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There is ample evidence that the asymptotic results for these statistics are problem-
atic in small or moderately sized samples, [See, e.g., Davidson and MacKinnon (2004,
pp. 424-428).] The true distributions of all three statistics involve the data and the un-
known parameters and, as suggested by the algebra; converge to the F distribution
from above. The implication is that critical values from the chi-squared distribution are
likely 10 be too small; that is, using the limiting chi-squared distribution in small or
moderately sized samples is likely to exaggerate the significance of empirical results,
Thus, in applications, the more conservative F statistic (or ¢ for one restriction) is likely
to be preferable unless one’s data are plentiful.

\Lt ¥€-9.2 THE GENERALIZED REGRESSION MODEL
For the generalized regression model of Section 8.1,
Yi 2K,';B-l- %‘i,i =1,....m,
£]s | X] =0
Hee'|X] = o"2,

as before, we first assume that  is a matrix of known constants. If the disturbances are
multivariate normally distributed. then the log-likelihood function for the sample is

!
~-_2 A2 L "9y — XB8) ~ §5
nL==3n@r) 5o’ -5 -XpYe~ (y~Xg) -3l j@l.  (JE)

Because £ is a matrix of known constants, the maximurh likelihood estimator of g is
the vector that minimizes the gencralized sum of squares, (<1
(B = (Y~ X8y (y - X8)

(hence the name generalized least squares). The necessary conditions for maximizing /.

are
alni 1 _ 1
B = SN WX = Xy - X8 =8,
dinL  n 1 rentl
T = 357 T - XBYE v - XB) (6-49)
£ 1 X.8Y (¥ — X,B) =0
= =352 T 5570~ X8V (y. - X,8) = 0.
The solutions are the OLS estimators using the transformed data: )
A= X X0Xy. = (XX XRYy, uZﬁsw
X 1 5 :
= O — XV (3 ~ Xu) /
n L
‘]’ 51)
= (- XpYe 'y - Xp),
which implies that with nor-r-nally distributed disturbances, generalized least squares is
also maximum fikelihood. Asin the classical regression model, t jmum likelihood
estimator of o2 is biased. An unbiased estimator is the one in{(#.14)/The conclusion, v

7
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which would be expected. is that when Q is known, the maximum likelihood estimator

is generalized least squares, 14

- When € is unk and must be estimated, then it is necessar y to maximize the log;
likelihood in 8) with respect to the full set of paratheters [8, o ] simultaneously.
Because an unrestricted 2 alone contains n(rn-+1)/2~1 parametels it is clear that some
restriction will have to be piaced on the structure of R for estimation to proceed. We will

examine several applications in which @ = 2(6) for some smaller vector of parameters
in the next several sections. We note only a few general results at this point.

1. For a given value of # the estimator of g would be feasible GLS and the estimator
of o2 would be the estimator in (M51). . /4
2. The likelihood equations for § will generally be complicated functions of 8 and
&2, 50 joint estimation will be necessary. However, in many cases, for given values
of g and o2, the estimator of § is stlalghtforwald For example in the model of
/(8' ~15), the iterated estimator ' of 6 when B and s?anda pno: value of @ are given
q is the prior value plus the slope in the regression of (ez/ —Honz.

The second step suggests a sort of back and forth iteration for this model that will work
in many situations--starting with, say, OLS, iterating back and forth between 1 and 2
until convergence will produce the joint maximum likelihood estimator. This situation
was examined by Oberhofer and Kmenta (1974), who showed that under some fairly
weak requirements, most importantly that§ notinvolve o2 or any of the parameters in 8,
this procedure would produce the maximum likelihood estimator. Another implication
of this formulation which is simple to show {we leave it as an exercise) is that under the
Oberhofer and Kmenta assumption, the asymptotic covariance matrix of the estimator
is the same as the GLS estimator. This is the same whether £ is known or estimated,
which means that if # and # have no parameters in common, then exact knowledge of
8 brings no gain in mwnptot:c efficiency in the estimation of § over estimation of B with
a consistent.estimator of Q8.

We will now examine the two primary, single-equation applications: heteroscedas-
ticity and autocorrelation.

W4 3698.2.a Multiplicative Heteroscedasticity
Harvey's (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

i
o? = o? exp(zjot). 91452)

A model with heteroscedasticity of the form

73 /
q of =0’ [ 2 uﬁéss)
mi=1
results if the logs of the vs are placed in z., The groupwise heteroscedasticity
v model described in Section § pr oduced by makmgg, aset of group dummy variables
{one must be omitted). In this case o- is the disturbance variance for the base group
wheteas for the other groups, .:rg = o explay).
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We begin with a useful simplification. Let #; include a constant term so that z} =
(1,4, wheie g; is the original set of variables, and let y* = [Ino?, &']. Then, the model
is simply o7 = exp(r’ ¥)- Once the full parameter vector is estimated, exp(yt) provides
the estlmator of o2, (This estimator uses the invariance result for maximum likelihood

estimation. See Section 1¥%:4.5.d.)
The log-liketihood is 'y}
1 a 2 1 n 3.2
Inf= ———ln(27r) ~352 Mnof—> >3
i=1 i=1 llf

n 1 & 1
= ——27) — = iy — — —l
3 n2x) 3 §=1 LY, 3 E Z

The likelihood equations are

alnl
37,

; }
1 & 8,-2 (kiﬁ')
= 3 Eﬁi ( exp(z,’x) - 1) =r-2:

For this model, the method of scoring turns out to be a particularly convenient way to
maximize the log-likelihood function. The terms in the Hessian are

2 n J

apap’ exp(r’,v)
o
57)

e

The expected value of 3% 1n L/aﬁay is § because E[e; x;, ;] = 0. The expected value
of the fraction in 8% In L/Byay is F[ezja, |xi, 2] = 1. Let § = {8, y] Then

8 In L Xe'x o . J
.-“ =, F(B& 38’) { ,,9’ lzrz =—'?I‘ 9659}

The meﬂlod of scoring is an algorithm for finding an iterative solution to the likelihood
equations. The iteration is

-56)

= #¥inlL Zn: g

' 83 = e L
aﬁ BY’ =l exp(!:.x) e
32 L | R ..

by~ 2y expEy)

5:-!-1 = 5! “’ﬁ_lgn

where §; (i.e.. 8,. ,.and 2,) is the estimate at iteration 1, £ is the two-part vector of first 7/ .' '

derivatives [3In L/38],81n L/3y'}. and H is partitioned likewise. [Newton’s method -
uses the actual second derivatives in (}6- 56)—( ’58) rather than their expectations in
(}6/ 39). The scoring method exploits t’ne convenience of the zero expectation of the

|4
AT
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off-diagonal block (cross derivative) in (J6-57).] Because__i‘-l:is block diagonal, the iter-
ation can be written as separate equations: i

B =8+ (X'Q—lx)_l (X'R7:280) |y
=g+ (X’SZ“X)"IX'SZ" (y.—-X8) (1660)
=X’ SZ']X)_IX' Q“lv (of course).

