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548 PART IV 4 Estimation Methodology

where cisa cha1 acteristic vector and ) is the associated characteristic root. The equation
unphes that yu ¢ = (A —1)¢, Premultiply by ¥ to obtain y(l’l)(i’c) A - 1)(1’c) Any
vector ¢ with elements that sum to zero will satlsfv this equallty There will be 7; — 1
such vectors and the associated characteristic roots will be (JL —1y=00ri = 1. For
the remaining root. divide by the nonzero (i’c) and note that i'i = 7;, so the last root is
Ly=r-lora=(1+ Ty) 21t follows that the determinant is

In Iﬁgl = Tiln as + In{1 + ?',Ty).
Expanding the parts and multiplying out the third term gives the log-likelihood function

InL= iln L
i=1

o (1iE)
[(]nZ?r-i-lnos)Z +Zm(1+r3’)J szz;[ i o-2+Ta,,]

Note that in the third term, we can wnte o2+ Tio} = o2(1 + Tiy) and 62 = o2y. After
mserting these, two appearances of o2in the square brackets will cancel leaving .

H

1< _ 5 1],  yidim)
= =333 (nae +ined) im0+ 2 e - K051,
Now, let 8 = 1/082, =1+ Ty, and Q, = y/R;. The individual contl ibution to the
log likelihood becomes LTnuE

Inil; = —% [8(_5_,’.‘%— ——__Q,-(’J_',_TL"_,-)z) +1In R ;{E Tilnd + T;In 2.

The likelihood equations are

alnl,; i d =
ap ? [,;'g"s”} ~° [Qﬂ (;'xh) (:=1 8”)] ,

dnlL; 1
a8 2

2
ainLi _1f .1 (& 7
by —2 EZ Fex] g R; '

These will be sufficient for programming an optimization algorithm such as DFP or
BFGS. (See Section E3.3.) We could continue to derive the second derivatives for
computing the asymptotic covariance matrix, but this is unnecessary. For ,@Mm, we
know that because this is a generalized regression model, the appropriate asymptotlc

'I\./

e
**’{"By this derivation, we have established a useful general result. The characteristic roots of a T x T matrix

of the form A = (I + abb’) are 1 with multiplicity (7 — 1) and ab'b with multiplicity 1. The proof follows
precisely along the lines of our carlier derivation.
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covariance matrix is

n -1
: : . S |
i Asy. Var[Bye] = [ZX: £2; ?\(,} .
T R fml -
(See Section h.S.l.) We also know that the MLEs of the variance components estimators
will be asymptotically uncorrelated with that of 8. In principle, we could continue to

estimate the asymptotic variances of the MLEs of 'af and 2. It would be necessary to

derive these from the estimators of  and y, which one would typically do in any event.’

However, statistical inference about the disturbance variance, o2 in a regression model,

is typically of no interest. On the other hand, one might want to test the-hypothesis that
o equals zero, or y = 0. Breusch and Pagan’s (1979) LM statistic in @9 xtended to

the unbalanced panel case considered here would be

2
(T, 7) s Ger ()
Py 1 5 — 1
2550, T(E ~ 1)] Zi:l E;‘:l.?n

N 2 2
_(Bha) [Eﬁll('i?&)z =l
23N (T - 1)} e

"
LM:

i

4

- Exampie #6.11 Maximum Likeiihood and FGLS Estimates of a
o—

Wage Equation
Example,d.e presented FGLS estimates of a wage egdation Gsing Cornwell and Rupert's
panel data. We have reestimated the wage equation’using maximum likelihood instead of
FGLS. The parameter estimates appear in Table 6.9, with the FGLS and pooled OLS es-
timates. The estimates of the variance components are shown in the table as weil. The
similarity of the MLEs and FGLS estimates is to be expected given the large sample size.
The LM statistic for testing for the presence of the common effects is 3,881.34, which is far
larger than the critical value of 3.84, With the MLE, we can also use an LR test to test for

TAELE_};&. Estimates of the Wage Equation

(14-32)

Candom effects

againgt dhe poty hypothes

L i AL 1 Qch;-g Uqf‘eA

Pooled Least Squares Random Effects MLE Random Effects FGLS ~ $ ¥} | sdq c.‘ based
Variable Estimate std. Erroi™”  Fstimate Std, Error Estimate Std. Error O .[.\f\ e + wo ¢
Exp 0.0361 0.004533 0.1078 0.002480 0,08906 0002280 Yo -1 Relihoods
Exp? —0.0006350 0.0001016 —0.0005054 0.00005452 —0.0007577 0.00005036 | S Y2 q -.? g -_-,_
Wks 0.004461 0.001728 0.0008663  0.0006031 0.001066  0.0005939 . 4
Occ -0.3176 0.02726 —0.03954 001374 —0.1067 0.01269 Whiclh e eds
Ind 0.03213 0.02526 0.008807 0.01531 -.01637 0.01391 .\_ o4 . <
South -0.1137 0.02868 ~{.01615 0.03201 --0.06899 0.02354 cSam |
SMSA 0.1586 0.02602 —0.04019 0.01901 -0.01530 0.01649 Con Q\ USionp
MS 0.3203 0.034%4 —0.03540 0.01880 —0.02398 001711 ' .
Union 006975 (.02667 0.03306 0.01482 0.03597 (.01367
Constant 5.8802 0.09673 48197 0.06035 5.3455 0.04361
of 0.146119 0.023436 (9 = 42.66926) 0.023102
03 0 0.876517 (y = 37.40035) 0.838361
InL —1899.537 2162938 —

2 Robust standard errors
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l‘f "l 6b Y21 NESTED RANDOM EFFECTSW
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Consider Laeseeai, a data set on test scores for multiple school districts in a state. To
establish a notation for this complex model, we define 4 four-level unbalanced structure,

. ~Z'L’“ = test score. for étudcnt_t, teacher &, schoolj, district i,
L = school districts, i = 1,..., L,
M, = schools in each district, f = 1,..., M,
Nj = teachers in each school, k=1,..., Nj;
I‘:Jk = students in each class, ¢ =1, ... l‘I,k

Thus, from the outset, we allow the model to be unbalanced at all levels. In general
terms, then, the random effects regression model would be

Yijia = X B + tijr + Vij + Wi + &5 @
Strict exogeneity of the regressors is assumed at all levels. All parts of the disturbance )
are also assumed to be uncorrelated. (A normality assumption will be added later as O
well.) From the structure of the disturbances, we can see that the overall covariance | = = |
matrix, @, is block-diagonal over i, with each diagonal block itself block-diagonal i |“fi> = ["“ "7
turn over j, each of these is block- dlagonal over k, and, at the lowest level, the blocks, | ok He.
&g, for the class in our example, have the form for the random effects model that we | .
saw earlier, |, P

Generalized least squares has been well worked out for the balanced case. [See, e.g.,

Baltagi, Song, and Jung (2001), who also provide results for the three-level unbalanced

case. ] Deﬁne the following to be constructed from the variance components, a a,%, 0'3,

and O’
o} = NTo? + Top +o? = o} + NTo?, F
_ MNTO-‘% + NTO-;Z + Tof + 0'82 — 0’22 + MNTO'&._- b 1 -'!-.':_._f ' ‘| R

Then, full generalized least squares is equivalent to OLS regression of | o (] TS

- (e Te N O O} _ Lo | o
e = Yigle = | 1= — | Fije- = o1 0 )00 "\ gy s ) ) {@h 4

on the same transformation of Xijxe- FGLS estimates are obtained by three groupwise .
between estimators and the within estimator for the innermost grouping.

The counterparts for the unbalanced case can be derived {see Baltagi et al. (2001})],
but the degree of complexity rises dramatically. As Antwiler (2001) shows, however,
if one is willing to assume normality of the distributions, then the log likelihood is
very tractable. (We note an intersection of practicality with nonrobustness.) Define the
variance ratios
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Construct the following intermediate resuits:

o . o I;

Oijk = 1+ Tijepu, 1) = Z ik I bij = 1+ ¢ijpv, ¢ = Z d’u 10 =1+ pudh;
' . ' ik =1 ‘

and sums of squares of the d1sturbances il = Yijle = U,aﬂ

r;k

Am‘c 3 Zeuhr

uk

M
Bljk—zez]kra Blj Z B”k Z'gi“
: 1 YL

=1
The log likelihood is

In L= —%Hln QRro?) — L [Z {]n 8 +Z {m & + Z

In 6 Ak oy Bl Py 3121 ow B?
MOt e (T aet (TG az (]
3 - Yijk. O if Og .} a;

where H is the total number of observations. (For three levels, L = 1 and p,, = 0.)
Antwiler (2001) provides the first derivatives of the log likelihood function needed to
maximize In L. However, he does suggest that the complexity of the results might make
numerical differentiation attractive. On the other hand, he finds the second derivatives
of the function intractable and resorts to numerical second derivativesin his apphcatlon
The complex. part of the Hessian is the cross derivatives between g and the variance
parameters, and the lower right part for the variance parameters themselves. However,
these are not needed. As in any generalized regression model, the variance estimators
and the slope estimators are asymptotically uncorrelated. As such, one need only invert
the part of the matrix with respect to 8 to get the appropriate asymptotic covariance
matrix. The relevant block is

32 n L Nj T p L M Ny Tk f T
s 508 ;ZZZZX&M;M o2 ZZZ@ Zx‘ﬂ“ Ef:;kr

£ j=1 j=1 k=1 t=1 el f=

s =1 j=1 U k=1

Ou L M q Nij Tijie M. g Ny 1 Tk
a2 (Z (>;:xw))) (.z s (S ()

The maximum likelihood estimator of 8 is FGLS based on the maximum likelihood

estimators of the variance parameters. Thus, expression (9-46J provides the appropriate
covariance matrix for the GLS or maximum likelihood estimator. The difference will
be in how the variance components are computed. Baltagi et al. (2001) suggest a variety

(144
=%
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of methods for the three-level model. For more than three levels, the MLE becomes
} _ more atiractive.
L - Given the complexity of the results, one might prefer simply to use OLS in spite
of its mefficiency. As might be expected, the standard errors will be biased owing to
the correlation across observations; there is evidence that the bias is downward. [See

Moulton (1986).] In that event, the robust estimator in (923} would be the natural
alternative. In the example given earlier, the nesting structure was obvious. In other

cases, such as our application in Example 940, that might nof be true. Tn Example-9:9" =g 14. 12

[and in the application in Baltagi (2005)], statewide observations are grouped into
regions based on intuition. The i impact of anincorrect grouping is unclear. Both OLS and
FGLS would remain conmstent—both are equivalent to GLS with the wrong weights,
which we considered earlier. However the impact on the asymptotic covariance matrix
for the estimator remains to be analyzed.

