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The conclusion is the same as before. Note that theame computation done
using V rather than Y g produces a value of 5 . As before, we observe
substantial small sample variation produced by the different estimators,

The latter three test StatISUCS have substantially dlffelent values. It is possible to
reach different conclusions, dependlng on which one is used. For example, if the test
had been carried out at the 1 percent level of significance instead of 5 percent and
1M had been computed using V, then the critical value from the chi-squared statistic
would have been 6.635 and the hypothes:s would not have been rejected by the LM test.
Asymptotically, all three tests are equivalent. But, in a finite sample such as this one,
differencesare to be expected:!®Unfortunately, there is no clear rule for how to proceed
in such a case, which highlights the problem of relying on a particular significance level
and drawing a firm reject or accept conclusion based on sample evidence.

%6.5 COMPARING MODEL.S AND GOMPUTING MODEL FIT

The test statistics described in Sections! 61—,, '6.3 are available for assessing the
validity of restrictions on the parameters in a model. When the models are nested,
any of the three mentioned testing procedures can be used. For nonnested models, the
computation is a comparison of one model to another based on an estimation criterion
to discern which is to be preferred. Two common measures that are based on the same
logic as the adjusted R—squmed for the linear model are

Aka:ke miﬂrmatmn criterion (AIC) =—2In L+2K,
Bayes (Schwarz) mformatlml criterion (BIC) = —21n L + Klnn,

where K is the number of parameters in the model. Choosing a model based on the
lowest AIC is logically the same as using R? in the linear model: nonstatistical, albeit

widely accepited. jMfiother means of compefing nonnested model
A g se Section 7.3.4).

the Vunong statistic

i to thelog-likelihood under thgssumption
arfiple 16.10 tochoose betwgen a geomegeic \

fat is valid in some

(-26.

The AIC and BIC are information criteria, not fit measures as such. This does leave
open the question of how to assess the “fit” of the model. Only the case of a linear least
squares regression in a model with a constant term produces an R?, which measures
the proportion of variation explained by the regression. The ambiguity in & as a fit
measure arose immediately wbwn?ed from the linear regression model to the
generalized regréssion modelin Chapter & The problem is yet more acute in the context
of the models we consider in this chapter. For example, the estimators of the models for
count data in Example }6.10 make no use of the “variation™ in the dependent variable
and there is no obvious measwre of “explained variation.”

A measure of “fit” that was originally proposed for discrete choice models in
McFadden (1974), but surprisingly has gained wide currency throughout the empirical

49For further discussion of this problem, see Berndt and Savin (1977).
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litevature is the likelihood ratio index, which has come to be known as the IPscu-d(-_gUB". :
It is computed as T

- PseudoR? = 1 — (In L)/(In L)

where In_L is the log-likelihood for thé model estimated and In 4 is the log-likelihood
for the same model with only a constant term. The statistic does resemble the R? in a lin-
ear regression. The choice of name is for this statistic is unfortunate, however, because
even in the discrete choice context for which it was proposed, it has no connection to
the fit of the model to the data. In discrete choice settings in which log-likelihoods must
be negative, the pseudo R® must be between zero and one and rises as variables are
added to the model. It can obviously be zero,but is usually bounded below one. In the
lmear model with normally distributed disturbances, the maximized log-likelihood is

InL={(-n/D[1 +In2x + n(e'e/n].

With a small amount of manipulation, we find that the pseudo R? for the linear regres-
sion model is

~In(l — R

PseudoR% = — ——— 27
seude 1+In2x +Ins?

whilethe “true” R%js 1~¢’e/efeo. Because 52 can vary independently of R{—ffi—multiplying
.Y by any scalar, A, leaves R unchanged but multiplies si by A—although the upper
limit is one, there is no lower limit on this measure. This same problem arises in any

model that uses information on the scale of a dependent variable, such as the tobit model

(Chapter 23y. The computation makes even less sense as a fit measure in multinomial
models such as the ordered probit model (Chapter 23757 The multinomial logit model,
For limited dependent variable and many loglinear models, some other measure that
is related to a correlation between a prediction and the actual value would be more
uscable. Nonetheless, the measure seems to have gained currency in the contemporary

literature. [ The popular software package, Stata, reports the pseudo R2 with every model
fit by MLE, but at the same time, admonishes its users not to interpret it as anything

Von efample, | meaningful. See, eg., http:/l\xww.st'?a‘t!a'-.éﬁrh.fsupport/faqs!statlpseudorz.html. Cameron

| and Trivedi (20055 document the pseudo R at length)then give similar cautions about
it and urge their readers to seck a more meaningful measure of the correlation between
model predictions and the outcome variable of interest. Wooldridge (2002a) dismisses
it summarily, and argues that coefficients are more interesting,]

_ and increasifig number of mogflels in which o
odel is embeddegd in another. whiclf produces whht are broadly knbwn as *“two-ste;
estimation problgis. Consider an (adlmittedly confrived) example if which we have/the
following.

Maodel 1.
Model 2.

ecision to enroll it job training’= w, a function (x2. 02, Efyy{xq, 6]).

[&%S

af

[ book  Jue23, 2007  0:32 (; /9_2?,

—H7 &

For discrete choice models. there are a variety of such measures discussed in Chapter.23. 1, ]
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“the standard table to carry out the . Unfortunately, in testing J versus H; and vice

Hi:C = };1 + v ¥t +13Ceo1 + #4401

of 62.861. Thus, Hq should be rejectgd in favor of H4. But reversing the rol

of Hg and Hy,
we obtain an estimate of A of —10.677 with a t ratio of —7.188. Thu 4

%é é% VUONG'S TEST AND THE KULLBACK—LEIBLER

INFORMATION CRITERION 1) o
L
Vuong'’s (1989! approach to testing 1 nonnested models is also based on the likelihood
ratio statistic”The logic of the test is similar to that which motivates the likelihood ratio
test in general. Suppose that f(y; | Z;,8) and g(y: | Z;, y) are two competing models for
the density of the random variable yi, with f bemg the nuli model, Hy, and_g being

the fitted values from the second mod produces an estimate of 4 of 1.014Fwith a t ratio)/}

the alternative, F. For instance, in Example .2 )DOTh detisities are {by assumptlon
now) normal, y; is consumptlon Ci, Zi is [1, %, Y1, Ci1], 8 is (B1, B2, 83, 0, o), y is
(y1, 12, 0, 11, wz) and o2 and w?® are the respective conditional variances of the distur-
bances, £q; and &y;. The crueial element of Vuong’s analysis is that it need not be the
case that either competing model is “true™; they may both be iricorrect. What we want
to do is attempt to use the data to determine which competitor is closer to the truth,
that is, closer to the correct (unknown) model.

