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SIMULATION-BASED ESTIMATION AND INFERENCE
AND RANDOM PARAMETER MODELS

15.1 INTRODUCTION

Simulation; based methods have become increasingly popular in econometrics. They are
extremely computer intensive, but steady improvements in recent years in’ computation hardware
and software have reduced that cost enormously. The payoff has been in the form of methods for
solving estimation and inference problems that have previously been unsolvable in analytic form.
The methods are used for two main functions. First, simulation, based methods are used to infer
the characteristics of random variables, including estimators, functions of estimators, test
statistics, and so on, by sampling from their distributions. Second, simulation is used in
constructing estimators that involve complicated integrals that do not exist in a closed form that
can be evaluated. In such cases, when the integral can be written in the form of an expectation,
simulation methods can be used to evaluate it to within acceptable degrees of approximation by
estimating the expectation as the mean of a random sample. The technique of maximum
simulated likelihood (MSL) is essentially a classical sampling theory counterpart to the
hierarchical Bayesian estimator considered in Chapter 16. Since the celebrated paper of Berry,
Levinsohn, and Pakes (1995); and a related literature advocated by McFadden and Train (2000),
maximum simulated likelihood estimation has been used in a large and growing number of
studies. | =!smalatien
The following are three examples from ecarlier chapters that have relied on sumulation
methodsz ;

Example 15.1 Inferring the Sampling Distribution of the Least Squares Estimator
In Example 4.1,-we demonstrated the idea of a sampling distribution by drawing several
thousand samples from a population and computing a least squares coefficient with each
sample. We then examined the distribution of the sample of linear regression coefficients. A
histogram suggested that the distribution appeared to be normal and centered over the true
population value of the coefficient.

Example 15.2 Bootstrapping the Variance of the LAD Estimator

In Example 4.5, we compared the asymptotic variance of the least absolute deviations (LAD)
estimator to that of the ordinary least squares (OLS) estimator. The form of the asymptotic
variance of the LAD estimator is not known except in the special case of normally distributed
disturbances. We relied, instead, on a random sampling method to approximate features of
the sampling distribution of the LAD estimator. We used a device (bootstrapping) that
allowed us to draw a sample of observations from the population that produces the estimator.
With that random sample, by computing the corresponding sample statistics, we can infer
characteristics of the distribution such as its variance and its 2.5" and 97.5" percentiles
which can be used to construct a confidence interval.



Ic-2

Example 15.3 Least Simulated Sum of Squares
Familiar estimation and inference methods, such as least squares and maximum likelihood,
rely on “closed form" expressions_that can be evaluated exactly [at least in prlnC|p|e—
likelihood equations such as (14~4)| may reqmre an iterative solution]. Model building and
analysis often require evaluation of expressions that cannot be computed directly. Familiar
examples include expectations that involve integrals with no closed form such as the random
-effects nonlinear regression model presented in Section 14.9.2. The estimation problem

posed there involved nonlinear least squares estimation of the parameters of _@

Elydxou] =h(B+1). g
Minimizing the sum of squares . o "
S(B) = E Er[yu' h(xtr B + u.')

is not feasible because Ui is not observed. In this formulation,

Eyjxi] = E,,ED),-,[!E;;,?,-] = -[ uED’r‘J?.‘{"?‘_"’]f(uf)d’:fi,

so the feasible estimation problem would involve the sum of squares,
S*(B) = S8y - LGB+ ) fuddu ],

When the function is linear and u; is normally distributed, this is a simple problem — 7 it reduces
to ordinary linear least squares. If either condition is not met, then the integral generally
remains in the estimation problem. Although the integral,

Elhx/B+ )] = [uhxuB + uw)du, e
LTSS

-cannot be computed, if a large sample of R observations from the population of U, ke U 1=
(R, were observed, then by virtue of the law of large numbers, we could rely on '

limQA/R)Z, A(xi'B + ) = EElyil Xini]
= Juxa'B + )l (15-1)
We are suppressing the extra parameter, Oy, which would become part of the estimation
problem. A convenient way to formulate the | problem is to write u; = o,v; where_v; has zero

mean and variance one. By using this device, integrals can be replaced with sums that are
feasible to compute. Our* 5|mulated sum of squares” becomes