4.2

Exampie 8¢9 Statewide Productivity

/7Muneﬂ {1990) analyzed the productivity of public capital at the state level using a Cobbt,

:DOL;gIas production func;tt?n We will use the data from that study to estimate a three-leval
: og finear regression mode
Mv po "M' ngsp =a+pl ‘f—:ﬁ hwy o + B3 In water;i
o+ BaIn util e + Bsin emp 4 + s UNSMP g + et +Ujk V),
f=1,...,9t=1, L1 k=100, N,
where the variables in the model are
gsp = gross state product,
pcap = public capital, = hwsy + valer otil
hwy = highway capital,
water = water utility capital,

. util = utility capital,
- pec = private capital,
emp. = empioyment {labor),

wa have defined unemp = unemployment rate,
and iheka-are M = O regions each consisting of a group of the 48 continental states;

Gulf = AL, FL, LA, MS,
Midwest = IL, IN, KY, MI, MN, OH, W,
Mid Atlantic = DE, MD, NJ, NY, PA, VA,
Mountain = CO, ID, MT, ND, 8D, WY,
New England = CD, ME, MA, NH, R!, VT,
South = GA, NC, SC, TN, WV,
A R Southwest = AZ, NV, NM, TX, UT. l‘1 o
Tornado Alley = AK, 1A, KS, MS; NE, OK,
West Coast = CA, OR, WA.
/ p

R For each state, we have 17 years of data, from 1970 to 1986 The two- and three-level
e random effects models were estimated by maximum likelihood. The two-level model was
: also fit by FGLS using the methods developed in Section §82-
g 11.5.% G2
’2_1' ﬂj”fhc data were downloaded from the website for Baltagi (2005) at hitp:/fwww.wiley.com/legacy/
wileychi/baltagile/. See Appendix Table FK |

5.3
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'TABL’EﬁEmrnmma Statewide Production Furiction
Nested
Random Random Random
Fixed Effects  Effects FGES Effects ML Effects
oLs " Estimate . Estimate Estimate Estimate
Estimate  Std.Erm* (Std.Err.) (Std.Err:) (Std Err.) (Std.Err.)
o 1.9260 0.05250 2.1608 21759 2.1348
(0.2143) (0.1380) (0.1477) (0.1514)
B 0.3120 0.01109 0.2350 0.2755 0.2703 02724
(0.04678) (0.02621) {0.01972) {0.02110) (0.02141)
) 0.05888 0.01541 0.07675 0.06167 0.06268 0.06645
(0.05078) {0.03124) (0.02168) (0.02269) {0.02287)
B 0.1186 0.01236 0.0786 0.07572 0.07545 0.07392
(0.03450) (0.0150) (0.01381) {0.01397) (0.01399)
Ba 0.00856 0.01235 —0.11478 —0.09672 -(.1004 —0.1004
{0.04062) {0.01814) {0.01683) (0.01730) (0.01698)
Bs 0.5497 0.01554 0.8011 0.7450 0.7542 0.7539
(0.06770) (0.02976) (0.02482) {0.02664) (0.02613) .
Bs  —0.00727 0.001384  —0.005179 —0.005963 —0.005809 —0.005878
(0.002946)  (0.000980) (0.0008814) (0.0009014)  (0.0009002)
O 0.985422 0.03676493 0.0367649 0.0366974 0.0366964
oy O _ 0.0771064 0.0875682 0.0791243
oy 0.0386299
InL 853.1372 1565.501 1429.075 143030576
+*Robust (cluster) standard errors in parentheses . The covariance matrix (£ molt; els ed b 4 a

\ } resents the estimates of the production function using pooled OLS, OLS for the
11,10 | fixed effectsTmodel and both FGLS and maximum likelihood for the random effects models.

Overall, the estimates are similar, though the OLS estimates do stand somewhat apart. This
suggests, as one might suspect, that there are omitted effects in the pooled model. The £
statistic for testing the significance of the fixed effects is 76.712 with 47 and 762 degrees
of freedom. The critical value from the table is 1.379, so on this basis, one would reject the
hypothesis of no common effacts. Note, as well, the extremely large differences between
the conventional OLS standard errors and the robust (cluster) corrected values. The three or
four fold differences strongly suggest that there are latent effects at least at the state lavet.
it remains to consider which approach, fixed or random effects is preferred. The Hausman
test for fixed vs. random effects produces a chi-squared value of 18.987. The critical value
s 12.592. This would imply that the fixed effects model would be the preferred specification.
When we repeat the calculation of the Hausman statistic using the three-level estimates in

“—The last column of 1ablg &

» the statistic falls slightly to 15.327. Finally, note the similarity of

all three sets of random effects estimates. In fact, under the hypothesis of mean indepen-
dence, all three are consistent estimators. It is tempting at this point to carry out a likelthood
ratio test of the hypothesis of the two-level model against the broader alternative three-level
modet. The test statistic would be twice the difference of the fog likelihoods, which is 2.46.
For one degree of freedom, the critical chi-squared with one degree of freedom is 3.84, s0 on
this basis, we would not reject the hypothesis of the two-level model. We note, however, that
there is a problem with this testing procedure. The hypothesis that a variance is zero is not
well defined for the likelihood ratio test—the parameter under the null hypothesis is on the

boundary of the parameter space (o > 0).

doe_s not apply. ¥
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) \L\ 149.6.17 Random Effects in Nonlinear Models: MLE using Quadrature
Section %9.5.b describes a nonlinear model for panel data, the geometric regression
model, 19 ' e

B__H = l/(l + A}, A‘!l = exp(,x:;ﬁ)-

As noted, this is a panel data model, although as stated, it has none of the features we
have used for the panel data in the linear case. It is a regression model,

PIIOb[_.}.Gf = J.?fl 1,3_{!] = eﬂ(l —g_ir)”!a Yir = 0: 1s e ;i = la .. 's_ns t=11 reny I':s

E“[."H !_xrr] = ).,:,.,
which implies that
Yie = Ay + &pp.

This is simply a tautology that defines the deviation of ¥ from its condlitional mean. It
might seem natural at this point to introduce a common fixed or random effect, as we
did earlier in the linear case, as in

Vi = Aie -+ Eir + 0.

However, the difficulty in this specification is that whereas ¢, is defined residually just as

the difference between y;, and its mean, ¢; is a freely varying random variable. Without

extremely complex constraints on how ¢; varies, the model as stated cannot prevent

it from being negative. When building the specification for a nonlinear model, greater

. caremust be faken to preserve the internal consistency of the specification. A frequent

({1 ) —approach in index fanction models such as this one is to introduce the common effect

" in the conditional mean function. The random effects geometric regression model, for
example, might appear

Pl.()b[},ﬂ' =_,pff I..,XJ'I'] = 9__”(1 - 9“)-)?'[; _1‘?1 = 0, 15 LR ;_i = 1, seey nyt = 1- “aay 7;:_9 .
_ B = 1/(1+ X)), hyg = exp(¥}, B +.u:), [E
ftu;) = the specification of the distribution of random effects =N
z over individuals.

By this specification, it is now appropriate to state the model specification as
PI'Ob[.}_;r = Jir lxmu:] = G (1 — B )%

That is, our statement of the probability is now conditioned on both the observed data
and the unobserved random effect. The random common effect can then vary freely
and the inherent characteristics of the modetl are preserved.

Two questions now arise:

* How does one obtain maximum likelihood estimates of the parameters of the
model? We will pursue that question now,

| Greene-50558 book  Juze 23,2007 032 TR |
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* If we ignore the individual heterogeneity and simply estimate the pooled model,
‘ will we obtain consistent estimators of the model parameters? The answer is

sometimes, but usually not. The favorable cases are the simple loglinear models
such as the geometric.and Poisson models that we consider in this chapter. The
unfavorable cases are most of the other common applications in the literature,
including, notably, models for binary choice, censored regressions, sample
selection, and, generally, nonlinear models that do not have simple exponential
means. [Note that this is the crucjal issue in the consideration of robust covariance
matrix estimation in Sect:ons)‘ém and w/S 4. See, as well, Freedman (2006).]