Therefore, the updated coefficient vector 8, , is computed by FGLS using the previously
computed estimate of y to compute . We use the same approach for y:

x 2 M
3’__r+l ?f + {Z(Z’Z) 1] ,: Z (expé(\z’)’) 1):' . (16-61)

The 2 and 3 3 cancel. The updated value of y is computed by adding the vector of coef-
ficients in the least squares regression of [s /exp(ziy)—1] on A to the old one. Note
that the correction is 2(Z'7))~ 1Z" (31n L/By) soconvergence occurs when the derivative
is zero,

The remaining detail is to determine the starting value for the iteration. Because
any consistent estimator will do, the simplest procedure is to use OLS for 8 and the
slopes in a regression of the logs of the squares of the least squares residuals on  #i
fm ¥ Harvey (1976) shows that this method will produce an inconsistent estimator of

= Ing?, but the inconsistency can be corrected just by adding 1.2704 to the value
obtamed‘\w Thereafter, the iteration is simply:

1. Estimate the dlstmbancc vanance o] ? with exp(zy).

2. Compute 8, +1 by FGLS:Y?

3. Update y, using the regression described in the preceding paragraph.

4. Compute.d;.,.l = [ﬁt+[, 1’r+1] [B: ?r,] Ifd,.,,l is large, then return to step 1.

If di1 at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance
matrix is simply —H" which is block diagonal with blocks

Asy. Vai{By ] = (X's ._—?X)"la
Asy. Var[pyg } = 2(Z'Z) L.

If desired, then &%= exp(j1) can be computed. The asymptotic variance would be

[exp(y)]*(Asy. Var[pymLl).
‘Testing the null hypothesis of homoscedasticity in this model,

\Ll‘ Hoot.-uo_

in (}6-52) is particularly simple, The Wald test will be carried out by testing the hypoth-
esis that the last M elements of y are zero. Thus, the statistic will be

453 |

1 70
G o] (1)
o

*#He also presents a correction for the asymptotic covariance matrix for this first step estimator of y.

P The two-step estimator obtained by stopping here would be fully efficient if the starting vaiue for . were
consistent, but it would not be the maximum likelihood estimator.

Yok -4
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where Z, is the last M columns of Z, not lncludmg the column of ones, and M creates
deviations from means. The likelihood ratio statistic is computed based on (16-54). ||,
Under both the null hypothesis (homoscedastlc-——usmg OLS) and the alternative
(heteloscedastlc—usmg MLE), the third term in In L reduces to —n1/2. Therefore, the
statistic is simply

g =2(InLy —Tn Ly) = nns’ -—Elno,,

W =

whete 52 = ¢’e/n using the/OLS residuals. To compute the LM statistic, we will use
the expected Hessian in (}0-59). Under the null hypothesis, the part of the derivative
vector in ( -55) that cortesponds to 8 is (1/32)X’e 0. Therefore, using (&55), the
LM statistic 5™~ l"f ' !

e (G- Q] bl EE G- Q)]

The first element in the derivative vector is zevo, because 3¢ = ns®. Therefore, the
expression reduces to ' '

= 2[5 (G -0) ] v [ -1)a

This is one- half tlmes the explained sum of squares in the linear regression of the
/ variabl (ef /s —1)on Z, which is the Bleusch—Pagam’Godﬁey LM statistic from

4.6
q Example }Q/ﬁ’ Multiplicative Heteroscedasticity
In Example 6.2, we fit a cost function for the U.S. airline industry of the form

INCie = B1 + B2 In Qi + fa[In er]2 + faln Pue,t + fs Loadfactor, s + &,

where C;, is total cost, Q¢ I output, and Py, is the price of fuel and the 90 observations
in the data set are for six firms observed for 15 years. (The model also included dummy
variables for firm and year, which we will omit for simplicity.) In Example 8.4, we fit a revised
model in which the load factor appears in the variance of Byt rather than in the regression
function. The model is

al_:.zf =o? e)(p(cr LO_&dfactor,,,)
= exp{y1 + v Loadfactor,;).

Estimates were obtained by iterating the weighted least squares procedure using weights
] Wi, = exp( —cy — o Loadfactor; ;). The estimates of v, and y» were obtained at each iteration
f—r [N by regressing the logs of the squared residuals on a constant and Loadfactory,. It was noted 3
| ' atthe end of the example fand is evident in ( -61)] that these would be the wrpng weights j‘{'
v TH to use for the iterated weightad least if we wigh to compute the MLE. Table )Bﬁ%apm'n‘u?/
\/ 3 the results from Examplend adds the/ MLEs preduced using Harvey's method. The
MLE of 1 is substantially’ different from the/ earlier result. The Wald statistic for testing the

4.1 1
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TABLE‘-%z ‘Multiplicative Heteroscedasticity Model
o Sum of
E Constant  Ln Q) L’ @ Ln Py R Squares

oLS 9.1382 _ 092615 0029145  0.41006
InL=542747 0245073 0.032306 0012304 0018807 098616748 1.577479%
0225955 0.030128 (.011346  0.017524

Two-step 9.2463 0.92136 0.024450  0.40352 B

0.21896 0.033028 0.011412 Q.016974  (.986119 1.612938
Herated® 9.2774 0.91609 0.021643  0.40174

0.20977 0.032003  0.011017 0.016332  0.986071 1.645693
MLEF 9.2611 0.91931 0.023281 040266

In L =57.3122 0.2099 0.032295  0.010987 0016304 (.986100 1.626301

#Conventional OLS standard errors
White robust standard errors
CSquared correlation between actual and fitted values

“$Sum of squared resicduals
“*Values of ¢; by iteration: 8.254344, 11.622473, 11.705029, 11.710618, 11.711012, 11.711040, 11.711042
«/Estimate of y; is 978076 (2.839}..~

homoscedasticity restriction (¢ = 0) is (9.78076/2.839)2 = 11.889, which is greater than
3.84, so the null hypothesis would be rejected. The likelihood ratio statistic is —2(54.2747 —
57.3122) = 6.075, which produces the same conclusion. However, the LM statistic is 2.96,
which confticts. This is a finite sample resuit that is not uncommon.

\0( \I.G.g

%.9.2.b Autocorrelation
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order autoregression model examined there will be formalized in detaillin Chapter.}9. 20
We will briefly examine it here to highlight some useful results about the maximum
likelihood estimator. '

The linear regression model with first order autoregressive [AR{1})] disturbances is

}_’! =_“x_:§.+€h{=la---s?: F

o

[ punihs
& = p& + 4, [p] < 1, ——
Elue | X} =0 .é -4
Eluepts | X} = 3 ift =5 and0 otherwise.
Feasible GLS estimation of the parameters of this model is examined in detail in Chap-
ter 4. We now add the assumption of normality; ¢, ~ N[0, 52}, and construct the
20 maximum likelihood estimator.

Because every observation on y; is correlated with every other observation, in
principle, to form the likelihood function, we have the joint density of one T-variate
observation. The Prais and Winsten (1954) trapsformation in U«f28) suggests a useful

20
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way to reformulate this density. We can write

Sty = f) FOriyd, fOal3) ..., fOT] yra).

Because

V1 -_p?’-‘h e - PIX B+ 1y })ﬁ'ﬁz
Hel it = pyie + (% pX-1) B —

and the observations on «, are independently normally distributed, we can use these

results to form the log-likelihood function, — 4
IR P Y ¢ 2y _ 1=pH0n X1’
In i = [ 51027 — 5o, ~ s In(l = p%) 207 f
L 1 [(% = p¥i-1) — (& — %1V 8] o
_1 _1 2 _ ™ t—-1) = LAy — f—
+Z[ 5In2r ~ > Ing; o2 } =
rk-_-“.h___,__

As usnal, the MLE of B is GLS based on the MLEs of ov,, and p, and the MLE for
o2 will be u’ u/T gwen B and | p. The complication is how to compute p. As we will note
in Cha ere is a strikingly large number of choices for consistently estimating p |
2.0 in the AR(l) model 1t is tempting to choose the most convenient, \then begin the back cangd
and forth iterations between § and (O‘ , p) io obiain the MLE. However this stmtegy
will not (in general) locate the MLE unless the intermediate estimates of the variance
parameters also satisfy the likelihood equation, which for p is

dln L ps?’ L 1T

L pEL B + Z tﬂ.‘:‘z g
A=2 L
One could sidestep the problem s:mply by scanning the range of p of (—1,+1) and
computing the other estimators at every point, to locate the maximum of the likelihood
function by brute force. With modern computers, even with long time series, the amount
of computation involved would be minor (if a bit inelegant and inefficient). Beach and
MacKinnon (1978a) developed a more systematic algorithm for searching for p in this
model. The iteration is then defined between g and (8, o2) as usual.

