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MAXIMUM LIKELITHOOD
ESTIMATION
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/ _
,‘I’%'I INTRODUCTION
i3 fé
The generalized method of moments discussed in Chapter ,16/ nd the s?ifmametuc,
nonparametric, and Bayesian estimators discussed in Chaptels and 18 are becoming
widely used by model builders. Nonetheless, the maximum likelihood estimator dis-
cussed in this chapter remains the preferred estimator in many more settings than the
othels listed. As such, we focus our discussion of generally applied estimation methods
I 4 “"on this technique. Sectlommoumé present basic statistical results for estima- %
tion and hypothesis testing based on the maximum likelihood principle, Sections }§.7
] and 16:8 present two extensions of the method, two-step estimation and pseudo max-
¢ imum likelihood estimation. After establishing the general results for this method of
estimation, we will then apply them to the more familiar setting of econometric models.

The applications presented in Section }J89 apply the maximum likelihood method to
most of the models in the preceding chapters and several others that illustrate different
uses of the technique. / 7

1
162 THE LIKELIHOOD FUNCTION AND
IDENTIFICATION OF THE PARAMETERS

The probability density function, or pdf, for a random variable, y, conditioned on a
set of parameters, #, is denoted f(y|#):¥This function identifies the datalgenerating
process that underlies an observed sample of data and, at the same time, provides a
mathematical description of the data that the process will produce. The joint dcns:ty
of nt independent and identically distributed (i.i.d.) observations from this process is the
product of the individual densities;

14
fOnees n|8) = Hf(v,w)_ L8 | y)- (1651)

VST i=l
. This joint density is the llkellh()ﬂd hmctlon, defined as a function of the unknown
parameter vector, @, where b4 is nsed to indicate the collection of sample data. Note
that we write the ]omt densify as a function of the data conditioned on the parameters
whereas when we form the likelihood function, we will write this function in reverse,

‘}Later we will extend this to the case of a random vector, ¥, with a multivariate density, but at this point, that
woukd complicate the notation without adding anything of substance 1o the discussion.

482
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as a function of the parameters, conditioned on the data. Though the two functions are
the same, it is to be emphasized that the likelihood function is written in this fashion
to highlight our interest in the parameters and the information about them that is
contained in the observed data. However, it is understood that the likelihood function
is not meant to represent a probability.density for the parameters as it is in Chapter 18.
In this classical estimation framework, the parameters are assumed to be fixed constants
that we hope to learn about from the data.
It is usually simpler to work with the log of the likelihood function:

n If
nL@|y) = Inf(n]h. (#6-2)

i=l

Again, to emphasize our interest in the parameters, given the observed data, we denote
this function L(f |data) = _L(#]y). The likelihood function and its logarithm, evalu-
ated at 8, are sometimes denoted simply L(f) and In L(6), respectively, or, where no
ambiguity can arise, just Lor In L.

It will usually be necessary to generalize the concept of the likelihood function to
allow the density to depend on other conditioning variables. To jump immediately to
one of our central applications, suppose the disturbance in the classical linear regres-
sion model is normally distributed. Then, conditioned on its specific %;, y; is normaily
distributed with mean y; = x{ 8 and variance 2. That means that the observed random
variables are not i.i.d.; they havc different means. Nonetheless, the observations are
independent, and as we will examine in closer detail,

InLif 1y, X) = Zln for X == Z[lna +InQm) + (1~ % 8)* /07, (m 3)

=l

where X is the 12 x K matrix of data with ith row equal to x}.
The restof this chapter will be concerned with obtamlng estimates of the parameters,
9, and in testing hypotheses about them and about the data-generating process. Before
we begin that study, we consider the questaon of whether estimation of the parameters
is possible at all.—the question of ulentihcatlan. Identification is an issue related to the
formulation of the model. The issue of identification must be resolved before estimation
can even be considered. The question posed is essentially this: Suppose we had an
infinitely large sample——that is, for current purposes, all the information there is to be
had about the parameters. Could we uniquely determine the values of # from such a

sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 16.1 Hentification
The parameter vecior 8 is identified (estimable) if for any other parameter vecior,

0* £9, for some datay, L(9* |y} # L@ | y).

This resuit will be crucial at several points in what follows, We consider two examples,
the first of which will be very familiar to you by now.
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Example W1 Identification of %am ers

For the. regression model specified in (16-3), sdppose that there is a nonzero vector a such
that x;a = O for every x;. Then there is ancthér “parameter” vector, y = # +a # 8 such that
XiB = Xy for every x,. You can see in (W623) that if this s the case, then the log-fikelihood
is the same whether it is evaluated at g or at . As such, it is not possible to consider
estimation of 8 in this model because 8 cannot be distinguished from y. This is the case of
* perfect collinearity in the regression model, which we ruled out when we first proposed the

linear regression model with “Assumption 2. Identifiability of the Model Paramaters.”
The preceding dealt with a hecessary characteristic of the sample data, We now consider
a model in which identification is secured by the ification of the parameters in the model.
r-,' {We will stidy this model iy detall in Chaptar 234 Consider a simple form of the regression
model considered earfier, y1 = 1 + Box; + &, where & | % has a normal distribution with zero
mean and variance o2. To put the model ifi a context, consider a consumer’s purchases of
a large commeodity such as a car where x; is the consumer’s income and y; is the difference
between what the consumer is willing to pay for the car, pt, and the price tag on the car, p;.
Suppose rather than observing pf or p;, we observe only whether the consumer actually
purchases the car, which, we assume, 6ccurs when y; = pf — py is positive. Collecting this
information, our modef states that they will purchase the car if y; > 0 and not purchase it if
¥ = 0. Let us form the likelihood function for the observed data, which are purchase {or not)
and income. The random variable in this model is “purchase” or “not purchase” --there are

only two outcomes. The probability of a purchase is :

Prob{purchase| A1, 2, o, X) = Prob(y; > 0| 81, fz, 0, %))
= Prob{; + fox; + & > 0| By, B2, 0, X))
= Proble) > —(1 + 1) | B1, B2, 0, 1}
= Problei/o > ~(81 + B2x) /o | B1. e, 0, X1}
= Problz) > —(B1 + paXi) /o | B, B, 0, 1]

where z, has a standard normal distribution. The probability of not purchase is just one minus
this probability. The likelihood function is

[] (Provjpucheseipy. fo.ox)] T [t~ Problpurchase| gy, o, o, i)

f=purchased f=not purchased

We need go no further to see that the parameters of this model are not identified. If 5, 8, and
o are allmuiltiplied by the same honzero constant, regardless of what itis, then Prob(purchase)
/4 _Is unchanged, 1 — Prob(purchase) is also, and the likelihood function does not change.
| 1< This model requires a normalization. The one usually used is o =1, but some authors
[e.g., Horowitz (1993)] have used §; =1 instead.

