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221 INTRODUGTION

Most economic variables that exhibit strong trends, such as GDP, consumption, or the
price level, are not stationary and are thus not amenable to the analysis of the pre-
vious three chapters. In many cases, stationarity can be achieved by simple differenc-
ing or some other simple transformation. But, new statistical issnes arise in analyzing
nonstationary series that are understated by this superficial observation. Tlus chapter
will survey a few of the major issues in the analysis of nonstationary data;} We begin

. 23 __in Section 2.2 with results on analysis of a single nonstationary time series. Sectlon\SQl_

examines the implications of nonstationarity for analyzing regression relationship.
Finally, Section 22.4 turns to the extension of the time-series results to panel data.

23

2&.2 NONSTATIONARY PROCESSES AND

UNIT ROOTS

This section will begin the analysis of nonstationary time seties with some basic results
for univariate time series. The fundamental results concern the characteristics of non-
stationary seues and statistical tests for identification of nonstationarity in observed
data.

2 £Z.21 INTEGRATED PROCESSES AND PIFFERENCING _

CET )
A process that figures prominently in recent work is the random walk with drift,
i =t Y1+ B

By direct substitution,

[~ =]
Y= Z(ﬂv + &),
i=0

That is, y, is the simple sum of what will eventually be an infinite number of random
variables, possibly with nonzero mean. If the innovations are being generated by the
same zero-mean, constant-variance distribution, then the variance of y, would obviously

1With panel data, this s one of the rapidly growing areas in econometrics, and the literature advances rapidly.
We can only scratch the surface. Several recent surveys and books provide useful extensions. Two that will
be very helpful are Enders (2004) and Tsay (2005).

739"
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be infinite. As such, the random walk is clearly a nonstationary process, even if 1 equals | P LLEst

zero. On the other hand, the first difference of y;. WA Ch

2
Fhkah
i Zt=}!f—,Vt—]=#+€lr, A !-“-l' [y
issimply the innovation plus the mean of z, wl;_i,ch\we have already assumed is stationary. !

The series y; issaid to be integrated of order one, denoted /(1), because takinga first
difference produces a stationary process. A nonstationary series is integrated of order
d,denoted [(d), if it becomes stationary after being first differenced d times. A further

generalization of the ARMA model discussed in Section X{.2.1 would be the series
7 = (1 - Lyly, = ady,. 2L

TN
The resulting model is denoted an autoregressive integrated moving-average model, or
ARIMA (p. d. g)? In full, the mode! would be '

Ay = p+ A%y + 122y g+t yp ATy e~ B8 — e B8y,
where
Ay =y~ -1 =(1— Dy
This result may be written compactly as
CIA ~ LYy = u+ DLz,

whete C(£,) and D(1) ere the polynomials in the lag operator and (I — L)%y = Aly, is
the dth difference of w.
An /(1) series initsraw (undifferenced) form will typically be constantly growing, or
wandering about with no tendency to revert toa fixed mean. Most macroeconomic flows 7”5 .,\
and stocks that relate to population size, such as output or employment,are /(1). An /(2) F
series is growing at an ever-increasing rate., The price-level data in Appendix Table +2+= W
and shown later appear to be {(2). Series that are /(3) or greater are extremely unusual, '
but they do exist. Among the few manifestly /(3) series that could be listed, one would
find, for example, the money stocks or price levels in hyperinflationary economies such

as interwar Germany or Hungary after World War IL. R
5 g3 €@l
Example 3Z.1 A Nonstatlonary Series
¥ The nominal GNP and price deflator variabl Appendix able@ strongly trended, |
Y so the mean is changing over time. Figures 22.1 through 22.3 plot the log of the GNP deflator |- ./ =/ Vi

i Tl series in Table F21:2 and its first and second differences. The original series and first differ-
v ~la ences are obviously nonstationary, but the second differencing appears to have rendered the ) 3

| e | series stationary.

: The first 10 autocorrelations of the log of the GNP deftator series are shown in Table)ﬂ(
s The autocorrelations of the original series show the signature of a strongly trended, nonsta-
Fal e, tionary series. The first difference also exhibits nonstationarity, because the autocorrefations
S SET are still very largs after a lag of 10 periods. The second difference appears to be statiomary,

’ with mild negative autocorrelation at the first lag, but essentially none after that. Intuition
might suggest that further differencing would reduce the autocorrelation further, but that
would be incorrect. We leave as an exercise to show that, in fact, for values of y less than
abaut 0.5, first differencing of an AR(1) process actually increases autocorrelation.

2There are yet further refinements one might consider, such as removing seasonal effects from z, by differ-
encing by quarter or month. See Harvey (1990) and Davidson and MacKinnon (1993). Some recent work has
relaxed the assumption that d is an integer. The fractionally integrated serics, or ARFIMA has been used to
model series in which the very long-run multipliers decay more stowly than would be predicted otherwise.
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'FIGURE 22.1.. Quarterly Data on log GNP Deflator. .
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2.2 RANDOM WALKS, TRENDS, AND SPURIOUS REGRESSIONS
In a seminal paper. Granger and Newbold (1974) argued that researchers had not paid
sufficient attention to the warning of very high autocorrelation in the residuals from
conventional regression models. Among their conclusions were that macroeconomic
data, as a rule, were integrated and that in regressions involving the levels of such
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FIGURE ¥¢.3 . Second Difference of log GNP Deflator.-

1%
‘TABLE #2.1 Autocorrelations for In GNP Deflator ]
Autocorrelation Function Auatocorrelation Function Autocorrelation Function
Lag Original Series, log Price First Difference of log Price | Second Difference of log Price
1 1.000 WM 0.512 . | -0.395 ]
2 1.000 I | 0.765 . | -0.112 [ |
3 0.999 - I 0776 ] 0.258 [
4 0.999 I | 0.682 | ] -0.101 |
5 0.999 W | 0.631 " —-0.022 H
6 0.998 I 0.592 ] 0.076 ]
7 0.998 | 0.523 . ~0.163 [ |
8 0.997 I | 0.513 | 0.052 |
9 0.997 I | 0488 | —(1.054 1
10 0.997 I | 0.49] [ ] 0.062 |

data, the standard significance tests were usually misleading. The conventional ¢ and
F tests would tend to reject the hypothesis of no relationship when, in fact, there
might be none. The general result at the center of these findings is that conventional
linear regression, ignoring serial correlation, of one random walk on another is virtually
certain to suggest a significant relationship, even if the two are, in fact, independent.
Among their extreme conclusions, Granger and Newbold suggested that researchers
use a critical ¢ value of 11.2 rather than the standard normal value of 1.96 to assess
the significance of a coefficient estimate. Phillips (1986) took strong issue with this
conclusion. Based on a more general model and on an analytical rather than a Monte
Catlo approach, he suggested that the normalized statistic 15/+/T be used for testing
purposes rather than f4 itself. For the 50 observations used by Granger and Newbold,
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the appropriate critical value would be close to 15! If anything, Glangei and Newbold
were too optimistic,
The random walk with drift, Z?,
W ca=RtLoate W2
and the trend stationary process, '

=+ B+ g, . X-2)

where, in both cases, £, is a white noise process. appear to be reasonable characteriza-
= tions of many macroeconomic time series? Clearly both of these will produce strongly
) trended, nonstationary series? so it is not surprising that regressions involving such
T variables almost always produce significant relationships. The strong correlation would
[ 1 | seem to be a consequence of the underlying trend, whether or not there reaily is any

e regression at work. But Granger and Newbold went a step further. The intuition is less
clear if there is a pure random walk at work, 23
G =Z-1+&, ax-3)
but even here. they found that regression “1elat10nsh1ps appear to persist even in
unrelated series. ST Gy
_ Each of these three series is characterized by a unit toot, In each case, the data-
Y gem.ratm;, process {DGP) can be written @'5
(- Lz =a+uw, @24

where o = ., B, and 0, respectively, and v, is a stationary process, Thus, the characteristic
equation has a single root equal to one, hence the name. The upshot of Granger and
Newbold’s and Phillips’s findings is that the use of data characterized by unit roots has
the potentidl to lead to serious errors in inferences,

In all three settings, differencing or detrending would seem to be a natural first
step. On the other hand, it is not going to be immediately obvious which is the correct
way to proceed-——the data are strongly trended in all three cases—and taking the incor-
rect applc;;ciill will not necessarily i improve matters. For example, first differencing in
(22-1) or {Z7-3) produces a white noise series, but first differencing in (22-2) trades

2% 23 the trend for autocorrelation in the form of an MA(1} process. On the other hand,
detrending_—that is, computing the residuals from a regression on time—is obvicusly
counterproductive in (g-l) and (22-?) even though the regression of z; on a trend will

773 23— ~—~dppear to be significant for the reasons we have been discussing, whereas detrending in

{22-2) appears to be the right approach:® Because none of these approaches is likely to

23

*The analysis to follow has been extended to more general disturbance processes, but that complicates
matters substantially. In this case, in fact, our assumption does cost considerable generality, but the extension
is beyond the scope of our work. Some references on the subject are Phillips and Perron {1988) and Davidson
and MacKinnon {(1993).