The information matrix for this log-tikelihood is .

i ] -1-x'sr1x q 0
cr" . .
#?1n L o - L2
Ed 8 - 20 otl-p9 |-
3 {azja(alp) " P T-2 140
L \# L oZ(l—pH 1-p7 + (1 - p%? "f

ot

Note that the diagonal elements in the matrix are O(7). But the (2. 3) and (3, 2)
elements are constants of O(1} that will, like the second part of the (3, 3) element,
become minimal as T increases, Dropping these “end effects” (and treating 7 — 2 as
the same as 7 when T increases) produces a diagonal matrix from which we extract the



1’ Greene-50358 book June 23, 2007 0:32 l q - s_g .

CHAPTER 16 4+ Maximum Likelihood Estimation 529

| 0.050

L B

0.000

Residual

| —0.050f

T

\ —0.100 -

01500 . . v bbb
1949 1962 1975 1988 2001

Y = Quarter —
Fiuu RE 1‘3 3 Hesrduajs fmm Esﬂmamd Wmney Demand Equation,

standard approximations for the MLEs in this model:

'Asy.Var{p] =6, (X’SZ“X)‘ “f
Asy. Va:[ ] = 2;_ " (,‘k—ﬁﬁ)
1 p2
N Asy. Var[_,f?] = mf__

T
Example }i 7 Autocorrelation Irglloney Demand Equation
Using the macroeconomic data in Table F5.1, we fit a money demand equation,

|H(M1/CPLU)3 = B1+ = InFReal G.D_Pt + s In T=-hili ratet + &

i, The least squares residuals shown in Figura }8’3 display the typical pattem for a highly
| L PR autocorrelated series.
; The simple first-order autocorrelation of the ordinary least squares residuals is
S 0.9557808« We then refit the model using the Prais and Winsten FGLS estimator and the
maximum likelihood estimator using the Beach and MacKinnon algorithr. The results are
shown in Table 16437 Aithough the OLS estimator is consistent in this model, nonetheless,
the FGLS and ML estimates are quite different.

W4

\"\ H¥.9.3 SEEMINGLY UNRELATED REGRESSION MODELS

The general form of the seemingly unrelated regression (SUR) model is given in

(10-1)5(10-3);
Yi=Xifitgi=1..... M |
- =\~ 4f2 20455 Hlei1 X1, .... Xyl =0, (}6-66)
3 \ha ro A is +ha Dor tun- \\lqjgso,\ E»Ié':é" P, STRPR Xyl = t_ﬁji;_:l.‘.';‘

s Yahsdie 1 (20 -23).
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TABLE Y63 Estimates of Money Demand Equation: T =204

i \w - OLS Prais and Winsten Mavinum Likelihood
Variable Estimate  Std. Ervor  Estimate St Error  Estimate Sid. Error
Constant ~2.1316  0.09100 . —1.4755 0.2550 —-1.6319 0.4296
Ln real GDP 0.3519 0.01205 0.2549 0.03097 0.2731 0.0518
Ln T-bill rate  —0.1249 Q.00984 —-0,02666  0.007007 ~0.02522 0.006941
T 0.06185 0.07767 . (007571
Ty 0.06185 0.01298 0.01273
p f. 0. 0.9557 0.02061 0.9858 0.01180
FGLS estimation of this model is examined in detail in Section 10.2.3. We will now 7

add the assumption of normally distributed disturbances to the model and develop the
maximum likelihood estimators. Given the covariance structure defined in (Jﬁ?)—ﬁé/
joint normality assumption applies to the vector of M disturbances observed at time ¢,
which we write as

W el Xt ... Xu ~N0, %), 1=1,....T. (P667)

N.9.3.a The Pooled Model

The pooled model, in which all coefficient vectors are equal. provides a convenient
starting point. With the assumpticn of equal coefficient vectors, the regression model
becomes

Yo =Xuf + i,
Esi (X1 X =0, (16568)

ey

v__E'[s_,-,s;,}?gl,...,g(y]za,-j if r=5, and 0 if 1#s.

This is a model of heteroscedasticity and cross-sectional correlation. With multivariate
normality, the log likelihood is

T |
L= [-%-4 In2x — %ln 5] — %Lg:;:_-}hs__,}. 01169)

- r=1

As we saw carlier, the efficient estimator for this model is GLS as shown in (10-21).
Because the elements of ¥ must be estimated, the FGLS estimator based on (10-9) is
used.

As we have seen in several applications now, the maximurm likelihood estimator of
B , given X, is GLS, based on (10-21). The maximum likelihood estimator ofd?,;_is

s WX ) (v - XiB) EE ' 20

U= T =y )
based on the MLE of ﬂ If each MLE requires the other, how can we ploceed to ,:{ ";.__ . @
obtain both? The answer is provided by Oberhofer and Kmenta (1974), who show oV
that for certain models, including this one, one can iterate back and forth between | - ks

the two estimators. Thus, the MLEs are obtained by iterating to convergence between |


Bill
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(‘L@O) and | ,{

Sk o A=XeXXeYy). gETD

The process may begin with the (consistent) ordinary least squares estimator, then
M) and so on. The computations are simple, using basic matrix algebra. Hypothesis
tests about 8 may be done using the familiar Wald statistic. The appropriate estimator
/ f of the asymptotlc covariance matrix is the inverse matrix in brackets in (10 -21).
For testing the hypothesis that the off-diagonal elements of % are zero- that is, that
there is no correlation across ﬁlms--there are three approaches. The likelihood ratio
test is based on the statistic

[
AR = T(ln I?Imerascedasﬁcl ~—In L}::gmcmli) = (Z lméf —In lzl) uijlz)

where 67 are the estimates of 62 obtained from the maximum likelihood estimates
of the groupwise heteroscedastic model and_ 2.‘ is the maximum likeithood estimator
in the unrestricted model. (Note how the excess variation produced by the restrictive
model is used to construct the test.) The large-sample distribution of the statistic is chi;
squared with M(M —1)/2 degrees of freedom. The Lagrange multiplier test developed
by Breusch and Pagan (1980) provides an alternative. The general form of the statistic is

n_ {—1 j

am=TY 37l 46-73)

_i=2 =l

. where 1"2 is the ijth residual correlation coefficient. If every equation had a different
par ametel vector, then equation specific ordinary least squares would be efficient {and
ML) and we would compute 7;; from the OLS residuals (assuming that there are suffi-
cient observations for the computation). Here, however, we are assuming only a single-
parameter vector, Therefore, the appropriate basis for computing the correlations is the
residuals from the iterated estimator m the groupwise heteroscedastic model, that is,
the same residuals used to compute & q (An asymptotically valid approximation to the
test can be based on the FGLS residuals instead.) Note that this is not a procedure for
testing all the way down to the classical, homoscedastic regression model. That case in-
volves different LM and LR statistics based on the groupwise heteroscedasticity model.
If either the LR statistic in (1§-72) or the LM statistic in 73) are smaller than the
critical value from the table, th conclusion, based on this tgst, is that the appropriate
model is the groupwise heteroscedastic model.