Ssimulated(__ﬂ) Z EI[YM (UR)E k(xu B + Guvlr)] (15-2)

which can be minimized by conventional methods. As long as (15-1) holds, then

7 § o Pl § A
IR P

LT DI (URZHx,/B+ o)’ — —15; E,-E}[y,-, [ ohx B+ o) fvddvl? (15-3)

and it follows that with sufficiently increasing R, the B that minimizes the left,hand side

converges (in n7) to the same parameter vector that minimizes the probability fimit of the right-
hand side. We are thus able to substitute a computer simulation for the mtracttble'
computation on the right hand side of the expression. [ Intracic

This chapter will describe some of the (increasingly) more common applications of
simulation methods in econometrics. We begin in Section 15.2 with the essential tool at the heart
of all the computations, random number generation, Section 15.3 describes simulation, based
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inference using the method of Krinsky and Robb as an alternative to the delta method (see
Section 4.4.4). The method of bootstrapping for inferring the features of the distribution of an
estimator is described in Section 15.4. In Section 15.5, we will use a Monte Carlo study to learn
about the behavior of a test statistic and the behavior of the fixed effects estimator in some
nonlinear models. Sections 15.6 to 15.9 presents simulation, based estimation methods. The
“essential ingredient of this entire set of results is the computation of integrals, Section 15.6.1
describes an application of a simulation, based estimator, @ nonlinear random effects model.
Section 15.6.2 discusses methods of integration. Then, the methods are applied to the estimation
of the random effects model. Sections 15.7 ;- 15.9 describe several techniques and applications,
including maximum simulated likelihood' estimation for random parameter and hierarchical
models. A third major (perhaps the major) application of simulation-based estimation in the
current literature is Bayesian analysis using Markov Chain Monte Carlo (MCMC or MC?)
methods. Bayesian methods are discussed separately in Chapter 16. Sections 15.10 and 15.11
consider two remaining aspects of modeling parameter heterogeneity, estimation of individual
specific parameters,and a comparison of modeling with continuous distributions to modeling with
discrete distributions using latent class models.

15.2 RANDOM NUMBER GENERATION

g

All of the techniques we will consider here rely on samples of observations from an underlying
population. We will sometimes call these “random samples,” though it will emerge shortly that
they are never actually random. One of the important aspects of this entire body of research is the
need to be able to replicate one’s computations. If the samples of draws used in any kind of
simulation, based analysis were truly random, then this would be impossible. Although the
methods we consider here will appear to be random, they are, in fact, deterministic - the
“samples” can be replicated. For this reason, the sampling methods described in this section are
more often labeled “pseudo},random number generators.” (This does raise an intriguing question;
Is it possible to generate trily random draws from a population with a computer? The answer for
practical purposes is no.) This section will begin with a description of some of the mechanical
aspects of random number generation. We will then detail the methods of generating particular
kinds of random samples. [See Train (2009, Chapter 3) for extensive further discussion.]
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15.2.1 GENERATING PSEUDO-RANDOM NUMBERS -

[
Data are generated internally in a computer using pseudo——random number generators. These
computer programs generate sequences of values that appear to be strings of draws from a

. specified probability distribution. There are many types of random number generators, but most
‘take advantage of the inherent inaccuracy of the digital representation of real numbers. The

method of generatlon is usually by the fol!owmg steps: -

1. Seta seed

2. Update the seed by seed‘r Fseedy| ><s value.

3. x; =seed,; xx value. st

4. Transfonn x; if necessary,jthen move X; to desired place in memory.
5. Return to step 2, or exit if no additional values are needed.

Random number generators produce sequences of values that resemble strings of random draws
from the specified distribution. In fact, the sequence of values produced by the preceding method
is not truly random at all; it is a deterministic Markov chain of values. The set of 32 bits in the
random value only appear random when subjected to certain tests. [See Press et al. (1986).]
Because the series is, in fact, deterministic, at any point that this type of generator produces a
value it has produced before, it must thereafter replicate the entire sequence. Because modern
digital computers typically use 32-bit double words to represent numbers it follows that the
longest string of values that this kind of generator can produce is 2% — 1 (about 4.3 billion). This
length is the permd of a random number generator. (A generator with a shorter period than this
would be inefficient, because it is possible to achieve this period with some fairly simple

| algorithms.) Some improvements in the periodicity of a generator can be achieved by the method
= of shuffling. By this method, a set of, say, 128 values is maintained in an array. The random draw

is used to select one of these 128 positions from which the draw is taken and then the value in the
array is replaced with a draw from the generator. The period of the generator can also be
increased by combining several generators. [See L'Ecuyer (1998), Gentle (2002, 2003), and
Greene {2007b).]