We assume that observations in the sample (disturbances) are conditionally in-
dependent. Let L; denote the ith contribution to the likelihood function under the
null hypothesis. Thus, the log likelihood function under the null hypothesis is ¥; In L o.
Define IL;; likewise for the alternative model. Now, let # equal In L; 1 — In Lig. If we
were using the familiar likelihood ratio test, then, the likelihood ratio statistic would be
simply LR = 2%;m; = Znmwhen I; g and I; ) are computed at the respective maximuimn
likelihood estimators. When the competing models are nested——F is a restriction on
H—we know that Z;m; > 0. The restnctlons of the null hypothesis will never increase

8 esulis But, this discussi

SYRERITRL . ."‘ G ""- Saa i x - .

Once agaipeAfts necessary to rely that we will elop more fully in Chapter . But, this di i
of nonpesied models is a conyefiient point at which#5 introduce Vuong's useful sgatistic, and we will ngt'be
reafning to the topic of ndnnested models sayerfor a short application in Chapser 24.

’

5.7
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the likelihood function. (In the linear regression model with normally distributed distur-
bances that we have examined so far, the log likelihcod and these results are afl based on

- the sum of squared residuals, and as we have seen, imposing restrictions never reduces
the sum of squares.) The limiting distribution of the LR statistic under the assumption
of the null hypothesis is chi,squared with degrees of freedom equal to the reduction
in the number of dimensions of the parameter space of the alternative hypothesis that
results from imposing the restrictions.

Vuong’s analysis is concerned with nonnested models for which I; n; need not
be positive. Formalizing the test requires us to look more closely at what is meant
by the “right” model (and provides a convenient departure point for the discussion
in the next two sections). In the context of nonnested models, Vuong allows for the |
possibility that neither model is “true” in the absolute sense. We maintain the classical
assumption that there does exist a “true” model, A(y; | Z;, pc) where « is the “true”

= parameter vector, but possibly neither hypothesized model is that true model. The
[ 127 Kullback:Leibler Information Criterion (KLIC) measures the distance between the
true model (d1str1but10n) and a hypothesized model in terms of the likelihood function.
Loosely, the KLIC s the log likelihood function under the hypothesis of the true model
minus the log,hkehhood function for the (misspecified) hypothesized model under the
assumption of the true model. Formally, for the model of the null hypothesis,

KLIC = Elln h(y; | Z;, @) | his true] ~ Elln f(3 | Z;,9) | Ais true]. 4@/

The first term on the right hand side is what we would estimate with (1/n)ln L if we
maximized the log likelihood for the true model, A(y; | Z” «). The second term is what
is estunated by 1 /n) InL assummg (mcorrectly) that f ( i | Zi, §) is the correct model.
- w ppose the “true” model is
e« y = Xﬂ + &, w1th normally dlstrlbuted dlsturbances andy = Z3 + w is the proposed
aras m?l’\ competmg ‘model. The KLIC would be the expected log likelihood function for the true
P model minus the expected log likelihood function for the second model, still assuming
e that the first one is the truth. By construction, the KLIC is positive. We will now say that
one model is “better” than another if it is closer to the “truth” based on the KLIC. If we
take the difference of the two KLICs for two models, the true log likelihood function
falls out, and we are left with

KLIC; — KLICy = E[ln f(y: | Z;, #) | is true] — E[ln g(y; | Zy, ) | A is true].

To compute this using a sample, we would simply compute the likelihood ratio statis-
tic, nm (without multiplying by 2) again. Thus, this provides an interpretation of the
LR statistic. But, in this context, the statistic can be negatlvemwe don’t know which
competing model is closer to the truth.

<,/7 jﬁotlce.that f(vi | .Z;, 8) is written in terms of a parameter vector, 8. Because g is the “true” parameter vector,

it is perhaps amblguous ‘what is meant by the paramelerization, ,8 . Vuong (p. 310) calls this the “pseudotrue”
parameter vector, It is the vector of constants that the estimator converges to when one uses the estimator
implied by _f(y: | Z;, #). In Example if Ay gives the correct model, this formulation assumes that the
least squares estimator in F, would nverge to some vector of pseudo-true parameters. But, these are not
the parameters of the correct modeN—they would be the slopes in the population linear projection of C; on

[1,%, G1]- thocSrrtiamt3ig

5_»2
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Vuong’s general result for nonnested models (his Theorem 5.1) describes the be-
havior of the statistic

V= N G, Do ’-”i')
\[ Iy )2
He finds!
'(12:.. Under the hypothesis that the models are “equivalent”, V' 2 N[0,1]

= VA@[sn), mi=InLio—InLi. Gty

'(2):: Under the hypothesis that f(y |.Z.h.9)_ is “better”, V A% | +00
13). Under the hypothesis that g(y; | Zy, ») is “better”, V 25 | oo,

This test is directional. Large positive values favor the null mode! while large negative
values favor the alternative. The intermediate values (e.g., between —1.96 and +1.96

for 95 percent significance) are an inconclusive region. Qun ap phi cation appeats in Evanple

st for a Consumption Furiction

Example 7.3 Viorg

Bande? areband e'e/n,
€ = L85 Define g a

ariance of the forecast error (sge'Section 5.6) despite the impr
this thought in mind, the adjpsted R2,

_—},')2)’

a modelinless the ¢ ratio associated that variable exceeds one iprabsolute value.)
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14.7 TWO-STEP MAXIMUM LIKELIHOOD ESTIMATION

The applied literature contains a large and increasing number of applications in which elements
of one model are embedded in another, which produces what are known as “two-step” estimation
problems. [Among the best known of these is Heckman’s (1979) mode!l of sample selection
.discussed in Example 1.1 and in Chapter 18.] There are two parameter vectors, 8, and 8,. The.
.. first appears in the second model, but not the reverse. In such a situation, there are two ways to
) “proceed. Full mformatlon maximum hkellhood (FIML) estimation would involve forming the
joint distribution, L2 xl x2 01, B;) of the two random variables and then max1m12mg the
full log-likelihood function,

In L(.-Bl ::92) = Z:__,l In f (yﬂ.sl_;y i2 [ Xa ’.I-EXEZ?-B.I a;l_gz) .

A two-step procedure for this kind of model could be used by estimating the parameters of model
1 first by maximizing

InZ () Zﬂlnf(,yn |xam )Y

@r¢! then maximizing the marginal likelihood function for > while embedding the consistent
estimator of @, treating it as given. The second step involves maximizing

lan(Bl,ez) Z ]nfz(ynl 28 1’192)'

There are at least two reasons one might proceed in this fashion. First, it may be
straightforward to formulate the two marginal log-likelihoods, but very complicated to derive the
joint distribution. This situation frequently arises when the two variables being modeled are from
different kinds of populations, such as one discrete and one continuous (which is a very common
case in this framework). The second reason is that maximizing the separate log-likelihoods may
be fairly straightforward, but maxnmzmg the joint log-likelihood may be numerically
complicated or difficult™!!” The results given here can be found in an important reference on the
subject, Murphy and Topel (2002, first published in 1985).