We will now develop a maximum likehhood estimator for a nonlinear random
effects model. To set ap the methodology for applications later in the book, we will do
this in a generic specification, then return to the specific application of the geometric
regression model in Example [8.12. Assume, then, that the panel data model defines

| 4 the probability distribution of a random variable, y;,. conditioned on a data vector, X;;,
and an unobserved common random effect, 4;. As always, there are I; observations

in the group, and the data on x;; and now ; are assumed to be strictly exogenously
determined. Our model for one individual is, then,

Pyie | Xirs #0) = fi | %o 143, 0),

where p(vi | Xis, ) indicates that we are defining a conditional density while f(¥;, | Xer,
U;, 9) defines the functional form and emphasizes the vector of parameters to be esti-
mated. We are also going to assume that, but for the common 4;, observations within
a group would be independent—the dependence of obser vations in the group arises
through the presence of the common «;. The joint density of the_ T obsewatlons on i
given &, under these assumptions would be

I
O yize o in | Xe s = T £ | xies 20, 9),

=1

because conditioned on u;, the observations are independent. But because 4 is part of
the observation on the group, to construct the log-likelihood, we will require

7
P, Yizs <o Yz ti | Xi) = [H F i | Xir, this .9)} fla;).

!

The likelihood function is the joint density for the observed random variables, Because
u; is an unobserved random effect, to construct the likelihood function, we will then
have to integrate it out of the joint density. Thus,

i
P2, g | X = f [H f v | X, y_.-,_ﬁ)]__f () duy;.

. Hi =1 - . =
The contribution to the log-likelihood function of group / is, then,

Vi .
;= lnf [H_f(}’n | Xies !if,_ﬂ)] flup)duy;.

=1
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There are two practical problems to be solved to implement this estimator, First, it |~
. will be rare that the integral will exist in closed form. (It does when the density of y;, is ' A=
5 & normal with linear conditional mean and the random effect is normal, because, as we [*_ fia ),
have seen, this is the random effects linear model.) A§ such, the practical complication .
that arises is how the integrals are to-be computed. Second, it remains to specify the |
distribution of &; over which the integration is taken. The distribution of the common 1//1\{
effect is part of the model specification. Several approaches for this model have now |  yade
appeared in the literature. The one we will develop here extends the random effects | '
model with nonmal]y distributed effects that we have analyzed in the previous section. . ——
The technique is Butler and Moffitt's d 982) method. 1t was originally proposed for | ?’
extending the random effects model to a binary choice setting (see Chapter,?S’)/bu_t—/
as we shall see presently, it is straightforward to extend it to a wide range of other
models. The computations center on a technique for approximating integrals known as
Gauss—Henmte quadrature.
We assume that u; is normally distributed with mean zeto and variance o2, Thus,

Jlu) =

With this assumption, the ith term in the log-likelihood is

o0 2
ln_L,-zlnf [Hf(v,, x,,,u,,fi)} \/._.__ﬁexp( A )du,

—o0

To put this function in a form that will be convenient for us later, we now let w; =
1 /(au\/'_ 2) so that 4; = cr,.f 2w; = gw; and the Jacobian of the transformation from u;
to w; is du; = pdw;. Now, we make the change of variable in the integral, to produce
the function _

L = lIn— f [Hf(v,;x,mw.,ﬂ)]exp(— 7)dw.

For the moment, let

T
gove) = [T Fvue L xie, #w1, 0).

=1

Then, the function we are manipulating is

In L _.ln—] gwiyexp (- )dw,-.

The payoff to all this manipulation is that integrals of this form can be computed very
accurately by Gauss—Helmite quadrature. Gauss—Helmlte guadrature replaces the in-
tegration with a wexghted sum of the functions evaluated at a spec:ﬁc set of points. For
the general case, this is

[ g{w:)exp ( ——wz)dw Ez.r;g(vh)
—o =I
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where 7, is the weight and v, is the node. Tables of the weights and nodes are found
in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and
weights for a four-point quadrature are

vy, = £0.52464762327529002 and = 1.6506801238857849,
7= 0.80491409000549996 and 0.081312835447250001.

In practice, it is common to use eight or more points, up to a practical limit of about
96. Assembling all of the parts, we obtain the approximation to the contribution to the
log-likelihood,

1 & [& |
m Li =In :7_.; E Th [H f{yu 'I_I,x__ih_._qgv}n_ﬂ__)] .

fr=1 _I’:l

The Hermite approximation to the log-likelihood function is

1 & & TE
L= ns [n o lx,¢8)] |
‘/?T jmul h=] =1 - -

This function is now to be maximized with respect to 8 and ¢, Maximization is a complex
problem. However, it has been automated in contemporary software for some models,
notably the binary choice models mentioned earlier, and is in fact quite straightforward
to implement in many other models as well. The first and second derivatives of the log-
likelihood function are correspondingly complex but still computable using quadrature.
The estimate of g, and anappropriate standard error are obtained from ¢ using the result
¢ = ou+/2. The hypothesis of no cross-period correlation can be tested, in principle,
using any of the’three standard testing procedures.

Example 71 Randorm Effects Geometric Regression Model
We will usé the preceding to construct a random effects model for the DocVis count variable
analyzed in Example ]852 0. Using 016:90), the approximate log-likelihood function will be
L

54

n M T
Inty = _}_EZI"ZZ" [Hﬂr(" —QH)”'} '

Z 4= mm =
Gt =11+ 2} he = EXP(K;rﬁ' + dup).

The derivatives of the log-likelihood are approximated as well. The following is the general
result— development is left as an exercise;

dlogl. <=1 al;
@) @)

e

H T T |
% ZZ;, [H Fy I.XJr.,qf'_t_J{,,_ﬁ)j, Z dlog f(;’rr(l;lj,gbun,ﬁ)

a h=1 t=t =1 ¢

] IZ 1 H T
= { = Yz [H fye [-ﬂ!'-?-?h-.ﬁlJ }
=t [£3]
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i remains only to speclallze this to our. geometric regression macdel. For this case, the density
is given earlier. The missing components of the preceding derivatives are the partial deriva-
tives with respect to 8 and ¢ that were obtained in Section 18.9.5.b. The necessary result is

3y, o, B _ g1 _|_y")__1](xn) 4

ofy)

Maximum likefihood estimates of the parameters of the random effects geometric regression
model are given in Example }6 13 wnh the fixed effects estimates for this model.

\‘* MQ.S.&; Fixed Effectsliz Nonlinear Models: Full MLE
Using the same modeling framework that we used in the previous section, we now
define a fixed effects model as an index function model with a group-specific constant
term. As before, the “model™ is the assumed density for a random variable,

_P(¥it |dimxﬂ‘) = f( Vit l“idir + x;rﬁ)’

where d,, is a dummy variable that takes the value one in every period for individual i
and zero otherwise. (In more involved models, such as the censared regression model
we examine in Chapter 24, there might be other parameters, such as a variance. Fornow, ;

I 3 it is convenient to omit them-—the development can be extended to add them later.)
A f. % Forconvenience, we have redefined | %;¢ to be the nonconstant variables in the model'”"
\ 7o | The parameters to be estimated are ‘the K elements of # and the n individual constant

terms. The log-likelihood function for the fixed effects model is

L= 303 0 S Lo 5,00

__l'-..:l t=1

where f(.) is'the probability density function of the observed outcome, for example, the
geometric regression model that we used in our previous example. It will be convenient
tolet z; = &; + X/, 8 so that POy Idm Xit) = f(vie L24)-

Inthe fixed effects linear regression case, we found that estimation of the parameters ,_' l
was made possible by a transformation of the data to deviations from group tha 1
eliminated the person-specific constants from the equation. (See Sectlolé; i?ln a
few cases of nonlinear models. it is also possible to eliminate the fixed &ffects from
the likelihocd function, although in geneml not by takmg deviations from means. One

example is the exponential. regressmn model that is used for lifetimes of electronic
components and electrical equipment such as light bulbs:

(e s +. X B) = 8 eXP(—Bir yir), b = expley +X},B), e 2 0.

It will be convenient to write 8;, = y; exp(x;,8) = y;A;. We are exploiting the invari-
ance property of the MLE—esnmatmg o= exp(a,) is the same as estimating ;. The

n.4
\.%_.- **In estimating a fixed effects lincar regression model in Sectio ¢ found that it was not possible to A‘ ¢
analyze models with time-invariant variables. The same limitation a] hes in the noniinear case, for essentially

the same reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns
of the data matrix with time-invariant variables will be transformed to columns of zeros when we compute
derivatives of the log-likelihood function.
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log-likelihood is

ln L = ZZI“GH - rt}’n -

fe=l l=l

|
. (}6-91)
= zz In(yi Air) — (71 At )y

Gelaml 1

The MLE will be found by equating the n + K partial derivatives with respect to ¥ and

B to zero. For each constant term,

%
dln L
=2 ()
Equating this to zero provides a solution for 3 in terms of the data and 8,

4
n= . 1\ p62)

Dorey Die Vi

[Note the analogous result for the linear modet in@ Inserting this solution back
in the log-tikelihood function in (’I;?’-Ql), we obtain thé concentrated log-likelihood,

n &
Inie = In L )—( — L )}’ih
; tzzl: (Es_l rsylis E;‘:1 A_is_ Yis J° ,?‘

which is now only a function of 8. This function can now be maximized witgh respect
to A alone, The MLEs for o; are then found as the logs of the results of 91). Note,
once again, we have eliminated the constants from the estimation problem, but not by
computing deviations from group means. That is specific to the linear model.