¥ 16936 The SUR Model 4 \‘{'
The Ober hoferuKmenta {1974) conditions are met for the seemingly unrelated regres-
sions model, so maximum likelihood estimates can be obtained by iterating the FGLS
procedure. We note, once again, that this procedure presumes the use of (10-9) for esti-
. mation of o;; at each 1te1at|on Maximum likelihood enjoys no advantages over FGLS
|0 ] inits asymptotic properties? Whether it would be preferable in a small sample is an
ol open question whose answer will depend on the particular data set.

20Jenscn (1995) considers some variation on the computation of the asymptotic covariance matrix for the
estimator that allows for the possibility that the normality assumption might be viotated.
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W

1&.9 3.c¢ Exclusion Restrictions
By simply inserting the special form of @ in the log-likelihood function for the gen-
eralized regression model in (16—48) we can consider direct maximization instead of
iterated FGLS. It is useful, however, to reexamine the model in a somewhat different
formulation. This alternative construcnon of the likelihood function appears in many
other related models in a number of literatures.

Consider one observation oneach of the M dependent variables and their associated
regressors. We wish to arrange this observation horizontally instead of vertically. The
model for this observation can be written

n n - _J’M]1=[.1.'_‘?‘]’[?E.1 Jxz - _gry]-f-[s; £2 - Sgw]r (;‘274)
= [T+ E,

where x7 is the full set of alt K* different independent variables that appear in the model.
The parameter matrix then has one column for each equation, but the columas are not
the same as 8, i ~60) unless every variable happens to appear in every equation.
Othelwme in the ith equation, ; will have a number of zeros in it, each one imposing
“an exclusion restriction. For examp]e consider a two-equation model for production
costs fcn two an]mes,

Cu = ar+ Brr P + B LBy + 24,
Cor = ay + Pop Po + B2 LFy + 2,

where C is cost, P is fuel price, and LF is load factor. The fth observation would be

@ @
Bip O
G Ghk=[1 A LF P LEL | 0] +[a =]
0 A
0 B

This vector is one observation. Let g, be the vector of M disturbances for this
observation arranged, for now, in a column. Then E[e,s’] _E. The log of the joint
normal density of these M disturbances is

!
A : lorg-l ;Z(
Inle = =5 In@m) — 5 In[Z] - &2 er. (J6-75)

The log-likelihood for a sample of T joint observations is the sum of these over ¢:

/
In L_Zl L= _%_ In2r)-— lnlE] — —Zs ):'“Ie', U’L’IG)

=1 l gl

The term in the summation in (N;’Jﬁ) is a scalar that equals its trace. We can always
permute the matrices in a trace, so
&N

I I T

o P . -1 _ Syt
247 “e_,_zljm_g;g .e;)mzltu:»;. £i8D-
= = =

| ‘/':é /
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This can be further snmphﬁed The sum of the traces of T matrices equals the trace of
the sum of the matrices [see (A-91)]. We will now also be able to move the constant
matrix, X!, outside the summation. Finally, it will prove useful to multiply and divide
by T. Comblmng all thlee steps we obtaln

r /f
Ew(.?-f"‘er,eb =Tt [z.-'l ( 7) E.sfe.:} = Tt5(Z™'W), 678)
- = . ‘i )

_f=i

where

1 T
wn‘j = *FZEHEU

Because this step uses actual disturbances, £[W;;] = a;;: W is the M x M matrix we
would use to estimate I if the £'s were acumlly observed. Inseltlng this result in the
log-likelihood, we have

Ihl= —gw n(27) + In{E} + tr(Z W] 5,1479)

We now consider maximizing this function.
It has been showsi®! that

sinL _ Tyupy-i |
a2 (fé's0)
dln i,

where the x, in (]6-74)is 1owt of X Equatmg the second of these derivatives to a zero
matrix, we see that given the maximum likelihood estimates of the slope parameters, the
maximum likelihood estimator of X is W, the matrix of mean residual sums of squares
and cross pi oducts--that is, the matrix we have used for FGLS. [Notice that there is no
correction for deglees of freedom: 8In £L/3X = 0 implies (10-9).]

We also know that because this model is a generalized regression model, the maxi-
mum likelihood estimator of the parameter matrix [8] must be equivalent to the FGLS
estimator we discussed earlier:# 1t is useful to go a step further. If we insert our solution
for X in the likelihood function, then we obtain the concentrated log-likelihood,

{
Inl .= 4%[54(1 + In(27)) + In|W|]. -81)

We have shown, therefore. that the criterion for choosing the maximum likelihood
estimator of § is

Av = Ming} n|W]. (682)

subject 1o the exclusion restrictions. This important result reappears in many other mod-
els and settings. This minimization must be done subject to the constraints in the pa-
rameter matrix. In our two-equation example, there arve two blocks of zeros in the

'2¥See, for example, Joreskog (1973).
2 This equivalence establishes the Oberbofer—'IKmenm conditions.
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parameter matrix, which must be present in the MLE agAvell. The estimator of B is the

- set of nonzero elements in the parameter matrix in 74).

" The Ilkellhood rafio statistic is an alternative to the =L statistlc discussed earlier for

= testing hypotheses about B The likelihood ratio statigtic is%

g
A== —2(10g_.-Lr ~fog Ly = Tiog|W,t — logWi), t%ss)

where W and W,, are the residual sums of squares and cross-product matrices nsing
the constrained and unconstrained estimators, respectively. Under the null hypothesis
of the restrictions, the limiting distribution of the likelihood ratio statistic is chi-squared
with degrees of freedom equal to the number of restrictions. This procedure can also
be used to test the homogeneity restriction in the multivariate regression model. The
restricted model is the pooled model discussed in the preceding section.

It may also be of interest to test whether & is a diagonal matrix. Two possible

14-¢3

#

approaches were suggested in SECUM 3a [see 72y and (16<73) ). The unrestricted

I

—model is the one We aT¢ using here, whereas tie restricted model is the groupwise

~ parameter vectors. As such, the restricted model re

O http:/Awww.wiley.com/legacy/wileychi/baltagi/'supp/Grunfeld fi

heteroscedastic model ifw% 2 (Example $.3), without the restriction of equal-
s to separate regression models,
estimable by ordinary least squares. The likelihood ratio-statistic would be

iy
ALR —‘.--T {i log &,2 —log I{Z}} . ? (13{84)
i=1 :
2

where 6/ is ele;/ T from the individual least squares regressions and E is the maxi-
mum llkehhood estimate of ¥, This statistic has a limiting chi-squared distribution with
M(M — 1)/2 degrees of freedom under the hypothesis. The altel native suggested by
Breusch and Pagan (1980) is the Lagrange maultiplier statlshc, ()

M. i=1

f
A = TZZI'“, (}6/-85)

i=2 Jm=l

where ry; is the estimated correlation 8;;/]66;;]'/2. This statistic also has a limiting chi-
squared distribution with M(M — 1)/2 degrees of freedom. This test has the advantage
that it does not require computation of the maximum likelihood estimator of I, because
it is based on the OLS residuals,

Example ‘}e 8 ML Estimates of a Seemingly Unrelated I, /
Regressions Mode/!