"Y' There is a third possible motivation. If either model is misspecified, then the FIML estimates of both
models will be inconsistent. But if only the second is misspecified, at least the first will be estimated
consistently. Of course, this result is only “half a loaf,” but it may be better than none.
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THeare two parameter vectors, #; and @5. The first ppears in the second maodel,
although not the revepée. In such a situation, there ayf two ways to proceed. Full in-
formation maximmy likelihood (FIML) estimatio/would involve forming the joint
distribution f(31.42 | x1. X2, 81, 82) of the two random variables and then maximizing
the full log-likefjhood function,

[
In L= fOom,

i=l]

2| %1, Xi2, 01, 2).

A secopd, or two-step. limited informydion maximum likelihood (LIML) procedwe for
this kind of model could be done by estimating the parameters of model 1, because it
doed not involve 6>, and then makimizing eweendidmmtlog-likelihood function using
estimates from step 1:

nl= Z Tviz | %12, 82, (xi1, B9)].

f=1’

There are at least twgfreasons one might proceed in this fashion. First, it may
forward to formudte the two separate log-likelihoods, but very complicgted to derive
the joint distribyfion. This situation frequently arises when the two variapfes being mod-
ifferent kinds of populations, such as one discrete and one continuons
Ty common case in this framework). The second reasor is that maximizing
¢ log-likelihoods may be fairly straightforward, butfaximizing the joint
log-likelihood may be numerically complicated or difficult.!! Ve will consider a few
les. Although we will encounter FIML problems at yarious points later in the
» for now we will present some basic results for two-stép estimation. Proofs of the
ults given here can be found in an important referencé on the subject, Murphy aﬂ
opel (2002)~
- Suppose, then, that our model consists of the two marginal distributions, f (3 [ x1,

£1) and Sy ])%_;Q,ﬁ; . #2). Estimation proceeds in two steps, '

1. Estimate #; by maximum likelihood in model 1. Let ﬁf 1 be # times any of the
estimators of the asymptotic covariance matrix of this estimator that were
discussed in Section ¥6.4.6. —~—19

2. Estimate #; by maximum likelihood in model 2, With_,(?l inserted in place of 8, as if
it were known. Let ¥, be # times any appropriate estimator of the asymptotic
covariance matrix of 4,.

The argument for consistency of # is essentially that if#; wereknown, then all ourresults
for MLEs would apply for estimation of 2. and because plimlé 1 = fl1, asymptotically,
this line of reasoning js correct.,But the same line of reasoning is not sufficient to
JUSTiTy using (1/#)¥2 as the estimator of the asymptotic covariance matrix ofﬁég. Some
P correction is necessary to account for an estimate of #; being used in estimation of #2.
See B Point 3 4 The essential result is the following,

' T}\EQPEM D. IC_

will be'inconsispént. But if only the gécond is misspecified, agfeast the first will be cstimated nsistently.
Of géurse, thiytesult is only “half afoaf” but it may be better than none.

(T4-32.
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"
THEOREM 18.8 Asymptotic Distribution of the Two-Step MLE

[Murphy and Topel (2002)]

Ifthe standard regularity conditions are met for both log-likelihood functions, then
the second-step maximun likeliiood estimator of 82 is consistent and asympioti-
cally normally distributed with asymplotic covarignee matrix

1
Vi = [Y2 + YaCViC ~ RVIC -

where

V1= Asy. Var[ /atd, — A} based on In L,
V3 = Asy. Var[/n(fl» — f2)] based on In L, {21,

amlhN /i,
&= E[”( ) )( a6 )

~

Vi =

and

V.=

C=

and

|

dlnfy

CVIRIY:].

1/8Inly
R= E[E( 1 )

The correction of the asymplolic covariance matrix af the second step requires
some additional computation. Mairices ¥1 and N2 are estimated by the respective
uncorrected covariance matrices. Tvpically, the BHHH estimators,

11

5

"1 n
A2

are used. The marrices R and C are obtained by summing the individual obser-
vations on the cross prodmts of the derivarives. These are estimated with

:E_Z (Bln‘f;z)(alnﬁz)
L 3@3 aé’l

=1

1
n =1

Prob[y, =

1 !x”s

aé;

aln fia

) (aln_ﬁl)
a8y /]

352

) (%)
EY ] ]

3hlf',

382

) (a 1n__f,:1)
a8 /'

1 + ex,,ﬁwElm 1=,




(14-34,

A derivation of this useful result is instructive. We will rely on (14-11) and the results of Section
14.4.5.b where the asymptotic normality of the maximum likelihood estimator is developed. The first
step MLE of 9, is defined by

1Pmn(8) 1 s 20, x,8)
‘n| 91 n d =] - Qel

T (AN = {AY.
- ;ZH B (91 ) =8 (91) =0.
Using the results in that section, we obtained the asymptotic distribution from (14-15),

Vi (B-8, )~ [-HD (0)] V7 8. ().

where the expression means that the limiting distribution of the two random vectors is the same, and

HO - [1 a’ln_.zl@])}_
| R

00,00,
The second step MLE of 9, is defined by

IIM lzn ahlfg(yazlxmxxz".evlle)
| aﬁz n 692

L5 (6005 (3000

Expand the derivative vector, g, (91,0 ) in a linear Taylor series as usual, and use the results in Section

16.4.5.b once agam

rgz('- 1z ) gz( 1452 )+[H(2)(91’9 )](9 =2 )
b 0,10, 1(8:-8: ) +0/m =0,
where

1ymg@ﬁ)

2
H;?(el,e )= E[m b LPnL,0.40) )]
n 0%

}“@%”EL.%m

To obtain the asymptotic distribution, we use the same dev1ce as before,
\/;(92"192 )—‘* ["szz) 91’9 )] Jn g k8 (91,9 )
Pm%%eﬂ[mW%e]f@ 18.):

For convenience, denote HS, < HS, (91,9 ). Y= H(z) (9,,9 ) and HY= H 7(8,). Now substitute
the first step estimator of 0, in ﬂ'llS expression to obtam



14-35

V(8,20 —> [-HET VR E(0.8)
+[-p2 T (BB T Ve g (@)

d Conmstency and asymptotic normahty of the two estimators follow from our earlier results. To obtain the
asymptotic covariance matrix for 9 we will obtain the limiting variance of the random vector in the pre @ Q
expression above. The joint normal distribution of the two first derivative vectors has zero means and . i

APl - SR

Then, the asymptotic covariance matrix we seek is _ ' L A&
Var| (8, -0,) |- [HET 2a[HE S i
[T [ e Tz [ T [ T e T
+ [0 ] 2 [0 T [ T [He T
BT [ -0 T za[-BET