The deterministic nature of pseudo—random number generators is both a flaw and a
virtue. Many Monte Carlo studies require bllllons of draws, so the finite period of any generator
represents a nontrivial consideration. On the other hand, being able to reproduce a sequence of
values just by resetting the seed to its initial value aI]ows the researcher to replicate a study\‘ The
seed itself can be a problem. It is known that certain seeds in particular generators will produce
shorter series or series that do not pass randomness tests. For example, congruential generators of
the sort just discussed should be started from odd seeds.

- “"Readers of empirical studies are often interested in replicating the computations. In Monte Carlo studies,

at least in principle, data can be replicated efficiently merely by providing the random number generator
and the seed.

]



15.2.2 SAMPLING FROM A STANDARD UNIFORM POPULATION

The output of the generator described in Section 15.2.1 will be a pseudo-draw from the __U[O,'Il}
population. (In principle, the draw should be from the closed interval [0,"}]. However, the actual
draw produced by the generator will be strictly between zero and one with probability just

"‘.slightly below one. In the application described, the draw will be constructed from the sequence -

of 32 bits in a double word. All but two of the 2*' *{"sirings of bits will produce a value in (0)1).
The practical result is consistent-with the theoretical one, that the probabilities attached to the
terminal points are zero also.) When sampling from a standard uniform, U[0, 1] population, the
sequence is a kind of difference equation, because given the initial seed, x, js nltimately a function
of x;. In most cases, the result at step 3 is a pseudo-draw from the continuous uniform
distribution in the range zero to one, which can then be transformed to a draw from another
distribution by using the fundamental probability transformation.

15.2.3 SAMPLING FROM CONTINUQUS DISTRIBUTIONS

One is usually interested in obtaining a sequence of draws, x1,4ixp, from some particular
population such as the normal with mean p and variance 6°. A sequence of draws from uro.1],
#1flur, produced by the random number generator is an intermediate step. These will be

-, _transformed into draws from the desired population. A common approach is to use the
B, fundamental probability transformation. For continuous distributions, this is done by treating

¥ s 4

the draw, u, = F,.as if F, were [(x,), where F{.) is the c¢df of x. For example, if we desire draws
from the exponential distribution with known 8, then F(x) =1 - exp(—#x). The inverse transform
is x = (=1/8) In(1 — _F). For example, for a draw of u = 0.4 with 6 = 5, the associated x would be
(-1/5)In(1:.4) = 0.1022. For the logistic population with ¢df F(x) = A(x) = exp(x)/[ 1+exp(x)], the
inverse transformation is x = In[F/(1-F)]." There are many references, for example, Evans,
Hastings and Peacock (2000) and Gentle (2003) that contain tables of inverse transformations that
can be used to construct random number generators.

One of the most common applications is the draws from the standard normal distribution.
This is complicated- because there is no closed form for &'(F). There are several ways to
proceed. A well-known approximation to the inverse function is given in Abramovitz and Stegun
(1971):

¢y +e T +c,T?
1+dT +d, T +d,T*°

O (F)=x~T-

where T = [In(1/H)]"? and H= F if F > 0.5 and 1 — F otherwise. The sign is then reversed if

F<0.5. A second method is to transform the U0, 1] values directly to a standard normal value.

The Box-Muller (1958) method is z = (—2In u,)"*cos(2zu,), where 1, and u, are two independent
U10, 1] draws. A second N[0, 1] draw can be obtained from the same two values by replacing cos
with sin in the transformation. The Marsaglia-Bray (1964) generator is, z, = x[-(2/)n _v]m,
where x; = 2y, — 1, u is a random draw from U[0, 1] and y = ui + i, i=1, 2. The pair of draws
is rejected and redrawn if v > 1.
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Sequences of draws from the standard normal distribution can be transformed'easily into
draws from other distributions by making use of the results in Section B.4. For example, the
square of a standard normal draw will be a draw from chi-squaredf1], and the sum of X chi:
squared[1]s is chi-squared [K]. From this relationship, it is possible to produce samples from the
chi-squared[X], f[n], and FLK n]! distributions.