Although a b!t ated, the Grunfeld data used in Applicati @ withstood the test of time

and a@l the standard data set used to demonstrate th Rmodel. The data in Appendix

Table are for 10 fims and 20 years ( 1935~—1 954). For the purpose of this ilkistration, we

will use the first four firms. [The data are downloaded from thE%ﬁe for Baltagi (2005), at

The model is an investment aquation:

_!.rt=,311 +,525F}r+ﬂaicn+_6:n,t =1,...,20,i =1,...,10,

‘#Sec Attficid (1998) for refinements of this calculation to improve the smafl sample performance.

o
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where
Iy = real gross investment for firm i in yeart,
E, =real value of the firm-shares outstanding,
Cir = real value of the capital stock. }lf F

The OLS estimates for the four equations are shown in the left panel of Table }6.4. The
corralation matrix for the four OLS residual vectors is

1 0261 0279 -0273
R. = —0.261 1 0.428 0.338
Wi 0279 0428 1 -0.06791 "

0273 0338 -0.0879 1

Before turning to the FGLS and MLE estimates, we carry out the LM test against the null
hypothesis that the regressions are actually unrelated. We leave as an exercise to show that
the LM statistic in (16-85) can be computed as

AM = (T/2)Etraoe(El;R¢) -~ M] = 10.451.

The 95 percent critical value from the chi squared distribtition with 6 degrees of freedom is
12.58, so at this peint, it appears that the null hypothesis is not rejected. We will proceed in

spite of this finding.
The next step is to compute the covariance matrix for the OLS residuals using

[ 7160.20 -1967.05 607.533 —2B82.756
e |-1967.05  T004.66 O78.45  367.84
W=(1/TEE=1 ‘507533 078.45 660.820 -_21.3757|
{-282756  367.84 —21.3757 140.872

where E is the 20 x 4 matrix of OLS residuals. Stacking the data in the partitioned matrices

X1 ¢ o P Y4
- * g )32 )?3 g and y= ;ﬁ ,
- 6 0 0 X 1%
we now compute & = W @ lzp and the FGLS estimates,
p=p XX eTy. 145

The estimated asymptotic covariance matrix for the FGLS esti es is the bracketed inverse
matrix. These results are shown in the center panel in Table

To compute the MLE, we will take advantage of the Oberhofer and Kmenta (1974)
result and iterate the FGLS estimator. Using the FGLS coefficient vector, we recompute the
residuals, then recompute W, then reestimate 8. The iteration is repeated until the estimated
parameter vector converges We use as our convergence measure the following criterion
based on the change in the estimated parameter from iteration &l ) to ﬁerahon {s):

5=[3s) - 1;(3';)][)( [ XB(s) — Blscy). A4

The sequence of values of this criterion function are: 0.21922, 0.16318, 0.00662, 0.00037,
0.00002367825, 0.000001563348, 0.1041980 x 107, We exit the iterations after iteration 7.
The ML estimetes are shown in the right panel of Table .5

We then carry out the likelihood ratio test of the nuil hypothe:-:ls of a diagonal covariance
matrix. The maximum likelihood estimate of X, is

723546 —2455.13 616.167 -325.413
$ -2455.13 814641 1288.66 427.011
e 615.167 1288.66 702.268 251786
~325.413 427011 " 251786 153,889
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TABLE 1%.4 Estimated Investment Equations
\ ‘ 5‘ OLS FGLS MLE

Firm Variable FEstimate St Er.  Estimate St Er. Estimate St Er
Coustamt —149.78 = = 9758 - -160.68 90.41 —179.41 86.66

1 F 0.1192 0.02382 0.1205 0.02187 0.1248 0.02086
£ 0.3714 0.03418 0.3800 0.03311 03802 0.03266
Lonstant —49.19 136.52 21.16 116.18 36.46 106.18

2 F 0.1749 0.06841 0.1304 005737 0.1244 0.05191
C 0.3896 0.1312 0.4485 0.1223 (14367 01171
Constant ~9.956 2892 -19.72 26.58 =24.10 25.80

3 F 0.02655 0.01433 0.03464 0.01279 0.03808 0.01217
C 0.1517 0.02370 0.1368 002249 0.1311 0.02223
Constant —6.190 12.45 0.9366 11.59 2.581 11.54

4 F 0.07795 0.01841 0.06785 001705 0.06564 0.01698
C 0.3157 0.02656 0.3146 0.02606 0.3137 002617

The estimate for the constrained model is the diagonal matrix formed from the diagonals of
W shown earlier for the OLS results. {The estimates are shown in boidface in the preceding
matrix.) The test statistic is then

LR = T{In|diag(W)] -Inlﬁ[) = 18.55.

Recall that the critical value is 12.89. The results contradict the LM statistic. The hypothesis
of diagonal covariance matrix is now rejected.

Note that aside from the constants, the four sets of coefficient estimates are failly similar.
Because of the constants, there seems little doubt that the pooling restriction will be rejected.
To find out, we compute the Wald statistic based on the MLE resdlts. For testing

Hy: By =82 = Bs=Ba,
wae can formulate the hypothesis as
Ho: By —B4=0,8,— B, =0,8;~ 8, =0.

The Wald statistic is
hw ={R# ~ @) RVRT'(RP —q) = 2190.96

.la vg. 1.0\. _I .o'-
where R = [g 13 lQ "{sjj 4= [0} cand ¥ = {X’Q“'X}‘R Under the null hypothesis, the
3 =l] ° 0

Wald statistic has a Ilmltlng chi-squared distribution with 9 degrees of freedom. The critical
valueis 16.92, so, as expected, the hypothesis is rejected. it may be that the difference is due
1o the different constant terms. To test the hypothesis that the four pairs of slope coefficients
are equal, we replaced the s in R with [0, 1], the Os with 2 x 3 zero matrices and q with
a 6 x 1 zero vector, The nesultlng chi-squared statistic equals 229.005. The critical vaiue is
12.59, so this hypothesis is rejected also.

1Y #69.4 SIMULTANEOUS EQUATIONS MODELS

io
In Chapter J3; we noted two approaches to maximum likelihood estimation in the
equation system

YT +XB =, 1y ©
&)X ~ N0, %] ‘

4. 55’ |
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The limited information maximum likelihood (LIML) estimator is a single-equation
approach that estimates the parameters one equation at a time. The full information
maximuim likelihood (FIML) estimator analyzes the full set of equations at one step.
Derivation of the LIML estimator is quite complicated. Lengthy treatments ap-
pearin Andelson and Rubin (1948), Theil (1971), and Davidson and MacKinnon (1993,
e mechanics of the computation are surprisingly simple, as sho rlier
.4). The LIML estimates for Klein’s Model I appear in
ith the other single-equation and system estimators. For the practifioner, a’
useful result is that the asymptotic variance of the two-stage least squares (2SLS) esti-
mator, which is yet simpler to compute, is the same as that of the LIML estimator, For
practical purposes, this would generally render the LIML estimator, with its additional
normality assumption, moot. The virtue of the LIML is largely theor etlcal—lt provides
a useful benchmark for the analysis of the properties of single-equation estimators. The
single exception would be the invariance of the estimator to normalization of the equa-
tion (i.e., which variable appears on the left of the equals sign). This turns out to

usefuld context of analysis in the presence of weak instruments. (See Sections
and-: /0.C.6

The FIML estimator is much s:mplel to deuve than the LIML and cons1de
more difficult to implement. Faedon=i AR s S T

To obtain the needed results, we first opelated on the reduced form

V—xﬂ+¢
] &7
e X N[D £l ﬂé )

1466

‘/
é:x4nplc b.?