18.3 EFFICIENT ESTIMATION: THE PRINCIPLE
OF MAXIMUM LIKELIHOOD

b
i

The principle of maximum likelihood provides a means of choosing an asymptatically
efficient estimator for a parameter or a set of parameters. The logic of the technique is
easily illustrated in the setting of a discrete distribution. Consider a random sample of
the following 10 observations from a Poisson distribution: 5,0,1,1,0.3,2,3. 4. and 1.
The density for each observation is

P
!

J(yi18) ="
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Because the observations are independent, their joint density, which is the likelihood

for this sample, is - ~ n
| U e B
10 e~ 1099l ~ 100 420 = A
gELy. =109 ; \
1 32, 31018) =[] ) =< : . .
f(-}l .} ylof ) o ]f("ll ) H:‘g.]'\;"! 207,360 I. ::'I_I.J:;I ‘:'- l.. | 3

- 1|
The last result gives the probability of observing this particular sample, assuming thata | (1'%
Poisson distribution with as yet unknown parameter 8 generated the data. What value 'x‘ I I b e
ﬂﬁ

of 8 would make this sample most probable? Figure ¥86.1 plots this function for various Ap— 4
values of 9. It has a single mode at 8 =2, which d be the ma\nnum Ilkellhood S S

' estimate, or MLE, of 6. 14 ”

Consider maximizing /(8 | y) with respect to 6. Because the log function is mono-
tonically increasing and easier to work with, we usually maximize n /(@ | ¥) instead; in
sampling from a Poisson population,

n n

In L(g Iy) e —p + IO Z-"" - Z In(w!),
j=} i=1

aln 148 | ¥

2 =—n ZV,-O:}QML"V

=1
For the assumed sample of observations,

In 48 |y) = —100 +201n 8 — 12.242,

AL _ 1042 -0m0-2
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and

d2In L(8 | % —20
- n‘;g(z L¥) = 92 < 0= thist sa maximum.

The solution is the same as befcne Figure ]21 also plots the log of L{8|y) toillustrate
the result.

The reference to the probability of observing the given sample is not exact in a

continuous distribution, because a particular sample has pr obab:llty zero. Nonetheless,
the principle is the same. The values of the parameters that maximize £ | data) or its
log are the maximum likelihood estimates, denoted #. The logarithm is a monotonic
function, so the values that maximize 1.(# |data) are the same as those that maximize
In 148 | data). The necessary condition for maximizing In L(# | data) is

8In LA | data) j,g,
— =, @8-4)

LAT
' 1

This is called the hkf;hhond cquahml. The general result then is that the MLE is a root
of the likelihood equation. The application to the parameters of the dgp for a discrete
random variable are suggestive that maximum likelihood is a “good” use of the data. It
remains to establish this as a general principle. We turn to that issue in the next section.

Example }6.2 Log-Likeillhood Function and Likelihood Eqguations
for the Normal Distribution
In sampling from a normal distribution with mean u and variance ¢2, the log-likelihood func-
tion and the likelihood equations for . and a2 are

. )
nL{p, 0% = ug In(27) — g lno? — ;_-Z [(’” ;;“')2], (:z-s)
i=1
}
L 1S Ny-n= oka

f=1

n I
ainL 1
...E.;...:..._,I_..{_—E(M—u)z::o. (‘Zﬁ?}
=1

da? 252 ' 204

To solve the likelihoad eguatlons » muitiply ( )1{ -8) by o2 and solve for &, then insert this solution

in {1 6-7) and solve for o%. The solutions are

1
= — Eyf Vo and Gk = Zm AR (#6-8)

=1

16’4 PROPERTIES OF MAXIMUM LIKELIHOOD

ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their lalge-
sample or asymptotic properties,
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- DEFINITION %2 Asymptotic Efficiency
- . An estimator is asymptotically efficient if it is consistent, asvmptotically normally
© distributed (CAN), and has an.asympiotic covariance matrix that is not larger than
; the asymplotic covariance mairix of any other consistent, asymplotically normally
SN distributed estimator?
!
If certain regularity conditions ar ::it, the MLE will have these properties. The finite
sample properties are sometimey/less than optimal. For example, the MLE may be bi-
ased; the MLE of 62 in Exampledb.2 is biased downward. The occasional statement that
the properties of the MLE are only optimal in large samples is not true, however. It can
be shown that when sampling is from an exponential family of distributions (see Defini-
/tigl_:}ﬂ ), there will exist sufficient statistics. If so, MLEs will be functions of them, which
| 3 means that when minimum variance unbiased estimators exist, they will be MLEs. [See
Stuart and Ord (1989).] Most applications in econometrics do not involve exponential
families, so the appeal of the MLE remains primarily its asymptotic properties.

We use the following notation: 0 is the maximum likelihood estimator; fo
denotes the true value of the parameter vecton: # denotes another possible value of the
parameter vector, not the MLE and not necessar 11y the true values. Expectation based on
the true values of the parameters is denoted Eg[.]. If we assume that the regularity con-
ditions discussed momentarily are metby f (x, f\ﬁ), then we have the following theorem.

THEOREM 16.1 Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following
asvmptolic properties:

M1. Consistency: plim§ = b

o

M2, Asymprotic normality: § ~ N[, (I@0)} "), where
' JiBo) = —~ Eo[8% In L/36038)).

foes, M3, Asymptotic cfﬁczencv. 6 is asymptotically efficient and achieves the
S " CramériRao lower bound for consistent estimators, given in M2 and
Theorem C2.
M4. Invariance: The maximum likelihood estimator of y = (@) is c(8) if
T e(Bo) is a contingous and continuously differentiable function.

1Y

4.1 REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability
density functions. We assume that (v, ..., v,) is a random sample from the population

¥ Nof Iarger is defined in the sense of { A-118): The covariance matrix of the less efficient estimator equals that
of the efficient estimator plus.a nonnegative definite matrix.
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7 T b
with density function f(y j#o) and that the following regularny condltwns hold. [Our
statement of these is informal. A more rigorous treatment may be found in Stuart and
- Ord (1989) or Davidson and MacKmnon (2004).]

-

DEFINITION W3 Regulaﬂty Conditions

RIL  The first three derivatives of In f(v; |,8) with respect 0,0 are conlinuous
and finite for almost ail y; and for all B. This condition ensures the
existence of a certain Taylor series approximation and the finite varianee
of the derivatives of In L.

R2.  The conditions necessary 1o obiain the expectations of the first and second
derivatives of In f(v; | &) are mel.

