value of this information is offset by the variation introduced into the
_ forecast by including the stochastic compornent per 18 Whether ( -36) is pzefemble to
/-1 5 the obvious expedient § W, = Bt 'x%,,, in 2 small sample when p igfestimated remains to

be settled.
20

20 #8613 AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY

Heteroscedasticity is often associated with cross-sectional data, whereas time series are
usually studiedin the context of homoscedastic processes, In analyses of macroeconomic
data, Engle (1982, 1983) and Cragg {1982) found evidence that for some kinds of data,
the distwrbance variances in time-series models were less stable than usually assumed.
Engle’s results suggested that in models of inflation, large and small forecast errors
appeared to occur in clusters, suggesting a form of heteroscedasticity in which the
variance of the forecast error depends on the size of the previous disturbance. He
suggested the autoregressive, conditionally heteroscedastic, or ARCH, model as an
alternative 1o the usual time-series process. More recent studies of financial markets
suggest that the phenomenon is quite common. The ARCH model has proven (o be
useful in studying the volatility of inflation [Coulson and Robins (19853)], the term
structure of interest rates [Engle, Hendry, and Trumble (1985)], the volatility of stock
market returns [Engle, Lilien, and Robins (1987)], and the behavior of foreign exchange
markets [Domowitz and Hakkio (1985) and Boilerslev and Ghysels (1996)]. to name
™, but a few. This section will describe specification. estimation, and testing, in the basic
/' | formulations of the ARCH model and some extensions:t’

Example #9.7 Stochastic Volatility 20

’_J_Eg%shows Bollerslev and Ghysel's 1874 data on the daily percentage nominal tu
for the Deutschmark/Pound exchange rate. (These data are given in Appendix Table F,

The variation in the series appears to be fluctuating, with several clusters of large and smal!
movements.

\Hr. \ ZO,(

138ee Goldberger ( 1962),
18%ee Baillie (1979).

Y Engle and Rothschild {1992) give a survey of this literature which describes many extensions. Mitls (1993)
also presents several applications. See, as well. Bolferslev (1986) and Li, Ling, and McAleer (2001). See
McCulicugh and Renfro (1999) for discussion of estimation of this model.
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FIGURE #9.5 Nominal Exchange Rate Returns.

W

A€43.4 THE ARCH{1) MODEL
The simplest form of this model is the ARCH(1) model,

Vi =X:ﬂ + &,

& =ty fop + 1] 4,

20
(19:40)

(U1 % where i is distributed as standard normal¥* It follows that £ [er | X:, £—1] = 0. so that
\ 23 Ele | %] = 0and E£[y | x] = x;8. Therefore, this model is a classical regression model.
But

Var[e; | &-1] = E[s;" | £-1] = E[u.f] oo + arjs,z_l] = ag +a1g g,
so & is conditionally heteroscedastic, not with respect ta x; as we considered in Chapter &,
but with respect to ,_;. The unconditional variance of g, is
Varfs,] = Var{E[s, | .11} + E{Varle, |g_1]} =0 + m £ [9,2_1] = ay + o Var[g_q).

220N If the process generating the disturbances is weakly (covariance) stationary (see
fi Definition 19.2)}!% then the unconditional variance is not changing over time so
I". -. a4 14

- Var[g,] = Varle,_1] = ao + @ Var{g,_1] = 2

1—ay’

For this ratio to be finite and positive, o | must be less than 1. Then, unconditionally,
g, is distributed with mean zero and variance o2 = ag/(1 — a1). Therefore, the model

J%The assumption that v, has unit variance is not a restriction. The scaling imptied by any other variance
would be absorbed by the other parameters.

1*This discussion will draw on the results and terminofogy of time-series analysis in Section }9./3 and Chap-
ter}f The reader may wish to peruse this material at this point.

7%
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obeys the classical assumptions, and ordinary least squares is the most efficient linear

unbiased estimator of 8.

But there is a more efficient ponlinear estimator, The !0g~hkehhood function for
this model is given by Engle (1982). Conditioned on starting values vp and Xo (and £p).
the conditional log-likelihood for observations ¢ = 1, ..., T'is the one we gxamined in
Section }6.9.2.a for the geneial heteroscedastic 1eglessmn model [see (. '—52)].

