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This chapter begins our introduction to the analysis of economic time series. By most
views, this field has become synonymous with empirical macroeconomics and the anal-
ysis of financial markets:" In this and the next chapter, we will consider a number of
models and topics in which time and relationships through time play an explicit part in
the formulation. Consider the dynamic regression model r T 21

=Bt + BoXe + B3Xi1 + ¥ Yoot + 81 @8-1)

Madels of this form specifically include as right-hand-side variables previous as well as
contemporaneous values of the regressors. It is also in this context that lagged values of
the dependent variable appear as a consequence of the theoretical basis of the model
rather than as a computational means of removing autocorrelation. There are several
reasons lagged effects might appear in an empirical model:

e Inmodeling the response of economic variables to policy stimuli, it is expected that
there will be possibly long lags between policy changes and their impacts. The length
of lag between changes in monetary policy and its impact on important economic
variablés such as output and investment has been a subject of analysis for several
decades.

¢ Either the dependent variable or one of the independent variables is based on

" expectations. Expectations about economic events are usually formed by aggregat-

" ing new information and past experience. Thus, we might write the expectation of
a future value of variable x, formed this period, as

v = F[xt | 2 Xe10 X2, -] = 802 Xe1, X2, -2 ).

FThe literature in this area has grown at an impressive rate, and, more so than in any other area, it has

become impossible to provide comprehensive surveys in general textbooks such as this one. Fortunately,
specialized volumes have been produced that can fill this need at any level. Harvey (1990) has been in wide
use for some time. Among the many other books, three very useful works are Enders (2003), which presents
the basics of time-series analysis at an introductory level with several very detailed applications; Hamilton
{1994), which gives a relatively technical but quite comprehensive survey of the field; and Lutkepohl (2005),
which provides an extremely detailed treatment of the topics presented at the end of this chapter. Hamilton
also surveys a mimber of the applications in the contemporary literature. Two references that are focused on
financial ecanometrics are Mills (1993) and Tsay (2005). There are also a number of important references
that are primarily limited to forecasting, including Diebold (1998a, 2003) and Granger and Newbold (1996).
A survey of rescarch in many arcas of time-series analysis is Engle and McFadden (1994). An extensive, fairly
advanced treatisc that analyzes in great depth all the issues we touch on in this chapter is Hendry (1995).
Finatly, Patterson (2000) surveys most of the practical issues in time series and presents a large variety of
useful and very detailed applications.
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For example, forecasts of prices and income enter demand equations and con- | (14, ;’T.’ 7l
sumption equations. (See Example 15.1 for an influential application.} I
Certain economic decisions are explicitly driven by a history of related activities, | © = '
For example, energy demand by individuals is clearly a function not only of current | (- x (211 |

prices and income, but also the accumulated stocks of energy using capital. Even |
energy demand in the macroeconoiny behaves in this fashion—-the stock of auto- |
mobiles and its attendant demand for gasoline is clearly driven by past prices of
gasoline and automobiles. Other classic examples are the dynamic relationship be-
tween investment decisions and past appropriation decisions and the consumption
of addictive goods such as cigarettes and theater performances.
We begin with a general discussion of models containing lagged variables. In Sec-
——:;yff 2, we consider some methodological issues in the specification of dynamic
q’\ Tressions. In Sectiong 203 and 2674, we describe a general dynamic model that en-
/- compasses some of the extensnons and more formal models for time-series data that 2 f

21 A are presented in Chapter,2T. Section 265 takes a closer look at some of issues in model
specificafion. Fina y, ection.20.6 considcns systems of dynamic equations. Fhese-pres

L

/ : aihes era This chapter is generally not about methods of es-
2-1 timation. OLS and GMM estimation are usually routine in this context. Because we are
examining time-series data, conventional asmmptzons inclnding ergodicity and station-
arity will be made at the outset. In particular, in the general framgwork, we will assume
that the multivariate stochastic process (%, X, &} are a staﬁonary and ergodic process.
As such, without further analysis, we will invoke the theorems discussed in Chapters 4,
12 14 2&€ 1516, and #5that support least squares and GMM as appropriate estimate techniques
in fhis context. In most of what follows, in fact, in practical terms, the dynamic regres-
sion model can be treated as a linear regression model and estimated by conventional
methods (e.g., ordinary least squares ot instrumental variables if ¢, is autocorrelated).
As noted, we will generally not return to the issue of estimation and inference the-
ory except where new results are needed, such as in the discussion of nonstationary
processes.

/L2}0.2 DYNAMIC REGRESSION MODELS

In some settings, economic agents respond not only to current values of independent
variables but to past values as well. When effects persist over time, an appropriate model .
will include lagged variables. Example 20.1 illustrates a familiar case. v

Example ZB.1 A Structural Model of the Demand for Gasoline
Drivers demand gasoline not for direct consumption, but as fuel for cars to provide a source
of energy for transportation. Per capita demand for gasoline in any period, G/Pop, is deter-
mined partly by the current price, P,, and per capita income, Y/Pop, which influence how
intensively the existing stock of gasocline using “capital,” K, is used and partly by the size
and composmon of the stock of cars and other vehicles. The capital stack is determined, in
turn, by income, Y/Pop; prices of the equipment such as new and used cars, Pnc and Puc;
the price of alternative modes of transportation such as public transportation, Ppf; and past
prices of gasoline as they influence forecasts of future gasoline prices. A structural model of
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these effects might appear as follows:
per capita demand: G, /Pop; = o + BPg; +8Y:/Pop, + v K; +
stock of vehicles: Ki = (1 — A)K;_4 + I}, A = depreciation rafe,:
investment in new yéh_icleé: Ar=0%1/Pop; + ¢E,[I-:’g,+1] + A Pnc; + s Pugy + 35Ppt,
expected price of gasoline" E,[Pg'ﬁ“] = WoPg + wiPgi_y +WoPg_2.)

The capital stock is the sum of all past investments, so it is.evident that not only current
income and prices, but all past values, play a role in determining K. When income or the
price of gasoline changes, the immediate sffect will be to cause drivers to use their vehicles
mora or less intensively. But, over time, vehicles are added to the capital stock, and some
cars are replaced with more or less efficient ones. These changes take some time, so the
full impact of income and price changes will not be felt for several periods. Two episodes in
the recent history have shown this effect clearly. For well over a decade following the 1973
oll shock, drivers gradually replaced their large, fuel-inefficient cars with smaller, less-fuel-
intensive models, In the late 1990s in the United States, this process has visibly worked
in reverse. As American drivers have become accustomed to steadily rising incomes and
steadily falling real gasoline prices, the downsized, efficient coupes and sedans of the 1980s
have yielded the highways to a tide of ever-larger, six- and eight-cylinder sport utility vehicles,
whose size and power can reasonebly be characterized as astonishing.

'\/\ %0_2.1 LAGGED EFFECTS IN A DYNAMIC MODEL

The general form of a dynamic regression model is
o A
Y=o+ Z Bixi—i + & &\0-2)
i=0

In this model, a one-time change in x at any point in time will affect F [y, [x;, x;—1,...]
in every period thereafter. When it is believed that the duration of the lagged effects/
is extremely long-for example, in the analysis of monetary policy,—infinite lag models
that have effects that gladually fade over time are quite common. But models are often
constructed in which changes in x cease to have any influence after a fairly small number
of periods. We shall consider these, hmte Iag models first.

Marginal effects in the static classical regression model are one-time events. The
response of y to a change in x is assumed to be immediate and to be complete at the
end of the period of measurement. In a dynamic model, the counterpart to a marginal
effect is the effect of a one-time change in x; on the t,qulhbrmm of v. If the level of x;
has been unchanged from, say, ¥ for many periods prior to time ¢. then the equlhbnum
value of E[y, | x:, x;—1, .. .] {(assuming that it exists) will be 2[

oD o0
?=G+ZB:5C"=O!+YZ}3;, @&-3)
i=0 i=0
where ¥ is the permanent value of x;. For this value to be finite, we require that
3 3
Y Bl <o (26-4)
i=0
Consider the effect of a unit change in ¥ occurring in period s. To focus ideas, consider

the earlier example of demand for gasoline and suppose that x; is the unit price. Prior to
the oil shock, demand had reached an equilibrium consistent with accumulated habits,
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FIGURE ##1 Lagged Adjustment.

q,\

experience with stable real prices, and the accumulated stocks of vehicles. Now suppose
FEEN that the price of gasoline, Pg, rises permanently from Pg to Pg + 1 in period 5. The
WA path to the new equilibrium might appear as shown in Figure 2671. The short-run effect

! is the one that occurs in the same period as the change in x. Thisjeffect is & in the figure.

2\

DEFINITION 20.1 Impact Multiplier
Bo = impact multiplier = short-run mulitiplier.

DEFINITION 2Z0.2 Cumulated Effect
The accumulated effect T periods later of an impulse ar time tis B, = S0 Bi-

In Figure 2.1, we see that the total effect of a price change in period after three periods
have elapsed will be 8y + A1 + B2 + 3.

The difference between the old equilibrium Dy and the new one Dy is the sum of
the individual period effects. The long-run multiplier is this total effect.

-
=T
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1\
DEFINITION 2#.3 Equilibrium Multiplier
B = Y24 Bi = equilibrium multiplier = long-run mulhiplier,

Because the lag coefficients are regression coefficients, their scale is determined by
the scales of the variables in the model. As such, it is often useful to define the

Bi 7
lag weights: wy = g, 28-5)
so that 377°0 w; = 1, and to rewrite the model as
o 72
Vv=a+p Z WiXi—; + & 2H-6)

i=0

{Note the equation for the expected price in Example 20.1.) Two useful statistics, based
= on the lag weights, that characterize the peuod of adjustment to a new equilibrium are
| =1 the median lag = smallest g* such that 37{*; w; > 0.5 and the mean lag g iwi®

L @-2.2 THE LAG AND DIFFERENCE OPERATORS \
A convenient device for manipulating lagged variables is the Iag operator,
Lxy =x1.
Some basic results are La = g ifa is a constant and L(Lx)= 12x, = x,_5. Thus,
I-"x, =Xy LI(LPx;) = [Py, =X1—p—g» and (£2+4 [9)x, = x,_,+x,_,. By convention,
%% =1x, = x,. Arelated operation is the first difference,
AJ..} = Xy — X¢_1-

Obviously, Ax, = (1 — L)x, and x, = x,_; + Ax,. These two operations can be usefully
combined, for example, as in

Aty = (1— Dx =1 = 2L+ 115 =% — 241 +x2.
Note that
(1~ LYx = (1= D(t = Ly = (1 — D)% = X)) = (5 — X)) — (%1 — Xe2)-
The dynamic regression model can be written

o
ye=a+ ) Billx +eo=a+ BULx + e
=0

+“If the lag coefficients do not all have the same sign, then these results may not be meaningful. Insome contexts,
lag cocfficients with different signs may be taken as an indication that there is a flaw in the spectfication of
the model.
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- '._ %
_ where B(1)is a polynomial in L, B(L) = o+ A1 L.+ B2 I24..., A polynomial in the
' ~lag operator that reappears in many contexts is :

o0
AL =1+al+ @l +@Ly +7- =) @l

If lat <1, then

ALy = ! .
Falll 4 1-al
A distributed lag model in the form
==
=a+p> yiix+e

i=0

can be written

yf~a+ﬂ(1“yla) X+ & 2
I :

if [¥] < L. This form is called the movmg-a\eragc form or ﬂletrlhuted lag form. If We

multiply through by (1 —» L) and collect terms, then we obtain the autougrcssive form, =~/

dr=all =)+ Bxe + yy-1 +{1 —y L.

W "‘l.
In more general terms, consider the pth order_aytqrbgre_rgswe_model,
h=a+ B+ inatyvnatoo-+ vpN_p &,

which may be written

CL)y =a + B3+,
where
Cly=(~nl—pl?— -~y 0P

Can this equation be “inverted” so that y; is written as a function only of current and
past values of x; and £,? By successively substituting the corresponding autoregressive
equation for y_; in that for v, then likewise for v_; and so on, it would appear so.
However, it is also clear that the resulting distributed lag form will have an infinite
number of coefficients. Formally, the operation just described amounts to writing

=[C(L) (e + Bxi +8) = AN + B + &)

It will be of interest to be able to solve for the elements of A(L) (see, for example,

yﬂfﬁﬁ). By this arrangement, it follows that C(L) A(L) = 1 where
o :"(.'-?l !
A(L) (aoLU L g, [ a2L2 [ ) WAL L Lt |

2 b= Ll i
By collecting like powers of Lin X\ x| X t
(1=-ml—pl?- ----prP)(aoL°+a,L+a2L2 ----- y=1,
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we find that a recursive solution for the o coefficients is

__LDZ oy =1

A @1 — y1do . =0

_-L2:~ o= Yro —~ Yactp =0
L3 ay— Moy — Y] — Yidky =0 Z[
LY g — yro3 — yron — yray — yaeno =0 . @&
[P ap—yiap 1 —yrap o~ —ypag =0

and, thereafter,

% ay— Vigol = V2qd =+ = Yplly—p = 0.