R3. Forall values of 8, 18° In Sy 18)/86;06,86;| is less than a function that

has a finite expectation. This condition will allow us 1o truncate the Taylor

series.

With these regularity conditions, we will obtain the following fundamental char-
acteristics of f(y; 18): D1 is simply a consequence of the definition of the likelihood
function. D2 leads to the moment condition which defines the maximum likelihood
estimator. On the one hand, the MLE is found as the maximizer of a function, which
mandates finding the vector that equates the gradient to zero. On the other, D2 isa
more fundamental relationship that places the MLE in the class of generalized method [ '
of moments estimators. D3 produces what is known as the information matrix equality.
This 1elat10nship shows how to obtain the asymptotic covariance matrix of the MLE.

' 16.4.2 PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition llikb' have three properties that are used in
establishing the properties of maximum likelihood estimators:

THEOREM 12! 2 Moments of the Derivatives of the Log-Likelihood

DI 1o f(y|8), g =23Inf(318)/30, and H; = 8*In f(x |8)/3898’,

Y i=1....,n,areall random samples of random variables Tlus statementt
follows from our assumption of random sampling. The notation g (80)
and H;(80) md;cmﬂ the derivative evaluated at . el

D2 Enlgi8o)] =

D? Val[g, (fp)] = —1" [B; (Hu)]

C' ondttum DI is simply a consequence of the definition of the density.

For the moment, we allow the range of v to depend on the parameters: A(fo) <
¥ < B(fly). (Consider, for example, finding the maximum likelihood estimator of 6
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for a continuous uniform distribution with range [0, 6].) (In the following, the single
integral [ ... dy;, would be used to indicate the multiple integration overall the elements
of a multivariate of y; if that were necessary.) By definition,

" BBy

[ s dy =1.
‘Alfo) - '

Now, differentiate this expression with respect to #o. Leibnitz’s theorem gives

AfE f(vil80) dye  [509 af(y 180 aB(eo)
7 - [ HCLIBG) 4oy o (BB |0

ary 90
BA(HO)

— f{AB0) |.#0)
= f),

If the second and third terms go to zero, then we may interchange the operations of
differentiation and integration. The necessary condition is that limy, 4y f(3 |#0) =
limy, , pgy) f(¥i [#9) = 0. (Note that the uniform distribution suggested eailier violates
this condition.) Sufficient conditions are that the range of the observed random variable,
¥, does not depend on the parameters, which means that 3 A(B)/38p = aB(Bg) /380 = 0
or that the density is zero at the terminal points. This condition, then, is 1egulanty
condition R2. The latter is usually assumed, and we will assume it in what follows. So,

[ ftilfody _ faﬂ.w 80) 4 _ f O TG 7, 00y d

adg g afo
aln f(y |0
K E"[ 3o ]'-’"

This proves D2.
Because we may interchange the operations of integration and differentiation, we
differentiate under the integral once again to obtain

a%In £y 180 - 3ln £y |80) Af (v [fo)
/ [ T T T ]‘-"f‘-"*‘"
But
af(viife) _ . o 8In (|8
80{) —'_f(}: Iﬂﬁ) 30{'] »

and the integral of a sum is the sum of integrals. Therefore,
&I 103 180) 31n (3 180) 3 In £(3, 160)
— L L bl ) dv = o d B { ) 18 dvi
f [ aﬂﬂaaa ] f(.” Iaﬁ) N f [ aﬂ[) 396 :' f(}’z ]0) Vi

The left-hand side of the equation is the negative of the expected second derivatives
matrix. The right-hand side is the expected square (outer product) of the first derivative
vector. But, because this vector has expected value 8 (we just showed this), the nght-
hand side is the variance of the first derivative vector, which proves D3:

Varg| RSO0 _ Blnf(,wiﬂo))(alnf(.vsl,ﬂo))]__“ E[ﬂ‘lnf(yil.ﬂo)]
i TR 3o 2t = 3003y |
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}
}3.4.3 THE LIKELIHOOD EQUATION
The log-likelihood function is
! . " -
AL v =" In f(n 9.

i
I~

The first derivative vector, or scp_rt}:ifelct_cr, is

’ a - )f
3in L@ |y) amfmle) o .
Snly _shinfld) _sn (169)
3 i=1 L jul
Because we are just adding terms, it follows from D1 and D2 that at 8, ’{ @
81n Lifo|9) o
b [_EGT""] =Folpl <4 9O/ Tem

which is the likelihood equation mentioned earlier.

{5.4-4 THE INFORMATION MATRIX EQUALITY 2R AR T
The Hessian of the log-likelihood is | A KT o M
Pl L@ 1Y) _ -8 L1 _ ¢ | |45, Hex
WET O 38ap’ ";} 3028 EH . A LA 2

Evaluating once again at 8y, by taking

. Eo[galg{]] R [Z Zgﬂ: £ j} ,

=1 j=1
and, because of D1, dropping terms with unequal subscripts we obtain

Eolgogo] = Eo [i:gofg&} = Ey [i(*ﬂa.)} = — Ey[Ho],

faxd _f=1

[ LGoin)] o [ (3 Lo |9 /31n Lol y)
V‘"“[ 3o ]'E“[( ahy )( a4} /f‘ =

#*1n Ligo|y) g |..--; m
=""E0 "-—-—-*—'—,-— 3 - ]
aﬁﬂa,.ao ’ |

This very useful result is known as the information matrix equality.

so that

\ .45 ASYMPTOTIC PROPERTIES OF THE MAXIMUM pag T o
LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs ™ _
of these results require some fairly intricate mathematics. Two widely cited derivations | [ JC'll
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise,
we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and
indicate where it will be necessary to extend the derivation if it were to be fully general.
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¥¥.45.a Consistency

We assume that_f(y; | #0) is a possibly multivariate density that at this point does not
depend on covariates, X;. Thus, this is the i.i.d., random sampling case. Because 6 is the
MLE, in any finite sample f01“ any q :;é 0 (including the true @p) it must be true ‘that

In L(8) > In L{8). 14‘6-12)

Considler, then, the random variable L(8)/L(6). Because the log function is strictly
concave, from Jensen’s Inequality (Them em D.13.), we have

i
. 1) 118)

Folln In Ey -
"{ I ﬂo)] =" [L(t?o)] @13
The expectation on the right-hand side is exactly equal to one, as

L@) Li#) ;
Ea = =

[Hﬂo)] ./.(L(f" ))L(ﬁ )dy =1 (J0-14)
is simply the intggral of a joint density. Now, take logs on both sides of (}Q 13), insert
the result of (16-14), then divide by # to produce |4

| E[1/nn L@)] - Eo[t/nln L] <O.