The concentrated log-likelihood is only obtainable in only a small handful of cases,
including the linear model, the exponential model (as just shown), the Poisson
regression model, and a few others. Lancaster (2000) lists some of these and discusses the
underlying methodological issues. In most cases, if one desires to estimate the parame-
ters of a fixed effects model, it will be necessary to actually compute the possibly huge
number of constant terms, «;, at the same time as the main parameters, 8, This has widely
been viewed as a practical obstacle to estimation of this model because of the need to
invert a potentially large second derivatives matrix, but this is a misconception. [See,
e.g.. Maddala (1987), p. 317.] The likelihood equations for the fixed effects model are

dln L d ln f( Vit 12i) 31’,1 Z
Z = gu = gu =0,

aai el a— @ . t

and

n

LRI N A

=1 a=1 Si=1 p=1

Y -3 |
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The second derivatives matrix is

e Pl Fxanfw iz
—E&T' ""“‘““‘_“—‘_—E h;,uuh <0,
lenL‘_ ﬁ},
Gﬁatx, - Tirx:r-,

Fnl &
Ty ZZ”""""" Hep.

1—1 r=1

where Hyg: is a negative definite matrix. The likelihood equations are a large system,
but the solution turns out to be surprisingly straightforward. [See Greene (2001).]

By using the formula for the partitioned inverse, we find that the X x K submatrix
of the inverse of the Hessian that corresponds to 8. which would provide the asymptotic
covariance matrix for the MLE, is

- {5 B () (Sn)] )

i=l L=l __[gl

A [ 7 17
= {Z [Zh,-_,(ggf — X/ )i -__i;)’” . where %= Z'-;f”ﬁ"

i=1 L=t

Note the striking similarity to the result we had in (9-18) for the fixed effects model in
the linear case. [A similar result is noted briefly in Chamberiain (1984).] By assembling
the Hessian as a partitioned matrix for 8 and the full vector of constant terms, then
using (A-66b) and the preceding definitions to isolate one diagonal element, we find

Hurm = i_j— +i’H§.§ Xf

again, the result has the same format as its counterpart in the linear model. [See
/ ~18).] In principle, the negatives of these would be the estimators of the asymptotic
variances of the maximum likelihood estimators. (Asymptotic properties in this model

It are problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand,
so that in fact, practical estimation of the model is not really the obstacle. {This must
be qualified, however. Consider the likelihood equation for one of the constants in the
geometric regression model. This would be

Z[e,,(l +yie)—1] =

1=}

Suppose );; equals zero in every period for individual i. Then, the solution occurs where
Zi(8y — 1y = 0.But B is between zero and one, so the sum must be negative and cannot
equal zero. The likelihood equation:has no solution with finite coefficients. Such groups
would have to be removed from the sample to fit this model.]
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1t is shown in Greene (2001) in spite of the potentially large number of parameters
in the model, Newton's method can be used with the following iteration, which uses
only the K x K matrix computed earlier and a few K x 1 vectors:

L] -1
_lé@“) =.}§(r) = { [Z hrr(xn x: WXy — x«)'] } {Z [Z &it (xr: xi)}}
el

t=1 » =1 t=1
2 !
] 1""

&t =& — [/ b + X, A‘”]

This is a large amount of computation involving many summations, but it is linear in
the number of parameters and does not involve any n.x 12 matrices.

In addition to the theoretical virtues and shortcomings of this model, we note the
practical aspect of estimation of what are possibly a huge number of parameters, n+ K.
In the fixed effects case, n1 is not limited, and could be in the thousands in a typical
application. [In Exaulglg,}é: nis 7,293, As of this writing, the largest application of
the method described here that we are aware of is Kingdon and Cassen’s (2007) study .
in which they fit a fixed effects probit model with well over 140,000 dummy variable “'{";b _
coefficients.] The problems with the fixed effects estimator are statistical, not practical. "
The estimator relies on T; increasing for the constant terms to be consisten tTm essence,
each o; is estimated with 7; observations. In this setting, not only is 7; fixed, it is lLkely OS]
to be quite small. As such, the estimators of the constant terms are not consistent (not
because they converge to something other than what they are trying to estimate, but
because they do not converge at all). There is, as well a small sample (small T;) bias in
the slope estimators. This is the incidental parameters problem. [See Neyman and Scott
(1948) and Lancaster (2000).] We will examine the incidental parameters problem in a

and

bit more detall{ with a Monte Carlo study in Section rA’ [
ol /
Example 18'* Fixed and Random Effects Geometric Regressicn

Example 18.10 presents pooled estimates for the geometric regression model

e (i) = Ge( — G) ™, 6 = 1/(1 + 22}, Ay = €xP(G +:X,8), 1 = 0,1, ...

We will now reestimate the model under the assumptlgpsﬁ' |1 rafidom and fixed effects
specifications. The methods of the preceding two ions are applied directly ~no modi-
fication of the procedures was required. Table J830 presents the three sets of maximum
likelhood estimates. The estimates vary considerably. The average group size is about five.
This implies that the fixed effects estimator may well ba subject to a small sample bias. Save
for the coefficient onh Kids, the fixed effects and random effects estimates are quite similar.
On the other hand, the two panel models give similar results to the pooled model except
for the income coefficient. On this basis, it is difficult to see, based solely on the results,
which should be the preferred model. The model is nonlinear to begin with, so the pocled
model, which might otherwise be preferred on the basis of computational ease, now has no

J,

5 ?/ﬂqﬁSumlar results appear in Prentice and Gloeckler (1978) who atiribute it to Rao (1973} and Chamberlain
' ; (1980, 1984).

s 4_10 B5ee Vytiacil, Aakvik, and Heckman (2005). Chamberlain (1980, 1984), Newey (1994), Bover and Areliano

(1997), and Chen (1998) for some extensions of parametric and semiparametric forms of the binary choice
models with fixed effects.
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\

[ ]

TABLE 18.1% Panel Data Estimates of a Geometric Regression for DOCVIS

) Pooled Random Effectst”” Fived Effects
Variable Estimate - St Er.___ Estimase st Fr. Estimate St Er,
Constant L0918~ 04112 03998 0.0953]
Age 0.0180 00013 002208  0.001220 0.04845 0.003511
Education  —00473 00069  —0.04507 0006262  —0.05437 0.03721
Income —0.0468 0.0675 —{.1959 (.06103 —0.1892 0.09127
Kids —0.1569 00319  —0.1242 0.02336 ~0.002543  0.03687

\3Estimated o, = 0,9542921.

redeeming virtues. None of the three models is robust to misspecification. Unlike the finear
madel, in this and other nonlinear models, the fixed effects estimator is inconsistent when 7
is small in both randem and fixed effecis modeis. The random effects estimator is consistent
in the random effects model, but, as usual, not in the fixed effects model. The pooled esti-
mator is inconsistent in both randem and fixed effects cases (which calle into question the
virtue of the robust covariance matrix}. it might be tempting to use a Hausman specification

g,\tw.%%mﬁﬁ however, the conditions that underlie the test are not met'—unhke
thé Tinear model where the fixed effects is consistent in both cases, here it is inconsistent in
both cases. For better or worse, that leaves the analyst with the need to choose the model
tased on the underying theory.

L

14.

\)

\
/0 & LATENT CLASS AND FIMITE MIXTURE MODEILS

The latent class model specifies ghat the distribution of the observed data is a mixture of
a finite number of underlyingdistributions. The model can be motivated in several ways:

¢ [n the classic appligation of the technique, the observed data are drawn from a
mix of distinct ynderlying populations. Consider, for example, a historical or
fossilized regeid of the intersection (or collision) of two populations. The
anthropojdgical record consists of measurements on some variable that would
differ stinctly between the populations. However, the analyst has no definitive

a form of discrete mlxmg We have modeled pafameter hetelogenelty using
contmuous dlstllbutlons n Chapj;el _9’ The “Ainite mixture” approach takes the

T underlying distributions. Goldfeld and Quandt’s
xample 1§.4 is a case in which a nonnormal
distribution is created by miixing two ng¢mal distributions with different parameters.
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% 1410 LATENT CLASS AND FINITE MIXTURE MODELS

In this final application of maximum likelihood estimation, rather than explore a particular model, we will
develop a technique that has been used in many different settings. The latent class modeling framework
specifies that the distribution of the observed data is a mixture of a finite number of underlying
distributions. The model can be motivated in several ways:

* In the classic application of the technique; the observed data are drawn from a mix of distinct underlying
populations. Consider, for example, a historical or fossilized record of the intersection (or collision) of
two populations. The anthropological record consists of measurements on some variable that would
differ imperfectly, but substantively, between the populations. However, the analyst has no definitive
marker for which subpopulation an observation is drawn from. Given a sample of observations, they are
interested in two statistical problems: (1) estimate the parameters of the underlying populations and (2)
classify the observations in hand as having originated in which population. The technique has seen a \
number of recent applications in health econometrics. For example, in a study of obesity, Greene,
Hartis, Hollingsworth and Maitra (2008) speculated that their ordered choice model (see Chapter 17)
might systematically vary in a sample that contained (it was believed) some individuals who have a
genetic predisposition toward obesity and most that did not. In another contemporary application,
Lambert (1992) studied the number of defective outcomes in a production process. When a “zero
defectives” condition is observed, it could indicate either regime 1, “the process is under control,” or
regime 2, “the process is not under control but just happens to produce a zero observation.”

* In a narrower sense, one might view parameter heterogeneity in a population as a form of discrete
mixing. We have modeled parameter heterogeneity using continuous distributions in Chapter 11 and 15.
The “finite mixture™ approach takes the distribution of parameters across individuals to be discrete. (Oof
course, this is another way to interpret the first point.)