.3

which is the seemingly unrelated regressions mode! analyzed at length in Chaptel )% /0

and in Secﬂon}(?) 3. The complication is the restrictions imposed on the parameters,
/J

7 HO=-Br* and 2=y it 88)

As is now familiar from several applications, given estimates of I and B in (¥6:86), the

estimator of X is (1/ T)E'E based on the residuals. We can even show fair Iy easily that

given T and 2 the estimator of ( —BM{S) would be provided by the results for

the SUR model in Section 14.9.3.c (where we estimate the model sub]ect to the zero
restrictions in the coefficient matrix). The complication in estimation is brought by-I;
this is a Jacobian. The term In |I| appears in the tog-likelihood function, wSeEHoR =‘£!?
Nonlinear optimization over the nonzero elements in a function that includes this term
is exceedingly complicated. However, three-stage least squares (3SLS) has the same
asymptotic efficiency as the FIML estimator, again without the normality assumption
and without the practical complications,

The end result is that for the practitioner, the LIML and FIML estimators have
been supplanted in the literature by much simpler GMM estimators, 25LS, H2SLS,
3SLS, and H3SLS. Interest remains in these estimators, but largely as a component of

the ongoing theoretical development.

189.56 MAXIMUM LIKELIHOOD ESTIMATION OF NONLINEAR
%RESSION MODELS

In Chapter J, we considered nonlinear regression models in which the nonlinearity
in the parameters appeared entirely on the right-hand side of the equation. Maximum
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likelihood is used when the disturbances in a regressmn or the dependent variable,
moré¢ generally, is not normally distributed. aton T,‘E.

(14-¢1

e omeiric

stic Frontier Model
which the disturbances do not

~69.6.a Nonnormal Dlsturba_nc’e_s-—The Stoc
This application will examine a regressionlike modelA
have a normal distribution. The mode] develope
form on which to illustrate the use of the invasfiance property of maximum likelihood
estimators to simplify the estimation of thefnodel.
A lengthy literature commencing wifh theoretical work by Knight (1933), Debreu
(1951), and Farrell (1957) and the p#bneering empirical study by Aigner, Lovell, and
Schmidt (1977) has been directgd at models of production that specifically account

y = f(x) deﬁnes a productién relationship between inputs., X, and a output y, then

y = h(x, ﬂ) + u, u piust be negative. Because the 1heoret1c: production function is
an ideal——the fr

result of inefficiency. A strictly orthode£ interpretation embedded in
empirical frontier production

u >0,

gamma model described in Example 4,9 was an application. One-sided disturbances
uch as this one present a particularly difffcult estimation problem. The primary theoret-
ical problem is that any measurement£rror in In y must be embedded in the disturbance.
The practical problem is that the eptire estimated function becomes a slave to any single
errantly measured data point.

Aigner, Lovell, and Schmjdt proposed instead a formutation within which observed
deviations from the produgtfon function could arise from two sources: (1) productive
inefficiency, as we have géfined it earlier and that would necessarily be negative, and
(2) idiosyncratic effectyfhat are specific to the firm and that could enter the model wj
either sign. The end pésult was what they labeled the stochastic frontier: '

gy = p1 + Tfilox —u+v, w20, v~ N[o,0f].
= P+ TefrInxe + &

The frontigr for any particular firm is A(x, 8) + v, hence the paine stochastic fron-
tier. The gnefficiency term is u, a random variable of particulap/interest in this setting.
Because the data are in log terms, « is a measure of the percgitage by which the partic-
ular observation fails to achieve the frontier, ideal produgton rate.

To complete the specification, they suggested two/possible distributions for the
inefficiency term: the absolute value of a normally gfstributed variable and an expo-
nentially distributed variable. The density functiop&or these two compound variables
are given by Aigner, Lovell, and Schmidt; let £ £ v — u, A = 0y /0, 0 = (02 + o2)/2,

A survey by Greene (2007a) appears in Fried, Lovel
is a comprchensive reference on the subject.

and Schmide (2007). Kumbhakar and Lovel] {2000)

ere also presents a convenient plat- -

|
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Example 14.90 Identification in a Loglinear Regression Model ' \ e |

In Exampie%-. we estimated an exponential regression model, of the form

E[Inc_:on_wetAgé,Educgﬁonifemale} = exp(y* + 12Age +|.73Educgtion + yaFemale). '1\} 31

the form

Elincome|x] = ,9(9) exP(n +,X"72)
' explyr” h X'v2),

~where 8 is an additional parameter of the distribution and y* = Ing(B)ﬂm Two |mpllcat|ons are!
(1) Nonlinear least squares (NLS) is robust at least o some failures of the distributional assumption.

- This loglinear conditional mean is-consistent with several different distributions, including the Iognorma,lf-a—j R S
Weibull, gamma, and exponential models. In each of these cases, the conditional mean function is of |

The nonlinear least squares estimator of y, will be consistent and asymptotically normally

. distributed in all cases for which Efincome|x] = exp(y,* + X"y2).
(2}, The NLS estimator cannot produce a consistent estimator of v41; plimey = ¥4*, which varies depending
: on the comect distribution. In the conditional mean function, any pair of values for which y,* =
Eng(e) + v4 is the same will lead to the same sum of squares. This is a form of multicollinearity, the
pseudoregressor for 8 is aE[.‘ncomelx}!aB = exp(y* + X12)[g(68)/g(B)] while that for v, is
aE{Income]x}Iay1 exp(71 + X"y). The first IS a constant multiple of the second.
NLS cannot provide separate estimates of © and y; while MLE can N'— see the example to follow.

Second, NLS ‘might be less efficient than MLE since it does not use the information about the

distribution of the dependent variable. This second consideration is uncertain. For estimation of y,, the
NLS estimator is less efficient for not using the distributional information. However, that shortcoming
might be offset because the NLS estimator does not attempt to compute an independent estimator of
the additional parameter, 8.

To illustrate, we reconsider the estimator in Example 7-%X. The gamma regression model
specifies L L

1010= ’l‘f("g) expl-REOYY™, 314 0, 60, u(x) = exp( -y, <X,

The conditional mean function for this modei is

Elyix] = 8/p(x) = 8exp(y; +X'Yz)= exp(w*ﬂ‘n)

Table 14.6 presents estimates of 8 and (V1,yz) Estimated standard errors appear in parentheses, The
' estimates in columns (1), (2) and (4) are all computed using nonlinear least squares. In (1), an attempt

is made to estimate 8 and v, separately. The estimator “converged” on two values. However, the
estimated standard errors are essentially infinite. The convergence to anything at all is due fo rounding
error in the computer. The results in column (2) are for y,* and y,. The sums of squares for these two
estimates as well as for those in (4) are all 112.19688, indicating that the three resuits merely show
three different sets of results for which y,* is the same. The full maximum likelihcod estimates are
presented in (3). Note that an estimate of 8 is obtained here because the assumed gamma distribution
provides another independent moment equation for this parameter, 6lnLJ69 = —nlnLP(e) + Z{Iny; — Inu(x))
= 0, while the normal equations for the sum of squares provides the same normal equation for 8 and Y1

FING R LT 5™
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Table 14.6 Estimated Gamma Regression Model

(1) (2) (3} (43}
NLS Constrained MLE NLS/MLE
NLS
Constant 1.22468 1.69331 3.36826 3..36380
(47722.5) {0.04408) (0.05048) {0.04408)
Age -0.00207 -0.00207 ~  -0.60153 -0.00207
(0.00061) (0.00061} (0.00061) (0.00061)
Education -0.04792 ~0.04792 -0.04975 -0.04792
(0.00247) (0.00247) (0.00286) (0.00247)
Female 0.00658 0.00658 3.006%96 0.00658
{0.01373) (0.0|1373) (0.01322) (0.08677)
P 0.62699 3 5.31474 5.31474
(29921.3) (0.108924) (0.00000)
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S
~~TABLE 16.5 Estimated 8f3chastic Frontier Functigns
Least qudés . Hulf-NormalModel Exponential Model

dard - . Stpfidard Standard
Coefficient Estimate”” Error _t Ratio  Estimate/Error® t Ratio  Estimate Frror* t Ratio