This produces a central resuli:

14

THEOREM ],6/3 Likelihood Inequality
Eol(1/myIn L(8)] > Eoft1/myIn L(#)] for any @ + 8o (inc]udingﬁ)_.
This resu‘{t is (16-15).

In words, the expected value of the log-likelihood is maximized at the irue value of the
parameiers. X
For any @, including ¢.

i
[A/mInL@)] = A/m> " In f(%18)
=1 \ "}
is the sample mean of n i.i.d. random variables Avith expectation Eyf(1/n)In Lgﬂ)].
Because the sampling is i.i.d. by the regularityfonditions, we can invoke the Khinchine
theorem, 1D.5; the sample mean convergegin probability to the population mean. Using
3"that as n — oo0. lim Prob([(1/m) In L(ﬂ)l <
{(1/:1} In Lifp)]} =1 if 6‘ #8y. But, ﬂ is the MLE, so for every n, (1/m)In L(¢)>
(1/nyIn LiBg). The onIy way these can both be true is if /n) times the sample Iog-
likelthood evaluated at the MLE converges to the population expectatlon of (1/n)’
times the log-likelihood evaluated at the true parameters. There remains one final step.
Does (1/m)In L(#) ~ (1/n)In L(Bo) imply that § — 97 If there is a single parameter
and the likelihood function is one to one, then clearly so. For more general cases, this
requires a further characterization of the likelihood function. If the likelihood is strictly
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continuous and twice differentiable, which we assumed in the regularity conditions. and
if the parameters of the model are identified which we assumed at the beginning of this
discussion, then yes, it does, so we have the result.

This is a heuristic proof. As noted, formal presentations appear in more advanced
treatises than this one. We should also note, we have assumed at several points that
sample means converged to the population expectations. This is likely to be true for
the sorts of applications usually encountered in econometrics. but a fully general set
of results would look more closely at this condition. Second, we have assumed i.i.d.
sampling in the pr ecedmgmthqt is, the densny for y; does not depend on any other
variables, x;. This will almost never be true in practice. ‘Assumptions about the behavior
of these variables will enter the proofs as well. For example, in assessing the large sample
behavior of the least squares estimator, we have invoked an assumption that the data
are “well behaved.” The same sort of consideration will apply here as well. We will
return to this issue shortly. With all this in place, we have property M1, pllmﬂ = B9.

¥&.4.5.b Asymptotic Normality
At the maximum likelihood estimator. the gradient of the log-likelihood equals zero
(by definition), so

| 26 =

(This is the sample statistic, not the expectation.) Expand this set of equations in a
Taylor series around the true parameters #o. We will use the mean value theorem to
truncate the Taylor series at the second term,

B0 = giho) + HB @ — 80) =

The Hessian is evaluated at a point § that is between @ and 8¢ [§ = wl + (1 — w)fo
for some 0 <w < 1]. We then rearrange this function and multiply the result by /i to
obtain ’

i@ - 00y = [-H@] ' [Vag@o)].

Because phm(0 —80) = pllm(fi —8) = 8 aswell. The second derivatives are continuous
functions. Therefore. if the limiting distribution exists, then

Vi~ 80) <> [~H@o)| " [Vrig@o).
By dividing H(fl¢) and g(8o) by £, we obtain

I o '4-_"

Vi@ —80) <% [~1H@o)] " [VaEb0). (44-1 5)

We may apply the Lindeberg_Levy central limit theorem (D.18) to [f 2(f0)]. because
itis \/n times the mean of a random sample: we have invoked D1 again. The limiting
variance of [ /1 E(@p)] is — E[(1/m)H(#p)]. s0

JEEGD) <> N{O, - Eo[LH(@0)]}.

By virtue of Theorem D.2, plim[—(1/mH(#0)] = — Eof(1/n)H(Bp)]. This result is a
constant matrix, so we can combine results to obtain

[-iHe@o] " agwo <5 N{B, {—Eo[LHE0]} 7 {~ Eo[LH(80)] }{ - £} Hoo)]} ')
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or

Vi@ — 80) <> N[0, {~Eo[tHE0)]} '],

N

which gives the asymptotic dis{i'iﬁllﬁon.of the MLE:
RSN T

This last ste;f completes M2,

Example ?Q.a information Matrix for the Normal Distribution
For the likelihood function in Example 16.2, the second derivatives are

2inl  -n
auf '

2t o 1 <
om = 301~ 58 20 )
=1
2int,. 1<
Sa50? = oF >y~
=t

Forthe asymptotic variance of the maximum likelihood estimator, we need the expectations
of these derivatives. The first is nonstochastic, and the third has expectation 0, as £ [y] = u.
That leaves the second, which you can verify has expectation —n/(20*) because each of the
nterms {y; — 1) has expected value o2, Collecting these in the information matrix, reversing
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum

likelhood estimators:
- 2L 1" Jein 0
- —Eo e = .
8o 86y 0 20%n
14

¥6.A5¢c Asymptotic Efficiency

Theorem C.2 provides the lower bound for the variance of an unbiased estimator.
‘Because the asymptotic variance of the MLE achieves this bound, it seems natural to
extend the result directly, There is, however, a loose end in that the MLE is almost never
o, unbiased. As such. we need an asymptotic version of the bound, which was provided

by Cramér (1948) and Rao (1945) (hence the name):

it

THEOREM u.dl Cramé;_-LRao Lower Bound

0 A . - . i
'Assuming that the density of y; satisfies the regularity conditions RIZR3, the
asvmptotic variance of a consistent and asympiotically normally distributed esti-

mator of the paramerer vector, Bo will always be at least as large as

- . [8%In Lipe) |\~ 81n L(#) (3In LB\ T\
-1 __ [_ PENNT i ikl = — ; *
meor = (-5 ) = (B((F50) ) )

V-t |
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The asymptotlc variance of the MLE is, in fact. equal to the Cr amezuRao Lower Bound

for the variance of a consistent, asymptotically normally distributed estimator, so this

completes the argument?’ )

,1'€ 4.5.d Invariance
Last, the invariance property, M4, is a mathematlcal result of the method of computing
MLESs:it is not a statistical result as such. More formally, the MLE is invariant te one-fo-
one transformations of §. Any transformation that is not one to one either renders the
model inestimable if it is one to many or imposes restrictions if it is many to one. Some
theoretical aspects of this feature are discussed in Davidson and MacKinnon (2004,
pp- 446, 539-540). For the practitioner, the result can be extremely useful. For example,
when a parameter appears in a likelihood function in the form 1/8, it is usually worth-
while to reparameterize the model in terms of y; = 1/6,. In an impgrtant application,

" book  June 23,2007 G:32 /I 4-13)

Olsen {1978} used this result to great advantage. (See Section 24.3.3.) Suppose that_ N

the normal log-likelihood in Example 142 is parameterized in fterms of the preclawn
parameter, #% =1/c?. The log- llkehhood ecomes /9

14 2

In L{y, 92) = ~(n/2yIn(2x) + (#/2) In 8% — ﬁ_ Z(v - ,u)

i=1

The MLE for u is clearly still ¥. But the likelihood equation for 62 is now

81n Liu. 67)/06° =% [n/e*2 =S - u)ﬁ} =0,

=l

which has solution 62 =n/ iy~ )2 =1/62, as expected. There is a second impli-
cation. If it is desired to analyze a function of an MLE, then the function of & will, ltself
be the MLE.