. Atrelated problem is obtaining draws from the truncated normal distribution. The random
variable with truncated normal distribution is obtained from one with a normal distribution by
discarding the part of the range above a value .U/ and below a value L. The den51ty of the resulting
random variable is that of a normal distribution restricted to the range [L, Ul The truncated

normal density is
Gl Lexsy=—I® _  (1/08l=p)/o]
y r.__ _ PI‘Ob[L<x<U] (D[(U"H)/G]—(D[(L—“)/o']’

i )

where ¢(f) = (2m) mexp( #/2) and O(7) is the cdf. An obviously inefficient (albeit effective)
method of drawing values from the truncated normal [, |6*] distribution in the range [Z, U] 1s
simply to draw F from the U[0, 1] distribution and transform it first to a standard normal variate ;
as discussed previously and then to the N[u ¢*] variate by using x = g + o®" (F). Finally, the value
x is retained if it falls in the range [Z,U] and discarded otherwise. This rejection method will
Tequire, on average, 1/{ DU — )/ o]-D®[(L~pn)/ o]} draws per observation, which could be

substantial. A dircct transformation that requires only one draw is as follows: Let
_P oG - ,u)/o]j LUThen

l 1 s

x= ﬂ - acD [P:, +Fx (Py—Py)]. (15-4)

16.2.4 SAMPLING FROM A MULTIVARIATE NORMAL POPULATION

A common application involves draws from a multivariate normal distribution with specified
mean g and covaritarnrce matrix X, To sample from this K-variate distribution, we begin with a
draw, z, from the K-variate standard normal distribution. This is done by first computing X

mdependent standard normal draws, z;,/ zk Jusing the method of the previous section and stackmg @ -

them in the vector z. Let C be a square root of T such that CC* = X. The desired draw is then |~

x=u+ Cz, which will have covariance matrix E[(x p)( X - wy= CE[zz']C = CIC'5 . Forthe | “U! Term

square root matrix, the usual device is the Cholesky decompos;tmn in which C is a lower | [,
triangular matrix. (See Section A.6.11.) For example suppose we wish to sample from the |

bivariate normal distribution with mean vector H, unit variances and correlation coefficient p. |l 0
Then, | S it

5 [1 p:| e i:l 0 :I | T8
m an L = . ’ . =
y p 1 p fl?‘pz . |'.."|..I_-:|.|I"II\.\ .

The transformation of two draws z; and z, is x; =y + z; and x, = py + [pz, + (lfpz)'f_"’_._zz]. Section
15.3 and Example 15.4 follewing shows a more involved application.
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This method is based explicitly on the pdf and cdf of the distribution. Other methods are

suggested by Knuth (1969) and Press et al. (1986, pp. 203—209)

The most common application of random sampling from a discrete distribution is,
fortunately, also the simplest. The method of bootstrappmg, and countless other applications
involve random samples of draws from the discrete umform distribution, Prob(x =) = 1/n,}j =
L o In the bootstrapping application, we are going to draw random samples of observations
from the sequence of integers 1,:1n, where each value must be equally likely. In principle, the
random draw coPld be obtamed by pamtloqmg the unit interval into n equal parts,
[0,a), [a;,az) [a,, 2,a,, 1), [a,, L1 a = jin, J= 1 Sl 2T, Then, random draw _F delivers x=jift F
falls into interval /. This would entail a search which could be time consuming. I—Iowever a
simple method that will be much faster is simply to deliver x = the integer part of (mxF + 1.0).
(Once again, we are making use of the practical result that F will equal exactly 1.0 (and x will
equal #+1) with ignorable probability.)

\ e e
15.2.5 SAMPLING FROM DISCRETE POPULATIONS | '
There is generally no inverse transformation available for discrete distributions such as the TN
Poisson. An inefficient, though usually unavoidable method for some distributions is to draw the TS
F ‘and then search sequentially for the smallest value that has cdf equal to or greater than F. For A '
example a generator for the Poisson distribution is constructed as follows. The pdf is Prob[x—j_l
= p; = exp(* p);,t’fj' where W is the mean of the random variable. The generator will use the
recursion p; = p;. ,xpfj, J =144 begmnmg w1th o= exp(- u) An algorithm that requires only a
single random draw is as follows: = (Frunusy tl,
Initialize c= eXp(-iL); p=c,x=0; | Astensk
Draw _F from UT0,1]; M gl
Delivers  * exit with draw x if ¢ > F; | reria)
Iterate x=xtl; p=pxu/x; c= c+p, | e LT A
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15.3 SIMULATION BASED STATISTICAL INFERENCE: THE METHOD OF
KRINSKY AND ROBB