7., 2
nl = --~In(2rr) - Z]n {et0 +ayel 1) ~3 E =Y — ﬁ_’g(_,.

op + (o] Er 1 40
(W:41)

Maximization of tog L. can be done with the conventional methods, as discussed in
Appendix E.2

’Loy?ﬁ 3.2 ARCH(), ARCH-IN-MEAN, AND GENERALIZED

i .\ Tuk

ARCH MODELS

The natural extension of the ARCH(1) model presented before is a more general model
with longer lags. The ARCH({q) process,

2 2 2 2
o = f}{).-l- o€ to2f_ + - oty

is a_gth order moving ave;";gegA(g)] process. (Much of the analysis of the model
parallels the results in Chapter, 21’ for more general tilme-series models.) [Once again,
see Engle (1982).] This section will generalize the ARCH(q) model, as suggested by
Bollerslev (1986). in the direction of the autoregressive-moving average (ARMA ) mod-
els of Section24.2.1. The discussion will paralle] his development, although many details
are omifted for brevity. The reader is referred to that paper for background and for some
of the less critical details.

Among the many variants of the capital asset pricing model (CAPM) is an intertem-
poral formulation by Merton (1980) that suggests an approximate linear relationship
between the return and variance of the market portfolio. One of the possible flaws
in this model is its assumption of a constant variance of the market portfolio. In this
connection, then, the ARCH-in-Mean, or ARCH-M, model suggested by Engle, Lilien,
and Robins (1987) is a natural extension. The model states that

i =‘_§:’_x, —+ 50',2 + &y
Var{e, | ¥] = ARCH(qg).

Among the interesting implications of this modification of the standard model is that
under certain assumptions, § is the coefficient of relative risk aversion. The ARCH-M
mode! has been applied in a wicde variety of studies of volatility in asset returns. including
the daily Standard and Poor’s Index [French, Schwert, and Stambaugh (1987)] and

OEngle (19582) and Judge et al. (1985, pp. 441—444) suggest a fourstep procedure based on the method
of scoring that resembles the two-step method we used for the multiplicative heteroscedasticity madel in
Section 8.8.1. However, the full MLE is now incorporated in most modern software, so the simple regres-
sion based methods, which are difficult to generalize, are less attyactive in the current literaturs, But, see
McCullough and Renfro (1999) and Fiorentini, Calzolari, and Panattoni (1996} for commentary and some
cautions related to maximun likelihood estimation.
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\veekly New York Stock Exchange returns [Chou (1988)]. A lengthy list of applications
is given in Bollerslev, Chou, and Kroner (1992).
The ARCH-M model has several noteworthy statistical characteristics. Unlike the
* standard regression model, misspecification of the variance function does affect the
consistency of estimators of the parameters of the mean. {See Pagan and Ullah (1988)
for formal analysis of this point.] Recall that in the classical regression setting, weighted
least squares is consistent even if the weights are misspecified as long as the weights are
uncorrelated with the disturbances. That is not true here. If the ARCH part of the mode!
is misspecified. then conventional estimatoss of 8 and & will not be consistent. Bollerslev,
Chou, and Kroner (1992) list a large number of studies that called into question the
specification of the ARCH-M model, and they subsequently obtained quite different
results after respecifying the model. A closely related practical problem is that the
mean and variance parameters in this model are no longer uncorrelated. In analysis
up to this point, we made quite profitable use of the block diagonality of the Hessian
of the log-likelihood fumction for the model of heteroscedasticity. But the Hessian for
the ARCH-M model is not block diagonal. In practical terms, the estimation problem
cannot be segmented as we have cdone previously with the heteroscedastic regression
: model. All the parameters must be estimated simultaneously.
AN The model of generalized autoregressive conditional heteroscedasticity (GARCH)
[ . | isdefinedasfollowd?! The underlying regression is the usual onein ("I‘Qn-éIO)._ Conditioned 2.0
onan information set at time ¢, denoted W, the distribution of the disturbance 1s assumed
to be

el
g | Wy ~ N[Us O-;]a
where the conditional variance is

ol =ag+ 800 + 8oty + o+ 8,07, +orsl g tonel g+t agel . %42)

Define -
_ 2 2 2 2
I = [l,q,_l.dr_z,..._.o‘r__p,sr_], P TR —4]']
and
= [a{], 81,482, ... ,3_1,_,. o, ... ,aq]’ = [ap, &, ar].f.
Then

2 '
Ul‘ = y I,.r.