-4.5.¢ Conclusion
These four properties explain the prevalence of the maximum likelihood technique
in econometrics. The second greatly facilitates hypothesis testing and the construction
of interval estimates. The third is a particularly powerful result. The MLE has the
minimum variance achievable by a consistent and asymptoticailly normally distributed
estimator.

\L&,eh.e ESTIMATING THE ASYMPTOTIC VARIANCE
OF THE MAXIMUM LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix
of parameters that must be estimated (ie.. it is a function of the_fp that is being
estimated). If the form of the expected values of the second derivatives of the

JA result reported by LeCurn (1953) and recounted in Amemiya (1985, p. 124) suggests that, in principle,
there do exist CAN functions of the data with smaller variances than the MLE. Bat, the finding is a narrow
result with no practical implications. For practical purposes, the statement may be taken as given.
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log-likelihood is known, then iy

) 32In L{fo) - :
1 _ L p = -
| [._l_(f?o.)] - { -EU[ 860 067, ]} °

can be evaluated at § to estimate the-covariance matrix for the MLE. This estimator
will rarely be available. The second derivatives of the log-likelihood will almost always
be complicated nonlinear functions of the data whose exact expected values will be
unknown There are, however, two alternatives. A second estimatoris - '

)
i@ =( 3 L(ﬁ)) ' alén)

af a8’
Thisestimator is computed simply by evaluating the actual (not expected) second deriva-
tives matrix of the log-likelihood function at the maximum likelihood estimates. It is
straightforward to show that this amounts to estimating the expected second derivatives
of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can
be used to justify the computation. The only shortcoming of this estimator is that the
second derivatives can be complicated to derive and program for a computer. A third
estimator based on result D3 in Theorem K& that the expected second derivatives
matrix is the covariance matrix of the first derivatives vecion, B N ) q

LIS 14
ey = [Eagf} =[G g
f=1
i N
where |
. _ 9Inf(x.8) “ JF (_9,' hf-, 19)
g = - :
L LS 80
and
S [g1, ,...,g,,]’

Gisan nx K matrix withith row equal to the transpose of the ith vector of derivatives
in the terms of the log-likelihood function. For a single parameter, this estimator is just
the reciprocal of the sum of squares of the first derivatives. This estimator is extremely
convenient, in most cases, because it does not require any computations beyond those
required to solve the likelihood equation. It has the added virtue that it is always non-
negative definite. For some extremely complicated log-likelihood functions, sometimes
because of rounding error, the observed Hessian can be indefinite, even-at the maxi-
mum of the functiop, The estimator in (¥6:18) is known as the BHHH esttrnato:“ and
the outer product of gradlute, of OPG estimator. “J4/ W

None of the three estimators given here is preferable to the others on statistical
grounds: all are asymptotically equivalent. In most cases, the BHHH estimator will be
the easiest to compute. One caution is in order. As the following example illustrates,
these estimators can give different results in a finite sample. This is an unavoidable finite
sample problem that can, in some cases, lead to different statistical conclusions, The
example is a case in point. Using the usual procedures, we would reject the hypothesis
that B = O if either of the first two variance estimators were used. but not if the third
were used. The estimator in 9216) is usually unavailable, as the exact expectation of

14

"It appears to have been advocated first in the econometrics Hierature in Berndt et al, (1974),
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the Hessian is rarely known. Available evidence suggests that in small or moderate-sized
sampies, (y&l 7) (the Hessian) is preferable.
l B

1 .
Example 16.4 1 Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

..--f-(yfvxhis) = 18+XI

where y=income and x =education. To find the maximum likelihood estimate of g8, we
maxirmize

g s ,

Fil n ‘yJ
nL(g) = -3 inB+x) -3 =L
; f=1 ﬁ+xj

The likelihood equation is

n n ,?
alnL(p) _ 1 o /
N ;ﬁ+m+§(ﬂ+_mz_o' {%19)

which has the solution A = 15.602727. To compute the asymptotic variance of the MLE, we
require
{

B 1 &y 915
ap? _E(ﬂﬂ;)? 2§(ﬁ+&)3' l‘/ 20)

/
Becauss the function E(y;) = 8 +x; is r{,‘éue exact form of the expected value in (}6’-26)

is known. Inserting § + % for y; in (¥5-20) and taking the negative of the reciprocal yields
the first variance estimate, 44.2546. Simply inserting # = 15.602727 in (16-20) and taking the
negative of the reciprocal gives the second estimate, 46.16337. Finally, by computing
the reciprocal of the sum of squares of first derivatives of the densities evaluated at g,

— I (AT = 3 ! i
: I s W) Iy ey

we obtain the BHHH estimate, 100.51186.

MODELS, AND THE GMM ESTIMATOR

All of the preceding results form the statistical underpinnings of the technique of max-

imum likelihood estimation. But. for our purposes, a crucial element is missing. We
have done the analysis in terms of the density of an observed random variable and
a vector of parameters, f(v; [@). But econometric models will involve exogenous or

predetermined variables, x;, so the results must be extended. A workable approach is

to freat this modeling framework the same as the one in Chapter 4, where we consid-

ered the large sample properties of the linear regression model. Thus, we will allow x;

to denote a mix of random variables and constants that enter the conditional density of
¥. By partitioning the joint density of y; and x; into the product of the conditional and
the marginal, the log-likelihood function may be written

n ] "
In Lig | data) =3 I fvixi 10 = D In Fl (%00 + 3 Ingixy | ).

i=l i=1 i=1
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where any nonstochastic elements in x; such as a time trend or dummy variable are
being carried as constants. To proceed, we will assume as we did before that the process
generating x; takes place outside the model of interest. For present purposes, that
means that the parameters that appear in g(x; | &) do not overlap with those that appear
in_f(y |, e). Thus. we partition o into [#. 4] so that the log-likelihood function may
be written :