0.234 7.896 0.422 4933 2.069 02%0 7135
0.107 2.297 0.144  1.800 0.262 - 0120 2.184
0126 6.373 . 0.170  4.595 9.770 0.138 5.581
0.282 0.087 3237

0.222 0.136

Constant
B
Br

[o

0.175 0171 0.054
1.265 1.620  0.781
7.398 1.882
log L 2.4695 2.8605

0.098, 0,114, 0.0082,
0.557) for the haif-ngfmal and (0.236, 0.092, 0.111%, 0.038, 3.431) for the cxponentigh’ The ¢ ratios would be

TABLE 16.6° Estimnated Inefficiencies _ ] ,
Sta;/ Half-Normal Exponential Half-Normal Exponential
Kiabama 02011 0.1459 Mg#land 0.1353 0.0925
California 0.1448 0.0972 assachusetts 0.1564

Connecticut 0.1903 0.1348 Michigan 0.1581

Florida 0.5175 0.5903 Missouri 0.1029 .
Georgia 0.1040 New Jersey 0.0958 0.0659
Nlinois 0.1213 New York 0.2779 0.2225
Indiana 0.2113 Ohio 0.1698
Iowa - 02493 Pennsylvania 0.1030
Kansas - 01010 Texas 0.1435
Kentucky 0.0563 Virginia 0.0963
Louisiana 0.2033 Washington 0.0753
Maine 0.2226 West Virginia 11556 0.1124
Wisconsin (.1407

7 7 !
1095 ML Estimati A G i B toredes
i forSoumnt-Bater
=3 The standard approach to modeling counts of events begins with the Poisson regression
model
D \'\ ’
pf '{‘O? exp(—i Al
(‘&5 Prob[Y:y, ]_ _p_(__l_ 2 A ---exp(x’-ﬁ),y,- =0,1,...

f AT y:‘

which has loglinear condltlonal mean function E[y; |x;] = A;. (The Poisson regression j?

model and other specxﬁcauons for data on counts are discussed at length in Chapter}/

We introduce the. topic here to begin development, MLE in a fairly straight-

forward, typical nonlinear setting.) Appendix Tal, resents the Riphahn et al. v
v A (2003) data, which we will use to analyze a countAariable, DocVis, the number of visits
(1% tophysicans in the survey year. The histogram Figure 1%.5 shows a distinct spike at
| |t zero followed by rapidly declining frequencies|While the{Poisson distribution, which

F1.l ¥
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FGURE P68 Histogiam for Doctor Visits,

14
is typically hump-shaped, cpfi accommodate this configuration if A; is less than one,
the shape is nonetheless £omewhat “non-Poisson.” [So-called Zero Inflation models
(discussed in Chapter 25) are often used for this situation.]
The geo:petric distribution.

Sulx) =61 —6)*. 8 =1/(1+x), s =exp(x;p), % =0,1,...,

is a convenient specification that produces the effect shown in Figure w/S (Note that,
formally, the specification is used to model the number of failures before the first suc-
cess in successive independent trials each with success probability &;, so in fact, it is
misspecified as a model for counts. The model does provide a convenient and useful
illustration, however.) The conditional mean function is also _E[y | x;] = ;. The partial

effects in the model are

8 Elw [x]
ax;

=A,;£,

so this is a distinctly nonlinear regression model. We will copstruct a maximum hkeli-
hood estimator, then compare the MLE tothe lmnlmear leasl squares and (misspecified)

linear least squares estimates.
The log-likelihood function is

n .
InL=>3"Inf(y|x, 8 =Y mé+yinl -8,

i=1 i=l
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The likelihood equations are

aln_L_ 2 ( W )a’ﬂ Bk,
i=l

6 1- 9_1, di; Sﬂ
Because : -
d6; 3 -1
d}\., Bﬂ ((} +)_L’.)2) AiX; = ""5_’_:(1 - 9;_)?‘:‘»
the _likelihood equations simplify to
dnL &

% _Zce,y, (1 - 6%

-Z(e (1 + ) = Dx;.
=1

Toestimate the asymptoticcovariance matrix, we can use any of the three estimators
of Asy. Var [ﬁMLg] The BHHH estimator would be

Eid -~ . ' ! - -1
Est. Asy. VarBHHH [QMLE] = {Z (8 In f(.".i“l "."‘f" B)) (3 ]n'f(’v',\i"’*" 2 g")) ]
) i=1 g 38,

[Z(é A+3) - 1)2x,x]

Li=l

The negative inverse of the second derivatives matrix evaluated at the MLE is

. ?mLyt [& -
- i = 1 ,'é,-l-—é,- r: .
[ aﬁaﬁ,] _ [Z( + 3B );cx:l

Finally, as noted earlier, £y [xi] = X = (1 —6:)/6,, is known, so we can also use the
negative inverse of the expected second derivatives matrix, @

i 32 ln L - = 4 A r - \ A -_ - y x
[“E (a’ﬁa.ﬁf )] - [g(l = 9{)&*{[ - I T:'_:I_.I_--'_- | iy

To compute the estimates of the parameters, either Newton's method. | TR

A= =
Ay (11

or the method of scoring,

B =B - (DAY s

can be used, where H and g are the second and first derivatives that will be evaluated
at the current estimates of the parameters. Like many models of this sort, there is a
convenient set of starting values, assuming the model contains a constant term. Because
El v | xi] = A;, if we start the slope parameters at zero, then a natural starting value for
the constant term is the log of 7.
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[ ]
Geomem‘c@det for Doctoy visits ¥
e cohsidered nonlinear least quarelsa?iétion of a loglinear model

- In Example !
. {' }-‘-_ - fiber of doctor visits variable shown in{Figure 1875, The data are drawn from the N
1. 7 Riphahn et al. (2003) data set in Appendix TablerF11.1) We will continue that analysis here by L
fntmg a more detailed model for the count varia ocVis. The conditional mean analyzed
here is .

In E[DocVisy | % = f1 + P ‘499:: + B3 Edug; + B Income;; + fs Kids;;

{This differs slightly from the mode! in Example(11.10, For this exercise, with an eye toward
‘ Lll the fixed effects model in Example J6.13), we have spacified a model that does not contain

any iméjinvariant vari , such as Female;.) Sample means for the variables in the model
are given in Table 48,7, Note thase data are a panel. In this exercise, we are ignoring that
act, al