After a set of p— 1 starting values, the o coefficients obey the same difference equation
as vy does in the dynamic equation. One problem remains. For the given set of values,
the preceding gives no assurance that the solution for «, does not ultimately explode.
The preceding equation system is not necessarily stable for all values of y; (although it
certainly is for some). If the system is stable in this sense, then the polynomial C(L) is
said to be inverfible, The necessary conditions are precisely those discussed in Section
20.4.3, so we will defer completion of this discussion until then.
%\ Finally, two useful results are

Bl =gl +81' + 12 +...=8= long-run multiplier,

and
) =]

B()y=[dB)/dL) 1 =Y iB:.
- i=0
It follows that B'(1)/B(1) = mean lag,

,L A0.2.3 SPECIFICATION SEARCH FOR THE LAG LENGTH

Various procedures have been suggested for determining the appropriate lag length in
a dynamic model such as 7
\

P
=a +Zﬂ:x_r—f + &. (24-8)
i=0
One must be careful about a purely signiﬁcance based specification search. Let us
-~ suppose that there is an appropriate, “true” value of p > 0 that we seek. A simple-to-

{ I=!~general approach to finding the right lag fength would dep'ut from a model with only the
current value of the independent variable in the regression and add deeper lags until a
simple ¢ test suggested that the last one added is statistically insignificant. The problem
with such an approach is that at any level at which the number of included lagged
variables is less than p, the estimator of the coefficient vector is biased and inconsistent.

W/ [See the omitted variable formula_(7¢f).] The asymptotic covariance matrix is biased/ | -
as well, so statistical inference on thig/basis is unlikely to be successful. A general-to-
i s:mple approach would begin from afnodel that contains more than p lagged values.—-it

L—to
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is assumed that although the precise value of p is unknown, the analyst can posit a
maintained value that should be larger than p. Least squares or instrumental variables
1egression of y on a constant and (p + d) lagged values of x consistently estimates

[aﬁOﬂla-' ’18,0’00 ]

Because models with lagged values are often used for forecasting, researchers have
tended to look for measures that have produced better results for assessing “out of
sample” prediction properties. The adjusted R? [see Section 3.5.1] is one possibility.
Others include the Akaike (1973) information criterion, AIC(p). . . ,

ee
AlC(p) = ln—,—r— + = 7 {20-9)

and Schwarz’s criterion, SC(p): \
7
SC(p) = AIC(p) + (%)(m r—2. @x10)
S',laal

(See Section 24 If some maximum 2 is known, then p < P can be chosen to minimize

AIC(p) or SC(p}-¥Analternative approach, also based on aknown P, is to do sequential

I tests on the last P > p coefficients, stopping when the test rejects the hypothesis that

the coefficients are jointly zero. Each of these approaches has its flaws and virtues, The

Akaike information criterion retains a positive probability of leading to overfitting even

as T — co. In contrast, SC( p) has been seen to lead to underfitting in some finite sample

cases. They do avoid, however, the inference problems of sequential estimators, The
sequential /' tests require successive 1ev1slon of the significance level to be appropriate, @
but they do have a statistical underpinning#

Before examining some very general specifications of the dynamic regression, we briefly | '“'1) '
consider an infinite lag model, which emerges from a simple model of expectations. iy A

There are cases in which the distributed lag models the accumulation of information. FaT ['~. S Sier
The formation of expectations is an example. In these instances, intuition suggests that -~ | | | ! o OOETT
the most recent past will receive the greatest weight and that the influence of past |

1
L

observations will fade uniformty with the passage of time. The geomefric lag model 1s  ~—
often used for these settings. The generat form of the model is

=a+BY - +e, 0<i<l, 21
1=0 ' (-1
=o + BB{L)x; + &,
where
1—x

L 242 3134 =
BL)y=Q~MN1+AL+aLF+27 0+ 1—-AL

*For further discussion and some alternative measures, sce Geweke and Meese (1981), Amemiya (1985,

jo/28 146—147) Diebold (1998, pp. 85-91), and Judge ot al. (1985, pp. 353—-.:5'5)

\#Sce Pagano and Hartley (1981) and Trivedi and Pagan (1979).
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The lag coefficients are 8 = 8(1 — A)x". The model incorporates i_nf_i_uitb lags, but it as-
signs arbitrarily smalil weights to the distant past. The lag weights decline geometrically;
wi=0—-0A, O<w; <1

The mean lag is

The median lag is p* such that );‘,!:g‘ w; = (1.5. We can salve for p*.by using the result

p +1
3 N = %
i=0 -

Thus.
+_ In0S5
Y
The impact multiplier is 8(1 — 1). The long-run multiplier is 8325 (1 — A)A" = 8. The
equilibrium value of » would be found by fixing x, at ¥ and & at zero in (26°11), which
produces ¥ = « + 47. 7}
The geometric lag model can be motivated with an economic model of expectations.

‘We begin with a regression in an expectations variable such as an expected future price
based on information available at time £, x} , . and perhaps a second regressor. w,,

t4+-1)et
e=a + )3-_":.}.1[: + dn; + £ty
and a mechanism for the formation of the expectation, %
Xepqe = A1+ (0= 20x = ALx]y +(1 = A)x:. (24-12)

The currently formed expectation is a weighted average of the expectation in the previ-
ous period and the most recent observation. The parameter A is the adjustment coeffi-
cient. If A equals 1. then the current datumisignored and expectations are neverrevised.
A value of zero characterizes a strict pragmatist who forgets the past immediately. The
expectation variable can be written as

1-a

1
_,\‘f_!_] [f = mx} = (1 - )\-)[xr + l—‘.‘j‘—l + lz_xr_z + . ‘]- 'gfﬂls)

Inserting (}@13) into (20-12) produces the geometric distributed lag model,
2\ Y= +}8(1 =X +Axes + 22Xz + ]+ Swr + &.
The geometric lag model can Be estimated by nonlinear least squares. Rewrfte itas
Y=o+ yn(A) Fow e, ¥ =81~ -14)

The constructed variable 7,(A) obeys the recursion z;(A) = x; + Az_1(1). For the first
observation, we use z;(A) =xfw=x1 /{1 — ). If the sample is moderately long, then
assuming that x, was in long-run equilibrium, although it is an approximation, will not
unduly affect the results. One can then scan over the range of A from zero to one to
locate the value that minimizes the sum of squares. Once the minimum is located, an
estimate of the asymptotic covariance matrix of the estimators of {(«, ¥, 8, 1) can be
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I-/s 2.2

W found using +4=12) and Theorem H=2. For the regression function j, (data|a, y, 8, A},
._\',01 =1, x?z = z,(1), and xg = w,. The derivative with respect to A can be computed
by using the recursion d,(A) = 9z, (1)/3A = z_1 (M) + 28z 1A/ If 2y = x1 /{1 — &),
then dy(A) = 21 /(1 — A). Then, .\’21 = dy(»). Finally, we estimate 8 from the relationship

B = y/(1 — A) and use the delta method to estimate the asymptotic standard error.
For purposes of estimating long- and short-run elasticities, researchers often use a
different form of the geometric lag model. The partial adjustment model describes the

desired level of . CORTS .

v =t B+ w + £,
and anadjustment equation,
Ye = Y-t = (1 =) — ¥

If we solve the second equation for y; and insert the first expression for y, then we
obtain

Ye=all =)+ B0 —2)x + 81 — Mywy + Ayeg + (1 — Mg,
=a + Bx + 8w +Av_1 +e.

This formulation offers a number of significant practical advantages. It is intrinsically
linear in the parameters (unrestricted), and its disturbance is nonautocorrelated if g,
was to begin with. As such, the parameters of this model can be estimated consistently
and efficiently by ordinary least squares. In this revised formulation, the short-run
multipliers for x; and w, are g’ and §'. The long-run effects are p=pg'/{1 — x) and
8=4/(1 — X). With the variables in logs, these effects are the short- and fong-run
elasticities, 2\

Example 1?3.2 Expectations-Augmented Phillips Curve
In Examplé€ 1873, we estimated an expectations-augmented Phillips curve of the form

20 Ap — E {Apt | ¥aos] = Blth — u'} + .

QOur model assumed a particularly simple model of expectations, £ [Apr | ¥1..4] = Apr—q. The
least squares results for this equation were
202

Ap — App.y = 0.49189 — 0.090136 1, + & /
(0.7405) (0.1257) B* = 0.002561, T = 20%.

The implied estimate of the natural rate of unemployment is —(0.49189/ —0.090136) or about
5.46 percent. Suppose we allow expectations to be formulated less pragmatically with the
expectations modei yzo-m). For this setting, this would be

e E[AR Wir) = AE [Pt | Yol +(1 = D) A,

The strict pragmatist has ). = 0.0. Using the method set out earlier, we would compute this
for different values of 5, recompute the dependent variable in the regression, and locate the
A value of A which produces the lowest sum of squares. Figure)ﬁ.? shows the sum of squares

g

/ i for the values of A ranging from 0.0 to 1.0. — e —— 2}
b = The minimum value of the sum of squares occurs at 1 = 0.66, The least squares regression
results are

Ap — Apy =1.69453 — 0.30427 u; + &
(0.6617) (0.11125) T =201.

\

il
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FIGURE 20.2  Residuals Sums of Squares for Phillips Gurve
L | e Estimates. - -~ . - [N

The estimated standard errors are computed using the method described earlier for tha
nonlinear regression. The extra variable described in the paragraph after (20-14) accounts
for the estimated i. The estimated asymptotic covariance matrix is then computed using
(e/e/201)[WW]™' where wy = 1, w2 = u; and wa = 3Ap—y/3h. The estimated standard
error for A is 0.04610. Because this is highly statistically significantly different from zero
{f = 14.315), we would reject the simple modal. Finatly, the implied estimata of the natu-
ral rate of unemployment is —(—1.69453/0.30427) or about 5.57 percent, The estimated
asymptotic covariance of the slope and constant term is —0.0720293, so, using this value
and the estimated standard errors given earlier and the delta method, we obtain an esti-
mated standard error for this estimate of 0.5467. Thus, a confidence interval for the natural
rate of unemployment based on these resulis would be {(4.49 percent, 6.64 percent), which
is in line with our prior expectations. There are two things to note about these results. First,
because the dependent variables are different, we cannot compare the R2s of the models
with ). = 0.00 and A = 0.66. But, the sum of squares for the two models can be compared
(they are 1592.32 and 1112.89), so the second model fits far better. One of the payoffs is
the much narrower confidence interval for the natural rate. The counterpart to the one given
earfier when = 0.00 is (1.13%, 9.79%). No doubt the model could be improved still further
by expanding the equation. (This is considered in the exercises)) 2.0 20

Example 2.3 Price and income({Elasticities of Demand forfasoﬁne

S We have extended the gasoline demand jequation estimated in Examples 18.2 and 1976 to

FoA e allow for dynamic effects. Table 20T oresents estimates of three distributed iag models

[ =i 1 for gasoline consumption. The unrestricted model allows five years of adjustment in the

T price and income effects. The expectations model includes the same distributed fag (X) on

price and income but different long-run multipliers (8p, and 8;). [Note, for this formulation,

that the extra regressor used in computing the asymptotic covariance matrix is di(A} =

) Beghncs(A) + Bihncome(A) ] Finally, the partial adjustment model implies lagged effects for all

ol T e the variabies in the model. To facilitate comparison, the constant and the first four slope

S coefficients in the partial adjustment mode! have been divided by the estimate of (1 — ). Ths
implied long- and short-run price and income elasticities are shown in Table 20.2.