”n n [ .
In 76,8 data) =D " In fy.x @) =Y In f(3 %, 0+ Y ng(x: | §).
i=1 : i=l ' i=1 '

As long as § and § have no elements in common and no restrictions connect them (such
as § + 38 = 1), then the two parts of the log likelihood may be analyzed separately. In
most cases, the marginal distribution of x; will be of secondary (or no) interest.
Asymptotic results for the maximum conditional likelihood estimator must now
account for the presence of x; in the functions and derivatives of In fiw i};,ﬂ_,ﬂ). We will
proceed under the assumption of well-behaved data so that sample averages such as

(1/min L@ 1y X) = Z‘“ fn1x1,8)

1-—-]

and its gradient with respect to,# will converge in probability to their population expec-
tations. We will also need to invoke central limit theorems to establish the asymptotic
normality of the gradient of the log likelihood, so as to be able to characterize the
MLE itself. We will leave it to more(advance)treatises such as Amemiya (1985) and
Newey and McFadden (1994) to establish specific conditions and fine points that must
be assumed to claim the “usual” properties for maximum likelihood estimators. For
present purposes (and the vast bulk of empirical apphmtlons) the following minimal
assumptionsshould suffice:

¢  Parameter space. Parameter spaces that have gaps and nonconvexities in them
will generally disable these procedures. An estimation problem that produces this
failure is that of “estimating” a parameter that can take only one among a discrete
set of values. For example, this set of procedures does not include “estimating”
the timing of a structural change in a model. The likelihood function must be a
continuous function of a convex parameter space. We allow unbounded parameter
spaces, such as o > 0 in the regression model, for example.

®  ldentifiability. Estimation must be feasible. This is the subject of Definition 16.1
concerning identification and the surrounding discussion.

¢ Well-behaved data. Laws of large numbers apply to sample means involving the data
and some form of central limit theorem (generally Lyapounov) can be applied to
the gradient. Ergodic stationarity is broad enough to encompass any situation that is
likely to arise in practice, though it is probably more general than we need for most
applications, because we will not encounter dependent observations specifically
until later in the book. The definitions in Chapter 4 are assumed to hold generally.

With these in place, analysis is essentially the same in character as that we used in th
linear regression model in Chapter 4 and follows precisely along the lines of Section)é

Qévﬂhteé
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16/.6 HYPOTHESIS AND SPECIFICATION TESTS

A

AND FIT MEASURES

The next several sections will discuss the most commonly used fest procedures: the
likelihood ratio, Wald, and Lagrange multiplier tests, [Extenswe discussion of these
procedures is given in Godfrey (1988).] We consider maximum likelihood estimation
of a parameter @ and a test of the hypothesis Hy: c(8) = 0. The logic of the tests can be
seen in Figure 16.2:% The figure plots the log-likelihood function in L{g), its derivative

with respect to 8, dIn L(#) /d@, and the constraint ¢(#). There are three approaches to
testing the hypothesis suggested in the fipure:

e Likelihood ratio test, If the restriction ¢(8) = 0 is valid, then imposing it should not
lead to a large reduction in the log,—IlkeIzhood function. Therefore, we base the test
on the difference, In Ly; —In Lg, where Ly is the value of the likelihood function at
the unconstrained value of # and Lg is the value of the likelihood function at the
restricted estimate.

¢ Wald fest. If the restriction is valid, then c(épmLg) should be close to zero because
the MLE is consistent. Therefore, the test is based on ¢(dyg). We reject the
hypothesis if this value is significantly different from zero.

¢  Lagrange multiplier test. If the restriction is valid, then the restricted estimator
should be near the point that maximizes the log-likelihood. Therefore, the slope
of the log-likelihood function should be near zero at the restricted estimator. The
test is based on the slope of the logikelihood at the point where the function is
maximized subject to the restriction.

These three tests are asymptotically equivalent under the nuli hypothesis, but they can
behave rather differently in a small sample. Unfortunately, their small-sample proper-
ties are unknown, except in a few special cases. As a consequence, the choice among
them is typically made on the basis of ease of computation. The likelihood ratio test
requires calculation of both restricted and unrestricted estimators. If both are simple
to compute, then this way to proceed is convenient. The Wald test requires only the
unrestricted estimator, and the Lagrange multiplier test requires only the restricted
estimator. In some problems, one of these estimators may be much easier to compute
than the other. For example, a linear model is simple to estimate but becomes nonlinear
and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic
might be preferable. Alternatively. restrictions sometimes amount to the removal of
nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

}é.B.‘i THE LIKELIHOOD RATIHD TEST

Let @ bea vector of parameters tobe estimated, and let /) specify some sort of restriction
on these parameters. Let By, be the maximum likelihood estimator of # obtained without
regard to the constraints, and let 0 & be the constrained maximum likelihood estimator.

If 1 and Lg are the likelihood functions evaluated at these two estimates, then the

#See Ruse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points
of intersection have no significance.
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This function must be between zero and one. Both likelihoods are positive, and ﬁg

cannot be larger than [y. (A restricted optimum is never superior to an unrestricted
one.) If A is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from
a sample of 10 from a Poisson distribution at the beginning of Section J%.3, we found the

4
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MLE of the parameter & to be 2. At this value. the likelihood, which is the probability of
observing the sample we did. is 0.104 x 10~7. Are these data consistent with Hy: 9 =1.8?
Lg = 0.936 x 1078, which'is, as expected, smaller. This particular sample is somewhat
less probable under the hypothesis,

The formal test procedure is based on the following resuit.

THEOREM 1%.5 Limiting Distribution of the Likelihood Ratio

Test Statistic
Under regularity and under b, the large sample distribution of —21n i is chi-
squared, with degrees of freedom equal 10 the number of restrictions imposed,

The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,
0.0936
0.104
This chi-squared statistic with one degree of freedom is not significant at any conven-
tional level, so we would not reject the hypothesis that 8 = 1.8 on the basis of this test:®”

It is tempting to use the likelihood ratio test to test a simple nulf hypothesis against
a simple alternative. For example, we might be interested in the Poisson setting in
testing Ho:6 = 1.8 against F/1:6 = 2.2. Bat the test cannot be used in this fashion. The
degrees of freedom of the chi-squared statistic for the likelihood ratio tesi equals the
reduction in the number of dimensions in the parameter space that results from imposing
the restrictions. In testing a simple null hypothesis against a simple alternative, this
value is zerdzj Second, one sometimes encounters an attempt to test one distributional
assumption against another with a likelihood ratio test: for example, a certain model
will be estimated assuming a normal distribution and then assuming a ¢ distribution.
The ratio of the two likelihoods is then compared to determine which distribution is
preferred. This comparison is also inappropriate. The parameter spaces, and hence the
likelihood functions of the two cases, are unrelated.