Notice that the conditional variance is defined by an autoregressive-thoving average
TARMA (p. q)] process in the innovations 2, exactly as in Section 2072.1. The difference
here is that the mean of the random variable of interest_y, is described completely by
a heteroscedastic, but atherwise ordinary. regression model. The conditional variance,
however, evolves over time in what might be a very complicated manner, depending on
the parameter values and on p and g. The model in {(14.42) is a GARCH(p. ¢) model.
20

‘21 As have most areas in time-series econometrics, the line of literature on GARCH models has progressed
rapidly in recent years and will surely continue to do so. We have presented Bollerslev's model in some detail,
despite many recent extensions. not only to introduce the topic as a bridge to the literature, but also becanse it
provides a convenient and interesting setting in which to discuss several related topics such as double-length
regression and pseudo-maximum tikelihood estimation.
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LN where p refers, as before, to the order of the autoregressive palt ¥ As Bollerslev (1986)
el demonistrates with an example, the virtue of this approach is that a GARCH model
' with a small number of terms appears to perform as well as or better than an ARCH
- model with many. ..oy
The stationarity cundmom discussed in Section 2/1/ 2.2 are important in this context
to ensure that the moments of the normal distribution are finite. The reason is that
higher moments of the normal distribution are finite powers of the variance. A normal
distribution with variance ¢ has fourth moment 35, sixth moment 1558, and so on.
[The plecise relationship of the even moments of the ncn mal distribution to the vari-
ance is py = (2 (2k)! /(k‘2") ] Simply ensuring that ¢? is stable does not ensure that
€7 higher powers are as well:2* Bollerslev presents a useful ﬁQ,lll e that shows the condlitions
A% ) needed to ensure stability for moments up to order 12 for a GARCH(1, 1) model and
= gives some additional discussion. For ex'nnple for a GARCH(1. 1) process. for the
fourth moment to exist, 3% + 2081 + 57 must be less than 1.
It is convenient to write (JA42) in terms of polynomials in the lag operator (see
Section 20.2.2): o

7 of = ap+ D(Lyo? + AL)s?.

1.

As discussed in Section 262.2, the stationarity condition for such an equation is that the
roats of the characteristic equation, 1 — () = 0, must lie outside the unit circle. For the
present, we will assume that this case is true for the mode! we are considering and that
A(ly+ D(1) < 1. [This assumption is stronger than that needed to ensure stationarityin a
higher-order autoregressive model, which would depend only on D(L).] The implication

is that the GARCH process is covariance stationary with £ [e;] = 0 (unconditionally).
Var[e] = ap/[1 — A(1) — D(1)]. and Cov[e. &;] = O for all # # 5. Thus, unconditionally

the model is the classical regression model that we examined in Chapters 2—’7\6

'The usefuiness of the GARCH specification is that it allows the variance to evolve
over time ina way that is much more general than the simple specification of the ARCH
model. The comparison between simple finite-distributed lag models and the dynamic
regression model discussed in Chapter 287is analogous. For the example discussed in his
Z1 " paper, Bollerslev reports that although Engle and Kraft's (1983) ARCH(8) model for
the rate of inflation in the GNP deflator appears to remove all ARCH effects, a closer
look reveals GARCH effects at several lags. By fitting a GARCH(1. 1) model to the
same data, Bollerslev finds that the ARCH effects out to the same eight-period lag as fit
by Engle and Kraft and his observed GARCH effects are all satisfactorily accounted for.

L 19.13.3 MAXIMUM LIKELIHOOD ESTIMATION
OF THE GARCH MODEL

Bollerslev describes a method of estimation based on the BHHH algorithm. As he
shows, the method is relatively simple, although with the line search and first derivative
method that he suggests, it probably involves more computation and more iterations
g 10 20
“*2We have changed Bollgfslev's notation slightly so as I&% counflict with our previons presentation. He used
B instead of cur § in (F9-42) and b instead of our B in (49°40).

*2¥The conditions cannot be imposed a priori. In fact, there is no nonzero set of parameters that guarantees
stability of &/l moments, even though the normal distribution has finite moments of all orders. As such, the
normality assumption must be viewed as an approximation.
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than necessary. Following the suggestions of Harvey (1976), it turns out that there is a
simpler way to estimate the GARCH model that is also very illuminating. This model is
actually very similar to the more conventional model of multiplicative heteroscedasticity
that we examined in Sectlonjlfcf 9.2.b.