2
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TABLE 20.1 Estimated Distributed Lag Models .
Expectations © Partial Adfustment
Coefficient Unrestricted Estimated Derived Estimated  Derived
Constant 285512 —16.1867 —4.9489
In Pnc 001738 —0.1050 —~0.1429
in Puc 0.07602 0.02815 0.09435
in Ppi 0.04770 0.2550 0.03243
Trend ~0.02267 0.02064 —0.004029 :
In Pg -(.08282 006702 —0.06702* —0.07627 ~0.07627
In Pg|—1] ~007152 —~0.06233 —0.06116
In Pg|[~2] 0.03669 —0.05797 —0.04904
in Pg{—3] -0.04814 —0.05391 ~0.03933
in Pg{—4} 0.02938 -0.05013 ~(.03153
In Pg[~—-5} ~0.1481 —0.64663 ~{1.02529
In Income 1.1074 0.04372* 0.04372* 0.3135 0.3135
In Incomef—1] D.3776 0.04066 0.2514
In Incomef—2] —-0.01255 0.03781 0.2016
In Income[ 3] —0.03919 0.03517 0.1616
fn Income[—4] 0.2737 0.03270 0.1296
In Income[—3] 0.09350 0.03042 0.1039
Zi(Price) — —0.06702
Zit(Income) — 0.04372
In (G/Pop)[~1] — 0.80188
B — —0.9574
y — 0.6245
i —_ 0.9300 0.80188
e 0.01565336 0.03911383 01151860
T 47 51
*Estimated directly
- 1
TABLE 20.2 Estimated Elasticities
Short-Run Long-Run
Price Income Price Income
Unrestricted model —0.08282 1.1074 —0.2843 1.8004
Expectations model —0.06702 0.04372 —0.9574  0.6246
Parttal adjustment model  —0.07628 0.3135 —~(.3850 1.5823

20.4 AUTOREGRESSIVE DISTRIBUTED

LAG MODELS

Both the finite lag models and the geometric lag model impose strong. possibly incoi-
rect restrictions on the lagged response of the dependent variable to changes in an

independent variable. A very general compromise that also provides a useful ptatform”
for studying a number of interesting methodolo

t;ilfl:li_tc;]_ lag {ARDL) model.

i r
H=pu+ Z Vi¥ t+ Z ﬂj«‘_’r—_j + 5‘_": + £,

el

|
(341

gical issues is the autoregressive dis- -

5)
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1
in which ¢, is assumed to be seriallyuncorrelated and homoscedastic (we will relax both
these assumptions in Chapter 21). We can write this more compactly as

- Oy =g+ BLX A 8w+ &
by defining polynomialé in th:e lag operator,
Clly=1l=-nL—-pli— .. —yl2
and
BiLy=go+pL+pl’+ - +41I

The model in this form is denoted ARDL(p, r) to indicate the orders of the two poly-
nomials in L. The partial adjustment model estimated in the previous section is the
special case in which pequals 1 andr equals 0. A number of other special cases are also
interesting, including the familiar model of autocorrelatlon (p=Lr=1 8 =-yho
the classical regression model (p = 0,7 = 0), and so on.

(I/\ ,{d-ﬁi.‘l ESTIMATION OF THE ARDL MODEL

Save for the presence of the stochastic righf-hand-side variables, the ARDL is a linear
model with a classical disturbance. As such, ordinary least squares is the efficient esti-
mator. The lagged dependent variable does present a complication, but we considerad
wli_rﬁh_agtﬁ’r)q Absent any obvious violations of the assumptions there. least squares
4 confinues to be the estimator of choice. Conventional testing procedures are, as before,
asymptotically valid as well. Thus, for testing linear restrictions. the Wald statistic can
be used. although the F statistic is generally preferable in finite samples because of its

more conservative critical values. _

One subtle complication in the model has attracted a large amount of attention
in the receiit literature. If C(1) = 0, then the model is actually inestimable. This fact
is evident in the distributed lag form, which includes a term w1/ C(1). If the equivalent
condition X;); = 1 holds, then the stochastic difference equation is unstable and a host
of other problems arise as well. This implication suggests that one might be interested
in testing this specification as a hypothesis in the context of the model. This restriction
might seem to be a simple linear constraint on the alternative (unrestricted) model

2}6 -15). Under the nul! hypothesis, however, the conventional test statistics do not
the familiar distributions. The formal derivation is complicated [in the extreme,
2 \ see Dickey and Fuller (1979) for an example], but intuition should suggest the reason.
Under the null hypothesis, the difference equation is explosive, so our assumptions
about well behaved data cannot be met. Consider a simple ARDL(1, 0) example and
simplify it even further with B(1) = 0, Then,

Y=g+ yVe_1+E.
If y equals 1. then
=pt+yt8.
Assuming we start the time series at time ¢ = 1,

Vi =tp+ e, =1+ Yr.
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™
The conditional mean in this random walk with drift model is increasing without limit,
so the unconditional mean does not exist. The conditional mean of the disturbance, v;. is
zero, butitsconditional variance ist o2, which shows a peculiar type of heteloscedasticity.
Consider least squares estimation of g with #7 = (Yy)/(P't), where t =[1.2,3,..., T].
Then E[m] = p + E[(f'D) 1 (¥y)] = #e but

o GZZ,=;F3 o(TH 1
Var[m] = T1,2)2 = G = 0 (Tﬁ) g

So. the variance of this estimator is an order of magnituce smaller than we are used to. -
seeing in regression models. Not only is ;2 mean square consistent, it is supcrcmlsmtcnt. =)
As such, without doing a formal derivation, we conclude that there is something “u
usual” about this estimator and that the “usual” testing procedures whose dtstllbutlons
build on the distribution of /T(m — u) will not be appropriate; the variance of this
normalized statistic converges to zero.

This result does not mean that the hypothesis y = 1 is not testable in this model.
In fact, the appropriate test statistic is the conventional one that we have computed for
comparable tests before. But the appropriate critical values against which to measure
those statistics are qulte differert. We will return to this issue in our discussion of the
DickeyFuller test in Section 22.2.4.

2) z

2004.2 COMPUTATION OF THE LAG WEIGHTS IN THE ARDL. MODEL.
The distributed lag form of the ARDL model is

M B(L) 1 ]
“__C(L) + i X+ 8w

1
N ci + “é'i—l::)*é‘r

+ Za; X+ 529;“’;—1 + 291-9:—:

R "'_’_’. =0 =0

This model provides a method of approximating a very genelal lag structure. In
Jorgenson’s (1966) study, in which he labeled this model a rational fag madel, he demon-
strated that essentially any desired shape for the lag distr ibution could be produced with
Th relatively few parameters.”
£ The lag coefficients on x;, x,_1, ..., in the ARDL model are the individual terms
in the ratio of polynomials that appear in the distributed lag form. We denote these as
coefficients

B( L)

2\
C D (20-16)

op, o1, &2, ... = the coefficienton 1, L. 1%,

A convenient way to compute these coefficients is to write (,26 16)as AL)YC(L) = B(L).
Then we can just equate coefficients on the powers of L. Example 20.4 demonstrates
the procedure. Z}

SA long literature, highlighted by Gritickes (1967), Dhrymes (1971), Nerlove (1972), Maddala {1977a), and
Harvey (1990), describes estimation of models of this sort.
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The long-run effect in a rational lagmodel is Y72 ;. This result is easy to compute
because it is simply

i“' _ B
| =R R
A standard error for the long-tun effect can be computed using the delta method.

’I,\ 2004.3 STABILITY OF A DYNAMIC EQUATION

2.\

In the geometric lag model, we found that a xtahll‘ty condition |i| <1 was necessary
for the model to be well behaved. Similarly, in the AR(1) model, the autocorrelation
parameter p must be restricted to Jp| < 1 for the same reason. The dynamic model in

A26-15) must also be restricted, but in ways that are less obvious, Consider once again

the guestion of whether there exists an equilibrium value of y.

In (20-15). suppose that x; is fixed at some value X, w, is fixed at zero, and the distur-
bances ¢ are fixed at their expectation of zero. Would y, converge to an equilibrium?
The relevant dynamic equation is

h=0+y1 -1+ va¥e-2 t et Ypdips
where @ = ¢ + B(1)X. If v converges to an equilibrium, then, that equilibrium is
o BTBHT @
L1} i
Stability of a dynamic equation hinges on the characteristic equation for the auto-
regressive part of the model. The roots of the characteristic equation,

C@=1-pnz—pd——yt=0, 20-17)

must be greater than one in absolute value for the modei to be stable. To take a simple
example, the characteristic equation for the first-order models we have examined thus
far is

The single root of this equation is z = 1/, which is greater than one in absolute value if
|]is less than one. The roots of a more genelai characteristic equatlon are the reciprocals
of the characteristic roots of the matrix

v o Yp-1 Yp

100 0 0

0 1 0 0 0 {3
C=1o o0 1 0o ol (20-18)

0 0 0 ... 1 o0

Because the matrix is asymmetric, its roots may include complex pairs. The reciprocal
of the complex number a + bi is a/ M - (b/M)i, where M = a? + b? and i? = —1. We
thus require that M be less than 1.

The case of 7 = 1, the unit root case, is often of special interest. If one of the
roots of C(z) = 0is 1, then it follows that 3>7 | y; = 1. This assumption would appear

s
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7
to be a simple hypothesis to test in the framework %e ARDL model. Instead, we
find the explosive case that we examined in Section 20.4.1, so the hypothesis is more
complicated than it first appears. To reiterate, under the null hypothesis that C(1) = 0.
it is not possible for the standard_F statistic to have a central F distribution because of
the behavior of the variables in the model. We will return to this case shortly.
‘The ynivariate autoregression,| |

Ir=ptnyrt ot yphep 6,

can be angmented with the p — 1 equations

yf—z =__Vf"21
and so on to give a vector autoregression, VAR (to be considered in the next section):
yl »“- + Cvf I + S, L]

where y; has p elements. &, = (£.,0,...), and g = (1,0, 0,...Y. It will ultimately not
be relevant to the solution, so we will let ¢; equal its expected value of zero. Now, by
successive substitution, we obtain

v = 0+ Cp + Cou +

which may or may not converge. Write € in the spectral form € = PAQ. where QP =1
and Aisa chagona} matrix of the characteristic roots. (Note that the characteristic roots
in A and vectors in P and Q may be complex.) We then obtain

= Lz:; PA’ Q} R 7!20'{1!5’)

If all the roots of C are less than one in absolute value, then this vector will converge to
the equilibrium

Yo = I=O7 .

Nonexplasion of the powers of the roots of € is equivalent to IL ol < lior|l/a,l>1,
which was our original requirement. Note ﬁna!ly that because p is a multiple of the first
column of I, it must be the case that each element in the first column of (I - €)™} is
the same. At equlllbl lum therefore, we must have y = yi_1 = -+ = Yo

Examperb 4 at:onaf Lag Mode!
Appendix Table F5 lists quartetly data on a number of macroeconomic variables including
consumption and real GDP for the U.S. economy for the years 1950 to 2000, a total of
204 guarters. Tha modael

€ = 8 + oY + Prlewt + BeYiez + BaYr—3 + MG + ¥aGi—2 + vafr-s t &

is estimated using the logarithms of real consumption and real GDP. denoted ¢ and w.
Ordinary least squares estimates of the parameters of the ARDL(3,3) model are

& = 0.7233¢_; +0.3914c;_, — 0.2337¢;_4
+0.5651y; — 0.3909%_ — 0.2379y,_, + 0.1902y;.5 +&.

21-h)
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A
TABLE Z6.3 Lag Coefficients in a Rational Lag Modet
Lag 0 1 2 3 4 5 6 7
- ARDL 0.565 0018 —0.004 0.062 0.039 0.054 0.039 (.041

Unrestricted 0.954 —0.090 . —0.063 0.100 —0.024 0.057 -0.112 0.236

(A fuli set of quarterly dummy variables is omitted.) The DurbinmWatson statistic is 1.78597,
s0 remaining autocorrelation saems unlikely to be a conmderahon The lag coefficients are
given by the equality

(o +ol +enl® 4+ T — ;L —pl? — L ®) = (Bo + 1L + ol ® + BaL?).

Note that A(L) is an infinite polynomial. The lag coefficients are

11 @ = By (which will always be the case),
LY —aoy + oy = By oray = By +aom,
L2 —agys — sy + oz = f2 OF oz = Bz + apyz + 1 )4,
L3 —agys —asys — oo + g = f3 OT o = B3 + ooy + a1ye + w2y,
L% “ayys —azyp — cayy + oy = 0 oray = o3 + e + yea,

Li: Oy _3¥s - Oy_2Ye ~ Wj_1Y1 +Fa; = Oor ij = ¥t -i-yza,_g + yattyoa, j =5,6,...,

and so on. From the fourth term onward, the series of lag cosfficients follows the recursion
oy = yotj-q + Yoty + way_a, which is the same as the autoregressive part of the ARDL
model. The series of lag weights follows the same difference equation as the current and
lagged values of y; after rinitial values, where r is the arder of the DL part of the ARDL model.
The three characteristic roots of the C matrix are 0.8631, --0.5949, and 0.4551. Because all
are less than one, we conclude that the stochastic difference equation is stable. 2.

The first seven lag coeflicients of the estimated ARDL model are listed in Table 26.3 with
the first seven coefficients in an unrestricted lag model. The coefficients from the ARDL model
only vaguely resemble those from the unrestricted model, but the erratic swings of the latter
are prevented by the smooth equation from the distributed lag model. The estimated long-

term effects (with standard errors in parentheses) from the two models are 1.0634 (0.00791)

from the ARDL model and 1.0570(0.002135) from the unrestricted model. Surprisingly, in view
of the large and highly significant estimated coefficients, the lagged effects fall off essentially
to zero after the initial impact.

’uz_féf 4.4 FORECASTING

Consider, first, a one-perlud-ahca(l forecast of v, in the ARDL(p, r} model. It will be
convenient to collect the terms in u, x;, w,, andsoon ina single term,

Hy =M +Z,BJXI_J +8H’r.
j=0
Now. the ARDL model is just
Y=t +Viy-1+ -+ Vpdi—pte.