21

As we found earlier, the variance of the first derivative vector of the log likelihood is the negative of the
expected second derivative matrix [see (14-11)]. Therefore % —|: H(z)J and X, —I: Hﬂ)] Making
the substitution we obtain

var| Vn(8,-0:)]= [HRT + (8T (B0 00T [P [oag ]
[Tz [T [ [-Ee T
(B8] [ a0 ] 2 [ T

From (14-15), I:—Hﬂ) and [—H(z)] are the Y, and Vz that appear in Theorem 14.8, which further

reduces the expression to
_Va’"[‘[;(gz -9, )] =Y,z |: ]V [H(z?] Y. -V.2.., |:H221 ] V.-V, [ 21 ]Vzlzv

Two remaining terms are H(zzl) which is the E[azlan(eliéz)/aezael'] which is being estimated by -C in

the statement of the theorem (gote (14-11) again for the change of 51gn) and X; which is the covariance
of the two first derivative vectors. This is being estimated by R in Theorem 14.8. Making these last two
substitutions produces

Yar[n(8,-8,)| =V tV,CHC Y, - VRVCY, - V,CVRY, 4

which completes the derivation.
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Example 16,5 Two-Step ML Estimation
A common application of the two,step method is accounting for the variation in a constructed
regressor in a second step model. In this instance, the constructed variable is often an estimate of
an expected value of a variable that is likely to be endogenous in the second step model, In this
_example, we will construct a rudimentary model that illustrates the computations.
L In Riphahn, Wambach;and Million (RWM, 2003), the authors studied whether individuals”
use of the German health care system was at least partly explained by whether or not they had
purchased a particular type of supplementary health insurance. We have used their data set, —4 ‘o
German Socioeconomic Panel (GSOEP) at several points. (See, e.g.,, Example m
variables of interest in the study is DocVis, the number of times the an individual visits the doctor
during the survey year. RWM considered the possibility that the presence of supplementary
{Addon) insurance had an influence on the number of visits. Qur srmpie model is as follows: The
model for the number of visits is a Poisson regression (see Section @ This is a loglinear model

that we will specify as ! 7 2—
E1D0CVIS X0, Pagoon] = 1 'B¥X1'G) = explx’B +yA(x: @)l

The model contains not the dummy variable:,.'e' if the individual has Adden insurance and 0
otherwise, which is likely to be endogenous in this equation, but an estimate of E[Addonlxﬂ from a_

logistic probability model (see Section-LZ=8&¥] for whether the individual has insurance, LY [evm
eXP{¥100) . | log (ShG
———=1+— = Prob[Individual has purchased Addon insurance [_)5_1].

Ax,'a) = -
Al 1+exp(xia) g |

For purposes of the exercise, we will specrfy [ NaT
H i) 0 e
L' % T

Wl = Addon) _x, = (constant,Age Educat.'on,Marned K.'ds) fn L ) —
{y2 = DocVis) "%, = (constant,lAg_e Educatfon Income Femm’e)

As before, to sidestep issues related to the panel data nature of the data set, we will use the 4483
observations in the 1988 wave of the data set;'énd drop the two observations for which lncome is
zero. '

The log likelihood for the logistic probability model is

Inty(e} = Zi{(1— )_’i:jlf"{l = Alxa )] + yir 'nA(?._Si_l,'_S.()}-
The derivatives of this log likelihood are

Bala) = ‘5|nf Wy I_’fﬂ;ﬂ)/ 0 = [yin — A '@}
We will maximize this Io@_like%ihood with respect to _(_z__;éhen compute V, using the BHHH estimator, as |
in Theorem 14.8. We will also use gx(a) in computing R.
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The Iog;likelihood for the Poisson regression model is
Iz = % [-uxaB,yixu®) + Vo INi06B,yXa@) —In yall.

‘The derivatives of this log Ilkellhood are
g.z‘z’(B.v,a) dinfz(y,z,xu,x.z,ﬂ,,vﬁa)/d(ﬂ ,v) = [yp— u(mﬂﬁv,xala)][xn A(xu @)y
: i S 3]
g (B,v.a) Olrl,fz(y.qufjl,-i)giz,,,_,i_;#a)lqﬂq = [y~ u(x.zﬂ vnxua)]vll\(xu a)[1- A(X.1 a)]Xn

|2}

We will use .g!?m for computing ¥V, and in computing R andlgand 8it in computing C. In particular,

2D

Vi = [{1/n} 5 ga(a)gn(a) T, S
V: = [(1/n) 5 g, (Blyign ‘”(B.v,g) ]‘1,
[(1/n) 5 g3 ‘”(B.v.'a)an (Biv.a)],
[(1/") Z Srz(z (&Y:‘!)gu(ﬂ) ]
I‘I 4 2

Table 339X presents the twonsetp maximum likelihood estimates of the model parameters and
estimated standard errors. For the flrst ,step logistic model, the standard errors marked I;Ill Vs, V1
compares$ the values computed using the negative inverse of the second derivatives matrix {(HI} vs. the :
outer products of the first derivatives (Vi). As expected with a sample this large, the difference is minor.
The latter were used in computing the corrected covartance matrix at the second step. In the Poisson
model, the comparison of W, to V,* shows distinctly that accounting for the presence of “'ln the
constructed regressor has a substantial impact on the standard errors, even in this relatively large
sample. Note that the effect of the correction is to double the standard errors on the coefficients for
the variables that the equations have in common, but it is quite minor for income and Female, which are
unique to the second step model.

\4.2

Table t438X Estimated Logistlc and Poisson Models

WO
n A

Logistic Model for Addon Poisson Model for DocVis
Coefficient Standard Standard Coefficient Standard Standard
Error (H,) Error (Vi) Error (V») Error (V*) -

Constant -6.19246 0.60228 0.58287 0.77808 0.04884 0.09319
Age 0.01486 0.00912 + 0.00924 6.01752 0.00044 0.00111
Education 0.160091 0.03003 06.03326 ~0.03858 0,00462 0.00980
Married 0.22206 0.23584 0.23523
Kids -0,10822 0.21591 0.21993
Income -0.80298 0.02339 0.02719
Female 0.16409 0.00601 0.00770

Ilxa) . 3.91140 0.77283 1.87014



(14-38

The covariance of the two gradients, R, may converge to zero in a particular application. When
the first,and second,lstep estimates are based on different samples, R is exactly zero. For example, in our
earlier application, R is based on two residuals,

&1 = {Addon; - E[Addon/jx,]} and g,z()— {DocVis; - E[Docst,Ix,g, ]}

The fwo residuals may well be uncorrelated. This assumptlon would be checked on a model-by- model -

basis, but in such an instance, the third and fourth terms in ¥, vanish asymptotically and what remains is
the simpler alternative, ;

Vo** = (1/n)[V, + Y.CV.CV]

(In our application, the sample correlation between g, and g,g Vis only 0. 015658 and the elements of the

estimate of R are only about 0.01 times the corresponding elements of C = esscnt:ally about 99 4: of the |

correction in Vg** is accounted for by C.)