For normally distributed distur bances the log- llkellhood for a sample of T obser-
vations i$%

T

1nL=Z——%[In(2:rr)+lna+ ] 2111;,(9)_2:',(9).

t=1

where g, = v, —x]8 and 8 = (8, o9, 0’ &Y = (B', 'Y . Derivatives of In L are obtained
by summation. Let /; denote In f;(#). The first derivatives with respect to the variance
parameters are '

9, 111 e |3} 1/ 1Y 3d2 (e} 11
vl el @ ()1 G

Note that E[y;] = 0. Suppose, for now, that there are no regression parameters.
Newton’s method for estimating the variance parameters would be 0

,l/ ?H-I = ]}r’ —'..H“]gw %44)

where H indicates the %ﬂan and g is the first derivatives vector. Following Harvey's
suggestion (see Section
we make use of E[y]=0and £ [EZ/O}ZI =1. After taking expectations in (+9-43), the
iteration reduces toa linear regression of v, = (1 /x/— 2)yu, ONTEgressors w,, = (1 /f )B: /crr
That is, -

- 20

P = P+ [WW,] Wy, = 7!+ [W W, (3 II;L), (49.45)

where row 1 of W, is w, . The iteration has conver, ged when the slope vector is zero,
which happens when the first derivative vector is zero. When the iterations are
complete, the estimated asymptotic covariance matrix is simply

Est. Asy. Var[p] = [W,w,]!

based on the estimated parameters.

The usefulness of the result just given is that E{8%in L/3y 88'] is, in fact Zero.
Because the expected Hessian is block diagonal. applying the method of scoring to the [‘f
full parameter vector can proceed in two paits, exactly as it did in Section W
multiplicative heteroscedasticity model, That is, the updates for the mean and variance
parameter vectors can be computed separately. Consider then the slope parameters, 8.

MThere are three mmor errors in Bollerslev’s dcnvat:on that we note here to avoid the apparent inconsis-

tencies. In his (22), h. should be :}1,_ ! In {23), —-2}:, should be —f, 2 In {28}, k 9h/d3w should, in each
case, be (1/h) ah/am [In his (8). opay should be ap + @y, but this has no unphcatlons for our derivation.]

9.2.a}, we will use the method of scoring instead. To do this. 29

A
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The same type of modified scaoring method as used earlier producés the iteration

“rr
R Gl AP L EXL d‘ d, X;S; J._ d;
, gt = iy [g o2 _+2(52)(a2)J “Lx p +2 v,

e PEa@@] s B
=B+, = -

which has been referred to as a dquble-lengl‘ll regression. [See Orme (1990) and
Davidson and MacKinnon (1993, Chapter 14).] The update vector hf-is the vector of
slopes in an augmented or clouble-length generalized regression,

i =[C'-'C} [C'ea], (,19’-47)

where Cisa 2T x K matrix whose first T rows are the X from the original regression
model and whose next T rows are (1/v/2)d /o2, 1 =1,..., Tiaisa 2T x | vector whose
first 7 elements are g, “and whose next T elements are (1/f)v,/o‘, t=1..., T:and

. 2 is a diagonal matrix with 1 /o in positions 1, . , T and ones below obsel vat'ion 7.
At conver gence, [C’R71C]~! provides the asymptotlc covariance matrix for the MLE.
The resemblance to the familiar result for the generalized regression model is striking,
but note that this result is based on the double-length regression.

The iteration is done simply by computing the update vectors to the current pa-
rameters as defined earlier:> An important consideration is that to apply the scoring
method, the estimates of g and y are updated simultaneously. That is, one does not use
the updated estimate of y in (}9745) to update the weights for the GLS regression to
—_—_compute the new,# in ($5746). The same estimates (the results of the pliorjteration)are 2o 242
29~ usedon the-ughﬂland sides of both (19-45) and (£9-46). The remaining problem is to

obtain starting values for the iterations. One obvious choice is b, the OLS estimator, for
8.c'e/ 7' =s* for ag, and zero for all the remaining parameters. The OLS slope vector
will be consistent under all specifications. A useful alternative in this context would be
to start @ at the vector of slopes in the least squares regression of ¢2, the squared OLS
AN residual. on a constant and ¢ lagged values? As discussed later, an LM test for the
»% | presence of GARCH effects is then a by-product of the first iteration. In principle, the [
updated result of the first iteration is an efficient two-step estimator of afl the parame-
ters. But having gone to the full effort to set up the iterations, nothing is gained by not
iterating to convergence. One virtue of allowing the procedure to iterate toconvergence
is that the resulting log-likelihood function can be used in likelihood ratio tests.