Most of the theoretical development in this text has concerned the statistical properties of

“estimators - that is, the characteristics of sampling distributions such as the mean (probability

limits), variance (asymptotic variance)sand quantiles (such as the boundaries for confidence
intervals). In cases in which these properties cannot be derived explicitly, it is often possible to
infer them by.using random sampling methiods to draw samples from the population that
produced an estimator, and deduce the characteristics from the features of such a random sample.
In Example 4.4, we computed a set of least squares_ regrg5310n coefficients, &1)Jibx, ,then
examined the behavior of a nonlinear function ¢, = bk/(l—bm) using the delta method In some
cases, the asymptotic properties of nonlinear functions such as these are difficult to derive
directly from the theoretical distribution of the parameters. The sampling methods described here
can be used for that purpose. A second common application is learning about the behavior of test
statistics. For example, at the end of Section 5.6 and in Section 14.9.1 [see (14-47)], we defined a
Lagrange multiplier statistic for testing the hypothesis that certain coefficients are zero in a linear
regression model. Under the assumption that the disturbances are normally distributed, the
statistic has a limiting chi-squared distribution, which implies that the analyst knows what critical
value to employ if they use this statistic. Whether the statistic has this distribution if the
disturbances are not normally distributed is unknown. Monte Carlo methods can be helpful in
determining if the guidance of the chi, squared result is useful in more general cases. Finally, in
Section 14.7, we defined a two, step maximum likelihood estimator. Computation of the
asymptotic variance of such an estlmator can be challenging. Monte Carlo methods, in particular,
bootstrapping methods, can be used as an effective substitute for the intractible derivation of the
appropriate asymptotic distribution of an estimator. This and the next two sections will detail
these three procedures, and develop applications to illustrate their use.

The method of Krinsky and Robb is suggested as a way to estimate the asymptotic
covariance matrix of ¢ = f(b).where b is an estimated parameter vector with asymptotic
covariance matrix X and f(p) defines a set of possibly nonlinear functions of b, We assume that

f(b) is a set of continuous and continuously differentiable functions that do not involve the

sample size and whose derivatives do not equal zero at B = plim b. (These are the conditions
underlying the Slutsky theorem in Section D.2.3.) In Section 4.4 4 we used the delta method to
estimate the asymptotic covariance matrix of c; Est'Asy Var[c] = GSG', where 8 is the estimate
of £ and G is the matrix of partial derwatwes G= af(b)fab' The recent literature contains some
occasional skepticism about the accuracy of the delta method. The method of Krinsky and Robb
(1986, 1990, 1991) is often suggested as an alternative. In a study of the behavior of estimated
elasticities based on a translog model, the authors (1986) advocated an alternative approach based
on Monte Carlo methods and the law of large numbers. We have consistently estlmatedLB and
(cz/n)Q the mean and variance of the asymptotic normal distribution of the estimator b, with b
and § (X'X) It follows that we could estimate the mean and variance of the dlStl‘]b'uthl‘l of a
function of b by drawing a random sample of observations from the asymptotic normal
population generating b, and using the empirical mean and variance of the sample of functions to
estimate the parameters of the distribution of the function. The quantiles of the sample of draws,
for example, the .025" and 975" quantiles, can be used to estimate the boundaries of a
confidence interval of the functions. The multivariate normal sample would be drawn using the
method described in Section 15.2.4.

LA

(s-8"


Bill
Sticky Note
add to KT list


Krinsky and Robb (1986) reported huge differences in the standard errors produced by
the delta method compared to the simulation based estimator. In a subsequent paper (1990) they
reported that the entire difference could be attributed to a bug in the software they used—— prupon
redoing the computations, their estimates were essentially the same with the two methods It is

~difficult to draw a conclusion about the effectiveness of the delta method based on the received

results—:t does seem at this juncture that the delta method remains an effective device that can
often be employed with a hand calculator as opposed to the much more computatlom intensive
Krinsky and Robb (1986) technique. Unfortunately, the results of any comparison will depend on
the data, the model, and the functions being computed. The amount of nonlinearity in the sense of
the complexity of the functions seems not to be the answer. Krinsky and Robb’s case was
motivated by the extreme complexity of the elasticities in a translog model. In another study,
Hole (2006) examines a similarly complex problem, and finds that the delta method still appears
to be the more accurate procedure.