Conditioned on the full set of information available up to time T and on forecasts of
the exogenous variables, the one-period-ahead forecast of y, would be

Yroyr = Aoy + nvr 4+ Yo¥rpt + Ersnr-

=13
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To form a prediction interval, we will be interested in the variance of the forecast error,

er+yr = YT41r — Yret-

This error will arise from three sources. First, in forecasting p,, there will be two sources
of error. The parameters. x, 8, and By, . . ., B, will have been estimated, so fir, 7 will

differ from w741 because of the sampling variation in these estimators. Second, if the

exogenous variables, X711 and wry) have been forecasted, then to the extent that these
forecasts are themselves imperfect, yet another source of error to the forecast will resuit.
Finally, although we will forecast £y with its expectation of zero, we would not assume
that the actual realization will be zero, so this step will be a third source of error. In
principle, an estimate of the forecast variance, Varfer;y 7], would account for all three
sources of error. In practice, handling the second of these errors is largely intractable,
while the first is merely extremely difficult. {See Harvey (1990) and Hamilton (1994,
especially Section 11.7) for useful discussion. McCullough (1996) presents results that
suggest that “iniractable” may be too pessimistic.] For the moment, we will concentrate
on the third source and return to the other issues briefly at the end of the section.

Ignoring for the moment the variation in 7.1 r5rthat is, assummg that the param-
eters are known and the exogenous variables are forecasted per fectly—the variance of
the forecast error will be simply

Vat[eryair | X741, Wrs, gt B, 8, yr. .. ] = Var[erys] = 0%,

s0 at least within these assumptions, forming the forecast and computing the forecast
variance are straightforward. Also, at this first step, given the data used for the forecast,
the first part of the variance is also tractable. Let Zr4 = [1, Xyq1, X7, oo X741, WT, V1,

Tty v ea ¥T— p+1], and let 6 denote the full estimated parameter vector. Then we would

use
- Est. Var[ereyr | 2re1] = 52+, {Est. Asy. Var[6] }zr41.
Now, consider forecasting further out beyond the sample period:
Proar = prenr + Vifreyr + oo+ Vp¥r—pi2 + EryaT

Note that for period T + 1, the forecasted yr41 is used. Making the substitution for
P1417, We have ]

-

Frer = frpartvillrar 0yt Vedr_p e+ +Yp.\’r—_g+é +érr,

and, likewise, for subsequent periods. Our method wilt be simplified considerably if we
use the device we constructed in the previous section. For the first forecast period, write
the forecast with the previous p lagged values as

Sz bl [n m vol | YT Eryiz
¥r 0 1 0 ... 0} ¥ 0
yra |=1 0 {Flg 1 ... ol fr2lt] O
: . o .. 1 oll: .

yA
The coefficient matrix on the right-hand side is C, which we defined in (w' 18). To
maintain the thread of the discussion, we will continue to use the notation frpyr for
the forecast of the deterministic part of the model, although for the present. we are
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assuming that this value, as well as C, is known with certainty. With this modification,
then. our forecast is the top element of the vector of forecasts.

e =R Gyt Erar
We are assuming that-everything on the right-hand side is known except the period
_T + 1 disturbance, so the covariance matrix for this p + 1 vector is
a2 0

.E[(ﬁr+1|r—.3_’7+1)(_3:'?'+ur—3’T+1)’]~—- 0 0 iy,

and the forecast variance for $7,y 7 is just the upper left element, o2,
Now, extend this notation to forecasting out to periods I'+ 2, T + 3, and so on:

Sriar = froyr + Chrpr + érar
- . 2 A "
= By + Clroyr + C¥r + Ervar + Corppr

Onmnce again, the only unknowns are the disturbances, so the forecast variance for this
two-period-ahead forecasted vector is

sz 0 ... sl 0

Vﬂl‘[ﬁ‘r+2|r -+ CET‘HW] =10 1] +C 0 0 E C’

Thus, the forecast variance for the two-step-ahead forecast is o2[1 + ¥(1)11]. where
W(1)1; is the (1.1) element of ¥(1) = Cjj’'C’, where j’ = [5,0, ..., 0]. By extending this
device to a forecast F periods beyond the sample period. we obtain
) F F Y,‘
remr = Socf _Iﬁl_nr-[ o+ _C'Ty_r +y ¢f —{éT-t-F—(f—l)lT- (¥-20)
f=i f=1

This equation shows how to compute the forecasts, which is reasonably simple. We also
obtain our expression for the conditional forecast variance, ’LI

Conditional Var[yrri7] = o1+ % (D + ¥ + -+ 2(F —Dul,  (H-21)

where ¥(i) = C'jj’'C*.

The general form of the [f-period-ahead forecast shows how the forecasts will
behave as the forecast period extends further out beyond the sample périod. If the
equation is stable—that is. if all roots of the matrix C are less than one in absolute
value_then C# will converge to zero, and because the forecasted disturbances are zero,
the forecast will be dominated by the sum in the first term. If we suppose. in addition,
that the forecasts of the exogenous variables are just the period T + 1 forecasted values
and not revised, then, as we found at the end of the previous section, the forecast will
ultimately converge to

L. - _is
Fli_mm.!fnﬂf [freyr =L—Cl" fryyr
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To account fully for all sources of variation in the forecasts. we would have to revise the
forecast variance to include the variation in the forecasts of the exogenous variables
and the variation in the parameter estimates. As noted, the first of these is likely to be
intractable. For the second, this revision will be extremely difficult, the more so when we
also account for the matrix C, as well as the vector g, being built up from the estimated
parameters. The leve! of difficulty in this case falls from impossible to merely extremely
difficult. In principle, what is required is

Est. Conditional Var[$7 7] = o1 + (s + W21+ H¥(F — Duy)
+g'Est. Asy. Var[jz, # Ple

where
diryr
o, B. 7]
[See Hamilton (1994, Appendix to Chapter 11) for formal derivation.}

One possibility is to use the bootstrap method. For this application, bootstrapping
would involve sampling new sets of disturbances from the estimated distribution of &;.
and then repeatedly rebuilding the within-sample time series of observations on v, by
using

2=

Fo= iyt VpYiop + en (),

where ey (1) is the estimated “bootstrapped™ disturbance in period 1 during replica-
tion sm. The process is repeated M times, with new parameter estimates and a new
forecast generated in each replication. The variance of these forecasts produces the
estimated forecast variancé$

-

9.5 METHODOLOGICAL ISSUES IN THE ANALYSIS

OF DYNAMIC MODELS

'b\ 26.5.1 AN ERROR CORRECTION MODEL

Consider the ARDL(1, 1) model. which has become a workhorse of the modern lit-
erature on time-series analysis. By defining the first differences Ay, = v — y; and
AXy = X; —X;_.| We cAan Iearrange

= 4t + Y1 %1 R B +B1x-1+ &

to obtain Z)
Ay, =+ PoAx; + (1 — 1)1 — 8X-1) + &, Vs (19'- 2)
where # = —(fo + P1)/(1 — 1). This form of the model is in the crror corrutmn

form. 1n this fo;\m we have an qullllbl’lllﬂl rc,latlonslup, Ay = i+ BoAx, + 8, and
the cqmllbrmm error, (y1 — 1){v-1 — 8x,_1), which account for the deviation ‘of the
pair of variables from that equilibrium. The model states that the change in y from
the previous period consists of the change associated with movement with x, along the

“SBernard and Veall (1987) give an application of this technique. See, also, McCullough (1996).

(21-2)
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FIGURE 20.3 Consumption and Income Data.

long-run equilibrium path plus a part (34 — 1) of the deviation (y_j — 8x,.1) from the
equilibrium. With a model in logs, this relatiouship would be in proportional terms.

23 = It is useful at this juncture to jump ahead a bit—we will return to this topic in some

detail in Chapter2l-L-and explore why the error correction form might be such a useful
formulation of thi¥'simple model. Consider the logged consumption and income data
W. It is obvious on inspection of the figure that a simple regression
7|7 of the log of consumption on the log of income would suggest a highly significant
s | relationship: in fact, the simple linear regression produces a slope of 1.0567 with a
/ 1 ratio of 440.5 (1) and an R of 0.99896. The disturbing resuft of a line of literature in
“econometrics that begins with Granger and Newbold (1974) and continues to the present
is that this seemingly obvious and powerful relationship might be entirely spurious.
Equally obvious from the figure is that both ¢, and y; are trending variables. If, in fact,
both variables unconditionally were random walks with drift of the sort that we met
at the end of Section.20.4.1+that is, ¢; = fp. + v, and likewise for y—then we would
2, tainly observe a figure such ag,20.3 and compelling regression results such
'Zl as those, even if ihere were Plationship at all. In addition, there is ample evidence
in the recent literature that low-frequency (infrequently observed, aggregated over
long periods) flow variables such as consumption and output are, indeed, often well
described as random walks. In such data, the ARDL(1, 1) model might appear to be
entirely appropriate even if it is not. So. how is one to distinguish between the spurious
regression and a genuine relationship as shown in the ARDL(1, 1)? The first difference
of consumption produces A¢; = p, + vy — v;.1. If the random walk proposition is indeed
correct, then the spurious appearance of regression will not survive the first differencing,
whereas if there is a relationship between ¢, and y;, then it will be preserved in the error
correction model. We will return to this isstie in Chapter 24 when we examine the issue

of integration and cointegration of economic variables. X

218
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N

Example 20.5 An Error Correction Model for Consumption
The error correction model is a nonlinear regression model, although in fact it is intrinsically
linear and can be deduced simply from the unrestricted form directly above it, Because the
parameter ¢ is actually of some interest, it might be more convenient to use nonlinear least
squares and fit the second form directly, (The model is intrinsically linear, so the nonlmear
least squares estimates will be identical to the derived linear least squares estimates.) The
logs of consumption and income data in Appendix Table 5.4 are plotted in Figure }Of3. Not
surprisingly, the two variables are drifting upward together. 2.
The estimated error correction model, with estimated standard emrors in parentheses, is

6t — €t = —0.08533 + (0.90458 — 1)[cr—1 — 1.06034y_1] + 0.58421(y — yr_1).
(0.02899)  (0.03028) (0.01052)  (0.05080)

| .., 1| |  The estimated equilibrium errors are shown in Figure 2fl.4. Note that they are all positive,
ot but that in each period, the adjustment is in the opposife direction. Thus {according to this
maodel}, when consumption is below its equilibrium value| the adjustment is upward, as might
be expected.

21 2\

20.5.2 AUTOCORRELATION

The disturbance in the error correction model is assumed to be nonautocorrelated. As

| we saw in Chapter 19; autocorrelation in a model can be induced by misspecification. An

| orthodox view of the modeling process might state, in fact, that this misspecificationis the

_only source of autocorrelation. Although admittedly a bit optimistic in its implication,

this misspecification does raise an interesting methodological question. Consider once

again the simplest model of autocorrelation from Chapter ﬁ\(with a small change in
notation to make it consistent with the present discussion).

oy
Yo = Bx + vy, vy = Py + &, 23)
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where g is nonautocorrelated. As we found earlier, this model can be written as

Y= PVt = B(X: — pXpop) + €ty ' [,20’-24)

| ' 1

or : o - A
N = PR+ Bl — BpXiey + & 0525)
This model is an ARDL(1, 1) model in which ) = —y; $¢. Thus, we can view (28.25) as

a restricted version of . 2\ 2
¥ = 131 + BoXe + Brxe1 + & (20-26)
A\ - : 2l

The crucial point here is that t@s@glﬂinear) restriction on (24—26) is testable, so there is
no compelling reason to proceed to (20-23) first without establishing that the restriction
is in fact consistent with the data. The upshot is that the AR(1) disturbance model, as a
general proposition, is a testable restriction on a simpler. linear model, not necessarily
a structure unto itself.

Now, let us take this argument to its Jogical conclusion. The AR(p) disturbance
model,

M =Pt Fee ot Ppli—p + &,

or R(L)v, = &, can be written in its moving average form as
8
Vp == R(_L) .

[Recall, in the AR(1) model, that & = 1, + pu;_y + p*uy 2+ -+ - .] The regression model
with this AR(p) disturbance is, therefore, .
£
Y= B 4 E(JZS
But consider instead the ARDL(p, p) model
L)y = BB(L)x, + 5.

These coefficients are the same model if B(L) = C(L). The implication is that any model
with an AR(p) disturbance can be inmterpreted_as a nonlinearly restricted version of an
ARDL(p. p) model.

The preceding discussion is a rather orthodox view of autocorrelation. It is pred-
icated on the AR(p) model. Researchers have found that a more involved model for
the process generating g, is sometimes called for. If the time-series structure of & is not
autoregressive, much of the preceding analysis will become intractable. As such, there
remains room for disagreement with the strong conclusions. We will turn to models
whose disturbances are mixtures of autoregressive and moving-average terms, which
would be beyond the reach of this apparatus, in Chapter)é’

L\ 70.5.3 SPECIFICATION ANALYSIS 20

The usual explanation of autocorrelation is seriafrrelation in omitted variables. The
preceding discussion and our results in Chapter |0 suggest another candidate: misspec-
ification of what would otherwise be an unrestricted ARDL model. Thus, upon finding
evidence of autocorrelation on the basis of a Durbin-Watson statistic or an LM statistic,

(2 "13
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we might find that relaxing the nonlinear restrictions on the ARDL model is a prefer-
able next step to “correcting” for the autocorrelation by imposing the restrictions and
refitting the model by FGLS. Because an ARDL(p, r} model with AR disturbances,
even with p = 0, is implicitly an ARDL(p +-d, r + d)model, where d is usually one, the
approach suggested is just to add additional lags of the dependent variable to the model.
Thus, one might even ask why we would ever use the familiar FGLS procedures. [See,
e.g., Mizon (1995).] The payoff is that the restrictions imposed by the FGLS procedure
produce a more efficient estimator than other methods. If the restrictions are in fact
appropriate, then not imposing them amounts to not using information.