Wt

#9.13.4 TESTING FOR GARCH EFFECTS

The preceding development appears fairty complicated. In fact, it is not, because at each
step, nothing more than a linear least squares regression is required. The intricate part

"2 See Fiorentind ct al. (1996) on computation of derivatives in GARCH models.

255 test for the presence of g ARCH effects against none can be carvied out by carrying TR® from this
regression into a table of critical vatues for the chi-squared distribution. But in the presence of GARCH
effects, this procedure loses its validity.
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of the computation is setting up the derivatives. On the other hand, it does take a fair
amount of programming to get this far.?””As Bollerslev suggests, it might be usefu! to

test for GARCH effects first.

The simplest approach is to examine the squares of the least squares residuals.
The autocorrelations {correlations with lagged values) of the squares of the residuals
provide evidence about ARCH effects. An LM test of ARCH{g) against the hypothesis
of no ARCH effects [ARCH(O) the classical model] can be carried out by computing
x2=TR? in the regression of ¢’ on a constant and ¢ lagged values. Under the null
hypothesis of no ARCH effects, the statistic has a limiting chi-squared distribution with
g degrees of freedom. Values larger than the critical table value give evidence of the

‘presence of ARCH (or GARCH) effects.

Bollerslev suggests a Lagrange mukhtiplier statistic that is, in fact, surprisingly simple
to compute. The LM test for GARCH(p, 0) against GARCH(p, g) can be carried out
by referring T times the R? in the linear regression defined in (19-45) to the chi-squared
critical value with g degrees of freedom. There is, unfortunately, an indeterminacy in
this test procedure. The test for ARCH(g) against GARCH(p, g) is exactly the same
as that for ARCH(p) against ARCH(p + g). For carrying out the test, one can use
as starting values a set of estimates that includes § == @ and any consistent estima-
tors for 8 and a. Then TR? for the regression at the initial iteration provides the test
statistic.2*

A number of recent papers have questioned the use of test statistics based solely
on normality. Wooldridge (1991) is a useful summary with several examples.

Example #9.8 GARCH Model for Exchange Rate Valatf.'tty
Boflerslev and Ghysaels analyzed the exchange rate data in Example 19 7usinga GARCH(1, 1)
model,

Yo = pt+£n,
Elet| &) = 0

Var[et |£t_1] = Jta = ap+ 018?_1 + 50’3_1.

The least squares residuals for this model are simplye; =y — V. Regression of the squares
of these residuals on a constant and 10 lagged squared values using observations 1151974
produces an A% = 0.09795. With T = 1964, the chi-squared statistic is 192.37, whichi is larger
than the critical value from the table of 18.31. We conclude that there is evidence of GARCH
effects in these residuals. The maximum likelihood estimates of the GARCH model are given

5 _. 20 in Table 14.4. Note the resemblance between the OLS unconditional variance (0.221128) and
: 8

estimated equilibrium variance from the GARCH model, 0.2631.

+?"Because this procedure is available as a preprogrammed procedtire in many computer pragrams, including

TSE E-Views, Stata, RATS, LIMDEF, and Shazam, this warning might itself be overstated.

“25Dollerslev argues that in view of the complexity of the computations involved in estimating the GARCH
plexity P £

modet, it is useful to have a test for GARCH effects. This case is one (as are many other maximum like-
lihcod problems) in which the apparatus for carrying out the test is the same as that for cstimating the
model. Having computed the LM statistic for GARCH effects, one can proceed to estimate the model
just by allowing the program to iterate to convergence. There is no additional cost beyond waiting for the
ANSWEL.

(20-45
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w2

TABLE 194 Maximum Likelihood Estimates of a GARCH(1, 1) Model®®~

2 oo o § egf{l — o) — &)
Estimate —0.0(_)76‘190 0.01076 0.1531 _ 0.8050 0.2631
Sud. Error 0.00873 - 0.003]12 0.0273 0.0302 (.594
t ratio ~0.709° - 3445 5605 26,731 0.443

InL=—1186.61,In Loy5 = —1311.09, § = —0.01642, 5% = 0221128

10

#5135 PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION

We now consider an implication of nonnormality of the disturbances. Suppose that the
assumption of normality is weakened to only

4
. &

where o is as defined earlier. Now the normal log-likelihood function is inappropriate.