Example 15.4 Long Run Elasticities
A dynamic version of the demand for gasoline model is estimated in Example 4.4. The model
is
In(G/Pop)e = B1 + B In Pgr + Bs In(Income/Pop), + B4 InP,,c;
+fs In Puc: + v In(G/Pop)-1 + & . ;

In this model, the short,run price and income elasticities are 8, and Bs. The long; run
elasticities are ¢, = BA1 ~ v ) and ¢; = B2A1 - v ), respectively. To estimate the long;run
elasticities, we estimated the parameters by least squares and then computed these two
nonlinear functions of the estimates. Estimates of the full set of model parameters and the
estimated asymptotic covariance matrix are given in Example 4.4. The delta method was
used to estimate the asymptotic standard errors for the estimates of ¢, and ¢3. The three
estimates of the specific parameters and the 3><3 submatrix of the estimated asymptotic
covariance matrix are

B bo —0/o69532
Est| 85 | =t by | =] 00164047 |,
v c 0/830971

ba 0i00021705  1181265e~5 00001109
Est. Asy. Var | by 1.61265e—5 09030279 ~0/0021881
o c —0,0001108  -0/0021881  0/0020943

The method suggested by Krinsky and Robb would use a random number generator to draw
a large trivariate sample, (b2, bs, ¢),, r=1,..., R, from the normal distribution with this mean
vector and covariance matrlx,,.then compute the sample of ohservations on f, and f; and

| obtain the empirical mean and variance and the .025 and .975 quantiles from the sampie
The method of drawing such a sample is shown in Section 15.2.4. We will require the square
root of the covariance matrix. The Cholesky matrix is

0/0147326 0. 0
C = [ 000109461 010550155 0
' -0.0075275 —0,0396227 0/0216259

The sample is drawn by drawn by obtaining vectors of three random draws from the standard
normal population, y. = (vi, Vo, va)f", r=1, ..., R. The draws needed for the estimation are
then obtained by computmg b,=b + Cv, where b.is the set of least squares estimates. We
then compute the sample of estimated long-run elasticities, f, = ba; M - ¢) and
= b3 A1 - ¢,) . The mean and variance of the sample observations constitute the estimates
of the function$ and asymptotic standard errors.

159



Table 15.1 shows the results of these computations based on 1,000 draws from the
underlying distribution. The estimates from Example 4.4 using the delta method are shown
as well. The two sets of estimates are in quite reasonable agreement. A 95% confidence
interval for ¢, based on the estimates, the ¢ distribution with §1-6 = 45 degrees of freedom
and the delta method would be -0.411358 £ 2.01 4103(0.152296)’. The result for ¢; would be
0.970522 + 2,014103(0.162386). These are shown in Table 15.2 with the same computation

-uging the Krinsky and Robb estimated standard errors. The table ailso shows the empirical

estimates of these quantiles computed using the 26M™ and 975™ values in the samples. There
is reasonable agreement in the:estimates, though there is also evident a considerable
amount of sample variability, even in a sample as large as 1,000.

We note, finally, that it is generally not possible to replicate resuits such as these across
software platforms, because they use different random number generators. Within a given
platform, replicability can be obtained by setting the seed for the random number generator.

TABLE 15.1  Simulation Results

Regression Estimate Simulated Values

Estimate Std.Error Mean Std.Dev.
B, ~0.069532 0.0147327 --0.068791 0.0138485 | INPIE
Ba 0.164047  0.0550265 0.162634 0.0558856 frtnu=
¥ 0.830%71  0.0457635 £.831083 0.0460514 | &
b, —=0.411358 0.15229% ~-0.453815 0.,219110 g
ds 0.970522 0.162386 0.950042 0.199458"
TABLE 15.2 Estimated Confidence Intervals

(07 o
Lower Upper Lower Upper

Delta Method --0.718098 --0.104618 0.643460 1.297585
Krinsky and Robb --0.895125 -0.012505 0.548313 1.351772
Sample Quantiles -0.983866 ~0.209776 0.539668 1.321617
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15.4 BOOTSTRAPPING STANDARD ERRORS AND CONFIDENCE INTERVALS

R

The technique of bégté_;rg’pping is used to obtain a description of the sampling properties of

empirical estimators using the sample data themselves, rather than broad theoretical results:®”
"Suppose that é" is an estimator of a parameter vector § based on a sample Z = [(y;,'g‘c_}),-,;f.l,'l(y,,,_}gn)].