\AThe constant term g produces the detsyministic trend in the random walk with drift. For convenience,
suppose that the process starts at time zero. Then Z, = 5: =Q(,u, +5y) =t + z 1= Bxe Thus, z; consists of
a deterministic trend plus a stochastic trend consisting of the sum of the innovations. The result is a variable
with increasing variance around a linear trend.

"See Nelson and Kang (1984).

23
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be obviously preferable at the outset, some means of choosing is necessaly Consider
nesting all three models in a single equation,

Zr=p+Bt+ 1+ e
Now subtract z;_; from both -sides ‘of the equation and introduce the artificial
parameter y.
23
& —L-l=py +Byi+ly — N +e
2 -5
ER =ap+aif+(y— Dz +s,

where, by hypothesis, y = 1. Equation (22-5) provides the basis for a variety of tests
for unit roots in economic data. In principle, a test of the hypothesis that y — 1 equais

zero gives confirmation of the random walk with drift, because if ¥ equals 1 (and
equals zero), then {27-1) results. If ¥ — 1 is less than zero, then the evidence favors

the trend stationary (or some other) model, and detrending {or some alternative) is
the preferable approach. The practical difficulty is that standard inference procedures
based on least squares and the familiar test statistics are not valid in this setting. The
issue is discussed in the next section.

7"3 \Q2.2.3 TESTS FOR UNIT ROOTS IN ECONOMIC DATA

The implications of unit roots in macroeconomic data are, at least potentially, profound.
If a structural variable. such as real output, is truly /(1), then shocks to it will have per-
manent effects. If confirmed, then this observation would mandate some rather serious
reconsideration of the analysis of macroeconomic policy. For example, the argument
that a change in monetary policy could have a transitory effect on real output would
vanish:§ The literature is not without its skeptics, however. This result rests on a razor’s
edge. Although the literature is thick with tests that have failed to reject the hypothesis
that y = 1, many have also not rejected the hypothesis that > 0.95, and at 0.95 (or
even at 0.99), the entire issue becomes moot.”
Consider the simple AR(1) model with zero-mean, white noise innovations,

Ye=p¥_1 +E.

The downward bias of the least squares estimator when y approaches one has been
widely documented.® For |y| < 1. however. the least squares estimator

E{ 2 \’r\:—-l
2:_2 ": 1

does have

plime =y

~6The 1980s saw the appearance of literally hundreds of studies, both theoretical and applied. of unit roots

in economic data. An important example is the seminal paper by Nelson and Plosser (1982). There is little
question but that this observation is an early part of the radical paradigm shift that has occuired in empirical
MACTOSCONOMICS.

A large number of issues arc raised in Maddala {1992, pp. 582-588).

BSee, for example, Evans and Savin (1981, 1984).
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and
YTic—y) -5 N[O, 1 =37

Does the result hold up if y =1? The case is called ‘the unit root case, because in the
ARMA representation C{L)y, = &, the characteristic equation 1 —yz = 0 has one root
equal to one. That the limiting yariance appears to go to zero should raise suspicions.
The literature on the questior@flvates back to Mann and Wald (1943) and Rubin (1950).
But for econometric purposes, the literature has a focal point at the celebrated papers
of Dickey and Fuller (1979, 1981). They showed that if y equals one, then

Tic—y) =, v,

where v is a random variable with finite, positive variance, and in finite samples,
Elc] < 1¥

There are two important implications in the Dickey-Fuller results. First, the estima-
tor of y is biased downward if y equals one. Second, the OLS estimator of ¥ converges
to its probability limit more rapidly than the estimators to which we are accustomed.
That is, the variance of ¢ under the null hypothesis is (17 72), not O(1/T). (In a
mean squared error sense, the OLS estimator is superconsistent.} It turns out that the
implications of this finding for the regressions with trended data are considerable.

We have already observed that in some cases, differencing or detrending is required
to achieve stationarity of a series. Suppose, though, that the preceding AR(1) model
is fit to an_/{1) series, despite that fact. The upshot of the preceding discussion is that
the conventiona! measures will tend to hide the true value of y: the sample estimate is
biased downward, and by dint of the very small frue sampling variance, the conventional
t test will tend, incoirectly, to reject the hypothesis that ¢ = 1. The practical solution to
this problem devised by Dickey and Fuller was to derive, through Monte Carlo methods,
an appropriate set of critical values for testing the hypothesis that ¥ equals one in an
AR(1) regression when there truly is a unit root. One of their general results is that
the test may be carried out using a conventional ¢ statistic, but the critical values for
the test must be revised; the standard ¢ table is inappropriate. A number of variants
of this form of testing procedure have been developed. We will consider several of
them.

2\3.2.4 THE DICKEY-FULLER TESTS
The simplest version of thModel to be analyzed is the random walk,
W =vy-1+e&, &~ N0.g%], and Covlg,e]=0V¢#s.

Under the null hypothesis that y = 1, there are two approaches to cartying out the test.
The conventional f ratio

-1
Est. Std. Error(#)

DF.‘ =

7o

A full derivation of this result is beyond the scope of this book. For the interested reader, a fairly compre-
hensive trcatment at an accessible level is given in Chapter 17 of Hamilton (1994, pp. 475-542).
[ 7]

(23-3

w
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TABLE 5#2.2 Critical Values for the Dickey-l:—Fuller DF, Test

'2”5 _ Sample Size

; _ 25 50 100 o0
F ratio (D-F)* . 724 6.73 6.49 6.25
F ratio (standard) 3.42 320 310 3.00
AR model® (random walk)
0.01 —2.66 -2.62 -2.60 - —2.58
0.025 —2.26 ~2.25 -2.24 -2.23
0.05 ~1.93 —-1.95 —1.93 ~1.95
0.10 ~1.60 -1.61 -1.61 —-1.62
0.975 L.70 1.66 1.64 1.62
AR muodel with constant {random walk with ¢rift)
0.01 =375 —3.59 —3.50 =342
0.025 -3.33 ~3.23 ~317 =312
0.05 -2.99 =293 —2.90 -2.86
0.10 -2.64 -2.60 . -2.58 —-2.57
0.975 0.34 0.29 0.26 023
AR mwodel with constant and time trend {trend stationary)
0.01 —-4.38 —4.15 —4.04 -3.96
0.025 —3.95 —3.80 —3.69 —3.66
0.05 -3.60 -3.50 ~345 ~3.41
0.10 =-3.24 —-3.18 315 =3.13
0975 —0.50 —0.58 —0.62 —0.66

2From Dickey and Fuller (1981, p. 1063). Degrees of freedom are 2 and T'— p— 3.
PFrom Fuller (1976, p. 373 and 1996, Table 10.A.2).

23
=t with the revised set of critical values may be%d for a one-sided test. Critical values for
o this test are shown in the top panel of Table 2.2. Note that in peneral, the critical value
is considerably larger in absolute value than its counterpart from the ¢ distribution. The
second approach is based on the statistic

DF, = T(7 - 1). 2%
y Critical values for this test are shown in the top panel of Table ¥2.2.
oM The simple random walk model is inadequate for many series. Consider the rate :
e of inflation from 1950.2 to 2000.4 (plotted in Figure mjmc_lgth_eigggf_wi_l_z 3
. 273 _.same period (plotted in Figure,22.5). The first of these may be a random walk, but it
] is clearly drifting, The log GDP series, in contrast, has a strong trend. For the first of
these, a random walk with drift may be specified,

h=pu+I,
L = Yi-1 + &,
or
N=pd-v)+yn-1+e.
For the second type of series, we may specify the trend stationary form,
Y=+ Bt +.z,
L =Ya-1+8
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Rate of Inflation, 1950.2 to 20004 =
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FIGURE 252‘.4' Rate of Inflation in the Consumer Price Index, -

Log of GDP, 1950.1 to 2000.4 ' ~
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FIGURE #£25 Log of Gross Domestic Product. -

or
n=[Q-y)+yBl+ Bl - )+ vy t+e.
The tests for these forms may be carried out in the same fashion. For the model with

“«{f* '\ drift only, the center panels of Tables R.2 and 36.3 are used. When the trend isincluded,
¥ the lower panel of each table is used. 2 2

7%
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W
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TABLE 2%.3 Critical Values for the Dickey—Fuller DF, Test
Y, ¥ .