* The finite mixing approach is a means by which a distribution (model) can be constructed from a
mixture of underlying distributions. Goldfeld and Quandt’s mixture of normals model in Example 13.4
is a case in which a nonrormal distribution is created by mixing two normal distributions with different
parameters. ’ '
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V4.j0.] ¥ A Finite Mixture Model 1% '
1 To lay the foundation for the more fully deyéloped model that follows, we revisit the
- 4

- mixture of normals model from Example 15.4. Consider a population that consists of a
latent mixture of two underlying normal distributions; Neglecting for the moment that
it is unknown which applies to a given individual. we have, for individual i
e 1 ¥ — )2 0.2
Flyi | class; = 1) = Nfuy, of] = Xp [301 — #1)of] ’
é - o T . M
and [ . s 2] 93)
exp [~3 (% — #2)°/0; I'f
i | class; = 2) = N[us, 0] = E .
Sy | classi =2) = N|ps, of] pyor
The contribution to the likelihood function is f(y; | class; = 1) for an individual in class 1
and f(y; | class = 2) for an individual in class 2. Assume that there is a true proportion
A == Prob(class; = 1) of individuals in the population that are in class 1, and (1 — 1) in
class 2. Then the unconditional (marginal) density for individual { is

)
fldy = af (v | class; = 1) + (1 — &) f(w | class; = 2) (12494)

= Fetasses [ (¥ | class;).

The parameters 1o be estimated are A, u1, p2, 01, and o3. Combining terms, the log-
likelihood for a sample of # individual observations would be

# e N2y - e 22 !
mL=%In (.kexp[ 3u — p)?/of] +(1 Ayexp [~3(w — u2) /az])' 0%95)
=

a2 13 oo 2
This is the mixture density that we saw in Example 1574. We suggested the method of
moments as an estimator of the five parameters in that examplte. However. this appears

to be a strai g?tfo;;vard problem in maximum likelihood estimation.

Examplie T§.9% Latent Class Model for Grade Point Averages
| L{ A dix Table F16:1 contains a data set of 32 observations used by Spector and Mazzeo
- (1980 udy whether a new method of teaching economics, the Personalized System of
Instruction (PSI), significantly influenced performance in later sconomics courses. Variables
in the data set include -

GPA; = the student’s grade point average,

GRADE; = dummy variable for whether the student’s grade in intermediate
macroeconomics was higher than in the principles course,

P&l = dummy variable for whether the individual participated in the PSI,
TUCE; = the student’s score on a pretest in economics,

We will use these data fo develop a finite mixture normal model for the distribution of grade

point averages. é&

We begin by computing maximum likelihood estimates of the parameters in 95). To
estimate the parameters using an iterative method, it is nacessary to devise a set of starting
values. It is might seem natural to use the simple values from a one-class model, y and s,
and a value such as 1/2 for 4. However, the optimizer will immediately stop on these valuss, I
12 as the derivatives wilt be zero at this point. Rather, it is common to use some value ne 70 12
112 ) these—perturbing them slightly (a few percent), just to get the iterations started. Table 161+
" contains the estimates for this twoe-class finite mixture model The estimates for the one-class

model are the sample mean and standard deviations of GPA. [Because these are the MLEs,
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TABLE 15.11 - Estimated Normal Mixture Model o
One Class Latent Class t Latent Class 2
Parameter Estimate. . Std, Ern__ Estimate  Std. Err. Estimate  $td. Ern,
i) 31172 0 008251 3.64187 0.3452 2.8894 0.2514
o 0.4594 0.04070 0.2524 0.2625 0.3218 0.1095
Probability 1.0000 0.0000 0.3028 0.3497 0.6972 0.3497
N} L ~20.51274 —19.63654 . .

62 = - Z’ 1( PA; G'P'F{) .} The means and standard deviations of the two classes are

notloeably dlfferent— the model appears to be revealing a distinct splitting of the data into two
WH.7.9).

classes. (Whether two is the appropriate number of classes is considered in Section

it is tempting at this point to identify the two classes with some other covariate, either in the
data set or not, such as PS). However, at this point, there is no basis for dosng so-—the
classes are “latent.” As the analysis continues, however, we will want to investigate wheéther
ary observed data help 1o predict the class membership.

' ‘-/, jD ey ‘%— Measured and Unmeasured Heterogenelty

The development thus far has assumed that the analyst has no information about class
membership. Estimation of the “prior” probabilities (A in the preceding example) is part
of the estimation problem. There inay be some, albeit imperfect, information about class
membership in the sample as well. For our earlier example of grade point averages,
we also know the individual’s score on a test of economic literacy (TUCE). Use of
this information might sharpen the estimates of the class probabilities. The mixture of
normals problem, for example, might be formulated

Prob(class =1|z)exp [—%(_v_} —u?/of]
oy2r
+ [1 — Prob(class = 11z))] exp [—5 (v — u2)*/af]
o2/2m

where 7, is the vector of variables that help to explain the class probabilities. To make the

fylz) =

W

mixture model amenable to estimation, it is necessary to parameterize the probabilities.
The logit probability model is a common device. (See Section ﬁi}"or applications, see
Greene (2007d, Section 2.3.3) and references cited,) For the two-class case, this might
appear as follows:

exp(z;)

=1 _
Prob(class %) = T+ expz ,9)

, Prob(class =2 z_i) =1 —Prob{class =1 |5£;).

1696)
(The more general J class case is shown in Section @ﬂ) The log-likelihood for our
mixture of two normals example becomes ’ ,f jo (

lnL-_-Zn-ln_l_,-

fazl

( exp(z) \exp [~10i — p)/o?] 1
& 1 4 exp(z/8) o2
=S ; 1 2%
,.z_: ( 1 ) exp [-3(n — u2)?/0f]
1+ expl(;g (3] o2

"
v-43
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The log-likelihood is now maximized with respect to u1, 61, u2, 02. and . If z; contains
. a constant term and some other observed variables, then the earlier model retins
I if the coefficients on those other variables all equal zero. In this case, it follows that
A = In[8/(1 — &)]. (Thls devlce is usually used to ensiwe that 0 < 4 < 1 in the earlier
model.)

4.1, 3 m Predicting Class Membership

The model in (16-97) now characterizes two random variables, y;, the.outcome variable
of interest, and cln'ss,, the indicator of which class the individual resides in. We have
a joint distribution, f(v, class;). which we are modeling in terms of the conditic ! 7¢
JMW%), and the marginal density of class; in (4696). We have
I ‘{ nitially assumed the atter tobe a simpie Bernoulli distribution with Prob(class; = 1) =
A, but then modified in the pr ewous section to equal Prob(class; = 1|z) = A(t’ﬂ)
These can be viewed as the “prior” probabilities in a Bayesian sense. If we Wish to make
a prediction as 1o which class the individual came from, using all the information that we

have on that individual, then the prior probability is going to waste some information.
The “posterior,” or conditional (on the remaining data) probability,

. )
Probiclass; = 1|z;i%) = i dﬁ_z,-; 1 {--zs.), V’é’%)

wiil be based onmore information than the marginai pr obamiltles Wehave the elements {,%'_f [
that we need to compute this conditional probability. Use Bayes,theorcm to write this
as

s

=
>
( rlx_'

Prob(class; = 1|, vi)

_ fvi|class; =1, 2;)Probiclass; = 1|%)
T fy; fclass; =1, z;)Probiclass; = 1|%) + f(y | class; = 2,2,)Prob(class; = 2| % Y

(16.99)

L l
-The denomiinator is L; (not In L) from (}6-97). The numerator is the first term in [;. To
continue our mixture of two normals example, the conditional (posterior) prabability is

( exp(z4) ) exp[—4 (v — m)*/of] ,
1 +exp(zi#) ov2n ()I{IIHD
: 7 :

while the unconditional probability is in (}496). The conditional probability for the
second class is computed using the other two marginal densities in the numerator (or by
subtraction from one). Note that the conditional probabilities are functions of the data
even if the unconditional ones are not. To come to the problem suggested at the outset,
then. the natural predictor of class; is the class associated with the largest estimated
posteriot probability.

}‘( Jo. l-l %— A Conditional Latent Class Model

To complete the construction of the latent class model, we note that the means (and,
in principle, the variances) in the original model could be conditioned on obselved
data as well. For our normal mixture models, we might make the marginal mean, ;.

" Prob(class; = 1|z, v) =
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conditional mean:

o iy =X
In the data of Examplel{iﬁt. we also observe an indicator of whether the individual has
participated in a special program designed to enhance the economics program {PSI).
We might modify the model,

exp[~3(w — B1,1 — B2, 1 PS5 /o]
R
. andsimilarly for f{y; | class; = 2, PSI;). The modelis now a latent class iin'eﬁ_r regression
( ¥\ T model. ' ' Y
; ~ More generally, as we will see shortly, the latent class, or ﬁmts& mixture model for a
variable y; can be formulated as o

1)

_f(_w fclassy = 1, PSE) = N[‘Lﬁ-[,alz] =

T | classi = j, x3) = I (i, %0, ¥9)s
where h; denotes the density conditioned on class j—-indexed by  to indicate, forexam-
ple, the jth parameter vector y ; = (8;, 0;) and so on. The marginal class probabilities
are =

Probiclass; = ] ) = p1(/.%,0)

The methodology can be applied to any model for y;. In the example in Section IBIFE, 16. 1. {
we will model a binary dependent variable with a probit model. The methodology
has been applied in many other settings, such as stochastic frontier models [Orea and

fo : Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)],

and a wide variety of count, discrete choice, and limited dependent variable models
[McLachlan and Peel (2000), Greene (2007b)).