A related question now arises, apart fromthe issue of autocorrelation. In the context
of the ARDL model, how should one do the specification search? (This question is not
specific to the ARDL or even to the time-series setting.) Is it better to start with a small
model and expand it until conventional fit measures indicate that additional variables
are no longer improving the model, or is it better to start with a large model and pare
away variables that conventional statistics suggest are superfluous? The first strategy,
going from a simple model to a general model, is likely to be problematic, because the
statistics computed for the narrower model are biased and inconsistent if the hypothesis
isincorrect. Consider, for example, an LM test for autocorrelation in a model from which
important variables have been omitted. The results are biased in favor of a finding of
autocorrelation. The alternative approach is to proceed from a general model to a simple

.one. Thus, cne might overfit the model and then subject it to whatever battery of tests

are approptriate to produce the coirect specification at the end of the procedure. In this
instance, the estimates and test statistics computed from the overfit model, although
inefficient, are not generally systematically biased. (We have encountered this issue at
several points.)

The latter approach is common in modern analysis, but some words of caution are
needed. The procedure routinely leads to overfitting the model. A typical time-series
analysis might involve specifying a model with deep lags on all the variables and then
paring away the model as conventional statistics indicate, The dangeris that the resulting
model might have an autoregressive structure with peculiar holes in it that would be
hard to justify with any theory. Thus, a model for quarterly data that includes lags of 2,
3,6, and 9 on the dependent variable would look suspiciously like the end result of a
computer-driven fishing trip and. moreover. might not survive even moderate changes
in the estimation sample. [As Hendry (1995) notes, a model in which the largest and
most significant lag coefficient occurs at the last lag is surely misspecified.]

23.6 VECTOR AUTOREGRESSIONS

The preceding discussions can be extended to sets of variables. The resulting auto-
regressive model is ,L[

Ye=p + l-‘13_'_r—l + -+ ,rp,?:r—p +-..5_'h NZT)

where g, is a vector of nonautocorrelated disturbances (innovations) with zero means
and contemporaneous covariance matrix E[g;e!] = ©. This equation system is a vector
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KT ?/
antoregression, or VAR. Equation 06227) may also be written as

.l'(_L)}j; =i +.&

where I'(L) is a matrix of polynomials in the lag operator. The individual equations are

r P P
Y = Mo T Z(rj)p_ri.vl A—j + Z(r)")ml"l!—f +eet Z(Fj)mM.VM,r—_j + Epurs
j=1 j’=1 1'=1 N

where (T ),y indicates the (#12,!) element of T';.
VARs have been used primarily in macroeconomics. Early in their development, it
was argued by some authors [e.g., Sims (1980), Litterman (1979, 1986)] that VARswould .3 .
forecast better than the sort of structural equation models discussed in Chapterm__
could argue that as long as g includes the cuirent observations on the (truly) relevant
exogenous variables, the VAR is simply an overfit reduced form of some simultaneous
equations model. [See Hamilton (1994, pp. 326-327).] The overfitting results from the
possible inclusion of more lags than would be appropriate in the original model. (See
Example 20.7 for a detailed discussion of one such model.) On the other hand, one of the
7 | virfues of the VAR is that it obviates a decision as to what contemporaneous variables
are exogenous: it has only lagged (predetermined) variables on the right-hand side, and
all variables are endogenous.
‘The motivation behind VARs in macrocconomics runs deeper than the statistical
AN issues.” The large structural equations models of the 1950s and 1960s were built on a the-
' oretical foundation that has not proved satisfactory. That the forecasting performance
of VARs surpassed that of large structural models-—some of the later counterparts to
Klein’s Model [ ran to hundreds of equationsl_%sig'naled to researchers a more fun-
damental problem with the underlying methodology. The Keynesian style systems of
equations describe a structural model of decisions (consumption, investment) that seem
loosely to mimicindividual behavior; see Keynes's formulation of the consumption func-
tion in Example 1.1 that is, perhaps, the canonical example. In the end, however, these
decision rules are fundamentally ad hoc, and there is little basis on which to assume
that they would aggregate to the macroeconomic level anyway. On a more practical
level, the high inflation and high unemployment experienced in the 1970s were very
badly predicted by the Keynesian paradigm. From the point of view of the underlying
paradigm, the most troubling criticism of the structural modeling approach comes in the
form of “the Lucas critique™ (1976), in which the author argued that the pargmeters of
the “decision rules” embodied in the systems of structural equations would not remain
stable when economic policies changed, even if the rules themselves were appropriate.
Thus, the paradigm underlying the systems of equations approach to macroeconomic
modeling is arguably fundamentally flawed, More recent research has reformulated
the basic equations of macroeconomic models in terms of a microeconomic optimiza-
tion foundation and has, at the same time, been much less ambitious in specifying the
interrelationships among economic variables,
The preceding arguments have drawn researchers to less structured equation
systems for forecasting. Thus, it is not just the form of the equations that haschanged. The

"ZAn extremely readable, nontechnical discussion of the paradigm shift in macrocconomic forecasting is given
in Diebold (2003). See also Stock and Watson (2001).
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variables in the equations have changed as well; the VAR is not just the reduced form
of some structurai model. For purposes of analyzing and forecasting macroeconomic
activity and tracing the effects of policy changes and external stimuli on the economy,
researchers have found that simple, small-scale VARs without a possibly flawed theo-
retical foundation have proved as good as or better than large-scale structural equation
systems. In addition to forecasting, VARs have been used for two primary functions:
testing Granger causality and studying the effects of policy thr ough 1mpulse response
characteristics.

i

£9.6.1 MODEL FORMS

To simplify things for the present. we note that the pth order VAR can be written as a
first-order VAR as follows:

¥ i I I 2
il B VR DB oo
\ Yt-p+i/ 0, 0 - 1 0

[See, e.g., (20°18).] This means that we do not lose any generality in casting the treatment
in terms of a first-order model

=+ Ly +2

In Example 15.10, we examined Dahiberg and Johansson’s model for municipal finances
in Sweden, in which y, = [AS;, AR, AG;]'. where 5, is spending, R is receipts, G is
grants from the central government, and p = 3. We will continue that application in
Example 20.7:

In principle, the VAR model is a seemingly unrelated regressions model-»——mdeed
a particularly simple one because each equation has the same set of regressors. This is
the traditional form of the model as originally proposed, for example, by Sims (1980).
The VAR may also be viewed as the reduced form of a simultaneous equations model;
the corresponding structure would then be

Oy = + ¥y, +er,

where © is a nonsingular matrix and Var[w;] = Z. In one of Cecchetti and Rich’s

(2001) formulations, for example, ¥ =[Aw, A where v is the log of aggregate real

output, m, is the inflation rate from time f —1 to time , @ = [_92 ?'2], and p=38,

(We wili examine their model in Sectloat’; 8.) In this form, we have a conventional
simultaneous equations model, which we analyzed in detail in Chapter 13. As we saw, for
such a model to be identified_—that is, estimable_—certain restrictions must be placed on
the structural coefficients. The reason for this is that ultimately, only the original VAR
form, now the reduced form, is estimated from the data; the structural parameters must
be deduced from these coefficients. In this model, to deduce these str uctulai palametel&
they must be extracted from the reduced form parameters, I' = ©~ Iy = o, and
=0T We—mﬂyzed—bhn—mn&mde@&kr&eetmﬁﬁih&w%weﬁ}d-bc
_the same-here. In Cecchetti and Rich's application, certain restrictions were placed on
the lag coefficients in order to secure identification.
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q/L’o’ez estimaTion 2|

In the form of (m is, without autocorrelation of the d:stmbatacesuVARs
are particularly simple to estimate. Although the equation system can be exceedingly
large, it is, in fact, a seemmgly unrelated regressions model with identical regressots.
As such, the equations should be estimated separately by ordinary least squares. (See
Section 10.2.2 for discussion of SUR systems with identical regressors.) The disturbance
covariance matrix can then be estimated with average sums of squares or cross-products
of the least squares residuals. If the disturbances are normally distributed, then these
least squares estimators are also maximum likelihood, If not, then OLS remains an
efficient GMM estimator. The extension to instrumental variables and GMM is a bit
more complicated, as the model now contains multiple equations (see Section £5.6.3),
but since the equations are all linear, the necessary extensions are at least relatively
straightforward. GMM estimation of the VAR system is a special case of the model
discussed in Secho&]ﬁ 6.3. (We will examine an application in Example Ll

The proliferation of parameters in VARs has been cited as a major dlsaclvantage
of their use. Consider, for example, a VAR involving five variables and three lags. Each

T has 25 unconstrained elements, and there are three of them, for a total of 75 free

parameters, plus any others in g, plus 5(6)/2 = 15 free parameters in 2. On the other

hand, each single equation has only 25 parameters, and at least given sufficient degrees

of freedom-there’s the rub--a linear regression with 25 parameters is simple work.
Moreover, applications rarely involve even as many as four variables, so the model-size
issue may well be exaggerated.

/!/\/2’0’.6.3 TESTING PROCEDURES

2.

Formal testing in the VAR setting usually centers either on determining the appropriate
lag length (4 specification search) or on whether certain blocks of zeros in the coefficient
matrices are zero (a simple linear restriction on the collection of slope parameters).
Both types of hypotheses may be treated as sets of linear restrictions on the elements
iny =vecp, L1, I, ... _,,]

We begin by assummg ‘that the disturbances have a joint normal distribution. Let
W be the M x M residual covariance matrix based on a restricted model, and let W* be
its counterpart when the model is unrestricted. Then the likelihood ratio statistic,

r = T(In|W| - In|W*)),

can be used to test the hypothesis. The statistic would have a limiting chi-squared dis-
tribution with degrees of freedom equal to the number of restrictions. In principle, one
might base a specification search for the right lag length on this calculation. The pro-
cedure would be to test down from, say, lag g to Iag p- The general-to-simple principle
discussed in Section 20.5.3 would be to set the maximum lag length and test down from
ituntil deletion of the last set of lags leads to a significant loss of fit. At each step at which
the alternative lag model has excess terms, the estimators of the superfluous coefficient
matrices would have probability limits of zero and the likelihood function would (again.
asymptotically) resemble that of the model with the correct number of lags. Formalty,
suppose the appropriate lag length is p but the model is fit with g > p +1 lagged terms.
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Then, under the null hypothess,
= TIniWep, T, ... Tp-pl = W, Ty, T Il <4 (M2,

Thesame apploach would beused to test other restrictions. Thus, the Granger causality
2.1 test noted in Section 20.6.5 would fit the model with and without certain blocks of
Zeros in the coefficient matrices, then refer the value of A once again to the chi-squared
distribution.
For specification searches for the right lag, the suggested procedure may be less -
effective than one based on the information criteria suggested for other linear models

W- (see Section Je). Lutkepohl (2005, pp. 128-135) suggests an alternative approach based
on the minimizing functions of the information criteria we have considered eartier:
5.]0.) A* = In(WD + (M + MIC(TH/T,

where T is the sample size, p is the number of lags, M is the number of equations, and
IC(T) = 2 for the Akaike information criterion and In T for the Schwarz (Bayesian)
information criterion, We should note that this is not a test statistic: it is a diagnostic tool
that we are using to conduct a specification search. Also, as i all such cases, the testing
procedure should be from a larger model to a smaller one to avoid the misspecification
problems induced by a lag length that is smaller than the appropriate one.

The preceding has relied heavily on the normality assumption. Because most recent
applications of these techniques have either treated the least squares estimators as @ / 3
robust (distribution-free) estimators, or used GMM (as we did in Chapter M
necessary to consider a different approach that does not depend on normality. An
alternative approach that should be robust to variations in the underlying distributions
is the Wald statistic. [See Lutkepohl (2005, pp. 93595).] The full set of coefficients in the
model may be arrayed in a single coefficient vector, y. Let ¢ be the sample estimator of

_y and let ¥-denote the estimated asymptotic covariance matrix. Then, the hypothesis
in question (lag length, or other linear restriction) can be cast in the form Ry — q = 0.
The Wald statistic for testing the null hypothesis is o

W= (Rc— q)’[RYR’]"l(Rc — ).

Under the null hypothesis, this statistic has a limiting chi—squaled distribution with de-
grees of freedom equal to J, the number of restrictions (rows in R). For the specification
search for the appropriate lag length (or the Granger causality test discussed in the next
section), the null hypothesis will be that a certain subvector of y, say y,. equals zero.
In this case, the statistic will be

= C’OY&,I.CO.

where Yoo denotes the couespondmg submatrix of V.