- ! ‘,‘ fitting a pooled model. We will furn o panel data treatments in the next section,
=k and revisit this application.
| I+ | I.' We used Newton’s method for the optimization, with starting values as suggested earlier.
The five iterations are as follows:
Variable Constant Age Educ Income Kids
Start values: © 115B0e+01  .00000e+00  .00000e+00  .00000e+00  .00000e4-00
1st detivs. —.25191e-08 —B1777e+05 .73202e+04  .42575e-+04  .16484e+04
Parampeters: J1580e4+01  .00000e+00  .00000e+00  .00000e+4-00  .00C00=4-00
lterafion 1F= .6287e+05 ginv(Hjg = A4367e4+02
1st derivs. - .48616e+03 —.22448e405 571620404 —. 171120304 —.16521e+03
Parameters: A1188e+01  .17563e~01 - 50263601 —.46274e—01 —.156809e+00
feration 2F= .6192e+05 glinviH)g = .3547e+01
1st derivs. —31284e+01 —.15585e4-03 - 37197e+02 —, 108308402 —.77186e400
Parameters: 10922e+01 17981e—01 —.47303e—01 —.4673%e—01 — 156838400
lteration 3¥F= 6192e+05 ¢ginv{H)g = .2598e-01
1st derivs. —.18417e—-03 -.9836B8e—02 —21992e—02 -.59354e—03 -—.25904e-04
Parameters: 10918e+01  .1798Be-01 —.47274e—-01 —.46751e—01 —. 156868400
lieration 4 F= .6192e+05 ¢inviH)g = .1831e-05
1st derivs. —.35727e—11  .B6745e—10 -.26302e-10 -—.61006e—11 —.15620e—11
Parameters: J10918e+01  17988e—01 —47274e—-01 -—-.46751e—01 -—.15686e+-00
leration 5 F= £192e4-05 ginviHlg = A772e—12

Convergence based on the LM criterion, g 'H™' g is achieved after the fourth iteration. Note % ?—
that the derivatives at this point are extremely small, albeit not absolutely zero. Table}ﬁ’{ '
presents the maximum likelihood estimates of the parameters. Several sets of standard errors
are presented. The three sets based on different estimators of the information matrix are
presented first. The fourth set are based on the cluster corrected covariance matrix discussed

,171 ____in Saction-168.4. Because this is actually an (unbalanced) panel data set, we anticipate
cotrelation across observations. Not surprisingly, the standard errors rise substantlally The

TABLEJX(? Eshmated Geometric Regression Moda! Dependent Vanable* Docvls. ]
R -3L\~ Mean = 3.18352, Standard Daviation = 5.68969 e

St.Er St.Ern SLEr St Er PE
Vaviable  Estimate H EJF] BHHH Cluster APE Mean OLS  Mean
Constant 1.0918 00524 0.0524 0.0354 01112 — — 2.656
Age 00180 00007 0.0007 0.0005 0.0013 0.0572 0.0547 0.061 43.52
Education —0,0473 00033 0.0033 00023 Q0069 —0.150 -0144 —0.121 11.32
Income —0.0468 00041 0.0042 0.0023 0.0075 -0.149 ~0.142 0162 352

Kids —0.1569 00156 0.0155 00103 00319 -0499 0477 —-03517 040



Bill
Sticky Note
insert "Regression" before "Model"


}[ Greene-50558  book  Junc 23,2007  ©:32 3 / ' |
B

546 PART IV 4 Estimation Methodology

partial effects listed next are computed in two ways. The “Average Partial Effect” is computed
by averaging A # across the individuals in the sample. The “Partial Effect” is computed for
the average individual by computing 4 at the means of the data. The next-to-last column
contains the ordinary least squares coefficients. In this model, there is no reason to expect
ordinary least squares to provide a consistent estimator of 8, The question might arise, What
does ordinary least squares estimate? The answer is the slopes of the linear projection of
DocVis on x;;. The resemnblance of the OLS coefficients to the estimated partial effects is
more than coincidental, and suggests an answaer to the question. ]

The analysis in the table suggests three competing appmacyfé mgldeling DocVis. The
results for the geometric regression model are given in Table 1877. At the beginning of this
section, we noted that the more conventional approach to modeling a count variable such as
DocVis is with the Poisson regression model. The log-likelihood function and its derivatives
are even simpler than the geometric model,

fi
InL ="yl — i ~Inyl,

i=1

dinL/sg =3 (y ~Mxi,

fa=

#InL/3pag = Z ~HXX-

e
A third approach might be a semiparametric, nonlinear regression meds!,
Yir = eXp(X;; 8) + &y

This is, in fact, the model that applies to both the geometric and Poisson cases. Under
either distributional assumption, nonlinear least squares is inefficient compared to MLE.
But, the distributional assumption can be dropped altogether, and the model fit as a simple

{7y 1% exponential regression. Table J88 presents the three sets of estimates.

[ qees ) , ltis not ©bvioUs how o choose among the alternatives. Of the three, the Poisson model is
used most cften by far. The Poisson and geometric models are not nested, so we cannoct use
a simple parametric test to choose between them. However, these two models will surely fit
the conditions for the Vuong test described in Section ¥:3:3”To implement the test, we first
computed o b»

Vi =n f | geometric — In f; | Poisson Ser on 1464
using the respective MLEs of the parameters. The test statistic given in 4) is then

V=
- _,s'_/

TABLE }(&3 -Estimates of Three Models for DOCVIS -
Geometric Model Poisson Model Nenlinear Reg.

Variable Estimate St Er Estimare St Estimate Se Er
Conslant . 1.0918 0.0524 1.0480 0.0272 0.9801 0.0893
Age 0.0180 0.0007 0.0184 0.0003 0.0187 0.0011
Education —-{.0473 0.0033 —0.0433 0.0017 ~0.0361 0.0057
Income —(.0468 0.0041 —0.0520 0.0022 -0.039% 0.0072

Kids -0.1569 0.0156 —0.1609 0.0080 —0.1692 (.0264
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This statistic converges to standard normal under the underlying assumptions. A large posi-
tive value favors the geometric model. The computed sample value is 37.885, which strongly
favors the geometric mode! over the Poisson.

\‘\ %.9.6 PANEL DATA APPLiGATI_ONS

Application of pane! data methods to the linear panel data models we have considered
so far is a fairly marginal extension. For the random effects linear model, considered in
the following Section 16.9.6.a, the MLE of 8 is, as always, FGLS given the MLEs of the

\ q variance parameters. The latter produce a fairly substantial complication, as we shall
see. This extension does provide a convenient, interesting application to see the payoff
to the invariance property of the MLE;&-we will reparameterize a fairly complicated
log-likelihood function to turn it into a simple one. Where the method of maximum
likelihood becomes essential is in analysis of fixed and random effects in nonlinear
models. We will devglop two gengral methods for handling these situations in generic
terms in Sections 26.9.6.b and }(9,.6.c, then apply them in several models later in the
book. - M I

) ‘{ ;66.6.3 ML. Estimation of the Linear Random Effects Model
The contribution of the ith individual to the log-likelihood for the random effects model
[(,9,(26) to (;?(29)] with normally distributed disturbances is
) )

In L; {8, 02, 02) = -"i;- [Tiln2m + 1 (R) + s — XiBY R 3 — Xi8)] %’
(26-89)

-1
= 5 [Hin2e + g +£197e ]
where ‘
i = o/l + oaif,

and i denotes a T; x 1 column of ones. Note that the £; varies over i becauseitis 7; x 7.
Baltagi (2005, pp. 19-20) presents a convenient and compact estimator for this model
that involves iteration between an estimator of ¢? = [af /(‘752 + _Taf)] , based on sums
of squared residuals, and (o, 8, o'f) (e is the constant term) using FGLS. Unfortunately,
the convenience and compactness come unraveled in the unbalanced case, We consider,
instead, what Baitagi labels a “brute force™ approach, that is, direct maximization of

the log-likelihood function in (L&89). (See, op. cit, pp. 1692170.)
Using {A-66), we find (in (9228) that b] "

1 o}
9712-—"—1.—-—‘—‘—“—“, ii'.
i &' -
We will also need the determinant of §;. To obtain this, we will use the product of its
- characteristic roots. First, write
% o
1l = (o7} L+ v,
where y = ol /c2. To find the characteristic roots of the matrix, use the definition

[+ pii'le = hc.