—2ni=-2In ( ) = 0.21072.

\U( %6.2 THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation
of both the restricted and unrestricted parameter vectors. In complex models, one or
the other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that
circumvent this problem. Both tests are based on an estimator that is asymptotically
normally distributed.

These two tests are based on the distribution of the full rank guadratic form con-
sidered in Section B.11.6. Specifically, )

I£x ~ Ny, E. then (x — )£ (x - 1) ~ chisquared[J]. 1622)

“$Of course, onr use of the large-sample result in a sample of 10 might be questionable,

“?Note that because both likelihoods are restricted in this instance, there is nothing to prevent —21n A from
being nepative.
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In the setting of a hypothesis test, under the hypothcsns that £(x) = H the quadratic
form has the chi-squared distribution. If the hypothesis that E(x) = 4 is false, however,
then the quadratic fonn just given will, on average, be lalgel than it would be if the
AN, hypothesis were true:® This condition forms the basis for the test statistics dlscussed in
' this and the next section.
Let # be the vector of parameter estlmates obtained without restrictions. We hypo-
thesize a set of restrictions

Hy:c(8) = q
If the vestrictions are valid, then at least applommately f should satisfy them. If the
hypothesis is erroneous. however, then (@) — 9 should be farther from 0 than would

be explained by sampling variability alone. The device we use to formalize this idea is
the Wald test.

THEOREM i().G Limiting Distribution of the Wald Test Statistic
The Wald statistic is

= [e(f) — g (Asy.Var[etd) — a]) "' [eth) — dl.

Under Hy, in large samples, W has a chi-squared distribution with degrees of
freedom equal to the number of restriciions fle, the number of equations in
\q:(i_@) —x =], Aderivaiion of the limiting distribution of the Wald statistic appears
in Theorem 5.1,

4

This test is analogous to the chi-squared statistic in (,14 22)if, t(ﬂ) — g is normally
distributed with the hypothesized mean of §. A large value of W leads tore jection of the
hypothesis. Note, finally, that W only requires computation of the unrestricted model.
Ome must still compute the covariance matrix appearing in the preceding quadratic form.
This result is the variance of a possibly nonlinear function, which we treated earlier.

Est. Asy. Var[_c_(é) - 4] =f3 Est. Asy. Var[f?]‘(;_’ . )‘/
& [3.9(5)] (4623)
£ |
That is, Cis the J x K matrix whose jth row is the derivatives of the jth constraint with
respect to the K elements of #. A common application occurs in testing a set of linear

restrictions.
For testing a set of linear restrictions Rf = ¢, the Wald test would be based on
Hye@)-g=RE —g=09, )4
€= [Eg;fl] ~R, €24y

Est. Asy. Var[c(d) ~ q] = R Est. Asy. Var[#IR’,

“#1f the mean is not g, then the statistic in 22) will have a noncentral chi-syuared distribution. This
distribution has the same basicshape as the central chi-squared distribution, with the same degrees of freedom,
but lies to the right of it. Thus, a randont draw from the noncentral distribution will tend, on average, to be
larger than a random observation from the central distribution.
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and

~

W = [R8 — qI'[R Est. Asy. Val(ﬂ)R'] 'R — - q].

g

The degrees of freedom i is the number of rows in R.
If ¢(8) = q is a single restriction, then the Wald test will be the same as the test
based on the confidence interval developed previously. If the test is

Hy:8 =6y versus Fh:8 #£8,
then the earlier test is based on ’(f

|9 ol
g
5 (16-25)

where 5(8) is the estimated asymptotic standard error. The test statistic is compared to
the appropriate value from the standard normal table. The Wald test will be based on

R n 1 4 8 — gy)?
W = [(6 — ) — O] (Asy. Var[(§ —80) — 0)) [ —p)—0] = 220 _ _ 2 (¢26)

Asy. Var[8]

Here W has a chi-squared distribution with one degree of freedom, which is the distri-
bution of the square of the standard normal test statistic in (W-25). ) '/

To summarize, the Wald test is based on measuring the extent to which the un-
restricted estimates fail to satisfy the hypothesized restrictions. There are two short-
comings of the Wald test. First, it is a pure significance test against the null hypothesis,
not necessarily for a specific alternative hypothesis. As such, its power may be limited
in some settings. In fact, the test statistic tends to be rather large in applications. The
second shoﬂcoming is not shared by either of the other test statistics discussed here.
The Wald statistic is not invariant to the formulation of the restrictions. For example,
for a test of the hypothesis that a function 8 = 8/(1 — y) equals a specific value g there
are two approaches one might choose. A Wald test based directly on 8 — g = 0 would
use a statistic based on the variance of this nonlinear function. An alternative approach
would be to analyze the linear restriction 8 — g(1 — ¥) = 0, which is an equivalent,
but linear, restriction. The Wald statistics for these two tests could be different and
might lead to different inferences. These two shortcomings have been widely viewed as
compelling arguments against use of the Wald test. But, in its favor, the Wald test does
not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange

multiplier tests. The recent econometrics literature is replete with applications that are

based on distribution free estimation procedures, such as the GMM method. As such
in recent yeals the Wald test has enjoyed a redemption of sorts.

1'#6 3 THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multlpher (LM) or Lfficum scme (or ]llSt qeore)

" tést. It is based on the restricted model instead of the uni estricted model. Suppose that

we maximize the log-likelihood subject to the set of constraints ¢(6) — q = 0. Let A be
a vector of Lagrange multipliers and define the Lagrangean function

In L*(9) = In L(8) + A" (e(8) — q)-
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The solution to the constrained maximization problem is the root of

*
| a I;IéL — a lnaéz.{ﬂ_) +|c1} =4, \L,
) . < -27)

where (7 is the transpose of the derivatives matrix in the second line of (}1{23). If the
restrictions are valid, then imposing them will not lead to a significant difference in the
maximized value of the likelihood function. In the first-order conditions, the meaning is
that the second term in the derivative vector will be small. In particular, A will be smail.
We could test this directly, that is, test Jy: A = 1), which leads to the Lagrange multlpllel
test. There is an equivalent simpler formulation, however. At the restricted maximum,
the derivatives of the log-likelihood function are

3ln L(@R) R 5{(23)

—&i
30 x &r.

if the restrictions are valid, at least within the range of sampling variability, then § Bz = 0.
That is, the derivatives of the log-likelihood evaluated at the restricted parameter vector
will be approximately zero. The vector of first derivatives of the log-likelihood is the
vector of eliicient scores. Because the iest is based on this vector, it is called the score
test as well as the Lagrange multiplier test. The variance of the first derivative vector
is the information matrix, which we have used to compute the asymptotic covariance
matrix of the MLE. The test statistic is based on reasoning analogous to that underlying
the Wald test statistic.