In this case, the nonlinear (ordinary or weighted)least squares estimator would have the
properties discussed in Chaptep 1. It would be more difficult to compute than the MLE

g2
E[Er|ll—',]=0, E|:--'I-2-
(43

“t

11',} =K < 00,

9 ~— discussed earlier, however. It has been shown [see White (1982a) and Weiss (1982)]

that the pstéudo-MLE obtained by maximizing the same log-likelihood as if it were
correct produces a consistent estimator despite the misspecification:?? The asymptotic
covariance matrices for the parameter estimators must be adjusted, however.

The general result for cases such as this one [see Gourieroux. Monfort, and Trognon
(1984)] is that the appropriate asymptotic covariance matrix for the pseudo-MLE of a
parameter vector f would be

Asy. Var[f] = H™'FH!, (15-48)
where .
3 n L
H=E |75
and

dimlN /faln L
£=r|(5) ()]

(i.e.. the BHHH estimator), and In L is the used but inappropriate log-likelihood func-
tion. For current purposes, Hand F are still block diagonal, so we can treat the mean and
variance parameters separately. In addition, £ L] is still zelo so the second derivative
terms in both blocks are quite simple. (The parts involving §2 o; 2/3y 9y’ and 3%s? /3B 3B
fall out of the expectation.) Taking expectations and inserting the parts produces the

“2*These data have become a standard data set for the evaluation of software for estimating GARCH models.
The values given are the benchmark estimates. Standard errors differ substantiaily from one method to the
next. Those given are the Bollerslev and Wooldridge (1992) results. See McCullough and Renfro (1999).

#*White (1982a) gives some additional requirements for the true underlying density of g, Gourieroux,
Monfort. and Trognon {1984) also consider the issue. Under the assumptions given, the expectations of
the matrices in 7z?'-:h‘!) and (19-47) remain the samne as under normality. The consistency and asymptotic
normatity of the/psendo-MLE £an be argued under the logic of GMM estimators.

2 90
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corrected asymptotic covariance matrix for the variance parameters:
Asy. Var[fpyre] = [W, W] B'BIW,W,] 7,

whele the rows of W* are defined in (Q 45) and those of B are in ( }()-43) For the slope
parameters, the adjusted asymptotlc covar iance matrix would be

Asy. Var| Bpyig] = [C'2-1C}! [E h,b’] [C' ‘IC]*1
a0 =i
where the outer matrix is defined in (19-47) and. from the first derivatives given in
(¥5°43) and (19°46):3"
Zo 20 xe 1y
hf = —= 4 = [ df.
e 0_2 2 ; T

1

A 14 SUMMARY AND CONCLUSIONS

This chapter has examined the generalized regression model with serial correlation in
the disturbances. We began with some general results on analysis of time-series data.
When we consider dependent observations and serial correlation, the laws of large num-
bers and central limit theorems used to analyze independent observations no longer
suffice. We presented some useful tools that extend these results to time-series settings,
We then considered estimation and testing in the presence of autocorrelation. As usual,

OLS is consistent, but inefficient. The Newey-West estimator is a robust estimator for
the asymptotic covariance matrix of the OLS estimator. This pair of estimators also
constitute the GMM estimator for the regression model with autocorrelation. We then
considered two-step feasible generalized least squares and maximum likelihood estima-
tion for the special case usually analyzed by practitioners, the AR(1) model, The model
with acorrection for autocorrelation is a restriction on a more general model with lagged
values of both dependent and independent variables. We considered a means of test-
ing this specification as an alternative to “fixing” the problem of autocorrelation. The
final section, on ARCH and GARCH effects, describes an extension of the models of
autoregression to the conditional variance of £ as opposed to the conditional mean.

|
i

|

This model embodies elements of both autocoirelation and heteroscedasticity. The set I. By Terms
of methods plays a fundamental role in the modern analysis of volatility in financial data. | *==% bl it
|\t (Th Bl
b 1A
Key Terms and Concepts \. o el |
. ] ‘ ) . [ @it i
* AR(l) “» Autocorrelation * Autoregressive processes II s [ K
«» ARCH * Autocorrelation matsix » Cochrane-Orcutt estimator | Mol
s ARCH-in-mean « Aulocovariance ‘% Common factor model A, 2 Fead
1= Asymplolic negligtbility * Autocovariance matrix » Covariance stationarity i "
* Asymptotic normality * Autoregressive form * Double-lenpth regression N '