Sample Size

25

¥ 50 . 160 00
AR modeP (random walk) - _
0.0 —-11.8 —12.8 -133 -~13.8
0.025 -93 -2.9 -10.2 -10.5
0.05 -73 1.7 -~7.9 —8.1
0.10 -53 —3.5 ~3.6 =57
0.975 1.78 1.69 1.65 1.60
AR model with constant (ranctom walk with drift)
0.01 —172 —189 —198 -20.7
0.025 —146 —15.7 —~16.3 —16.9
0,05 —12.5 -133 —137 —14.1
0.10 —10.2 —10.7 —11.0 —1t.3
0.975 0.65 0.53 0.47 041
AR model with constant and time trend (trend stationary)
0.0 ~22.5 —258 —27.4 ~29.4
0.025 -200 —22.4 =23.7 244
0.05 —17.9 —19.7 —20.6 -21.7
0.10 —~15.6 ~16.8 —-17.5 —18.3
0.975 ~1.53 —1.667 -1.74 —1.81
aFrom Fuller (1976, p. 373 and 1996, Table 10.A.1).

Example £2.2 Tests for Unit Roots
In Sectio

.6.8, we examined Cecchetti and Rich’'s study of the effect of recent monetary

policy on the U.S. economy. The data used in their study were the following variables:

7 = one period rate of inflation = the rate of change in the CP|,

¥ = log of real GDP, -

i = nominal interest rate = the quarterly average yield on a 90-day T-bill, :
Am = change in the log of the money stock, M1,

i - = ex post real interest rate,
Am — = = real growth in the money stock.

Data used in their analysis were from the period 1959.1 to 1997 4. As part of their analysis,
they checked each of these series for a unit root and suggested that the hypothesis of a unit

root could only be rejected for the last two variables. We will reexamm,ejwﬁy/
longer interval, 1950.2 to 2000.4. The data are in Appendix Table B&71. Figures

drift for all the variables except this one.

The Dickey—Fuiler tests are carried out in Table

234 203

~Thers ara 202 observations used in

each one. Tha first observation is lost when computing the rate of inflation and the change
in the money stock, and one more is lost for the difference term in the regression. The
critical values from interpolating to the second row, last column in each panel for 95 percent

significance and a one-tailed test are -3.68 and

—24.2, respectively, for OF, and DF,, for the

output equation, which contains the time trend, and —3.14 and —16.8 for the other equations,
which contain a constant but no trend. For the output equation {¥}, the test statistics are

_ 0.9584940384 — 1

DF, = 017880922

=232 > -3.44,

F5.2

16 through 273
% 2278 show the behavior of the last four variables. The first two are shown in Figures 2.4 an
22.5. Only the real output figure shows a strong trend, so we will use the random walk wi 22
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T-Bill Rate
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FIGURE 22.6  T-Bill Rate.

AMI1
[\ ]
¥

—_ [ " L I 3 i N | n N " N . N
1950 1963 1976 1989 2002
Q’ﬁ Quarter ‘

FIGURE 22,7 Change in the Monsy Stock.

and
DF, = 202(0.9584940384 — 1) = -8.38 > —21.2,

Neither is less than the critical value, so we conclude (as have others) that there is a unit root
in the log GDP process. The results of the other tests are shown in Table 32.4. Surprisingly,

A
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FIGURE 2.8 Ex Post Real T-Blll Rate.
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FIGURE 229 Changs in the Real Money Stock.

these results do differ sharply from those obtained by Cecchetti and Rich (2001) for » and
Am. The sample period appears to matter; if we repeat the computation using Cecchetti
and Rich's interval, 1959.4 1o 1997.4, then DF; equals —3.51. This is borderline, but less
contradictory. For Amwe obtain a value of —4.204 for DF, when the sample is restricted to
the shorter interval.
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n%
TABLE 32.4 Unit Root Tests (Standard errors of estimates in parentheses)
i 8 Y DF. DF, . Conclusion
' 0.332 : - D659 ~G.A0 -68.88 Reject !—lu

{0.0696) T {00532) R2=0.32,5=0643

y 0.320 0.00033 0958 —235  —848 Do not reject Hy
(0.134) (0.00015) (0.0179) RZ = 10999, s = 0.001

i 0.228 0.961 —~2.14 ~7.88 Do ot reject Hy
(0.109) {0.0182) _R2 = 0933, s = 0.743

Am (0.448 0.596 —7.08 -81.61 Reject Hy
(0.0923) {0.0573) R =0.351, 5 = 0929

i—m 0615 0.557 —-7.57 —89.49 Reject Hy
(0.185) (0.0585)  R=0311, s =2.395

Am—mx 0.0700 0.490 —B8.25 —103.02 Reject Hy
(0.0833) (0.0618)  R*=10239.5=1.176

The Dickey—Fuller tests described in this section assume that the disturbances in the

;. model as stated are white noise. An extension which will accommodate some forms of

e, serial correlation is the augmented Dickey-Tuller test. The augmented Dickey-Fuller
test is the same one as described earlier. carried out in the context of the model

J=p Byt byt YpAY-p t

The random walk form is obtained by imposing & = 0 and g = 0; the random walk
with drift has g =0; and the trend stationary model leaves both parameters free. The
two test statistics are

-1

DF, = Est, Std. Error(y)’

exactly as constructed before, and
Tty -1)
T—h— =5
The advantage of this formulation is that it can accommodate higher-order autoregres-

sive processes in g,.
An alternative formulation may prave convenient. By subtracting v,—; from both

sides of the equation, we obtain % b v f‘ ok o~

DF, =

Ay = 4y b1+ Z¢1A}r—j + &,
j=1

where

. P P
$j=— Z v and y* = (Z}"r‘)"l-

ke=j1 i=1
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The unit Toot test is carried out as before by testing the null hypothesis y* =0 against
| y* < 0.2 The ¢ test, DF,, may be used. If the failure to reject the unit root is taken as
A evidence that a unit root is present, that is, y* =0, then the model specializes to the
“AR(p — 1) model in the first differences which is an ARIMA(p —1, 1, 0) model for ;.
For a model with a time trend, :
2!
Ave=p+ B+ v+ Y ¢An + e,
f=1

the test is carried out by testing the joint hypothesis that g = y* = 0. Dickey and Fuller

{1981) present counterparts to the critical F statistics for testing the hypothesis, Some 23

their values are reproduced in the first row of Table 22.2. (Authors frequently focus on

y* and ignore the time trend, maintaining it only as part of the appropriate formulation.

In this case, one may use the simple test of y* = 0 as before, with the DF; critical values.)

The lag length. p, remains to be determined. As usnal. we are well advisec to

test down to the right value instead of up. One can take the familiar approach and

sequentially examine the f statistic on the last coefficient—the usual ? test is appropriate,

An alternative is to combine a measure of model fit, such as the regression s with one

of the information criteria. The Akaike and Schwarz {Bayesian) information criteria
would produce the two information measures

e s A
IC(p) = (T_ Prmax __K*) +(p+ E )\7_ Pmax — K*)’

K* =1 for random walk, 2 for random walk with drift, 3 for trend stationary,
A* = 2 for Akaike criterion, In(7 — pyax — K*) for Bayesian criterion,
Dmax == the largest lag length being considered.

The remaining detail is to decide upon Pmax. The theory provides little guidance here.
On the basis of a large number of simulations, Schwert {(1989) found that

Pmax = integer part of [12 x (_T/'IOO)'ZS]
gave good results.
Many alternatives to the Dickey-Fuller tests have been suggested, in some cases
to improve on the finite sample properties and in others to accommodate more general

modeling frameworks, The Phillips (1987) and Phillips and Perron (1988) statistic may
be computed for the same three functional forms,

V=8 4+ YV_t AV + o+ vphV_p & 2%%)

where §, may be 0, . or e+ g1. The procedure modifies the two chkey—Fullel statistics
we previously examined:

. feof7—1 1 Ty
Y A i g g =,
i a( k! ) 2(a '(0)\/(1—37

__ T@-1 1/ T2
;.z.y—l'-j)l""""”?_p 2( 52 (_a CO)-

<Al g easily verified that one of the roots of the characteristic polynomialis 1/(y1 + 2 + -+ + ¥p)-
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where
T
$2 St
I-K’ -
vt = estlm'lted asymptotlc var iance of 7,
Cj = = Z e, j=10,.... p= jth autocovariance of residuals,
.!'=j+1 T
co = [(T ~ K)/ 1%, L.

L ,
‘ !
a=cp+2 E (l————)(‘j.
= L+1

[Note the Newey—West (Bartlett) weights in the computation of a. As before, the analyst
must choose .] The test statistics are referred to the same chkey-—Fullel tables we have
used before.