Exampie 16 Latent Class Regression Model for Grade

Point Averages
Combining )é]—.band 9Fel>we have a latent class model for grade point averages,

14,10, ")’-/9-‘/ 1 _ 2/ 2
F(GPA, | class, — ] P) = SPLZH0L =P LR o]
4

exp(fy + 8, TUCE,
Prob{class; = 1|TUCE)) = 3 +£>Ep}3, :GzTU(;;:';) ,

Prob(class; = 2| TUCE;) = 1 — Prob(class = 1| TUCE)).
The log-likelihood is now
( exp(#s + 6 TUCE)) ) exp [~ (s — Br.1 — B21PSI)?/o}]
n
1
nL =3 | \ T+ e+ TUCE) e/ -
= |, 1 exp [—1(%i — B1,2 — Bo2PSh)? /of]
1+ exp(6; + 6, TUCE;) ooV 27 AL o
LN Maximum likelihood estimates of the parameters are given in Table 16322 / 7./ ¥
o ble 1643 lists the observations sorted by GPA. The predictions of clgssmembership re-
/76 N / ;‘ ) Yy flect what one might guess from the coefficients in the table of coeffigiefits. Class 2 members

[ oh average have lower GPAs than in class 1. The listing in Table_ 18713 shows this clustering.
N It also suggests how the latent class model is using the sample information. If the results in

:j21.2t

I". I_l:: -
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%

TABLE 16.1%2  Estimated Latent Class Linear Hegression Model for GPA

One Class Latent Class 1 Latent Class 2
Parameter Estimate .. Sy Err. Estimate  -Std Err, Estimare Sed, Err.
B a1011 - - 04117 - 33928 01733 2.7926 0.04988
B 0.03675 0.1689 01074 ) 0.2006 ~0.5703 007553
o =g'e/n 0.4443 0.0003086 0.3812 0.09337 0.1119 0.04487
9 0.0000 0.0000 -6.8392 3.07867 0.0000 0.0000
& : - 50,0000 0.0000 0.3518 0.1601 0.0000 0.0000
Prob | TUCE 1.0000 0.7063 0.2937
InL . ~20.48752 —13.39966
R Ok
TABLE 1643 Estimated Latent Class Probabilties IET
GPA TUCE PsI CLASS Pl rr* P2 P
2.06 22 1 2 0.7109 0.0116 0.2891 0.9884
2.39 19 1 2 0.4612 0.0467 0.5388 0.9533
2.63 20 0 2 (0.5489 01217 04511 0.8783
2.66 20 o 2 0.5489 0.1020 04511 .8980
267 24 1 1 0.8325 (0.9992 0.1673 0.0008
2.74 19 0 2 0.4612 0.0608 0.5388 0.9392
2,75 25 1] 2 0.8760 0.3499 0.1240 0.6501
2.76 17 ] 2 0.2975 0.0317 0.7025 0.9683
2.83 19 ] 2 0.4612 0.0821 (.5388 0.9179
2.83 27 1 1 0.9345 1.0000 00655 00000
2.86 17 0 2 0.2975 0.0532 - 07025 0.9468
2.87 21 )] 2 0.6336 0.2013 03664 0, 7987
2.89 14 1 1 0.1285 1.0000 0.8715 0.0000
2,89 22 4] 2 0.7109 0.3065 (0.2891 (.6935
2.92 _12 0 2 0.0680 00186 0.9320 0.9814
3.03 225 0 1 0.8760 0.9260 0.1240 0.0740
310 21 1 I 0.6336 1.0000 0.3664 0.0000
312 23 1 1 07775 1.0000 (0.2225 0.0000
3.16 25 i 1 0.8760 1.0000 (0.1240 0.0000
326 25 0 i G.8760 0.9999 " 0.1240 0.0001
328 24 0 1 0.8325 0.9999 0.1675 0.0001
332 23 0 1 0.7775 1.0000 0.2225 0.0000
339 17 1 1 0.2975 1.0000 0.7025 0.0000
3.51 26 i 1 0.9094 1.0000 0.0%06 0.0000
3.53 26 ] 1 0.9094 1.0000 0.0906 (.0000
354 24 1 1 0.8325 1.0000 0.1675 ¢.0000
3.57 23 0 1 0.7775 1.0000 0.2225 0.0000
362 28 1 1 0.9530 1.0000 0.0470 - 0.6000
3.65 21 1 1 0.6336 1.0000 0.3664 0.0000
3.92 29 0 1 0.9665 1.0000 00335 (.0000
4.00 21 0 i (.6336 1.0000 0.3664 0.0000
4.00 23 1 1 0.7775 1.0000 02225 0,0000
.1z

Table ]B’H’J-just estimating the means, constant class probabilitiesr;are used to produce
the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in
class 2. The more elaborate model is adding information on TUCE to the computation. A
low TUCE score can push a high GPA individual into class 2. (Of course, this is largely what
multiple linear regression does as well).
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’ q }O 5 %-Determining the Number of Classes

There is an unsolved inference issue remaining in the spec1ﬁcatlon of the model. The
i number of classes has been taken as a known parameters-two in our main example
thus far, three in the following application. Ideally, one would like to determine the
appropriate number of classes statistically. However, J is not a parameter in the model.
A likelihood ratio test, for example, will not provide a valid result. Consider the original
M .14, The model has two classes and five parameters in total. It would
} lf seem natural toteSt down to a one-class model that contains oniy the mean and variance
using the LR test. However, the number of restrictions here is actually ambiguous. If
Ul = pz and o1 = a2, then the mixing probability is irrelevant_—the two class densities
are the same, and it is a one-class model. Thus, the number of restrictions needed to
get from the two-class model to the one-class model is ambiguous. It is neither two
nor three. One strategy that has been suggested is to test upward, adding classes until

the marginal class insignificantly changes the log-likelihood o1 one of the information——- ’4
criteria such as the AIC or BIC (see Section }6. . Unfortunately, this approach is
likewise problematic because the estimates from any specification that is too short are
inconsistent. The alternative would be to test down from a specification known to be
too large. Heckman and Singer (1984b) discuss this possibility and note that when the
number of classes becomes larger than appropriate, the estimator should break down. In
/_‘cllw 14, if we expand to four classes, the optimizer breaks down, and it is no
\ L]l ‘ onger possible {o coinpute the estimates. A five-class model does produce estimates,
but some are nonsensical. This does provide at least the directions to seek a viable

strategy. The authoritative treatise on finite mixture models by McLachlan and Peel
(2000, Chapter 6) contains extensive discussion of this issue.

V4.00.6 ‘q%ﬁ- A Panel Data Application

The latent class model is a useful framework for applications in panel data. The class
probabilities'partly play the role of common random effects, as we will now explore.
The latent class model can be interpreted as a random parameters model, as suggested
in Sectiop9.8.2, with a discrete distribution of the parameters.

| | Suppose that 8 ; is generated from a discrete distribution with J outcomes, orclasses,
so that the distribution of 8; is over these classes. Thus, the model states that an indi-
vidual belongs to one of the J latent classes, indexed by the parameter vector, but it
is unknown from the sample data exactly which one. We will use the sample data to
estimate the parameter vectors, the parameters of the undertying probability distribu-
tion and the probabilities of class membership. The corresponding model formutation
is now

f(,ylt I.x:_f_{’_;‘i! .A.,Iglv_lﬁZs ceey ﬁl) = Z Pr} (115 A)f(}’:r '(.[HSS = f-» xfh ﬁj
=l

where it remains to pmameteuze the class probabilities, py;, and the structural model,
f( v,,[c!a.s‘s = _j. Xits B;)- The parameter matrix, A, contains the parameters of the
discrete plobablllty distribution. It has J rows, one for each class, and M columns, for
the M variables in z;. At a minimum, M = 1 and z; contains a constant term if the
class probabilities are fixed parameters as in Example }6.147 Finally, to accommodate
the panel data nature of the sampling situation, we sfippose that conditioned on 8,
that is, on membership in class j, which is fixed overAime, the observations on Yo are

/4./5
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independent. Therefore, for a group of 7; observations, the joint density is

_f(y“o Yids v ony )fr,:.';",_ I Cﬂ”‘s =j’ _¥“? XII'Z! ey Ix..igf}s ﬁj)“:: Hf(}f’u I C'[_({SJ =j,mf,ﬁ])

1=}

The tog-likelihood function for a panerl of data is

# d ¥ T
Inl= Zln [Z pij (A, ,?j,)H [ | class = f. X B | -

fuul j=1 f=1

The class probabilities must be constrained to sum to 1. The approach that is ﬁsually
used is to reparameterize them as a set of logit probabilities, as we did in the preceding
examples. Then,

4

exp(d;;) .
Pt A) = cy——tv S =1,.... 1,4 =az,f§-,9u =0(3; =0). ~-101)
sy 3 i1 €XPE;5) 2 Tl 2 = u(

(See Section 25.11 for development of this model for the set of probabilities.) Note
the restriction on &;. This is an identification restriction. Without it, the same set of
probabilities will atise if an arbitrary vector is added to every § ;. The resulting log
likelihood is a continuous function of the parameters 8),..., 8 and 3q,... . 3;. Forall
its apparent complexity. estimation of this model by direct maximization of the log-
likelihood is not especially difficult. [See Section E.3 and Greene (2001, 2007b). The
EM algorithm discussed in Section E.3.7 is especially well suited for estimating the
parameters of latent class models. See McLachlan and Peel (2000).] The number of
classes that can be identified is likely to be relatively small (on the order of 5 or 10 at
most), however, which has been viewed as a drawback of the approach. In general, the
more compléx the model for y, the more difficult it becomes to expand the number
of classes. Also, as might be expected, the less rich the data set in terms of cross-group
variation, the more difficult it is to estimate latent class models.