It has been suggested that this set of procedures might be more complicated than necessary.
[E.g., Cameron and Trivedi (2005, p. 202).] There are two alternative approaches one might take. First,
under general circumstances, the asymptotic covariance matrix of the second, step estimator could be
approximated using the bootstrapping procedure discussed in Section 15.6. We would note, however, if

this approach is taken, then it is essential that both steps be “bootstrapped.” Otherwise, taking “_Q, as given
and fixed, we will end up estimating (1/#)V,, not the appropriate covariance matrix. The point of the
exercise is to account for the variation in_ é The second possibility is to fit the full model at once. That

is, use a one,step, full information maximum likelihood estimator and estimate 6, and B, simultaneously.
Of course, this is usually the procedure we sought to avoid in the first place. And with modern software,
this two step method is often quite straightforward. Nonetheless, this is occasionally a possibility. Once
again, Heckman’s (1979) famous sample selection model provides an illuminating case. The two, step
and full information estimators for Heckman’s model are developed in Section 18.5.3.
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— 1Y
Chapter ,z() After a bit of manipulation, wa-find the convenient result that }

a
(Y2 — P)Riy = Z Vi%.

=1

ting the asymptotic covari-

mat

= Z vily exp(x},8)]xn .

f==i

especially in regréssion analysis, involves ingerting a prediction of one variable intoa |
Wt describes the behavior of anofher. /—\J
)

1€.8 PSEUDO-MAXIMUM LIKELIHOOD
ESTIMATION AND ROBUST ASYMPTOTIC
COVARIANCE MATRICES.

Maximum likelihood estimation reqguires complete specification of the distribution of
the observed random variable. If the correct distribution is something other than what
we assume, then the likelihood function is misspecified and the desirable properties
of the MLE might not hold. This section considers a set of results on an estimation
approach that is robust to some kinds of model misspecification. For example, we have
found that in a model, if the conditional mean function is £[v|x] = x'8, then certain
estimators, such as least squares, are “robust™ to specifying the wrong distribution of
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the disturbances. That is, LS is MLE if the disturbances are normally distributed, but

we can still ¢claim some desirable properties for LS, including consistency. even if the

disturbances are not normally distributed. This section will discuss some results that

relate to what happens if we maximize the “wrong” log-likelihood function, and for those

§ cases in which the estimator is consistent despite this, how to compute an appropriate
N asymptotic covariance matrix for it}?

H{a‘.an MAXIMUM LIKELIHOOD AND GMM ESTIMATION

Let f(w{xi, 8) be the true probability density for a random variable y given a set of
covariates x; and parameter vector 8. The log-likelihood function is (1/m) 1n g Iy,

Xy=(1 /11)}3 _1 In fyx;. B). The MLE, ﬁML, is the sample statistic that maximizes
‘this function: {The division ‘of in Lbyn does not affect the solution.) We maximize the
log-likelihood function by equating its derivatives to zero, so the MLE is obtained by
solving the set of empirical moment equations

31 ( T (]
*Z 0 fn % Bm) _ Ed*('e”"') by =

143 f’?ﬁML
The population counterpart to the sample moment equation is
tainlL -
£ = [Xﬁwﬂ=mmﬂéa

Using what we know '1bout GMM estimators, if £ {d(ﬁ)} = {}, then BML is consistent
and asymptotically normally distributed. with asymptotic covariance matrix equal to

X = [GBYGIGBY {Var{d( )] }G(B)G(BYG(B)] .
where G(ﬁ) plim ad(ﬁ)/aﬁ Because d(ﬁ) is the derivative vector, G{(8) is 1/n times

. the expected Hessian of In L that is, (1/mE [H(ﬁ)] H(ﬁ) As we saw earlier,
Var[3In L/38] =—E[H(B)]- Collectmgallseven appearancesof (1/mE[R(M], weob-
tain the familiar result Ymp = {—E [H(ﬂ)]}_ [All the qs cancel and Var[d]= (112
(1/mH(B).] Note that this result depends crucially on the result Var[dIn L/ag]=

—E[H(B)].

Y zﬁ’ 8.2 MAXIMUM LIKELIHOOD AND M ESTIMATION

The maximum likelihood estimator is obtained by maximizing the function h,. (¥,
X B =(/mY 1 In f(y, x:, $). This function converges to its expectation as # — co.

‘Because this function is the log-likelihood for the sampile, it is also the case (not proven
here) that as 1 — oo, it attains its unique maximum at the true parameter vector, B

(We used this result in proving the consistency of the maximum liketihood estimator.)
Since plimA1,, ¥, X.By=FE [Bav. X X ﬂ)] it follows {by interchanging differentiation and
the expectation opelatlon) that p[lm 35,,(3(, X.8 /3p = E [3h,( {¥.X. £)/38]. But. if this

2The following will sketch & set of results related to this estimation problem. The important references on this
subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber {1967); and Ameimiya (1985).
A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations
in these works are complex, and we will only attempt to provide ah intuitive introduction to the topic.
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function achieves its maximuni at__ﬁ, then it must be the case that plim &/, V2 X. ,8)/
38 =0.

we obtain an estimator by maximizing some other function, M, (y, X, #) that, although
not the log-likelihood function, also attains its unique maximum at the true g as n— 0o.

Then the preceding argument might produce a consistent estimator with a known asymp-
totic distribution. For example, the log-likelihood for a linear regression model with
normally distributed disturbances with different variances, o%w;, is

n

\ y — 1 @y2
-F"(-y.’ 2(,:,"3) = % Z{ 21 [ln(Zmr w,) + M] }

im1 o CU,

By maximizing this function, we obtain the maximum likelihood estimator. Bat we
also examined another estimator, simple least squares, which maximizes M,(v, X, 8) =
—{1/m E,_l(», ~x ﬁ)z As we showed earlier, least squares is consistent and . asymp-
totically normally distributed even with this extension. so it qualifies as an _M estimator
of the sort we are considering here.