Elliot, Rothenberg, and Stock (1996) have proposed a method they denote the
ADF-GLS procedure, which is designed to accommodate more general formulations
of ¢: the process generating & is assumed to be an [(0) stationary process, possibly an
ARMA(F, 5). The null hypothesis, as before,is y = 1 in (2Q—6) where § = u or g + 1.

The method proceeds as follows: 2 3
Step 1. Linearly regress
v 1 1 1
V= »—Fn on X*= 1 —.-.F or X*= 1” 'i" 2-T
¥r —Tyr_t 1-7 1-—_I_T' T—FT-1)

for the random walk with drift and trend stationary cases, respectively. (Note that the
second column of the matrix is simply 7 + (1 — F)£.) Compute the residuals from this
regression, ¥ = ¥ —&;.F = 1 — 7/ T for the random walk model and 1 —13.5/ T for the
model with a trend.

Step 2. The Dickeyl—Fuller DF; test can how be carried out using the model

V=yh 1+ AWt vpAY s+ 0 '23

If the model does not contain the time trend, then the ZM (¥ — 1) may be
referred to the critical values in the center panel of Table 222 For the trend stationary
model, the critical values are given in a table presented in Elliot et al. The 97.5 percent
critical values for a one-tailed test from their table is —3.15.

As in many such cases of a new techrique, as researchers develop large and small
modifications of these tests, the practitioner islikely to have some difficulty deciding how

to proceed. The Dickey_Fuller procedures have stood the test of time as robust tools

that appear to give good results over a wide range of applications, The Phillips-Perton
tests are very general, but appear to have less than optimal small sample propertics.
Researchers continue to examine it and the others such as Elliot et al. method. Other
tests are catalogued in Maddala and Kitmn (1998).

235 |

A A
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%

Example%zs Augmented Dickey—Fuller Test for a Unit Root in GDFP
The Dickey—Fuller 1981 JASA paper is a classic in the econometrics literature —it is probably
the single most frequently cited paper in the field. it seems appropriate, therefore, to revisit
at least some of their work. Dickey and Fuller apply their methodology to a model for the
log of a quarterly series cn output the Federal Reserve Board Production Index. The model

used is ,2-3

Ye=p A+ B+ ¥V + By — W2} +2p. (22-7)
The test is carried out by testing the joint hypothesis that both g and * are zero in the model

Vo — Vit = p" B Yy + (Yt — Vima) &1

{It y =0, then u* will aI@ construction.} We will repeat the study with our data on real GDP
from Appendix Table F5.1 using observations 1950.1 to 2000.4.

We will use the augmented Dckey—FuI!er test first. Thus, the first step is to determine
the appropriate lag length for the augmented regression. Using Schwert’s suggestion, we
find that the maximum lag length should be allowed to reach p. ={the integer part of
12[204/100}%%} = 14. The specification search uses observations 18 to 204, bacause as many
as 17 coefficients will be estimated in the equation

p
Yi=pn+ Bty +Z Vi AYe-s + ér
=1

In the sequence of 14 regressions with j = 14, 13, ..., the only statistically significant lagged
difference is the first one, in the last regression, so it would appear that the model used by
Dickey and Fuller would be chosen on this basis. The two information criteria produoe a
similar conclusion. Both of them decline monotonlcaliy from j = 14 all the way downto f =1,
so (CJ'I;! this basis, we end the search with j =1, and f'r&oceed to analyze Dickey and Fullers
mo

The linear regression results for the equation in (22.7) are

Yo = 0.368 + 0.000301¢ + 0952y, + 0.36025Ay, 1 +€, §=0.00912

(0.125) (0.000138) (0.0167) (0.0647) R? = 0.999647.
The two test statistics are
0.95166 — 1
DF: = Soterie = 289

and

201(0.95166 — 1)
1 — 0.36025
Neither statistic is less than the respective critical values, which are —3.70 and --24.5. On

this basis, we conclude, as have many others, that there is a unit root in log GDP.
For the Phillips and Perron statistic, we need several additional intermediate statistics.

DF, = = ~15.2863.

Following Hamilton (1994, p. 51 2) we choose L =4 for the long-run variance calculation.
ervalueswe need are 1 .7 =0.9516613, 52 = 0.00008311488, v* = 0.00027942647,

and the first five autocovarlances ¢y =0.000081469, © =-0.00000351162, o=
0.00000688053, o3 = 0.000000597305, and ¢ = —0.00000128163. Applying these to the
weighted sum produces a =0.0000840722, which is only a minor correction to &,. Collect-
ing the results, we obtain the Phillips—Perron statistics, Z, =—2.89921 and Z, = -15.44133.
Because these are applied to the same critical values in the Dickey—Fuller tables, we reach
the same conclusion as before—we do not reject the hypothesis of a unit root in log GDP.

23-/6)
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Z2.2.5 THE KPSS TEST OF STATIONARITY
Kwitkowski et al. (1992) (KPSS) have devised an alternative to the Dickey~Fuller test
for stationarity of a time series. The procedure is a test of nonstationarity against the
null hypothesis of stationarity in the model -

~ '
w=a+pt+yd zite. (=1...,T
i=1

=a+pt+ys+s,

where g is a stationary series and z is an i.i.d. stationary series with mean zero and
variance one. (These are merely convenient normalizations because a nohzero mean
would move to o and a nonunit variance is absorbed in ».) ¥f ¥ equals zero, then the
process is stationary if = 0 and trend stationary if 8 # 0. Because Z,.is /(1}, y is
nonstationary if » is nonzero. T

The KPSS iest of the null hypothesis. Hg: y = 0, against the alternative that y
is nonzero reverses the strategy of the Dickey—Fuller statistic (which tests the null
hypothesis y < 1 against the alternative ¥ = 1). Under the null hypothesis, @ and 8 can
be estimated by OLS. Let ¢, denote the (th OLS residual,

¢ = v, —g — bt,

and let the sequence of partial sums be

E,-—.-ie,-, 1’=1,...,T.

i=l

(Note £7 =0.) The KPSS statistic is
' T 2
KPSS = EJ‘:] Er

- 722
where

T 2 L ; T ’ .
2 e € J Es=;‘+l Es€s—j
o =———+2Z(1——-——)rj and Lj = — ==
r =i L+1 20 T
and L is chosen by the analyst. [See (}9-17).] Under normality of the disturbances. &,
= the KPSS statistic is an LM statistic. The authors derive the statistic under more general
et conditions. Critical values for the test statistic are estimated by simulation. Table )\2,.5
[ 932 gives the vajues reported by the authors (in their Table 1, p. 166). 2 2 2
Example ;ef'4 Is There a Unit Root in GDP? -

Using the data used for the Dickey~Fuller tests in Example 24;6, we repeated the procedure
using the KPSS test with L = 10, The two statistics are 1.953 without the trend and 0.312

3
TABLEf'lﬁ.;z.S, Critical Values for the KPSS Test
Upper Tuil Percentiles
Critical Value 0.100 0.050 0.025 0.010
B=10 0.347 0.463 0.573 0.739

B#0 0.119 0.146 0176 . 0216
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with it. Comparing these results to the values in Table 22.4 we conclude (agam) that there is,
indeed, a unit root in In GDP. Or, more precisely, we conclude that In GDP is not a stationary
series, nor even a trend stationary series.

73 N
#£2.3 COINTEGRATION

Studies in empirical macroeconomics almost always involve nonstationary and trending
variables, such as income, consumption. money demand, the price level, trade flows, and
exchange rates. Accumulated wiscom and the results of the previous sections suggest
that the appropriate way to manipulate such series is to use differencing and other
transformations (such as seasonal adjustiment) to reduce them to stationarity and then
to analyze the resulting series as VARs or with the methods of Box and Jenkins. But
recent research and a growing literature has shown that there are more interesting,
appropriate ways to analyze trending variables.
In the fully specified regression model

= ﬁxf +Ef_a

A4 there is a presumption that the disturbances g, are a stationary, white noise series:!l' But
this presumption is unlikely to be true if v, and x, are integrated series. Generally, if
two series are integrated to different orders, then linear combinations of them will be
integrated to the higher of the two orders. Thus, if y, and x, are J(1)—that is, if both
are trending variables—then we would normally expect y — Bx; to be (1) regardless
of the value of A, not 10) (i.e.. not stationary). If ¥ and x, are each dllftmg npward
with their own trend, then unless there is some relationship between those trends, the
difference between them should also be growing, with yet another trend. There must -

be some kind of inconsistency in the model. On the other hancl, if the two series are _ @
both I(1), then there may be a g such that i \ (T

g =¥ — Bx N b e

is 1{0). Intuitively. if the two series are both /(1), then this partial difference between | &
them might be stable around a fixed mean. The implication would be that the series are 1\, ¢
, drifting together at roughly the same rate. Two series that satisfy this requirement are,, =
“said to be cointegrated, and the vector [1, —B] (or any multiple of it) is a comtq,ratmg |
(1 véctor. In such a case. we can distinguish between a long-run relationship between y,
: and x;, that is, the manner in which the two variables drift upward together, and the
short-run dynamics. that is, the relationship between deviations of v, from its long-run
trend and deviations of x; from its long-run trend. If this is the case, then differencing of
the data would be counterproductive, since it would obscure the long-run relationship /7
between v, and ;. Studies of cointegration and a related technique, error correction, -
are concerned with methods of estimation that preserve the information about both
forms of covariation.!?