Estimation produces values for the structural parameters, (8;.8;), j = 1,..., /. ]lf
With these in hand, we can compute the prior ciass probabilities, p;; using (}6-101). -
For prediction purposes, we are also interested in the posterior (on the data) class
probabilities, which we can compute using Bayes theorem [see (16-99)]. The conditional
probability is

Prob(class = j | observatioh_.{ ) _
__f(observation { |class = f)Prob(class;)
B EL; f(observation i |class = j)Prob(class j) \a{
' -102)

FOu 2. - 93 | X X200 X T B i (E, A)
7
25 St iz, - g X X, oo %50 B ij(250 A)

= ?Vi}'_

The set of probabilities, w; = (w;q, W2, ..., w;y) gives the posterior density over the
distribution of values of 8, that is, [8;, 8. ..., 8,].
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W, 5
TABLE 3644 Panel Data Estimates of a Geornetric Regression for DocVis -
) Pooled MLE
(Noniinear ]_east Squares) Random Effectsd” Fixed Fffects
Variable Estimate. . SLEr . Estimate St Er Estimate St Er.
Constant 1.0918 0.1082  0.3998 0.09531
(0.9801)  (0.1813)
Age 00180 0.0013 002208 0.001220 004845 - - 0.003511
(0.01873)  (0.00198)
Education —0.0473 0.0067 ~0.04507  0.006262 —0.05437 (.03721
(—0.03613)  (0.01228)
Income ~0.4687 0.0726 —-0.1959 006103 —0.1982 0.09127
(-0.5911)  (0.1282)
Kids -0.1569 0.0306 —~0.1242 0.02336 —0.002543 0.03687

(~0.1692) {0.04882)
WEstimated o, = 0.9542021,
2 14.1F

Latent Class Model for Health Care Utilization
& proposed an exponential regression medel,

Example

W in Exampl

pgg /1:13 Y= DocVisn = exp{3, 8) + e,

for the variable , the number of visits to the doctor, in the German health care data,
M/ {See Examp r details.) The regression results for the spacification,

NAS 7 x, = (1, Ags,,, Edycation, income, Kidsy)
P - " = 4 !

[ e are repeated (in parentheses) in Table‘ r convenience. The nonlinear least squares

L orHae estimator is only semiparametric; it makes no assumption about the distribution of DocVis;:

e or about &, We do see striking increases in the standard errors when the “ er robust” ) W
asymptotic covatiance matrix is used. (The estimates are given in Exampig :.10.5I he analy- s # '
sis at this point assumes that the nonlinear least squares estimator remai sistent in the /3
presence of the cross-observation carrelation. Given the way the model is specified, that is,
only in terms of the conditional mean function, this is probably reasonable. The extension
would imply a nonlinear generalized regressicn as opposed o 2 nonlinear erdinary regression.

'_{ ' In Example 18710, we narrowed this model by assuming that the observations on doctor
l visits weTé generatad by a geometric distribution,
i

A1) =61~ )7, 8 = 1/(1 + ). &y = exp(xif), 3 =0, 1,....

3 |
The conditional mean is still exp(x;, 8), but this specification adds the SW a part;cst;llg// 71' I‘l‘
distribution for outcomes. The posied model was estimated in Exam ple 18710. Example
added the panel data assumptions of random then fixed effects to the model. The model is
now

/Y.
The pooled, random effects and fixed effects estimates appear in Table)veﬁﬁl;e oled
timates, where the standard errors are corrected for the panel data grouping, are comparable
to the nonlinear least squares estimates with the robust standard errors. The parameter esti-
mates are similar;-both are consistent and this is a very large sample. The smaller standard
errors seen for the MLE are the product of the more detailed specification.
We will now relax the specification by assuming a two-class finite mixture model. We also
specify that the class probabilities are functions of gender and maritat status. For the latent

Sy | %) = 01 — 6}, e = 1/(1 + dnr}, b = expla +Xif) Y =0,1,. ZL B/
ooled es-
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L]
TABLE 16.15 Estimated Latent Class Linear Regression Modei for GPA
One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err, Estimate Sid- Err. Estimate Std, Err,
B 1.0918 Ct0R2 . _1.6423 {.05351 -0.3344 0.09288
B 0.0180 0.0013 0.01691 0.0007324 0.02649 0.001248
B —0.0473 0.0067 —0.04473 0.003451 —0.06502 0.005739
Ba —0.4687 0.0726 —{(.4567 0.04688 0.01395 0.06964
Bs -0.1569 0.0306 ~0.1177 0.01611 —{.1388 Q.02738
6, 0.0000 (.0060 —(,4280 0.06938 0.0000 0.0000
B, 0.0000 0.0000 0.8255 0.06322 0.0000 0.0000
& 0.0000 (0.0000 ~0.07829 007143 0.0000 0.0000
Probt 4 1.0000 0.47697 0.52303
In L ~61917.97 ~5R8708.63

W%

TABLE B Des

tiptive Statistics for Doctor

Class Mean Standard Devigtion
All, 1 =27326 3.18352 147579
Class 1, n= 12349 5.80347 163076
Class 2. n = 14,977 1.02330 2.18332

class specification,
Probiclass; = 112)) = A(#4 + 6, Female, + 6; Married)).
™, The model structure ie the geometric regression as befare.ﬁstim es of the parameters of

'\ the latent class model are shown in Table 1848~ —/
YL Deb and Trivedi (2002) suggested that a meaningful distinction between groups of heaith
———  care system users would be between “infrequent” and “frequent” users. To investi
whether our latent class model is picking up this distinction in the data, we used -102)
to predict the class memberships {class 1 or 2). We then linearly regressed DocVis,; on a
constant and a dummy variable for class 2. The results are . -

DocVis, =5.8034(0.0465) — 4.7801(0.06282)Class; -+ e,

where estimated standard errors are in parentheses. The linear regression suggests that the
class membership dummy variable is strongly segregating the observations into frequent and

BN infrequesn?sars. The information in the regression is summarized in the descriptive statistics

177 inTable
— 14.a%

|
"‘{':v}éd:é SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood
estimation, which is the most frequently used estimation technique in econometrics
after least squares. The maximum likelihood estimators are consistent, asymptotically
normally distributed, and efficient among estimators that have these properties. The
drawback to the technique is that it requires a fully parametric, detailed specification of
the data generating process. As such. it is vulnerable to misspecification problems. The

/6, Sce Sechon €33 for

f

v

%4
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previous chapter considered GMM estimation techniques which are less parametric, but
- more robust to variation in the underlying data generating process. Together, ML and |
i - GMM estimation account for the large majority of empirical estimation in econometrics. | /] S5 S

Key Terms and Concepts - e | v
Ve | Lt
* AIC +» Incidental paramelers \/‘Mmphy and Topel estimator | (A& PO 1S J
\ - Asymplotic efficiency problem ‘s Newton's method [ N syt
«* Asymptotic normality * Index function model .,'l » Nonlinear least squares I a
+ Agsymptolic variance ' Information matrix «Noncentral chi-squared o B LA e
i Autocorighation * Information matrix equality '|__ distribution Voo kelane i by e,
. * » Bayés theorem ‘ L-# Invariance {1+ Normalization . 1"_|-’| LA =
Houess ) » BHHH estimator s, -#Jagobian * Oberhofer~Kmenta ' =
% *BIC LZE" C» Lagrange multiplier estimator
» Butler and Moffitt’s model . statistic Sy . »Outer product of gradients
#® Cluster estimator " « Lagrange rﬂuiltpher, test  estimator (OPG)
_ #Concentrated log-likelihood- \A Latent class moclel "o Parameter space
\* Conditional likelihood "# Latent dassJk dgression 's.Pseudo-log likelihood
/ | e Consistency model ™" function
e Cramér'Rao lower bound e Likelihood equation - s Pseuddo MLE
‘» Efficient score » Likelihood function '« Pseudo R squared
% Estimable parameters s~ # Likelihood inequatity e Quadrature
" » Exclusion restriction '’ " Likelihood ratio index - v Random effects
» Exponential regression ¢ Likelihood ratio-statistic | + Regularity conditions
inodel - » Likelihood ratig test T4/ s Sandwich estimator ',
+ Finite mixture 10 | Lo Limited information . ¢ Score test
s Fixed effects maximum likelihood » Score vector
« Full infor mation maximum i® Logit modet % Stochastic [rontier
likelihoad T ] 4/ ' » Loglinear conditional mean. e Two-step maximum
. Gauss—Hermlte quadrature o Maximum likelihood likelihood .
"+ Generalized sum of squares Maximum likelihood o Wald statistic© 7@ Loatent re grefsyon
-+ Geometric regression estimator ‘s Wald test
s o GMM estimator * M estimator “8 Vuong test
s Identification o A Mcthud of sconng _ U * Nonne 53' & wo ‘\"]5
| \ 1 t m3 e |
Exercises ' :n.ur:T;{I ',1 A \L “t;‘:h,h ( ‘.l el ite c.c.\rt- Leibler |h&rma!-wr_s
— = Rt e cy l—er.o A
1. Assume that the distribution of x is f(x) = 1/6,0 < x < 4. In random sampling
from this distribution, prove that the sample maximum is a consistent estimator of
Hhad / 8. Notﬁ-n You can prove that the maximum is the maximum likelihood estimator of
i 6. But the usual properties do not apply here. Why not? (Hint: Attempt to verify | -
that the expected first derivative of the log-likelihood with respect to @ is zero.) V=L ) (e
2. In random sampling from the exponential distribution f(x)=(1/8)e~*® x>0, .| )
6 >0, find the maximum likelihood estimator of # and obtain the asymptotic | /¢! 1
distribution of this estimator. o @S 10
3. Mixiure distribution. Suppose that the joint distribution of the two random variables | ar M ﬁ:";-.