Because time-series data sets are often only modelately long, use of the limiting
distribution for the test statistic may be a bit optimistic. Also. the Wald statistic does
not account for the fact that the asymptotic covariance matrix is estimated using a finite
sample. In our analysis of the classical lincar regression model, we accommodated these
considerations by using the F distribution instead of the limiting chi-squared. (See Sec-

W tion 5:47] The adjustment made was to refer W/J to the F{J, T — K] distribution. This
g_ 5 produces a more conservative test—the corresponding critical values of JF converge
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}(to those of the chi-squared from above. A remaining complication is to decide what
degrees of freedom to use for the denominator. It might seem natural to use M7 minus
the number of parameters, which would be correct if the restrictions are imposed on
all equations simultaneously, because there are that many “observations.” In testing for
causality, as in Secti&n}d.65, below, Lutkepohl (2005. p. 95) argues that MT is exces-

sive, because the restrictions are not imposed on all equations. When the causality test
involves testing for zero restrictions within a single equation, the appropriate degrees
of freedom would be 7 — Mp — 1 for that one equation. p— :

,L\ 6.4 EXOGENEITY

In the classical regression model with nonstochastic regressors, there is no ambiguity
about which is the independent or conditioning or “exogenous” variable in the model

V=B + Bax, + & ’L\@_zs)

This is the kind of characterization that might apply in an experimental sitnation in
which the analyst is choosing the values of x;. But. the case of nonstochastic regres-
sors has little to do with the sort of modeling that will be of interest in this and the
next chapter. There is no basis for the narrow assumption of nonstochastic regressors,
and, in fact, in most of the analysis that we have done to this point, we have left this
assumption far behind. With stochastic regressor(s), the regression relationship such
as the preceding one becomes a conditional mean i a bivariate distribution. In this
more realistic setting, what constitutes an “exogenous” varfable becomes ambiguous.
Assuming that the regression relationship is linear, (Wn be written (trivially) as

= E[n1x]+ (v — Elv|x]).

where the familiar moment condition F [x,&,] = 0 follows by construction. But, this form
of the model is no more the “correct” equation than would be

X, =8 + 8y + o,
which is (we assume)
X = Elx | v+ (% — Efx | n])

and now, E [ v, ] =0. Both equations are correctly specified in the context of the bivari-
ate distribution, so there is nothing to define one variable or the other as “exogenous.”
This might seem puzzling, but it s, in fact, at the heart of the matter when one considers
modeling in a world in which variables are jointly determined. The definition of exo-
geneity depends on the analyst’s understanding of the world they are modeling, and. in
the final analysis, on the purpose to which the model is to be put.

The methodological platform on which this discussion rests is the classic paper by
Engie, Hendry, and Richard (1983), where they point out that exogeneity is not an
absolute concept at all: it is defined in the context of the model. The central idea, which
will be very useful to us here, is that we define a variable (set of variables) as exogenous
in the context of our model if the joint density may be written

Qi x) = flnlB.x) x f(x|8)

where the parameters in the conditional distribution do not appear in and are func-
tionally unrelated to those in the marginal distribution of x,. By this arrangement. we

/21-11
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can think of “autonomous variation” of the parameters of interest, 8. The parameters
in the conditional model for y | x; can be analyzed as if they could vary independently
of those in the marginal distribution of x,. If this condition does not hold, then we
cannot think of variation of those parameters without linking that variation to some
effect in the marginal distribution of x;. In this case, it makes little sense to think of x,
as somehow being determined “outside” the {conditional) model. (We considered this
issue in Section 13.8 in the context of a simultaneous equations model.)

A second form of exogeneity we will consider is bfrgng emgene:ty, which is some-
times called Granger noncausahty Granger noncausality can be superficially defmed
by the assumption

Elye | ye-t. X1, X3, .. d= Elw vl

That is, lagged values of x; do not provide information about the conditional mean of
» once lagged values of y;, itself, are accounted for. We will consider this issue at the
end of this chapter. For the present, we note that most of the models we will examine
will explicitly fail this assumption.

To put this back in the context of our model, we will be assuming that in the model

= Bt + Baxs + BaXe1 + ¥ Y1 + &,

and the extensions that we will consider, x; is weakly exogenous—we can meaningfully
estimate the parameters of the regression equanon independently of the marginal dis-
tribution of x,, but we will allow for Granger causality between x; and v, thus generally
not assuming strong exogeneity. i B

N\

.6.5 TESTING FOR GRANGER CAUSALITY

Causality in the sense defined by Granger (1969) and Sims (1972) is inferred when
lagged values of a variable, say, .x;, have explanatory power in a regression of a variable
¥ on lagged values of y and X, (Soefactiont32¥ The VAR can be used to test
the hypothesis® Tests of the restrictions can be based on simple F tests in the single
equations of the VAR model. That the unrestricted equations have identical regressors
means that these tests can be based on the results of simple OLS estimates. The notion
can be extended in a system of equations to attempt to ascertain if a given variable is
weakly exogenous to the system. If [agged values of a variable x, have no explanatory
power for any of the variables in a system, then we would view x; as weakly exogenous
to the system. Once again, this specification can be tested with a likelihood ratio test
as described later: “holes” in one or more I matrices—or
with a form of F test constructed by stacking the equations.

11
Exampie 20.6 Granger Causality?
All but one of the major tecessions in the U.S. economy since World War |1 have been
preceded by large increases in the price of crude oil. Does movement of the price of il
_cause movements in U.S. GDP in the Granger sense? Let Yo = [GDP, crude oil price],. Then,

'28c¢ Geweke, Meese, and Dent (1983), Sims (1980), and Stock and Watson {2001).
“"This example is adapted from Hamilton (1994, pp. 307--308).

*w

(2 '*36
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n= ]+ e[

To assert a causal relationship between oil prices and GDP, we must find that o2 is not zero;
previous movements in oil prices do hélp explain movements in GDP even in the presence
of the lagged value of GDP. Consistent with our earlier discussion, this fact, in itself, is not
sufficient to assert a causal relationship. We waould also have to demonstrate that there were
no other intervening explanations that would explain movements in oit prices and GDP. (We
will examine a more extensive application in Example QQL)_ 2|

To establish the general resuit, itw useful to write the VAR in the multi-

variate regression format we used in Section #6.9.3.b. Partition the two data vectors y;

and x; into [\’1, er] and [Xi, X2 ]. Consistent with our earlier discussion, x; is lagged
values of p1l and x; is lagged values of y2. The VAR with this partitioning would be

r ¥ :
S s o R B R e
2 [In T'njlX £2 ex Za En

A,

a simple VAR would be

We would still obtain the unrestricted maximum likelihood estimates by least squares
regressions. For testing Granger causality, the hypothesis I';; =0 s of interest. (See Ex-
ample20.6.) For testing the hypothesis of interest, I'1s = 8, the second set of equations
is irrelevant. For testing for Granger causality in the VAR model, only the restricted
equations are relevant. The hypothesis can be tested using the likelihood ratio statistic.
For the present application, testing means computing :

S11 = residual covariance matrix when current values of y; are regressed on
values of both x; and x,
S511(0) == residual covariance matrix when current values of y{ are regressed only

on values of x;. _ @

The likelihood ratio statistic is then

A = T(In|$13(0)] — In[Sy}). \ AUy Len]
'.'-' wad Ty
The number of degrees of freedom is the number of zero restrictions. | .
The fact that this test is wedded to the normal distribution limits its generality. | = e A
The Wald test or its transformation to an approximate J statistic as described in Sec- |- ad

tiop 20.6.3is an alternative that should be more generally applicable. When the equation
system is fit by GMM, as in Examptle 20.7. the simplicity of the likelihood ratio test is
lost. The Wald statistic remains usable, however, Another possibility is touse the GMM I3
countérpart to the likelihood ratio statistic (see Section 15:5.7) based on the GMM cri-
terion functions. This is just the difference in the GMM criteria. Fitting both restricted
and unrestricted models in this framework may be burdensome, but having set up the
GMM estimator for the (larger) unrestricted model, imposing the zero restrictions of

the smaller model should require only a minor modificatig 27 2.
There is a complication in these causality test ¢ VAR M\fﬂted by
the Wold representation theorem {see Section.21°2.5. Theorem 2% 1), althongh with

assumed nonautocorrelated disturbances, the motivation is incomplete. On the other
hand, there is no formal theory behind the formulation. As such, the causality tests
are predicated on a model that may, in fact, be missing either intervening variables or
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additional lagged effects that should be present but are not. For the first of these, the
problem is that a finding of causal effects might equally well result from the omission
of a variable that is correlated with both (or all} of the left-hand-side variables.

(L\gﬁ.s.s IMPULSE B‘IVESPbNSE FUNCTIONS

Any VAR can be written as a first-order model by augmenting ii, if necessary, with
additional identity equations. For example. the model

Vi =p+ Tyt +T2¥e2 + ¥

can be written

]+ SRl )

which is a first-order model. We can study the dynamic characteristics of the model in
either form, but the second is more convenient, as will soon be apparent.
As we analyzed earlier, in the model
Yo =+ L¥1 +¥, 2(

dynamic stability is achieved if the characteristicroots of I have modulus less W €.
(The roots may be complex because F need not be symmetuc S{-:e Secnon 4.3

Assuming that the equation system is stable, the equilibrium is found by obtaining
the final form of the system. We can do this step by repeated substitution, or more
simply by using the lag operator to write

=g+ LY +. 3,
or -
[1 =Ty = s H¥:.
With the stability condition, we have
Ye=[=FI w+30

=(1-D7u+> Ty 2
w (20-29)
=¥+ Z:rf."r—i

=0
=¥+ Y IV e+
The coefﬁaents in the powers of I‘ are the multlpl:en; in the system. -I-n-facf—by—re

ussion of dv i 7 W

wmqmm%mm
MM@M&W \é consider the conceptual

experiment of disturbing a system in equilibrium. Suppose that ¥ has equaled 0 for long
enough that y has reached equilibrium, ¥. Now we consider injecting a shock to the sys-
tem by changing one of the v’s, for one period. and then returning it to zero thereafter.
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2

As we saw eatlier, y,, will move away from, then return to, its equilibrium. The path_ "",'H

wheleby the variables return to the equilibrium is called the lmpulsc rt.spom«. of the
VAR T

In the autoregressive form of the model. we can identify each mmw.mon, Vyr» With
a particular variable iny;, say, ¥y Consider then the effect of a one-time shock to the
system, dup,. As compared with the equilibrium. we will have, in the current period,

Yo — Vg = dVuy = Q{0 dwy.
One period later, we wiil have
Va1 = Fm = (Dmntltnn = Gpra(1)dv;.
Two periods later,
a2 = For = T tor = S (Ddvr,

and so on. The function, ¢,,,({) gives the impulse response characteristics of variable
¥ to innovations in v,,. A useful way to characterize the system is to plot the im-
pulse response functions. The preceding traces through the effect on variable m of a
one-time innovation in v,,. We could also examine the effect of a one-time innovation
of vy on variable m. The impulse response function would be

Pau(f) = element (m, 1) ln(l:"

Point estimation of ¢,y (1) using the estimated model parameters is straightforward.
Confidence intervals present a more difficult problem because the estimated functions
q@,,,; (£, ﬁ) are 30 highly nonlinear in the original parameter estimates. The delta method
has thus proved unsatisfactory. Killian (1998) presents results that suggest that boot-
strapping may be the more productive approach to statistical inference regarding im-
pulse response functions.

26.6.7 STRUCTURAL VARs

The VAR approach to modeling dynamic behavior of economic variables has provided
some interesting insights and appears [see Litterman (1986)] to bring some real benefits
for forecasting. The method has received some strident criticism for its atheoretical
approach, however. The “unrestricted” nature of the lag structure in ( could be
synonymous with “unstructured.” With no theoretical input to the model, it is difficult
to c¢laim that its output provides much of a theoretically justified result. For example,
how are we to interpret the impulse response functions derived in the previous section?
What lies behind much of this discussion is the idea that there is, in fact, a structure
underlying the model, and the VAR that we have specified is a mere hodgepodge of all
its components. Of course, that is exactly what reduced forms are. As such, to respond
to this sort of criticism, analysts have begun to cast VARs formally as reduced forms
and thereby attempt to deduce the structure that they had in mind all along,

A VAR modely, = gt + Iy +, ¥; could, in principle, be viewed as the reduced
form of the dynamlc strmtural mude { T

oy =;q:_+_<,l?y:_1 +.8rs

WSee Hamilton (1994, pp. 3181323 and 3361350) for discussion and a number of related results,
i (k]

2|
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where We have embedded any exogenous variables x; in the vector of constants ¢. Thus,
I =8" <I> B= e a V= 9 £ -and §2 == 9_12((’-)—1)’ Perhaps it is the structure,
spec1ﬁed by an 1mde11ymg themy that is of interest. For example, we can discuss the
impulse response character lst_lcs of this system. For pasticular confi gurations of &, such
as a triangular matrix, we can meaningfully interpret innovations, e. As we explored at
great length in the previous chapter, however, as this model stands, there is not suffi-
cient information contained in the reduced form as just stated to deduce the structural
parameters. A possibly large number of restrictions must be imposed on ©, ®, and X
to enable us to deduce structural forms-from reduced-form estimates, which are always
obtainable. The recent work on structura! VARs centers on the types of restrictions and
forms of the theory that can be br ought to bear to allow this analysis to proceed. See,
for example, the survey in Hamilton (1994, Chapter 11). At this point, the literature on
this subject has come full circle because the contemporary development of “unstruc-
tured VARs” becomes very much the analysis of quite conventional dynamic structural
simultaneous equations models. Indeed. current research [e.g., Diebold (1998)] brings
the literature back into line with the structural modeling tradition by demonstrating
how VARs can be derived formally as the reduced forms of dynamie structural models.
That is, the most recent applications have begun with structures and derived the reduced
forms as VARs, rather than departing from the VAR as a reduced form and attempting
to deduce a structure from it by layering on restrictions.