WHIf there is autocorrelation in the model, then it has been removed through an appropriate transformation.

2sce, for example, Engle and Gr, anger (1987) and the lengthy literature cited in Hamilton {1994). A survey
paper on VARSs and cointegration is Watson {1994).
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K
Example Z2.5 Cointegration in Consumption and Output

Consumption and income provide one of the more familiar examples of the phenomencn
described.above: The logs of GDP and consumption for 1950.1 to 2000.4 are plotted in
Figure 22.10. Both variables are obviously nonstationary. We have already verified that there
is a unit root in the income data. We leave as an exertise for the reader to verify that the
consumption variable is likewise /({1). Nonetheless, there is a clear relationship between
consumption and output. To see where this discussion of relationships among variables
is going, consider a simple regression of the log of consumption on the log of income,
where both variables are manipulated in mean deviation form (so, the regression includes
a constant). The slope in that regression is 1.056765. The residuals from the regression,
Uy = [InCons*, INGDP*][1, —1.056785]' {(where the **” indicates mean de\natlons) are plotted
in Flgure 22.11. The trend is clearly absent from the residuals. But, itremains to verify whether
the series' of residuals is stationary. In the ADF regression of the least squares residuals
on a constant {random walk with drift), the lagged value and the lagged first difference,
the coefficient on u;_, is 0.838488 {0.0370205) and that on u_y — u_p is —0.098522, (The
constant differs trivially from zero because two observations are lost in computing the ADF
regression.) With 202 observations, we find DF, = —4.63 and DF, = —29.55. Both are well
beiow the critical values, which suggests that the residual series does not contain a unit
root. We conclude (at least it appears so) that even after accounting for the trend, although
neither of the original variables is stationary, there is a linear combination of them that is. if
this conclusion holds up after a more formal treatment of the testing procedure, we will state
that bg% D‘E and log consumption are cointegrated.

Example 22.6 Several Cointegrated Series
The theory of purchasing power parity specifies that in long-run equilibrium, exchange rates
will adjust to erase differences in purchasing power across different economies. Thus, if o
and py are the price levels in two countries and £ is the exchange rate betwesn the two
currencies, then in equilibrium,

=E; P u, aconstant.
Pot
13

FIGURE 22.10 Cointegrated Variables: L.ogs of Consumption
and GDP.
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The price levels in any two countries are likely to be strongly trended. But allowing for short,
term deviations from equilibrium, the theory suggests that for a particular 8 = (Inu, —1, 1),
in the model

nEe = p1 + B2 In Py + Baln por + &1,

g = In v would be a stationary series, which would imply that the logs of the three variables
in the model are cointegrated.

We suppose that the model involves M variables, y, = [vy, ..., ym] which indi-
vidually may be J{0) or I(1), and a Iong—t'un equifibrium relationship,

Yy —x8=0

’ The “regressors” may include a constant, exogenous variables assumed to be [(0).
and/or a time trend. The vector of parameters y is the cointegrating vector. In the short
run, the system may deviate from its equilibrium, so the relationship is rewritten as

Y- X8 =,

i

™

where the cqulllbrmm error &, must be a stationary series. In fact, because there are M
variables in the system. at least in principle. there could be more than one comteglatmg
vector. In a systemn of M variables, there can only be up to M — 1 linearly independent
cointegrating vectors. A proof of this proposition is very simple, but useful at this point.

Proaf: Suppose that y; is a cointegrating vector and that there are M linearly
independent cointegrating vectors. Then, neglecting x/8 for the moment. for
every ¥;,V,¥; is a stationary series v;. Any linear combination of a set of
stationary series is stationary. so it follows that every linear combination of the
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cointegrating vectors is also a cointegrating vector. If there are M such M x |
linearly independent vectors, then they form a basis for the M-dimensional
space, so any M x 1 vector can be formed from these cointegrating vectors,
including the columns of.an M x M identity matrix. Thus, the first column of
an identity matrix would be a cointegrating vector. or y;; is [{0). This resultis a
contradiction, because we are allowing v, to be 7{1). It follows that there can
be at most M — 1 cointegrating vectors,

The number of linearly independent cointegrating vectors that exist in the equilib-
rinm system is called its cointegrating rank. The cointegrating rank may range from 1 to
M — 1. If it exceeds one, then we will encounter an interesting identification problem.

"As a consequence of the observation in the preceding proof, we have the unfortunate
result that, in general, if the cointegrating rank of a sysiem exceeds one, then without
out-of-sample, exact information. it is not possible to estimate behavioral relationships
as cointeg%t%]g vectors. Enders {1995) provides a useful example.

Pl Vo R |

Exampie 227 Muitiple Cointegrating Vectors
We consider the logs of four variables, money demand m, the price level p, real income ¥,
and an interest rate r. The basic relationship is

m=y+pyp+yy+yr+e.

The price level and real income are assumed to be f (1}. The existence of long-run equilibrium
in the money market implies a cointegrating vector .. if the Fed foliows a certain feedback
rule, increasing the money stock when nominal income (¥ + p) is low and decreasing it when
nominal income is high—which might make more sense in terms of rates of growth--then
there is a second cointegrating vector in which 4 = y» and 1a = 0. Suppose that we label
thie vector «z. The parameters in the money demand equation, notably the interest elasticity,
are interesting quantities, and we might seek to estimate «4 to learn the value of this quantity.
But since every linear combination of ¢4 and «; is a cointegrating vector, to this point we are
only able to estimate a hash of the two cointegrating vectors.

in fact, the parameters of this model are identifiable from sample information {in principle).
We have specified two cointegrating vectors,

o1 = [1, —¥10, —¥11, —¥12. —V14]
and
M = {1| —¥eo, Y1, 7‘21!0],-

Although it is true that every linear combination of «; and &, is a cointegrating vector, only
the original two vectors, as they are, have a 1 in the first position of both and a 0 in the
last position of the second. (The equality reslriction actually overidentifies the parameter
matrix.) This result is, of course, exactly the sort of analysis that we used in establishing the
identifiability of a simultansous equations system.

/L’B
#2.31 COMMON TRENDS

If two [(1) variables are cointegrated, then some linear combination of them is 7(0).
Intuition should suggest that the linear combination does not mysteriously create a
well-behaved new variable; rather, something present in the original variables must be
missing from the aggregated one. Consider an example. Suppose that two /(1) variables
have a linear trend,

Vie =& + Bt + 14,
vy =y + 8+ 1y,
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where ¢, and v are white noise. A linear combination of vy, and va; with vector (1, 8)
produces the new var mble

#__(Cf +8y)+ (B +98) +.u + By,

which, in general, is still /(1). In fact, the only way the z series can be made stationary
isif @ = —A/8. If so, then the effect of combining the two variables linearly is to remove
the common linear trend, which is the basis of Stock and Watson’s (1988} analysis of the
problem. Bat their observation goes an important step beyond this one. The onfy way
that vy, and vy can be cointegrated to begin with is if they have a conmimon trend of some
sort. To continue, suppose that instead of the linear trend /7, the terms on the right-hand
side, y; and w. are functions of a random walk, w, = w,_j + n,. where n, is white noise.
The analysis is identical. But now suppose that each variable y; has its own random
walk component wy, { = I, 2. Any linear combination of v, and y, must involve hotfz
ranclom walks. It is clear that they cannot be comteglated unless, in fact, wy, = wo.
That is, once agam they must have a common tr(.n(l Fma]ly suppose that \1, and vy
share two common trends,

Y1 = o + 1+ Awe + 4y,
Va =y + 8 +aw: +u.

We place no restriction on A and . Then, a bit of manipulation will show that it is not
possible to find a linear combination of y; and v, that is cointegrated, even though
they share common trends. The end result for this example is that if v, and vy are
cointegrated. then they must share exactly one common trend.

As Stock and Watson determined, the preceding is the crux of the cointegration
of economic variables. A set of M variables that are cointegrated can be written as a
stationary component plus linear combinations of a smaller set of common trends. If
the cointegrating rank of the system s r, then there can be up to M — r linear trends and
M - r common random walks. [See Hamilton (1994, p. 578).] (The two-variable case is
special. In a two-variable system, there can be only one common trend in total.) The
effect of the cointegration is to purge these common trends from the resultant variables.