An approximaiion to the statistical properties of én can be obtained by studying\ a sample of
bootstrap estimators 'é(_b)m, m, b =1 ..., B, obtained by sampling m observations, with

replacement, from Z and recomputing é with each sample. After a total of B times, the desired
sampling characteristic is computed from ;

6=[80,.,62), :468), )

The most common application of bootstrapping for consistent estimators when n.is reasonably
large is approximating the asymptotic covariance matrix of the estimator 9, with

{ n 1 B [~ == —7T
pstdslyar[§, | =~ Y1 [80). -8, | 8 B, |3 (59

35
o,

where ,9-3 is the average of the B bootstrapped estimates of 0, There are few theoretical

prescriptions for the number of replications, B. Andrews and Buchinsky (2000) and Cameron and
Trivedi (2005, pp. 361:;32)-,-"' make some suggestions for particular applications; Davidson and
MacKinnon (2000) recommend at least 399. Several hundred is the norm; we have used 1,000 in
our application to follow. This technique was developed by Efron (1979) and has been appearing
with increasing frequency in the applied econometrics literature. [See, for example, Veall (1987,
1992), Vinod (1993, and Vinod and Raj (1994). Extensive surveys of uses and methods in
econometrics appear in Cameron and Trivedi (2005), Horowitz (2001), and Davidson and
MacKinnon(2006).] An application of this technique to the least absolute deviations estimator in
the linear model is shown in the following example gnd in Chapter 4.

The preceding is known as a “paired hootstrap,” The pairing is the joint sampling of y;

. and x;. An alternative approach in a regression context would be to sample the observations on.x;

only; ) then with each x; sampled, generate the accompanying y; by rangp_n;ll)( generating the
disturbance, then y,(b) =x, (_f_:)f@n +&,(b). This would be a “parametric _l'?(_)_o__t_s_tr;gp”' in that in
order to simulate the disturbances, we need either to know (or assume) the data generating
process that produces €, In other contexts, such as in discrete choice modeling in Chapter 17, one
would bootstrap sample the exogenous data in the model;jthen generate the dependent variable by
this method using the appropriate underlying DGP. This is the approach used in 15.5.5 and in
Greene (2004b) in a study of the incidental-parameters problem in several limited dependent
variable models. The obvious disadvantage of the parametric bootstrap is that one cannot learn of
the influence of an unknown DGP for € by assuming it is known. For example, if the bootstrap is
being used to accommodate unknown heteroscedasticity in the model, a parametric bootstrap that
assumes homoscedasticity would defeat the purpose. The more natural application would be a
qupparg;nqtr'ié “bootstrap, in which both x; and y, and, implicitly, €; are sampled
simultancously. ] :

‘2 See Efron (1979), Efron and Tibshirani (1994), and Davidsen and Hinkley (1997), Brownstone and

Kazimi (1998), Horowitz (2001) and MacKinnon (2002).

-
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Example 15.5 Bootstrapping the Variance of the Median

_ There are few cases in which an exact expression for the sampling variance of the median

\Sare known. Example 15.7 following, examines the case of the median of a sample of 500
observations from the ¢ distribution with 10 degrees of freedom. This is one of those cases in
which there is no exact formula for the asymptotic variance of the median. However, we can
use the bootstrap technique to estimate one empirically. In one run of the experiment, we
“obtained a sample of 500 observations for which we computed the median, -0.00786. We
drew 100 samples of 500 with réplacement from this sample of 500 and recomputed the
median with each of these samples. The empirical square root of the mean squared deviation
around this estimate of —0.00786 was 0.056. In contrast, consider the same calculation for
the mean. The sample mean is —0.07247. The sample standard deviation is 1.08469, so the
standard error of the mean is 0.04657. (The bootstrap estimate of the standard error of the
mean was 0.052.) This agrees with our expectation in that the sample mean should generally
be a more efficient estimator of the mean of the distribution in a large sample. There is
another approach we might take in this situation. Consider the regression model

.y{=g+£j A

where ¢ has a symmetric distribution with finite variance. The least absolute deviations
estimator of the coefficient in this model is an estimator of the median (which equals the
mean) of the distribution. So, this presents another estimator. Once again, the bootstrap
estimator must be used to estimate the asymptotic variance of the estimator. Using the same
data, we fit this regression model using the LAD estimator. The coefficient estimate is
- 05397 with a bootstrap estimated standard error of 0,05872. The estimated standard error
agrees with the earlier one. The difference in the estimated coefficient stems from the
different computations--the regression estimate is the solution to a linear programming
problem while the earlier estimate is the actual sample median.