ﬁ\ 6.8 APPLICATION: POLICY ANALYSIES WITH A VAR

Cecchetti and Rich (2001) used a structural VAR to analyze the effect of recent disin-
flationary policies of the Fed on aggregate output in the U.S. economy. The Fed’s policy
of the last two decades has leaned more toward controlling inflation and less toward
stimulation of the economy. The authors argue that the long-run benefits of this policy
include economic stability and increased long-term trend output growth. But, there isa
short-term cost in lost output. Their study seeks to estimate the “sacrifice ratio,” which
is a measure of the cumulative cost of this policy. The specific indicator they study mea-
sures the cumulative output loss after r periods of a policy shock at time t, where the
(persistent) shock is measured as the change in the level of inflation. -

/L\ AZB.6.8.a A VAR Model for the Macroeconomic Variables

The model proposed for estimating the ratio is a structural VAR,

P B
Ay = Zh!l]A_V;_i + b?zArr_; + Z_b"le:r,_,- +&f,
_i=1 =t

b J
AJT; = bgl A'V; + Z brzl A.V;_,' + Z b“ZZAJT!—f + S:r-.
=1 f=1

where v is aggregate real output in period ¢ and i, is the rate of inflation from period
{ —1 to7 and the model is cast in terms of rates of changes of these two variables. (Note,
therefore, that sums of Am, measure accumulated changes in the rate of inflation, not
changes in the CP1.) The vector of innovations, g, = (&], £7) is assumed to have mean 0,
contemporaneous covariance matrix £[g,. s’] =Qandto be strictly nonautocorr elated.
(We have retained Cecchetti and Rich’s notation for most of this discussion, save for

|
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A

the number of lags, which is denoted # in their paper and p here, and some other minor
changes which will be noted in passing where necessary.)!! The equation system may

also be written
mn[‘“‘] - [8’]1
Amg er

where B(L) is a 2 x 2 matrix of polynomials in the lag operator. The components of
the disturbance (innovation) vector & are identified as shocks to aggregate supply and
aggregate demand. respectively.

£8.6.8.b The Sacrifice Ratio
Interest in the study centers on the impact over time of structural shocks to output

and the rate of inflation. To calculate these, the authors use the vector moving average ~

{(VMA) form of the model, which would be
¥

Ay, Ll &' [An(L) _Au(L)] g
B Bl 1= A(L = -
[ézr;} (BeL] L;f AL L;f} An(l) An(L)]|er

o i

Y oico & Ef=0”129§r_f
(= <] iy

Zmo‘?zl%-i E.—u“zzé‘frﬂ

ui“

I

(Note that the superscript “/” inthe last form of the preceding model is not an exponent;
it is the index of the sequence of coefficients.) The impulse response functions for the

model corresponding to (26—27) are precisely the coefficients in A(L). In particular, the
effect on the change in inflation r periods later of a change in g in period £ is a;.
The total effect from time f + 0 to time ¢ + 7 would be the sum of these S gak. The
counterparts for the rate of output would be 3-i- @l- However, what is needed is not
the effect only on period z’s output, but the cumulative effect on output from the time
of the shack up to period r. That would be obtained by summing these period-specific
effects, to obtain E;—o E o a{z. Combining terms, the sacrifice ratio is

T
Pt o
Sen (7) = > de] E* 00h + Cicaaly + -+ iodl; L D oim0 2 jet M2
‘ ifoni >0 @h2 Y
et

The function S(z) is then examined over long periods to study the long-term effects of |

monetary policy.

Z‘ 2ﬁ.6.8.c identification and Estimation of a Structural VAR Model

Estimation of this model requires some manipulation. The structural medel is a con-
ventional linear simultaneous equations model of the form.

?BDI.V_'r = Bxxz +_§_:,

tHThe authors examine two other VAR models, a three-equation model of Shapiro and Watson (1988). which
adds an equation in real interest rates (i — ;) and a four-cquation mode! by Gali (1992), which models
Ayr, Ady, (hh — 77), and the real money stock, (Any — ). Amony the foci of Cecchetti and Rich’s paper was
the surprisingly large variation in estimates of the sacrifice ratio produced by the three models In the interest
of brevity, we will restrict our analysis to Cecchetti’s (1994) two-equation model

2135

T
Ys i)
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where y; is (Ay, An;) and x; is the lagged values on the right-hand side. As we saw

W/ in, without further restrictions, a model such as this is not identified

c Lf“ y Mm total of M? restrictions-—- M is the number of equations, here t\xo—ale
L"? needed to identify the model. In the familiar cases of simultaneous equations models

that we examined in Chaptel /I’J identification is usually secured through exclusion
] O mons) either in Bo or B. This type of exclusion restriction
would be unnatural in a model such as this one—thele would be no basis for pok-
ing specific holes in the coefficient matrices. The authors take a different appr oach,
which requires us to look more closely at the different forms the time-series model
can take.
Write the structural form as

J}q!_’r = B1¥r..) +le‘('r—2 et !}gynp +. 21

1 ——b?z]
Bo = [ .
—by 1

As noted, thisis in the form of a conventional simultaneous equations model. Assuming
that By is nonsingular, which for this two-equation system requires only that 1 — 3,65
not equal zero, we can obtain the reduced form of the model as

Y =B By + By B2+ o+ By By, +By's 1%9’*10)
= I_hy:_l +-[*-)2.-“-,I"2 +-- +_Qgﬂ,{g—p + i,

where g, is the vector of reduced form innovations. Now, collect the terms in the equiv-
alent form

where

. [;-l = DU’" —Dzl,z = ] = L"

I -

The moving-average form that we obtained earlier is
Yo =[1=DiL—Dal? .- g,
Assuming stability of the system. we can also write this as
Y= DiL-Dal =g
=[Pl - T Bl
=+ CL+CL + -y
=4 +C1p 1 +Cotty 2.
=Bo'er + Ciptrot + Cop 2

So, the C; matrices correspond to our A; matrices in the ougmal formulation. But
this mampulatlon has added something. We can see that Ap = B . Locking ahead, the
reduced form equations can be estimated by least squares. Whether the structural pa-
rameters, and thereafter, the VMA parameters can as well depends entirely on whether
B can be estimated. From ) we can see that if By can be estimated, then B; ... B P
can also just by pr emultlp]ylng e reduced form coefficient matrices by this estimated

A
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W\/ Bo. So. we must now consider this issue. (FErpreciselythe conclusien-we-drewatthe

2]

Recall the initial assumption that £ [ere;] §2. In the reduced form, we assume
Elppi] = Z. As we know, reduced forms are always estimable (indeed. by least squares
if the assumptions of the model are correct). That means that ¥, is estimable by the least
squares residual variances and covariance. From the earlier derivation, we have that
I = B7'@B5Y = A¢RA). (Again, see the beginning of Section 13.3,) The authors
have secured identification of the model through this relationship. In particular, they
assume first that £ = 1. Assuming that £ = I, we now have that AgA} = %, where X is
an estimable matrix with three free par ameters. Because Ag is2x 2, one more restr iction
is needed to secure identification. At this point, the authors, invoking Blanchard and
Quah (1989), assume that “demand shocks have no permanent effect on the level of
output. Thisis equivalentto Ap(l) = Z";} a{-z =0."This might seem like a cumbersoms
restriction to impose. But, the matrix A(1)is [l - Dy — D2 — .- =D, ]~ IAo = FAp and
the components, B);. have been estimated as the reduced folm cocfficient matrices, so
Aj2(1) = 0 assumes only that the upper right element of this matrix is zero. We now
obtain the equations needed to solve for Aq. First,

21

(“11) +(“'12) aady + afrady _[o“ 012] 2031

AcAp =% = o o
ahal) + ahad ("21) (ﬂzz) o

e

which provides three equations. Second, the theoretical restriction is

*  fita +_f12ﬂ32] _ [* 0]

FA; =

This providgs the four equations needed to 1clentlfy the four elements in Ap># 2
Collecting results, the estimation strategy is first to estimate Dy, ..., D, and Z i
the reduced form, by least squares. (They set p = 8.) Then use the restrictions and
420731} to obtain the elements of Ag = BD and, finally, B; = Al D;.
The last step is estimation of the matrices of 1mpulse responses, whlch can be done
as follows: We return to the reduced form which, using our augmentation trick, we

12At this point, an intriguing doose end arises. We have carried this discussion in the form of the original
papers by Blanchard and Quah (1989) and Cecchetti and Rich (2001}, Returning to the original structure, we
see that because Ag = B , if Bp has ones on the diagonal, then Ag sctually does not have four unrestricted
and unknown elements, 1t has two. The model is thus overidentified. We could have predicted this at the
outset. In our conventional simultaneous equations model, the normalizations in By {ones on the diagonal}
provide two restrictions of the M? = 4 required for identification. Assuming that @ = I provides three more,
and the theoretical restriction provides a sixth, Therefore, the four unknown elements in an unrestricted By
are overidentified. It might seem convenient at this poim to forego the theoretical restriction on long-term
lmpacts, but it seems more natural to omit the restrictions on the sc:almg of 5. With the two normalizations
already in place, asswming that the innovations are uncorrelated (82 is dia gonal) and *demand shocks have no
permanent effect on the level of output” together suffice to identify the model. Blanchard and Quah appear
to reach the same conclusion (page 656), but then they alsoassumne the unit variances [page 657, equation {1)).

They argue that the assumption of unit variances is just a convenient normalization, which for their model is
actually the case, because they do not assume that I3y is diagonat. Cecchetti and Rich, however, do appear to
normealize Bo in their equation (1). They then (evidently) drop the assumption after (10), however, “[Blecause
Ao has {# x #) unique elements . ..." This would imply that the normalization they impose on their (1) has
not, in fact, been carried through the later manipulations, so, once again, the model is exactly identified.
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write as
¥ Dt Dy - Dy [¥i-t Aog: '
Ji-1} =- _xl. Lo ;g Y2 + 8| ‘26.32)
Yi-pst h 0 ... 1 0 Yr—p 0

For convenience, arrange this result as

X = (Il) L)rYr + W

Now, solve this for _X, to obtain the final form
Y, = [I-DI'w.

Write this in the spectral form and expand as we did earlier, to obtain

2

oo
Y= " PAQw,_,. (1.33)
, i=0 : :
2l
We will be interested in the uppermost subvector of Y,, so we expand (20-33) to yield
B 0 Aosr—

Yo =13 eaiel 8
Yi—p+1 A= 8

The matrix jn the summation is Mp x Mp. The impact matrices we seek are the M x M
matrices in the upper left corner of the spectral form, multiplied by Ag.

il ,‘26.6.8.(1 Inference 7"

As noted at the end of Section ,26 6.6, obtaining usable standard errors for estimates of
impulse responses is a difficult (as yet unresoived) problem. Killian (1998) has suggested
that bootstrapping is a preferable approach to using the delta method. Cecchetti and
Rich reach the same conclusion and likewise resort to a bootstrapping procedure. Their
bootstrap procedure is carried out as follows: Let 8 and ¥ denote the full set of estimated
coefficients and estimated reduced form covariance matrix based on direct estimation.
As suggested by Doan (2007}, they construct a sequence of N draws for the reduced
form parameters, then recompute the entire set of impulse responses. The narrowest
interval, which contains 90 percent of these draws, is taken to be a confidence interval
for an estimated impulse function.