% 2’2.3.2 ERROR CORRECTION AND VAR REPRESENTATIONS

Suppose that the two /(1) variables y; and z are cointegrated and that the cointegrating
vector ts |1, —8]. Then all three variables. Ay =¥ — -1, Az, and (n — 82) are 1(0).
The error correction model

Ave = X8 + v (AZ) + A(3-1 ~ 0%-1) + &

clescribes the variation in v, around its long-run trend in terms of a set of /(0) exogenous
factors x,, the variation of 7 around its long-run trend, and the error correction (v, —8.z,).
which is'the equilibrium error in the model of cointegration. There is a tight connection
between models of cointegration and models of ertor correction. The model in this form
is reasonable as it stands, but in fact, it is only internally consistent if the two variables
are cointegrated. If not, then the third term, and hence the right-hand side, cannot be
1(0), even though the lefi-hand side must be. The upshot is that th’gl same assumption
that we make to produce the cointegration implies (and is implied by) the existence
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g Vi of an ervor correction model.l¥ As we will examine in the next section. the utility of
this representation is that it suggests a way to build an elaborate inodel of the long-run
~variation in ¥, as well'as a test for cointegration. Lookmg ahead. the preceding suggests
that 1e51duals from an estimated cointegration model—that is. estimated equilibrium
errors—can be included in an elaborate model of the fong-run covariation of » and
Z:. Once 2 again, we have the foundation of Engel and Granger’s approach to analyzing
cointegration.
Consider the VAR representation of the model

¥ = ._1.-',.‘_‘}—1 + &
where the vector y, is [v. z J. Now take first differences to obtain
Yr = Y-t = (I ~ Oyt .80
or
Ay = IL¥i—1 +81.

If all variables are /(1}. then all M variables on the left-hand side arve J(0). Whether
those on the right-hand side are /(0) remains to be seen. The matrix I1 produces linear
combinations of the variables in y,. But as we have seen, not all linear combinations
can be cointegrated. The number of such independent linear combinations is r < M.
Therefore, althongh there must be a VAR representation of the model, cointegration
implies a restriction on the rank of I1. It cannot have full rank:itsrank is r. From another
viewpoint, a different approach to discerning cointegration is suggested. Suppose that
we estimate this model as an unrestricted VAR. The resuitant coefficient matrix should
be short-ranked. The implication is that if we fit the VAR model and impose short rank
on the coefficient matrix as a restriction—how we could do that remains to be seen—
then if the variables really are cointegrated, this restriction should not lead to a loss
of fit. This implication is the basis of Johansen’s (1988) and Stock and Watson's (1988)
analysis of cointegration.

4% AB.33 TESTING FOR COINTEGRATION

A natural first step in the analysis of cointegration is to establish that it is indeed a
characteristic of the data. Two broad approaches for testing for cointegration have
been developed. The Engle and Granger {1987) method is based on assessing whether
single-equation estimates of the equilibrium errors appear to be stationary. The second
s approach, due to Johansen (1988, 1991) and Stack and Watson (1988). is based on the
VAR approach. As noted earlier, if a set of variables is truly cointegrated, then we
should be able to detect the implied restrictions in an otherwise unrestricted VAR. We
will examine these two methods in turn.
Let ¥, denote the set of M variables that are believed to be cointegrated. Step one

of either analysis is to establish that the variables W 23
order. The Dickey-Fuller tests discussed in Section.£2.2.4 can be used for this purpose.
If the evidence suggests that the variables ave integrated to different orders or not at

all, then the specification of the model should be reconsidered.

“!*The result in its general form is known as the Granger representation theorem. See Hamitton (1994, p. 582).



[

Pesaran, Shin and Smith (2001) suggest a method of testing for a relationship in’ |
levels between a y; and x, when there exist significant lags in the error correction form. "' [yoend ¢
_Their bounds test accommodates the possibility that the regressors may be trend or | bost | €
difference stationary. The critical values they provide give a band that covers the polar | |

cases in which all regressors are 1(0), or are I(1), or are mutually cointegrated. The | '~
“statistic is able to test for the existence of a levels equation regardless of whether the | © "]
variables are [(0), I(1) or are cointggrated. In their application, y is real earnings inthe | |z
UK while x, includes a measure of. productivity, the unemployment rate, unionization of

the work force, a “replacement ratio” that measures the difference between
unemployment benefits and real wages, and a “wedge” between the real product wage

and the real consumption wage. It is found that wages and productivity have unit roots.

The issue then is to discern whether unionization, the wedge, and the unemployment rate,

which might be I(0), have level effects in the model.

|
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If the coitegration rank of the system is r. then there are r independent vectors,

¥; = [1,—8;]. where each vector is distinguished by being normalized on a different

_ variable. If we suppose that there are also a set of /(0) exogenous variables, includ-

ing a constant, in the model.-then each cointegrating vector produces the equilibrium
relationship S ‘

4
.-.v’ryi = X% f + €.
which we may rewrite as
Yir = Y[ B + X8 + &

We can obtain estimates of 8; by least squares regression. If the theory is correct and if
this OLS estimator is consistent. then residuals from this regression should estimate the
equilibrium errors. There are two obstacles to consistency. First, because both sides of
the equation contain /(1) variables, the problem of spurious regressions appears. Sec-
ond, a moment’s thought should suggest that what we have done is extract an equation
from an otherwise ordinary simultaneous equations model and propose to estimate its e
parameters by ordinary least squares. As we examined in Chapter J37Consistency is
unlikely in that case. It is one of the extraordinary results of this body of theory that in
this setting, neither of these considerations is a problem. In fact, as shown by a number
- of authors [see, e.g.. Davidson and MacKinnon (1993)], not only is ¢;, the OLS estimator
Al of 8. consistent, it is supefeonsistent in that its asymptotic variance is O(1/ 72) rather
than O(1/7) as in the usual case. Consequently. the problem of spurious regressions
disappears as well. Therefore, the next step is to estimate the cointegrating vector(s).
by OLS. Under all the assumptions thus far, the residuals from these regressions, ¢,
are estimates of the equilibrium errors, g;;. As such, they should be J(0). The natural
approach would be to apply the famitiar Dickey_'—‘lFuIIer tests to these residuals. The
logic is sound, but the Dickey-Fuller tables are inappropriate for these estimated er-
rors. Estimates of the appropriate critical values for the tests are given by Engle and
Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris (1990), and Davidson and
MacKinnon (1993). If autocorrelation in the equilibrium errors is suspected, then an
augmented Engle and Granger test can be based on the template

Aej =8¢,y + @r(deg,_) + - 1t

If the null hypothesis that § = 0 cannot be rejected (against the alternative § < 0), then
we conclude that the variables are not cointegrated. {Cointegration can be rejected by
this method. Failing to reject does not confirm it, of course. But having failed to reject
the preseagge of cointegration. we will proceed as if owr finding had been affirmative.}

Example¥R2.8 (Continued) Cointegration in Consumption and Qutput
In the example presented at the beginning of this discussion, we proposed precisely the sort
of test suggested by Phillips and Ouliaris {1990) to determine if (log) consumption and {log)
GDP are cointegrated. As noted, the logic of our approach is sound, but a few considerations
remain. The Dickey-Fuller critical values suggested for the test are appropriate only in a few
cases, and not when several trending variables appear in the equation. For the case of only
a pakr of trended variables, as we have here, one may use infinite sample values in the
Dickey~Fuller tables for the trend stationary form of the equation. (The drift and trend would
have been removed from the residuals by the original regression, which would have these
terms either embedded in the variables or explicitly in the equation.) Finally, there remains an
issue of how many lagged differences to include in the ADF regression. We have specified
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one, although further analysis might be called for. [A lengthy discussion of this set of issues
appears in Hayashi (2000, pp. 645-648).] Thus, but for the possibility of this specification
issue, the ADF approach suggested in the introduction does pass muster. The sample value
found earlier was —4.83. The critical values from the table are —3.45 for 5 percent and —3.67
for 2.5 percent. Thus, we conhclude (as have many othefanalysts) that log consumption and
log GDP are cointegrated.: ’

The Johansen {1988, 1992) and Stock and Watson (1988) methods are similar, so
we will describe only the first one, The theory is beyond the scope of this text, although
the operational details are suggestive. To carry out the Johansen test, we first formulate
the VAR:

e =TYe + ¥ 2+ +-prr—p +&;.