X and yis

~(B+0)y X
f(x-)’:':.ge—r_,gi@", B.e >0.__\_’ 20,x=0,1,2,....


Bill
Sticky Note
Asymptotic Efficiency: in header on p. 14-6
Asymptotic Normality: in header on 14-11
Autocorrelation: in header on 14-56
Cluster estimator: in header 14-43
Conditional likelihood: in header 14-15
Consistency: in heder on 14-10
Estimable parameters:  delete
Fixed effects: in header on 14-86
Geometric regression: header p. 14-85
GMM estimator: in header on 14-15
Information Matrix: delete
Invariance: in header on 14-13
Latent class model: in header on 14-92
Likelihood inequality: in header on 14-10
Limited information maximum likelihood: delete
Logit Model: delete
Murphy and Topel estimator: in header on 14-33
Parameter space: delete
Quadrature: in header on 14-82
Random effects: in header on p. 14-75
Stochastic frontier: delete
Two-step maximum likelihood estimation: header 14-31
Wald test: header 14-19
Vuong test: header p. 14-28


Also add to list

Precision parameter
Maximum likelihood estimate
Likelihood ratio
Lagrange multiplier test
Logistic probability model
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a. Find the maximum likelihood estimators of 8 and @ and their asymptotic joint
. distribution. :
F a b. Find the maximum likelihood estimator of 8/(8 + §) and its asymptotic
distribution. e
c. Prove that f(x) is of the form -
fX)=yd-y¥*x=0,1,2,...,

and find the maximum likelihood estimator of y and its asymptotic distribution.
d. Prove that f(y|x) is of the form

Ae ()T
_f(}‘f-’f)=*€-—-_;—'y), y>0,A>0.

Prove that_f(y|x) integrates to 1. Find the maximum likelihood estimator of A
and its asymptotic distribution. (Hint: In the conditional distribution, just carry
the x’s along as constants.)

e. Prove that

fy) =0e7%, ¥y=0, 6>0.
Find the maximum likelihood estimator of @ and its asymptotic variance,
f Prove that

Flxly) = . x=0,1,2,....8>0,

Based on this distribution, wha¥ is the maximum likelihood estimator of 87
4. Suppose that x has the Weibull distribution

e"ﬂ}' ( ﬁ_Y)x
!

fx) = apxf e, x>0,a,8>0.

a. Obtain the log-likelihood function for a random sample of n observations.

b. Obtain the likelihood equations for maximum likelihood estimation of & and 8.
Note that the first provides an explicit solution for « in terms of the data and
. But, after inserting this in the second, we obtain only an implicit solution
for 8. How would you obtain the maximum likelihood estimators?

c. Obtain the second derivatives matrix of the log-likelihood with respect to « and
B. The exact expectations of the elements involving 8 involve the derivatives
of the gamma function and are quite messy analytically. Of course, your exact
result provides an empirical estimator. How would you estimate the asymptotic
covariance matrix for your estimators in part b?

d. Prove that ¢fCov[Inx, x*] = 1. (Hint: The expected first derivatives of the
log-likelihood function are zero.)

5. The following data were generated by the Weibull distribution of Exercise 4

1.3043 0.49234 12742 1.4019 0.32556 0.29965 0.26423
1.0878 1.9461 0.47615 3.6454 015344 1.2357 0.96381
0.33453 1.1227 2.029 1.2797 0.96080 2.0070

a. Obtain the maximum likelihood estimates of o and 8. and estimate the asymp-
totic covariance matrix for the estimates.

b. Carry out a Wald test of the hypothesis that 8 = 1.

c. Obtain the maximum likelihood estimate of & under the hypothesis that 8 = 1.
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10.

. Show that the likelihood inequality in Theorem

d. Using the results of P'arts aandc,carry out alikelihood ratio test of the hypothesis

that 8 =1.
e. Carry out a Lagrange multlpher test of the hypotheSIS that 8 =1,

. Limited Information Maxiinum_Likelihood Estimation. Consider a bivariate

distribution for x and y-that is a function of two parameters, @ and 3. The joint
density is f(x, y|«, B). We consider maximum likelihood estimation of the two
parameters. The full information maximum likelihood estimator is the now famil-
iar maximum likelihood estimator of the two parameters. Now, suppose that we

. can factor the joint distribution as done in Exercise 3, but in this case, we have
f(x, yle, By = f(yix,a. 8) f(x|a). That is, the conditional density for v is a func-

tion of both parameters, but the marginal distribution for x involves only .
a. Write down the general form for the log-likelihood functlon using the joint
density.

b. Because the joint density equals the product of the conditionai times the marginal,

the log-likelihood function can be written equlvalently in terms of the factored
density. Write this down, in general terms.

¢. The parameter o can be estimated by itself using only the data on x.and the log
likelihood formed using the marginal density for x. It can also be estimated with
8 by using the full log-likelihocd function and data on both y and x. Show this.

d. Show that the first estimator in part ¢ has a larger asymptotic variance than
the second one. This is the difference between a limited information maximum
likelihood estimator and a full information maximum likeiihood estimator.

e. Show that if 3 In f(y|x. &, 8)/3a88 =0, then the result in part d is no longer
true.

] !
. Show that the likelil‘;(?eﬁne‘guality in Theorem J6.3 holds for the Poisson distribu-

tion used in Section 18.3 by showing that £ [(1/n) In L8 | y)] is uniquely maximized
at & = 6. (Hint: First show that the expectation is —8 + 6 1n 6 — Ep[In »!].)

}{‘;0 holds for the normal
distribution.

. For random sampling from the classical regression mod lin (161)/1;p rameterize

the likelihood function in terms of = 1/o and § = (1/0)8. Find the maximum
likelihood estimators of » and § and obtain the asymptotic covariance matrix of the
estimators of these parameters.

Consider sampling from a multivariate normal distribution with mean vector
M= {1, 42, ..., py) and covariance matrix af], The log-likelihood function is
—aM nM 1 & ,
InL= 5 In (2:1')-—-—~2-1ncr zazggy;/-—g,) :(}_i,;_—_;}_).

Show that the maximum likelihood estimates of the parameters are i = P and

&hzdL = Ef:l Em:giﬂi;"rm m) M Z Z (Vim — m) = z

"l—

Derive the second derivatives matrix and shnw that the asymptotic covariance
matrix for the maximum likelihood estimators is

{_E[__.._BZM]}‘L[aayn .
= | 2050’ 1A 2lam )

( H - o3 _'“-;!
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Suppose that we wished to test the hypothesis that the means of the M distributions
were all equal to a particular value 40, Show that the Wald statistic would be

. B 22y i
- a-u (F1) @ = (5) @ m- .

where ¥ is the vector of sample means,
11. Prove the result claimed in Example 4. Q

'.]-

is application will be based on the health care data analyzed

-15 and several others. Details on obtaining the data are given in
Example11.10 WWe consider analysis of a dependent variable, v;., that takes values

R and 1 and 0 with probabilities F(x/8) and 1 — Exi8). where F is a function that

1. ‘1 defines a probability. The dependent variable, y;; is constructed from the count
variable DocVis, which is the number of visits to the doctor in the given year.
Construct the binary variable

Applications , W

1. Bmary Choice.

Vip = 1if Dm;\r’ix,-r > 0, 0 otherwise.

We will build a model for the probability that y;, ‘equals one. The independent
variables of interest will be,

JXie = (1, age;,, educy,, female;,, marriedir, hsafi, ).
a. According to the model, the theoretical density for Vit is

Fu | %) = F(x:,8) for Yie =land 1 — F(x,8) for vi, = 0.

)

We will assume that a “logit model” (see Sectio

expix;, £)
1 —exp(x;,8)

Show that for the two outcomes, the probabilities may be may be combined into
the density function

fvi FXn) = &(¥ir, Xir, B) = Al2wie — 1)";rﬂ]-

Now, use this result to construct the log-hkehhood function for a sample of data '
on (v, Xi ). (Notgthat we will be ignoring the panel aspect of the data set. Build @
the model as if this were a cross section. ) }

b. Derive the likelihood equations for estimation of §. | 14

¢. Derive the second derivatives matrix of the log likelihood function. (Hint: The | |
following will prove useful in the derivation: dA(£)/dr = A()[1 — A)].) . i

d. Show how to use Newton’s method to estimate the parameters of the model. ' N

e. Does the method of scoring differ from Newton’s method? Derive the negative | Ro
of the expectation of the second derivatives matrix. '

f. Obtain maximum likelihood estimates of the parameters for the data and vari-
ables noted. Report your results: estimates, standard errors, etc., as well as the
value of the log-likelihood.

.4} is appropriate, so that


Bill
Sticky Note
yes


\ Yo
I'. F——\
|

\ 20 /jf
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g Test the hypothesis that the coefficients on female and marital status are zero. ;

: Show how to do the test using Wald, LM, and LR tests) \then carry out the tests. (¢}
o h. Test the hypothesis that all the coefficients in the model save for the constant ‘
term are equal tozero,.

e . {0

]
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din Example 16.9. It has been
nding of economies of scale in

and the factor prices. Then exaufine the estimated Jondrow et al. 1.
see if they do indeed vary negatj

function can be prograguhed faitly easily for RATS, MatLa
“a cost frontier as opp, to a production frontier, it is negeSsary to reverse the sign
on the argument i#'the € function that appears in the Jg-likelihood.)