2\ 26.6.8.6 Empirical Results

Cecchetti and Rich used quarterly observations on real aggregate output and the
consumer price index. Their data set spanned 1959.1 to 19974, This is a subset of
the data described in the Appendix Table F5 A Before beginning their analysis, they
subjected the data to the standard tests for{stationarity. Figures show the
log of real output, the rate of inflation, and{the changes in these two F:Zables The

L
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A 273

first two figures do suggest that neit}_i;y(ariable is stationary. On the basis of the

N AV POV
1988 1993 1998

L - DickeytFulier (1981) test (see Section 22.2.4). they found (as might be expected) that

the y; and 7, series both contain unit roots. They conclude that because output has a
unit root, the identification restriction that the long-run effect of aggregate demand
shocks on output is well defined and meaningful. The unit root in inflation allows for
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5

permanent shifts in its levgl. The lag length for the model is set at p. = & Long-run
impulse response function’are truncated at 20 years (80 quarters). Analysis is based on
the rate of change data shown in Figure 20.7. 2/

As a final check on the model, the authors examined the data for the possibility of a
structural shift using the tests described in Andrews (1993) and Andrews and Ploberger
(1994). None of the Andrews/Quandt supremum LM test, Andrews/Ploberger exponen-
tial LM test, or the Andrews/Ploberger average LM test suggested that the underlying
structure had changed (in spite of what seems likely to have been a major shift in Fed
policy in the 1970s). On this basis, they conciuded that the VAR isstable over the sample
period. )

Figure 2038 (Figures 3A and 3B taken from the article) shows their two separate
estimated impulse response functions. The dotted lines in the figures show the bootstrap-
generated confidence bounds. Estimates of the sacrifice ratio for Cecchetti’s model are
1.3219 for t = 4, 1.3204 for r = 8, 1.5700 for r =12, 1.5219 for = = 16, and 1.3763 for
T =20.

The authors also examined the forecasting performance of their model compared
to Shapiro and Watson's and Gali's. The device used was to produce one step ahead,

period T+ 1| T forecasts for the model estimated using periods 1. , 1. The first re-
duced form of the model is fit using 1959.1 to 1975.1 and used to fowcast 1975.2. Then,

it is reestimated using 1959.1 to 1975.2 and used to forecast 1975.3, and so on. Finally,
the root mean squared error of these out of sample forecasts is compared for three
models. In each case, the level, rather than the rate of change of the inflation rate
is forecasted. Overall, the results suggest that the smaller model does a better job of
estimating the impulse responses (has smaller confidence bounds and conforms more

L
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Z

nearly with theoretical predictions) but performs worst of the three (slightly) in terms
of the mean squared error of the out-of-sample forecasts, Because the unrestricted re-
duced form modei is being used for the latter, this comes as no surprise. The end resuit
follows essentially from the result that adding variables to a regression model improves

its fit.
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20/6.9 VARs IN MICROECONOMICS

VARs have appeared in the microeconometrics literature as well. Chamberlain (1980)
suggested that a useful approach to the analysis of panel data would be to treat each
period’s observation as-a separate equation. For the tase of T = 2, we would have

vit = o + X8 + &1,
Vi = oy + X2 + &2,

where / indexes individuals and «; are unobserved individual effects. This specification
produces a multivariate regression, to which Chamberlain added restrictions related to
the individual effects. Holtz-Eakin, Newey, and Rosen’s (1988) approach is to specify
the equation as

il m_
Yie = oy + Z Ay Vig—t + Z SurXig—t + Vs fi + #ir.
=1 1=1
In their study, v is hours worked by individual / in period ¢ and x;; is the individual’s
wage in that period. A second equation for earnings is specified with lagged values of
howrs and earnings on the right-hand side. The individual, unobserved effects are f£.

( This mode] is similar to the VAR in fo27), but it differs in several ways as well. The
Z niumber of periods is Guite small { 14 yearly observations for each individual), but there

are nearly 1,000 individuals. The dynamic equation is specified for & specific period,
however, so the relevant sample size in each case is #, not 7. Also, the number of lags
in the model used is relatively smail; the authors fixed it at three. They thus have a two-
equation VAR containing 12 unknown parameters, six in each equation. The authors
used the model to analyze causality, measurement error, and parameter stabillty—that
is, constancy of oy, and & across time.

Example .7 VAR for Municipal Expenditures
in Example ¥5.10, we examined a mode! of municipal expendltures proposed by Dahlberg
and Johansson (2000) Their equation of interest is

ASit = m +Zﬁ;ﬁsu-; +ZY;ARH-; +25;AG;:—; +u

I=t = =t

for/=1,...,N=265andt =m+1,...,9 S, R, and G;; are municipal spending,
receipts (taxes and fees), and central government grants, respectwely Analogous equations
are specified for the current values of A+ and Gi.+. This produces a vector autoregression for
each mounicipality,

AS st Bsr rs1 ds1\ [ASie
ARl = | st |+ | Bar var Spa | [ AR |+
AGy, Hat Ber ver dan/ LAG

Bsm Vsm dsm\ [AStm] [uf
+| Bam vam dpm | |ARm]+ -"fﬁt
Bem yem daum Ac'ff,h_rr: uf

The model was estimated by GMM, so the discussion at the end of the preceding section ap-
plies here. We will ba interested in testing whether changes in municipal spending, AS;;, are
Granger-caused by changes inrevenues, AR,;, and grants, AG; ;. The hypothesis to be testad

(2i-42

X
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is yg; = 8g,; = O for all j. This hypothesis can be tested in the context o@ the first equa-
tion. Parameter estimates and diagnostic statistics are given in Example 38.10. We can carry M
out the test in two ways. In the unrestricted equation with all three lagged values of all three
variables, the minimized GMM criterionis g = 22.8287. if the lagged values of AR and AG are
omitted from the AS equation, the criterion rises to 42.9182:% There are six restrictions, The

Ir:w 'S difference is 20.090 so the F statistic is 20.08/6 = 3.348. We have more than 1,000 degrees | |
L 1D} of freedom for the denominator, with 265 municipalities and 5 years, so we can use the im- V& |
Hilr iting value for the critical value. This is 2.10, so we may reject the hypothesis of noncausality :

and conclude that changes in revenues and grants do Granger cause changes in spending.
(This hardly sesms surprising.) The alternative approach is to use a Wald statistic to test the
six restrictions. Using the full GMM results for the ASequation with 14 cosfficients we obtain
a Wald statistic of 15.3030. The critical chi-squared would be 6 x 2.1 = 12.6, 8o once again,
the hypothesis is rejected.

Dahlberg and Johansson approach the causalify test somewhat differently by using a
sequential testing procedurse. (See their page 413 for discussion.) They suggest that the
intervening variables be dropped in turn. By dropping first G, then R and G, and then first
R then G and R, they conclude that grants do not Granger-cause changes in spending
(Ag =only 0.07) but inthe absencs of grants, revenues do ( Ag|grants excluded) = 24.6. The
reverse order produces test statistics of 12.2 and 12.4, respectively. Our own calculations | —
of the four values of g yields 22.829 for the full model, 23.1302 with only grants excluded, | " M
23,0804 with only R exclucied, and 42.9182 with both exclued, which disagrees with their | [10) <=~ (=)

results but is consistent with our earlier cnes. ‘ T R

° 2 13| this

instability of a VAR Model ! | ) ¥
The coefficients for the three-variable VAR model in Exampie_26 .7 appear in Table 1-6”5 The P ' [P

characteristic roots of the 9 x 9 coefficient matrix are —0.6025, 0.2529, 0.0840, (1.4586+ | =o€
0.6584j}, (—0.6992 £ 0.2018i), and (0.0611 £0.6291i). The first pair of complex roots has | =~
modulus greater than one, so the estimated VAR is unstable. The data do not appear to
be consistent with this result, though with only five usable years of data, that conclusion
is a bit fragile. One might suspect that the model is overfit. Because the disturbances are
assumed to be uncorrelated across equations, the thrae equations have been estimated sep-
arately. The GMM criterion for the system is then the sum of those for the three equations. For :

P =3, 2, and 1, respectively, these are (22.8287 +30.5398 +-17.5810) =70.9495, (30.4526 + @
34.2590 4 20.5416) = 86.2532, and (34.4986 4- 53.2506 + 27.5927) = 115.6119. The differ-
ence statistic for testing down from three lags to two is 14.3037. The critical chi-squared -
for nine degrees of freedom is 19.62, so it would appear that m.= 3 may be too large. The Aut (o
results clearly reject the hypothesis that m.= 1, however. The coefficients for a model with | 2= *°

two lags instead of one appear in Table 15.5. if we construct T from these resulls instead, | —_( |, 152
we obtain a 6 x 6 matrix whose characteristic roots are 1.5817, —0.2196, —0.3500 + 0.4362i, | DR ITIN
and 0.0868 - 0,2791i. The system remains unstable, aren | N

20.7 SUMMARY AND CONCLUSIONS

This chapter has surveyed a particular type of regression model, the dynamic regres-
sion. The signature feature of the dynamic model is effects that are delayed or that
persist through time. In a static regression setting, effects embodied in coefficients are
assumed to take place all at once. In the dynamic model, the response to an innovation
is distributed through several periods. The first three sections of this chapter examined
several different forms of single-equation models that contained lagged effects. The

*Once again, these results differ from those given by Dahlberg and Johansson. As before, the difference
results from our use of the same weighting matrix for all GMM computations in contrast to their recomputation
of the matrix for each new coefficient vector estimated.
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progression, which mirrors the current literature, is from tightly structured lag “models”

(which were sometimes formulated to respond to a shortage of data rather than to cor-

respond to an underlying theory) to unrestricted models with multiple period lag struc-

tures. We also examined several hybrids of these two-forms, models that allow long lags

but build some regular structure into:the lag weights. Thus, our model of the formation

of expectations of inflation is reasonably flexible] but does assume a specific behavioral
mechanism. We then examined several methodological issues. In this context as else-

where, there is a preference in the methods toward forming broad unrestricted models

and using familiar inference tools to reduce them to the final appropriate specification.

The second half of the chapter was devoted to a type of seemingly unrelated regressions

model. The vector autoregression. or VAR, has been a major tool in recent research. [
After developing the econometric framework, we examined two applications, one in ;
macroeconomics centered on monetary policy and one from microeconomics. @

[ o =

Key Terms and Concepts | 7V Jefms
* Autocorrelation "» General-to-simple method s Polynomial in lag operator . l.- i b ,'_U. <
* Auloregression ¢ Granger causality » Random walk with drift L L
+ Antoregressive distributed 1,48 Impact multiptier ® Rational lag \ & | ) Eé K8 WENE
lag® HEL; "« Impulse response » Simple-to-general approach | i |
* Autoregressive form ‘o Infinite lag modet 1.~% Specification i e e
+ Auforegressive model ‘e Tunfinite lags & Siability TR TR
+ Characteristic equation ¢ Innovation » Stationary e
» Distributed lag 'rx i » Inverlible * Strong exopenceily =
» Dynamic regression model  # Lagged variables « Structural model
#_-» Elasticity + Lag operator s Structural VAR
"« Equilibrium » Lag weight * Superconsislent
« Equilibrium error + Long-run multiplier '# Univariate autoregression
s~ * Equilibrium rultiplier * Mean lag " e Vector autoregression
“» Equilibrium relationship ¢ Median lag {VAR)
" » Error correction « Moving-average form * Vector moving average
Y-+ Exogeneity & One-period-ahead forecast {(VMA)
+ Expectation o Partial adjustment
« Finite lags y~* Phillips curve
Exercises

1. Obtain the mean lag and the long- and short-run multipliers for the following
cistributed lag models:
a. vy = 0.55(0.02x; +0.15x,_; +0.43%, 2 +0.23x, 3+ 0.17x4) + 1.
b. The model in Exercise 3. ' ;
¢. The model ir Exercise 4. (Do for either x or z.)

2. Expand the rational lag model ¥ = [(0.6 -+ 2L)/(1 —0.6L + 0.51_L2)].t, + ¢. What
are the coefficients on x;, X;_1, X2, X¢3, and_x; _4?

3. Suppose that the model of Exercise 2 were specified as

B+l

R gy oy RS

=
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Describe a method of estimating the parameters. Is ordinary least squares consis-

tent?
4. Describe how to estimate the parameters of the model
: X s
, = P .
A').’r."'a—l—‘ﬁl-—}l_L-'. 1_."th’l"":‘.r

where & is a serially uncorrelated, homoscedastic, classical disturbance,

Applications

1. We are interested in the long-nm multiplier in the model

6
=P+ Z;B;.r,ﬁ- + 2.
_i=0
Agsume that x; is an autoregressive series, X; = ¥, +.v; where |r| < 1.
a. What is the long run multiplier in this model? _
b. How would you estimate the long-run multiplier in this model?
¢. Suppose you knew that the preceding is the true model,but you linearly regress
only on a constant and the first five lags of x,. How does this affect your estimate
of the long run multiplier?

L d. Same asc. for four lags instead of five. 7/‘

e. Using the macroeconomic data in Appendix Table FS.\ let v, be the log of real
investment and x; be the log of real output. Carry out the computations suggested
and report your findings. Specifically, how does the omission of a lagged value
affect estimates of the short-run and long-run multipliers in the unrestricted lag
model?

2. Explain how to estimate the parameters of the following model:

- Ve=a+BX+y-t+8y2+e,
&y = pe—1 +.U;.

Is there any problem with ordinary least squares? Let y be consumption and let .x;
be disposable income. Using the method you have described, fit the previous model
to the data in Appendix Table PS.\ Report your results.
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