“HMcCullough and Renfro (1999) examined several approaches to computing an appropriate asymptotic

covariance marix for the GARCH model, including the conventional Hessian and BHHH estimators and

_ three sandwich style estimators, including the one suggested earlier and two based on the method of scoring

suggested by Bollerslev and Wooldridge (1992). None stand out as obviously better, but the Boflerslev and
QMLE estimator based on an actual Hessian appears to perform well in Monte Carlo studies.
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= /e DurbinzWatson test 4 Martingale sequence » Quasi differences
« Efficient two-step estimator y»Martingale difference » Random walk
» Ergodicity _ sequence + Stalionarity
#.~a Ergodic theorem : * Moving average form « Stationarity conditions
* ¢ Expectations-augmented “w:Moving-average process « Summability '
Phillips curve " {4 Newey—West robust » Time-series process
« First-order autoregression  covariance matrix estimator  » Time window
s GARCH » Partial difference * Weakly stationary
* GMM estimator s Prais;Winsten estimator * White noise
« Initial conditions s Pseudo-dilferences * Yule-Walker equations
_e Innovation * Pseudo-MLE - "*
i~ Lagrange multiplier test * O test
Exercises
1. Does first differencing reduce autocorrelation? Consider the models v, = 8'x, +5;,

Applications

where £ = p&;_y + 1y and & = u; — ity 1. Compare the autocorrelation of & in the
original model with that of v, in v — ¥4 = (%, —X;_1) + v, where v, = &, — & _}.
Derive the disturbance covariance matrix for the model

= ﬁ'xr.""'-“rv
B = P8 _{ + Hy = All;_1.

What parameter is estimated by the regression of the OLS residuals on their lagged
values?

The following regression is obtained by ordinary least squares, using 21 observa-
tions. (Estimated asymptotic standard errors are shown in parentheses.)

% =13+097y_y+23ly, D—W=12L
©3) (0.18)  (1.04)

Test for the presence of autocorrelation in the disturbances.

It is commonly asserted that the Durbin-Watson statistic is only appropriate for
testing for first-order autoregressive disturbances. What combination of the coef-
ficients of the model is estimated by the Durbin-Watson statistic in each of the
following cases: AR(1), AR(2). MA(1)? In each case, assume that the regression
model does not contain a lagged dependent variable. Comment on the impact on
your results of relaxing this assumption.

z 2

1. The data used to fit the expe?/ﬁcms augmented Phillips curve in Example }9.3 are

given in Appendix Table F5.4. Using these data, reestimate the model given in the
example. Carry out a formal test for first-order autocorrelation using the LM statis-
tic. Then, reestimate the model using an AR(1) model for the disturbance process.
Because the sample is large, the Prais.Winsten and Cochrane-Orcutt estimators
should give essentiaily the same answer. Do they? After fitting the model, obtain
the transformed residuals and examine them for first-order autocorrelation. Does
the AR(1) model appear to have adequately “fixed” the problem?

S
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2. Data for fitting an improved Phillips curve model can be obtained from many
. sources, including the Bureau of Economic Analysis’s (BEA) own Web site,
(1LY www.economagic.com, and so on. Obtain the necessary data and expand the model

) F_’__()ﬁfEW.B. Does adding additional explanagory variables to the model reduce
2o the extreme pattern of the OLS residuals that appears in Figure ¥3? 2o, 3

3. (This exercise requires appropriate computer software. The computations required

can be done with RATS, EViews, Stata, TSP. LIMDEP, and a variety of other

software using only preprogrammed procedures.) Quarterly data on the consumer

price index for 1950.1 to 2000.4 are given in Appendix Table FS.'.QSC these data
to fit the model proposed by Engle and Kraft (1983). The model is ™ 2

= Fo+ Bim—1 + Bz + Pamtr_3 + Parmi_a + &,

where z; = 100 In[p,/ p,—1) and p; is the price index,

a. Fit the model by ordinary least squares, then use the tests suggested in the text
to see if ARCH effects appear to be present.

b. The authors fit an ARCH(8) model with declining weights,

9
of =ay +Z (""3‘;"8“) L
i=1 -

Fit this model. If the software does not allow constraints on the coefficients, you
can still do this with a two-step least squares procedure, using the least squares
residuals from the first step. What do you find?
c. Bollersiev (1986) recomputed this mode! as a GARCH(1,1). Use the
GARCH(1, l)ulform and refit your model.
o M
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