The order of the model, p. must be determined in advance. Now, let H denote the vector
of M(p — 1) variables,

=[AV, 1 AV, Dy eaaa Av!—-pH]-

Thatis, 7, contains the lags 1to p—1 of the first differences of all M variables, Now, using
the T available observations, we obtain two T x M matrices of least squares residuals:

D= the residuals in the regressions of Ay, on z,
E = the residuals in the regressions of y,_ —pOnZ.

We now require the M? tanomml correlations between the columns i in 1) and those
in E. To continue, we will digress bueﬂy to define the canonical correlations. Let, a0
denote a linear combination of the columns of ID. and let g} denote the same fxom
E. We wish to choose these two linear combinations so as to maximize the correlation
between them. This pair of variables are the first canonical variates. and their corretation
rt is the first canonical correlation. In the setting of cointegration, this computation has
some intuitive appeal. Now, with df and ¢} in hand, we seek a second pair of variables d3
arl e} to maximize their correlation, subject to the constraint that this second variable
in each pait be orthogonal to the first. This procedure continues for all M pairs of
variables. It turns out that the computation of all these is quite simple. We will not need
to compate the coefficient vectors for the linear combinations. The squared canonical
correlations are simply the ordered characteristic roots of the matrix

R* = Rp5 RoeRzEREDR DS

where R;; is the (cross-) correlation matrix between variables in set i and set j, for
i f=DE

~ Finally. the null hypothesis that there are r or fewer cointegrating vectors is tested
using the test statistic

M
TRACE TEST = —T > Infl — ¢})’}.
d=rl

If the correlations based on actual disturbances had been observed instead of estimated.
then we would refer this statistic to the chi-squared distribution with M — r degrees
of freedom. Alternative sets of appropriate tables are given by Johansen and Juselius
(1990) and Osterwald-Lenum (1992). Large values give evidence against the hypothesis
of r or fewer cointegrating vectors.

23-26
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#2.3.4 ESTIMATING COINTEGRATION RELATIONSHIPS

Both of the testing procedures discussed earlier involve actually estimating the coin-
tegrating vectors, so this additional section is actua]ly superfluous. In the Engle and
Granger framework, at a second step after the cointegration test, we can use the resid-
uals from the static regression as ror correction term in a dynamic, first-difference
regression, as shown in Section(22.4.2. {ne can then “test down™ to find a satisfactory
structure, In the Johansen test shoWn earlier, the characteristic vectors corresponding to
the canonical correlations are the sample estimates of the cointegrating vectors. Once
again, computation of an error correction model based on these first step results is a
natural next step. We will explore these in an application.

,2?.3.5 APPLICATION: GERMAN MONEY DEMAND

The demand for money has provided a convenient and well targeted iilustration of
methods of cointegration analysis. The central equation of the model is 23

fy — pr= e+ By + yip + & (32-8)

where sy, pr.and v are the logs of nominal money demand, the price level, and cutput,
and { is the nominal inferest rate (not the log of). The equaticn involves trending
variables (#11, pr, ¥). and one that we found earlier appears to be a random walk with
drift ;). As sich, the usual form of statistical inference for estimation of the income
clasticity and interest semielasticity based on stationary data is likely to be misleading,
Beyer (1998) analyzed the demand for money in Germany over the period 1975
to 1994. A central focus of the study was whether the 1990 reunification produced a
structural break in the long-1un demand function. {The analysis extended an earlier
study by the same author that was based on data that predated the reunification.) One
of the intergsting questions pursued in this literature concerns the stability of the Iong;
term demand equation, 23

(m—py — ¥ = p + vie + & Z2-9)

The left-hand side is the log of the inverse of the velocity of money, as suggested by —

Lucas (1988). An issue to be confronted in this specification is the exogeneity of the
interest variable—exogeneity [in the Engle. Hendry, and Richard (1993) sense} of in-
come is moot in the long-run equation as its coefficient is assumed (per Lucas) to
equal one. Beyer explored this latter issue in the framework developed by Engle et al.
(see Section 22.3.5}).and through the Granger causality testing methods discussed in
Section 20.6.5:

The analytical ptatform of Beyer’s study is a long-run function for the real money
stock M3 (we adopt the author’s notation) 1%

(- py =g+ &1 v+ 8RS + 8RL + 843A4p, Z-10)

where RS is a short-term interest rate. RL is a long-lerm interest rate, and Ay p is the
annual inflation rate—_-the data are quarterly. The first step is an examination of the
data. Augmented Dickey-Fuller tests suggest that for these German data in this period,

sy and p, are 1(2), while (8, — pr), v, Aapr, RS, and RL, are all /(1). Some of Beyer’s

results which produced these conclusions are shown in Ta .6. Note that although
both gy and p, appear to be /(2), their simple difference{linear combination) is 1(1),

23

(2 3"2"7' ‘
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1%

TABLE 22.6 Augmented Dickey-Fuller Tests for Variables in the Beyer Model

Variable m Am Alm p Ap Alp Agp AAgp
Spec. TS RW “RW TS RW/D RW RW/D> RW
lag 0 4 3 4 3 2 2 2

DF, —-1.82 ~1.61 ~H87 209 214 106 =266 —5.48
Crit. Value =347 —1.95 —1.95 =347 —2.90 - 1,95 —2.90 —1.9%
Variable ¥ Ay RS ARS RL ARL tm—-p)  Alm-p
Spec. TS RW/D TS RW TS RW RW/D RW/D
lag 4 3 1 ¢ 1 0 0 0

DF, ~1.83 —2.91 -~233 =526 240 —6.01 —1.68 —8.50
Crit. Value -347 =290 -290 -1.95 -2.90 -195 =347 —2.90

that is. integrated to a lower order. That produces the long-run specification given by
((»22 10). The Lucas specification is layered onto this to produce the model for the long—,

run velocity

72
(m—p—y) =8 +8RS +5RL + 8 Ay p.

2%

22.3.5.a Cointegration Analysis and a Long-Run Theoretical Model

For (22-10) to be a valid model. there must be at least one cointegrating vector that

23 " rans

transforms z, = [(1, — 1), ¥, RS;, RE;. Aqp] to stationarity. The Johansen trace test
described in Section 22.3.3'was applied to the VAR consisting of these five /(1) vari-
ables. A lag length of two was chosen for the analysis. The results of the tr ace test are a
bit ambiguous; the hypothesis that r = 0 is rejected. atbeit not strongly (sample value =
90.17 against a 95 percent critical value = 87.31) while the hypothesis that r < 1 is
not rejected (sample value = 60.15 against a 95 percent critical value of 62. 90) {These
borderline results follow from the result that Beyer's first three eigenvalues;~-canonical
correlations in the trace test statistic;—are nearly equal. Variation in the test statistic
results from variation in the correlations.) On this basis, it is concluded that the cointe-
grating rank equals one. The unrestricted cointegrating vector for the equation, with a

time trend added is found to be
0.936y — 1.780A4p + LOOIRS — 3.279RL 4 0.0021.

7%
im—py=

(22:11)

(22-12)

23-28"

(These are the coefficients from the first characteristic vector of the canonicalcorrelation 2 3

analysis in the Johansen computations detailed in Section 22.3.3.) An exogeneity test—
we have notdevelopedthisindetail: see Beyer (1998.p. 59). Hendry and Ericsson (1991),
and Engle and Hendry (1993)—confirms weak exogeneity of all four right-hand-side
variables in this specification. The final specification test is for the Lucas formulation
and elimination of the time trend, both of which are found to pass, producing the

cointegration vector

(n — —~1.832A4p + 4.352R8 — 10.80RL.

p=v)=

The conclusion drawn from the cointegration analysis is that a single-equation
model for the long-run money demand is appropriate and a valid way to proceed. A
last step before this analysis is a series of Granger causality tests for feedback between
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2\
changes in the money stock and ;?Gu' right-hand-side variables in (22-12) (not in-
cluding the trend). (See Section 200.6.5.) The test results are generally favorable, with

- some mixed results for exogeneity of GDP.

% #2.3.5b Testing for Mddel Instabifity

Letz, = [(m, — i) ¥ Bapr RSe, RL,} and let 20, denote the entire hleOly of 7 up
to the previous period. The joint distribution for z,. conditioned on z°_, and a set of
parameters W factors one level further into

f(’i' I’r.,..]-: - f[('ﬂ - P)r | "I! A4pf9 th RLI“: f 1~ ‘pt]
x g(\ Aapi. RS, RL, \112)

The result of the exogeneity tesis carried out earlier 1mp]1es that the conditional
distribution may be analyzed apart from the marginal distribution—that is, the im-
plication of the Engle, Hendry, and Richard results noted earlier. Note the partitioning
of the parameter vector. Thus. the conditional model is represented by an error cotrec-
tion form that explains A(sn — p); in terms of its own lags, the error cortection term
and contemporaneous and lagged changes in the (now established) weakly exogenous
variables as well as other terms such as a constant term, trend, and certain dummy
variables which pick up particular events. The error correction model specified is

Al ~ p)y = Z A — pY + Za’; ,A(Am_,) +Z(i2,Av,_,
2] ’ il

2.3
+ Z dr i ARS,; + Z di s ARL ;i + 2{m— p— ¥} (2é-13)
i=0 funl)
+ RS+ yaRLiy +di + i,

where d, is'the set of additional variables. including the constant and five one-period
dummy variables that single out specific events such as a currency crisis in September,
1992 [Beyer (1998, p. 62, fn. 4)]. The model is estimated by least squares, “stepwise
simplified and reparameterized.” (The number of parameters in the equation is reduced
from 32 to 15!14) 173 .