Now consider the general case. Suppose that we estimate 8 by maximizing a criterion
function

1 A
M\ X.p = Z Ing(s | %, 8).

Suppose as well that plimd, (v, X, 8)= E[M,(y | X, B)] and that as n—> oo, E[M.(y|

X, 8)] attains its unique maximum at 8. Then, by the’ argument we used earlier for the

MLE, plim 8 M (Y1 X, 8)/38 = E[aM,(y] X, ﬂ)/ag] = {. Once again, we have a set of

moment equations for estimation. Let ,8 E ‘be the estimator that maximizes M, (yl, X  B).
Then the estimator is defined by

M1 X, BE) _ 12 dIng(v |xi, B)
3}95 n Bﬂg

Thus, ﬁ £ is a GMM estimator. Using the notation of our earlier discussion, G(ﬂ E) s
the symmetric Hessian of £ [(Mu(y, X, ,8)] which we will denote (1/m)E [HM{ﬁ 5)}

M(,B E). Ploceedmg as we did above to obtain ¥up. we find that the appropriate
asymptotlc covariance matrix for the extremum estimator would be

Ne = ™ ( & )[ﬁu(ﬁ)]"1

where o= Var[d It::-gg(vJ | Xi. ﬁ}/ 33] and, as before, the asymptotic distribution is
no;mal
The Hessian in Y g can easily be estimated by using its empirical counterpart,

. 1 <= 391 i
Est[Hu(hol = -3 n;;;;;, 29,
i=I

But, @ remains to be specified, and it is unlikely that we would know what function to use.
The important difference is that in this case, the variance of the first derivatives vector

—(ﬂ)u_-

=l

An estimator that is obtained by maximizing a criterion function is called an M
estitnator [Huber (1967)] or an extremum estimator [Amemiya (1985)]. Suppose that

Cl1¥-Y4/
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need not equal the Hessian, so Vg does not simplify. We can, however, consistently
estimate @ by using the sample variance of the first derivatives,

i 1 = {angyx, B) | |8 Ing(i X 8)
4-3 5 [posfad] [rranind]

If this were the maximum likelthood estimator, then ¢ woltld be the OPG estimator
that we have used at several pomts. For example, for the least squares estimator in
the heteroscedastic linear regression model, the criterion is Mﬁ,(y, X, ﬁ) =—(1/m) Z’
(v — Xi 39)2 the solution is b, G(b) = (-2/mX’X, and

K] =2 Z [2xi (3 —x; ﬂ)][2x,( v — X)) = - Z f-’z..x,

Collecting terms, the 45 cancel and we are left prec1seiy WIth the White estimator

of (\{27)1
S A
/6/.8.3 SANDWICH ESTIMATORS

At this point, we consider the motivation for all this weighty theory. One disadvantage
of maximum likelihood estimation is its requirement that the density of the observed
random variable(s) be fully specified. The preceding discussion suggests that in some
situations, we can make somewhat fewer assumptions about the distribution than a
full specification would require. The extremum estimator is robust to some kinds of
specification errors. One useful result to emerge from this derivation is an estimator for
the asymptotic covariance matrix of the extremum estimator that is robust at least to
some misspecification. In particular, if we obtain £ z by maximizing a criterion function
that satisfies the other assumptions, then the appropriate estimator of the asymptotic
covariance matrix is

Emvz——mwmr%wmmwmr
"r* 1=

If A is the true MLE, then Vg simplifies to {—[H(8 g)]} . In the cuirent literature,

this estimator has been called the sandwich estimator. There is a trend in the current

literature to compute this estimator loutmely, regardless of the likelihood function.

It is worth noting that if the Jog-likelihood is not specified correctly, then the param-

. eter estimators are likely to be inconsistent, save for the cases such as those noted

[(Tec, | belew. so robust estimation of the asymptotic covariance matrix may be misdirected

' effort. But if the likelihood function is cortect, then the sandwich estimator is unneces-
sary. This method is not a general patch for misspecified models. Not every likelihood -

function qualifies as a consistent extremum estimator for the parameters of interest in

the model.

Cne might wonder at this point how likely it is that the conditions needed for all
this to work wili be met. There are applications in the literature in which this machin-
ery has been used that probably do not meet these conditions, such as the tobit model

/__OW We have seen one important case. Least squares in the generalized

| 2 regression model passes the test. Another important application is models of “individ-
ual heterogeneity” in cross-section data. Evidence suggests that simple models often

overlook unobserved sources of variation across individuals in cross sections, such as
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unmeasurable “family effects” in studies of earnings or employment. Suppose that the
correct model for a variable is f(v; | x;. ¥;, B.0), wherey; is a random term that is not
- observed andd isa parameter of the distribution of . The correct log-liketihood function

is }:; In f(v|x;.8,0)= E In £, B 10, v, B, e)f(v,)'dv, Suppose that we maximize

] "\~ some other psendo-log-]ikelllmod ﬁmctlon, Zingly lx,, B) and then use the sandwich

' estimator to estimate the asymptotic covariance matrix of ﬁ Does this produce a con-
sistent estimator of the true parameter vector? Sur pmmgly, sometimes it does, even
though it has ignored the nuisance parameter, 8. We saw one case, using OLS in the GR
model with heteroscedastic disturbances. Inappropriately fitting a Poisson model when /
the negative binomial mode! is correct-—see Chapter ,261/—113 another case, For some ?
specifications, using the wrong tikelihood funetion in the | probit model with propor-
tions clata is a third. [These examples are suggested, with several others, by Gourieroux,
Monfort, and Trognon (1984).] We do emphasize once again that the sandwich estimator,
in and of itself, is not necessarily of any virtue if the likelihood function. is misspecified
and the other conditions for the M estimator are not met.

\Lt)lé./BA CLUSTER ESTIMATORS

Micro-level, or individual, data are often grouped or “clustered.” A model of produc-
tion or economic success at the firm level might be based on a group of industries,
with multiple firms in each industry. Analyses of student educational attainment might
be based on samples of entire classes, or schools, or statewide averages of schools
within school districts. And, of course, such “clustering” is the defining feature of a
panel data set. We considered several of these types of applications in our analysis of
panel data in Chaﬂg‘,@. The recent literature contains many studies of clustered data
’ I —1n which the analyst has estimated a pooled model but sought to accommodate the
expected correlation across observations with a correction to the asymptotic covari-
ance matrix”We used this approach in computing a robust covariance matrix for the
pooled least squares estimator in a panel data model [see (‘9\3) and Example Ql in

Section4.3.2].
1" /—F{: the normal linear regression model. the log-likelihood that we maximize with
the pooled least squares estimator is

3 lo — X, 8)°
Inl= —=1In2 —-l no? — 2wl
R EZ[ T3 ps) ] W=3

l f].’_

{See (}6{34).] The “chlst.er-robust" estimator iW

o (ZXX')I [i(x eEX, >} (z v ) 1

i=1 i=l

(-5 zz«) 55 (5 s (55 o)) (-2 555w

i=l t=1 i=1 \ir=l

(& &) [ [ atnf;,) g Blnﬁ:)}(” z asz.-.)‘l
"(Zzaﬂaﬁ') [Z(Z 2 (Z i ) 1\& T 0gopr )

il 1=l i=l \i=1 r=1
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where fj is the normal density with mean x/, 8 and varigfice o2. This is precisely the
“cluster-corrected” robust covariance matrix that appegfs elsewhere in the literature ; /
. [minus an ad hoc “finite population correction” as in{(%-4)). -
In the generalized linear regression model (as In others), the OLS estimator is
consistent, and will have asymptotic covariance matrix equal to

Asy. Var[b] = XX~ [X' @ @) X]IX'X)~".

v (See Theorem The center matrix in the sandwich for the panel data case can be
written : ‘ :
. n
7 - XWX =) XX,
j=1 7 e

which motivates the preceding robust estimator. Whereas when we first encountered
it, we motivated the cluster estimator with an appeal to the same logic that leads to the
White estimator for heteroscedasticity, we now have an additional result that appears
to justify the estimator in terms of the likelihood function.