THEOREM P6.7 Limiting Distribution of the Lagrange
Multiplier Stafistic
The Lagrange multiplier test statistic is

Al L@\ (o 5 _j(alnuéﬂ))
LM: — lﬂ S A Y
( 2r )[“(““)} 90 &

Uﬂder the null hypothesis, LM has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions. Afl terms are computed at the
restricted estimator.

The LM statistic has a useful form. Let $ir denote the ith term in the gradient of
the log-likelihood function. Then,

n
Ern=> ir=0GC4,
Al )

where G r is the # x K matrix with ith row equal to g{ & and i is a column of 1s. If we use
the BHHH (outer product of gradients) estimator in (\6 -18) to estimate the Hessian,

\Y

14-22)


Bill
Sticky Note
no


! Greene-50558 -

book

June 23.2007 032 f /lf— 23\

504 PART IV + Estimation Methodology

then _
(1@ = [GRGal™

and N
LM =GRl GGl Gl

Now, because {'j equals 1, LM = n(I'G r[ GG ]! G%i/n) = nRZ, which is n times the

uncentered squared multiple correlation coefficient in a linear regression of a column of

1s on the derivatives of the log-likelihood function computed at the restricted estimator.
We will encounter this result in various forms at several points in the book.

1\6.6.4 AN APPLICATION OF THE LIKELIHOOD-BASED
TEST PROCEDURES
Consider. again, the data in Example C.1. In Example ,II(;l the parameter 8 in the

model |
| ‘ 1 pen
S01 1. B) = g/ yli-zm

was estimated by maximum likelihood. For convenience, let 8; = 1/(8 + x;). This expo-
nential density is a restricted form of a motre general pamma distribution,
14
16-30

S, B, p) = rﬁ; )prl b

The restriction is p = 1'% We consider testing the hypothesis

Hy:p=1 versus Hpi:p#1
using the vartous procedures described previously. The log-likelihood and its derivatives
are

n

H n
InL(B,p)=pY Ing—nnT(p)+(p - 1)2111 vi—3 b

i=1 =1 i=1

6‘1nL = ”PZ'B‘ +Z x,ﬂi , il—’l—li = Zlnﬁ, —H‘D(p)-f-z:ln Vir (}431)

i=1 ) i=1
"

2 2
3 ln[ E,B, WZZ"Jﬁ a InL:—-n\IJ'(p), a mL:—-Z@;,
=l

=1 i=l apz - aﬁa’o
[Recall that ¥(p) = dIn'(p)/dp and ¥'(p) =d%In l"'(p)/dp_z.] Unrestricted maximum
likelihood estimates of 8 and p are obtained by equating the two first derivatives to zero.
The restricted maximum likelihood estimate of 8 is obtained by equating 31n 1./38 to
zero while fixing p at one. The results are shown in Table 161, Thrée :
available for the asymptotic cgvariance matrix of the estimators of §_= (8, p)’. Us-
ing the actual Hessian as in {1§-17), we compute V = [-Z; 3° In f( Vi | X, B, p)/aﬂae’]-l
at the maximum likelihood| estimates. For this model, it is easy to show that
14

““The gamma function I'(, f2)] and the gamma distribution are described in Sections B4.5 and F2.3.

4
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)
TABLE 05.1 Maximurn Likelthood Estimates
Quantity . Unrestricted Estimate? Restricted Extimate
B L L —47198 (2344) -

Jo)
Inl -
alni/ap
alnlL/ap

8 n L/5g?
a2 In L/8p?
8 L/388p

WP Estimated asymptotic standard errors based on ¥ are given in parentheses.

Elyi lx:] = p(B +.x1) (either by direct integration or, more simply, by using the result
that £{3 In £/38] = 0 to deduce it). Therefore, we can also use the expected Hessian

as inL6=T6) to compute ¥ g = {—Z; £[#In f (v | x;, B, 0)/3898’]}~". Finally, by nsing
l"/ the sums of squares and cross produets of the first derivatives, we obtain the BHHH es-
timator in (16°18), ¥ p = [Ei(3In f(¥ | x1, B, £)/39)(@ In f(v | x;, B. 0)/88")] L. Results
' in T 1 are based on Y. ' i )
/ y The three estimators of the asymptotic covariance matrix produce notably different
results: 2

joo 1 2
Vo 5.493 -—1.65% v | #5% 1473 v, o | 133 -43
weT {1657 06300]° W ET {1473 0577010 wWZT 4314 1534
3 6 22 ¥
Given the small sample size, the differences are to be expected. Nonetheless, the strik-
ing difference of the BHHH estimator is typical of its erratic performance in small

samples. 9

» Confidence interval test: A !;izgéfcent confidence interval for p based on the
unrestricted estimates is 3.1 D+ 1.96,/0.6309 = [1.5947, 4.70%. This interval
does not contain p = 1. so the hypothesis is rejected. !

¢ Likelihood ratio test: The LR statistic is & = —2[~88.43771 — (—82.91444)] =

11.04 0'{ {0463>The tabie value for the test, with one degree of freedom. is 3.842. The
' computed value is larger than this critical value, so the hypothesis is again rejected.
¢ Wald test: The Wald test is based on the unrestricted estimates. For this restric-
tion, c(@) — g = p — 1,dc(p)/dj = 1, Est. Asy. Var[c(p) — g] = Est. Asy, Var[p] =
0.6309, so W = (3.1517 — 1)%/[0.6309] = 7.3384. The critical value is the same as
the previous one. Hence, ffy is once again rejected. Note that the Wald statistic is
the square of t responding test statistic that would be used in the confidence
3.‘ {o‘) interval test{]3.1517} 1{//0.6309 = 270895~ 2.3 3335~

¢  Lagrange mulfiplier test: The Lagrange multiplier test is based on the restricted
estimators. The estimated asymptotic covariance matrix of the derivatives usedto
compute the statistic can be any of the three estimators discussed earlier. The
BHHH estimator, ¥ g, is the empirical estimator of the variance of the gradient
and is the one usually used in practice. This computation produces

[0.009945{ 0.267?62‘] - [0.0000] g

026767  11.197 = 15481,
wTA

LM =[0.0000 7.9162] 7.9167]
9 45 1

g



-4.
3.

7185
1509

-82.91605

0.

C
-0,
~-7.
-2,

0000

.0000

85570
4592
2420

(2.345)
(0.794)

15.6027
1.0000
~-88.43626
0.0000
7.9145
-0.02166
-32.8987
- 0.66891

(6.794)
(0.000)