The estimated form of 22-13) is an autoregressive distributed lag model. We pro-
ceed to use the model to solve for the long-run. steady-state growth path of the real
money stock. (27-10). The annual growth rates Ay = g,, A4p = 2, Agy = gy and
('nssumed) A4RS = grs = A4RL = ggy = 0 are used for the solutiond

C da 2
:‘(gm — 8p) = f(gm —82p) dl,l.’;'p + ?gv + YRS+ y2RL + A(n —p—¥
This equation is solved for (sn— p)* under the assumption that g,, = (g, + g,).
(m—p)* =8 +31g,+y+584p+ 8RS+ 8R1..

Analysis then proceeds based on this estimated long-un relationship.

WA The cquation ultimately used is A(my, — py) = A[A(m — pY—y. AAy ;. Azy,..,g. ARS 1+ ARS, 1. AZ_RL,.

RS RLy—y. Aupry. (0t~ p— Yl .ﬁ(h_}.

J5The division of the coefficients is done because the inteivening lags do not appear in the estimated equation.

/23-29
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The primary interest of the study is the stability of the demand equation pre-
and postuniﬁcation A comparison of the parameter estimates from the same set of
procedures using the period 1976-1989 shows them to be surprisingly similar.
[(l 22 — 3.67g,).1,-3.67.3.67, —6. 44} for the earlier period and [(1.25 ~ 2.09g,). 1.
—3.625, 3.5, —7.25] for the latel one. This suggests, albeit informally. that the function
has not changed (at least by much). A variety of testing procedures for structural break
led to the conclusion that in spite of the dramatic changes of 1990, the long-run money
demand function had not materially changed in the sample period.

2(2.4 NONSTATIONARY PANEL DATA
1z

In Section ¥¥3, we began to examine panel data settings in which 7', the number of
ObSEIV"lth]’lS in each group (e.g., country), became large as well as #. Applications
include cross-country studies of growth using the Penn World Tables [Im, Pesaran,
and Shin (2003) and Sala-i-Martin (1996)]. studies of purchasing power parity {Pedroni
(2001)], and analyses of health care expenditures [McCoskey and Selden (1998)]. In the
small 7 cases of longitudinal, microeconomic data sets, the time-series properties of the
clata are a side issue that is usually of little interest. But when 7 is growing at essenttaily
the same rate as 21, for example, in the cross-country studies, these properties become a
central focus of the analysis.

The {arge T, large n case presents several complications for the analyst. In the lon-
gitudinal analysis, pooling of the data is usually a given, although we developed several
extensions of the models to accommodate parameter heterogeneity (see Sectionﬂﬁ/
In a long-term cross-country model, any type of pooling would be especially suspect.
The time series are long, so this would seem to suggest that the appropriate modeling
strategy would be simply to analyze each country separately. But this would neglect the
hypothsized commonalities across countries such as a (proposed) common growth rate.
Thus, the recent “time-series panel data™ literature seeks to reconciie these opposing
features of the data.

As in the single time-series cases examined earlier in this chapter, long-term aggre-
gate series are usually nonstationary, which calls conventional methods (such as those

Winto question. A focus of the recent literature, for example. is on test-
ing for unit roots in an analog to the platform for the augmented Dickey-Fuller tests
(Section 242).

Z g L;
Ayir = P Vig-1 -+ Z VirnA,‘fl',r—m + o + Gif + &
=1
Different formulations of this model have been analyzed, for example. by Levin, Lin.and
Chu (2002), who assume p; = p: Im. Pesaran, and Shin (2003), who relax that restriction:
and Breitung {2000). who considers various mixtures of the cases. An extension of the
KPSS test in Section/%.2.5 that is particularly simple to compute is Hadri’s (2600) LM

statistic.,
12 L (SR LSS
A y .

22 '
=1 1 O -”

1N
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This is the sample average of the KPSS statistics for the # countries. Note that it includes
two asswmptions: that the countries are independent and that there is a common o for
all countries. An alternative is suggested that allows cr to vary across countries.

As it stands, the preceding model would suggest that separate analyses for each
country would be appropriate. An issue to consider, then, would be how to combine,
if possible, the separate results in some optimal fashion. Maddala and Wu (1999), for
example, suggested a *Fisher-type” chi-squared test based on P = —23%; In p;, where p;
is the p-value from the individual tests. Under the null hypothesis that p; equals zero,
the limiting distribution is chi-squared with 2# degrees of freedom. '

Analysis of cointegration, and models of cointegrated series in the panel data set-
ting, parallel the single time-series case, but also differ in a crucial respect. [See. e.g.,
Kao (1999), McCoskey and Kao (1999), and Pedroni (2000. 2004)]. Whereas in the sin-
gle time-series case, the analysis of cointegration focuses on the long-run relationships
between, say, x, and 7 for two variables for the same country, in the panel data setting,
say, in the analysis of exchange rates, inflation. purchasing power parity or international
R & D spillovers, interest may foeus on a long-run relationship between x;, and x,, for
two different countries {or n countries). This substantially complicates the analyses. It is
also well beyond the scope of this text. Extensive surveys of these issues may be found
in Baltagi (2005, Chapter 12) and Smith (2000).

ng 22.5 SUMMARY AND CONCLUSIONS

22
22

This chapter has completed our survey of techniques for the analysis of time-series data.
While Chapters 20 and 21 were about extensions of regression modeling to, time-series

setting, most of the results in this chapter focus on the internal structure of the individual
time scries, themselves. Chapter 2 presented the standard models for time-series pro-

23

Key Terms and Concepis

cesses, White the empitical distinction between, say, AR(p) and MA(g) series may seem
ad hoc, the Wold decomposition assures that with enough care, a variety of models can
be used to analyze a time series. This chapter described what is arguably the fundamental
tool of modern macroeconometrics: the tests for nonstationarity. Contemporary econo-
metric analysis of macroeconomic data has added considerable structure and formality
to trending vaiiables, which are more common than not in that setting. The variants
of the chkey Fuiler and KPSS tests for unit roots are an indispensable tool for the
_analyst of time-series data, Section 274 then considered the subject of cointegration.

“This modeling framework is a distinct extension of the regression modeling where this
discussion began. Cointegrated relationships and equilibrium relationships form the
basis of the fime-series counterpart to regression relationships. But, in this case. it is not
the conditional mean as such that is of interest. Here, both the long-run equilibrium
and short-run refationships around trends are of interest and are studied in the data.

* Auloregressive integrated + Canonical cosrelation « Common trend
moving-average (ARIMA)  « Cointegration ‘e Data generaling process |
process « Cointegration rank (DGP) |

» Augmented Dickey-Fuller &~ Cointegration relationship '~ Dickey-Fuller test
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s Error correction modet « Phillips-Perron test * Superconsistent
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§,~* KPSS fest i~ Spurious regression
Exercise

1. Find the autocorrelations and partial autocorrelations for the MA(2) process

g =~ Bvy — By g

Applicaﬁons 27,

1. Carry out the ADF test for a unit root in the bond yield data of Example AL
2. Using the macroeconomic data in Appendix Table F5.% estimate by teast squares F ; ’)

the parameters of the model o= — s
=B+ v+ facio1 + Sac2 + &1,

where ¢; is the log of real consumption and y, is the log of real disposable income.

a. Use the Breusch and Pagan test to examine the residuals for autocorrelation,

b. Is the estimated equation stable? What is the characteristic equation for the au-
toregressive part of this model? What are the roots of the characteristic equation,
using your estimated parameters?

c. What is your implied estimate of the short-run (impact) multiplier for change in
¥ on ¢;? Compute the estimated long-run multiplier.

3. Carry out an ADF test for a unit root in the rate of inflation using the subset of
the data in Appendix Table F5.\since 1974.1. (This is the first quarter after the oil
shock of 1973.) z A

4. Estimate the parameters of the model in Example 134 using two-stage least sq
Obtain the residuals from the two equations. Do these residuals appear to be White
noise series? Based on your findings, what do you conclude about the specification
of the model?