Consider the specification error that the estimator is intended to accommodate.
Suppose that the observations in group i were multivariate normally distributed with
disturbance mean vector, ) and unrestricted 7; x T; covariance matrix, X,. Then, the
appropriate log-likelthood function would be” w

n

nL=3(=%/2In2% ~ Jin (%) - der % e,).

il

where g; is the T; x 1 vector of disturbances for individual {. Therefore, we have maxi-
mized the wrong likelihood function. Indeed, the 8 that maximizes this log likelihood
function is the GLS estimator, not the OLS estimator. OLS. and the cluster corrected
estimator given eartier, “work™ in the sense that (1) the least squares estimator is consis-
tent in spite of the misspecification and (2) the robust estimator does. indeed, estimate
the appropriate asymptotic covariance matrix.

Now, consider the more general case. Suppose the data set consists of n multivariate
observations, [y;1,....¥ 3]0 = 1,....n. Each cluster is a draw from joint density
filyi 1 X4, 8). Once again, to preserve the generality of the result, we will allow the
cluster sizes to differ. The appropriate log likelihoad for the sample is

Inl= Z ll‘l_ﬁ(_y_{_ ]x,,ﬁi

Instead of maximizing In 1, we maximize a pseudo-log-likelihood

a
Inlp=>"3"In 2 (vir | %0, 8).

A=l 1=l

where we make the possibly unreasonable assumption that the same parameter vec-
tor. f entets the pseudo-log-likelihood as enters the correct one. Assume that it does.( [/]
Using our familiar first-order asymptotics, the pseudo-maximum likelihood estimator |/
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will satisfy

3 | 82In f; % amn f;
rue=2) ( i1 lfzz ae;a',) ( rzz nfr)“ﬂ:}?.)

b fum) 1=l

(S EEn) (Sue) cean

it *il:l

where w; = T;/3 1) Tandg = (1/ 1) }_:,__ d1n f;/86. The trailing term in the expres-
sion is included to allow for the possibility that plim ¢ Oy Pz = fB.which may not equal #,
[Note, for example Cameron and Trivedi (2005, p. 842) spe(:lﬁcaﬂy assume conmstency
in the generic model they describe.] Taking the expected outer product of this expres-
sion to estimate the asymptotic mean squared deviation will produce two ter mkthe
cross term vanishes. The first will be the cluster-corrected matrix that is ublqultous inthe
current literature. The second will be the squared error that may persist as # increases
because the pseudo-MLE need not estimate the parameters of the model of interest.
We draw two conclusions. We can justify the cluster estimator based on this approx-
imation. In general, it will estimate the expected squared variation of the pseudo-MLE
around its probability limit. Whether it measures the variation around the appropri-
ate parameters of the model hangs on whether the second term equals zero. In words,
perhaps not surprisingly, this apparatus only works if the estimator is consistent. Is
that likely? Certainly not if the pooled model is ignoring unobservable fixed effects.
Moreover, it will be inconsistent in most cases in which the misspecification is to ignore
latent random effects as well. The pseudo-MLE is only consistent for random effects in
a few special cases, such as the linear model and Poisson and negative binomial models
discussed in Chapter 25,1t is not consistent in the probit and logit models in which this

approach often used. In the end, the cases in which the estimator are consistent are
rarely, if ever, enumerated. The upshot is stated succinctly by Freedman (2006, p. 302):
“The sandwich algorithm, under stringent regularity conditions, yields variances for
the MLE that are asymptotically correct even when the specification-*-and hence the
likelihood functlon—ale incorrect. However, it is quite another thing to ignore bias. It
remains unclear why applled workers should care about the variance of an estimator
for the wrong parameter.’

1/:6.9 APPLICATIONS OF MAXIMUM

LIKELIHOOD ESTIMATION il

‘We will now examine several applications of the maximum likglihood estimator (MLE).
We begin by developing the ML counterparts to most of thefestimators for the classical
and generalized regression models in Chapters 4 through 12. {Generally, the develop-
ment for dynamic models becomes more involved than we are able to pursue here. The
one exception we will consider is the standard model of autocorrelation.) We empha-
size, in each of these cases, that we have already developed an efficient, generalized
method of moments estimator that has the same asymptotic properties as the MLE
under the assumption of normality. In more general cases, we will sometimes find that

(1495
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the GMM estimator is actually preferred to the MLE because of its robustness to fail-
ures of the distributional assumptions or its freedom from the necessity to make those
assumptions in the first place. Howevet, for the extensions of the classical model based
on generalized least sqaures that.are treated here, that Is not the case. Tt might be argued
that in these cases, the MLE is-superfluous. There are occasions when the MLE will be
preferred for other reasons, such as its invariance to transformation in nonlinear models
-and, possibly, its small sample behavior (although that is usually not the case). And, we
will examine some nonlinear models in which there is no linear, method of moments
counterpart, so the MLE is the natural estimator. Finally, in each case, we will find some
useful aspect of the estimator, itself, including the development of algorithms such as
Newton’s method and the EM method for latent class models.

H-‘}é.QJ THE NORMAL LINEAR REGRESSION MODEL
The linear regression model is
Y=Xp+e5.

The likelihood function for a sample of # independent, identically and normally dis-
tributed distwrbances is
L= ‘2:»?52}‘“12 ,—&’81(203) = u{ 32

_-"':_ =

The transformation from ¢; to v, is &; = y; — %! 8. so the J@mhmn for each observation,
|8g; /83|, is onet¥ Making the transformation, we find that the likelihood function for
the # observations on the observed random variables is

1 = (2 ay-"2et-t/2Ny-XBY (5-XB) 0‘433)
To maximize this function with respect to 8, it will be necessary to maximize the expo-
nent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood
function for the classical regression model:

!
_n Ay gt - XBY (- X8)
In L=~ In2r ~ZIno* ~ = (J6534)
The necessary conditions for maximizing this Iog-likelihood are

dln L Xiy—X8) 7}
R g

3ln L - -Xe'y-Xp| L0

dol 2a2 20

The values that satisfy these equations are

: 14
A= XX 'Xy=h and &y =% (16-36)

“¥See (B-41) in Section B.5. The analysis to follow is conditioned on X., To avoid cluttering the notation, we
will leave this aspect of the model mlphcrt in the results. As noted earlier, we assume that the data gencrating
process for X does not involve g or o2 and that the data arc weli behaved as discussed in Chapter 4.

Uz
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The slope estimator is the familiar one, whereas the variance estimator differs from the
- Ieast squares value by the divisor of # instead of n — K.l

: , N\ @aTE T The Cramér'Rao bound for the variance of an unbiased estimator is the negative
VM inverse of the expectation of - -
= #inl FmL] XX ’g
g3’ apacl| T oT  Tou i 37)
P2l mL| | &#X n e i
30238 a2y ot 2t of

In taking expected values, the off-diagonal term vanishes, leaving

XK 0 ¥
L.H}?'-Uz)]—l. = [9_ (':[_F 20—:1/::] ) (}6./38)

The least squares slope estimator is the maximum likelihood estimator for this model.
Therefore, it inherits all the desirable asymiptotic properties of maximum likelihood
estimators,

We showed earlier that 42 = £'e/(n— K)is an unbiased estimator of o2. Therefore,
the maximum likelihood estimator is biased toward zero: v

Efsdy] =2 ;ng = (1 - g)az <a?. (63

_— Iq
Despite its small-sample bias, the maximum Wn}ator of & has the same
desirable asymptotic properties. We see in (16-39) that 52 and &7 differ only by a factor
—K/n, which vanishes in large samples. It is instructive to formalize the asymptotic
equivalence of the two. From (16-38), we know that

N M«/ﬁ(&ﬁm —o?) 45 N[0,26%].

It follows that
- K 2 oo K 5 o4 f K n, K
In = (1 ;—)ﬁ(O'ML o) + i 1- p; N[0, 20 + T

But K/./iand K/n vanish as n — 0o, so the limiting distribution of z, is also N[O, 254,
Because z, = ,/fi(s? — 52), we have shown that the asymptotic distribution of 52 is the
same as that of the maximum likelihood estimator, :

The standard test statistic for assessing the validity of a set of linear restrictions in
the linear model, Rf — q = 0, is the £ ratio,
(€8, —¢)/J _ (Rb—q)[R*X'X)"'RT'Rh — )

ee/i— Ky J '

With normally distributed disturbances, the F test is valid in any sample size. There
remains a problem with nonlinear restrictions of the form e(#) = 0, since the counter-
part to F. which we will examine here, has validity only asymptotically even with nor-
mally distributed disturbances. In this section, we will reconsider the Wald statistic and
examine two related statistics, the likelihood ratio statistic and the Lagrange multiplier

FlJ,.n—K] =

e
MAs a general rule, maximum likelihood estimators do not make cotrections for degrees of freedom.



! Greens-50558 - book

June 23, 2007 32

520 PART IV 4 Estimation Methodology

‘statistic, These statistics are both based on the likelihood function and, like the Wald
statistic, are generally valid only asymptotically.

No simplicity is gained by restricting ourselves to linear restrictions at this point, so
we will consider general-hypotheses of the form -

Hy: o) =0,
Hy: ¢(8) # 0.

be
f
W = el (COY52 XX ICHY) ehy % X[, (6-40)
where
' !
— C(b) = [a¢(b)/ab']. J6-41)
£ N g

The _.!i!(g!ilg(_)gi] ;atilgi_ -(.II_J_R)_ test is cairied out by comparing the values of the log;
likelihood function with and without the restrictions imposed. We leave aside for the
present how the restricted estimator b, is computed (except for the linear model, which

we saw earlier). The test statistic ané@iimiting distribution under Hy are )
ks LR = —2[n L, — In L] %5 »*[/]. (16-42)

The log-tikelihood for the regression modelis given in (IJ%-/M). Thefirst-order conditions
imply that regardiess of how the slopes are computed, the estimator of o2 without
restrictions on 8 will be 2 = ( ¥—Xb)' (y—-Xb)/n and likewise for a restricted estimator
62 = (¥ - Xb.)(y — Xb,)/n = ¢\¢./n. The concentrated log-likelihood!> will be

Inl;= -—'-g[l +1n27 + In(e'e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we
obtain /

LR = ninfeje./e’e] = n(In 62 — né?) = nin(62/42). (,l‘-d:%)
FET
The Lagrange _;nulﬁpi?é_r (LM) test is based on the gradient of the log-likelihood
function. The principle of the test is that if the hypothesis is valid, then at the restricted
estimator, the derivatives of the log-likelihood function should be close to zero. There
are two ways to carry out the LM test. The log-likelihood function can be maximized
subject to a set of restrictions by using

[(y— XB)(y.— XB)/n

al

In Ly = —g [m 27 +Ino? + ] +A'e(B).

5 Gee Section E4.3.

The }Vajd statistic for testing this hypothesis and its limiting distribution under Hg would
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The first-order conditions for a solution are

[8In LimT 7
X(y—Xg)
. g | | _""{"gﬁ—@ + L83 0 o
Mnhm) _t . y-Xgyw-Xm| = o]. (6ad)
30 22 T 554 0
dln _LLNI C(}g) ’
BTN o

The solutions to these equations give the restricted least squares estimator, b,; the usual
variance estimator, now ¢)e, /n: and the Lagrange multipiiers. There are now two ways
to compute the test statistic. In the setting of the classical linear regression model, when
we actually compute the Lagrange multipliers, a convenient way to proceed is to test
the hypothesis that the multipliers equal zero, For this model, the solution for Avishy =
[RXX)~'R’]-! (Rb—q). This equation is a linear function of the least squares estimator.
If we carry out a Wald test of the hypothesis that A, equals 0, then the statistic will be

LM =24(Est Varfl)) ke = (R - /RSZKXIRT (Rb—). G649

The disturbance variance estimator, s2, based on the restricted slopes is ¢le,/n.
An alternative way to compute the LM statistic often produces interesting results.

- In most situations, we maximize the log-likelihood function without actually computing

the vector of Lagrange multipliers. {The restrictions are usually imposed some other
way.) An alternative way to compute the statistic is based on the (general) result that
under the hypothesis being tested,

E[dInL/38] = E[(1/0")X's] =0
anal® )4{
Asy. Var[3 In L/38] = — E[3%In /3808 " = XX (;1646)

We can test the hypothesis that at the restricted estimator, the derivatives are equal to
zero, The statistic would be

_ ¥
_ SXXX)Xle, .
LM = “eedn 7_,,:53. (16°47)

In this form, the LM statistic is # times the coefficient of determination in a regression
of the residuals e, = (3 — x;b,) on the full set of regressors.

With some manipulation we can show that W = [n/(n — K)]JF and LR and LM
are approximately equal to this function of F:'7All three statistics converge to JF as
increases. The linear model is a special case in that the LR statistic is based only on the
unrestricted estimator and does not actually require computation of the restricted least
squares estimator, although computation of F does involve most of the computation
of b,. Becanse the log function is concave, and W/n > In(1 + W/n), Godfrey (1988)
also shows that W = LR = LM, so for the linear model, we have a firm ranking of the
three statistics.

~1$This makes use of the fact that the Hessian is block diagonal,
YSee Gaodfrey (1988, pp. 49}51).