The bootstrap estimation procedure has also been suggested as a method of reducing bias. /.~ =
In principle, we would compute 9, bias(9,) = )én T {__E[,f)n 1: Q_}. Since neither 8 nor the exact
expectation of 8, are known, we estimate the first with the mean of the bootstrap replications and
the second with the estimator, itself. The revised estimator is

- Py 1 B A ~ A" =
8,0=8, [ 257 -8, |20, B, 159

(Efron and Tibshirani (1994, p. 138) provide justification for what appears to be the wrong sign
on the correction.) Davidson and MacKinnon (2006) argue that the smaller bias of the corrected
estimator is offset by an increased variance compared to the uncorrected estimator. [See, as well,
Cameron and Trivedi (2005).] The authors offer some other cautions for practitioners
contemplating use of this technique. First, perhaps obviously, the extension of the method to
samples with dependent observations presents some obstacles. For time, series data, the technique
makes little sense;-none of the bootstrapped samples will be a time series, so the properties of
the resulting estimators will not satisfy the underlying the assumptions needed to make the
technique appropriate.
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A second common application of bootstrapping methods is the computation of
confidence intervals for parameters. This calculation will be useful when the underlying data
generating process is unknown, and the bootstrap method is being used to obtain appropriate
standard errors for estimated parameters. A natural approach to bootstrapping confidence @
. intervals for parameters would be to compute the estimated asymptotic covariance matrix using .
' {(15-5), then form confidence intervals in the usual fashion, An improvement in terms of the bias | - [ v [,
of the estimator is provided by the percentlle method [Canteron and Trivedi (2005, p. 364)]. By |
this technique, during each bootstrap replication, we compute .r’ e nhl

||.- T IIJ["J

"_(b)__eﬁi. S 154) , |' FIoT v

Se(enk) J R ol
where “k” indicates the kth parameter in the model, and én’,‘, s.e.(én’k) and ék (b) are the

i *(b)=

original estimator and estimated standard error from the full sample and the bootstrap replicate.
Then, with all B replicates in hand, the bootstrap confidence interval is

T,

8,,+4x02) sk(6,,) to 8,,+n*1%02] sefd,)- (15-8)

(Note that *[a/2] is negative, which explains the plus sign in left term.) For example, in our

««1 application below, we compute the estimator and the asymptotic covariance matrix using the full

sample, We compute 1,000 bootstrap replications, and compute the fratic in (15-7) for the
education coefficient in each of the 1,000 replicates. After the bootstrap samples are
accumulated, we sorted the results from (15-7), and the 25M and 975 largest values provide the
values of #*.

Example 15.6 demonstrates the computation of a confidence interval for a coefficient
using the bootstrap. The application uses the Cornwell and Rupert panel data set used in
Example 11.1 and several later applications, There are 595 groups of 7 observations in the data ==V
set. Bootstrapping with panel data requires an additional element in the computations. The
bootstrap replications are based on sampling over i, not £. Thus, the bootstrap sample consists of
n blocks of T (or T;) observations I'— the ith group as a whole is sampled. This produces, then, a | @
-plg_c\k'_bokptstrgp sample. ' II E-':In ;

Example 15.6 Bootstrapping Standard Errors and Confidence Intervals in a Panel I- i "-"-
Example 11.1 presents least squares estimates and robust standard errors for the labor \ f-“ =

supply equatlon using Cornwell and Rupert's pane! data set. There are 595 individuals and 7 =511 |

periods in the data set. As seen in the results in Table 11.1/{reproduced below), using a

clustering correction in a robust covariance matrix for the least squares estimator produces

substantial changes in the estimated standard errors. Table 15.3 presents the Ieast SQUares (it

coefficients and the standard errors estimated with the conventional s (X'X) the robust

standard errors using the clustering correction, and the bootstrapped standard errors using

1,000 bootstrap replications. The resemblance befween the original estimates in the leftmost -

column and the average of the bootstrap replications in the rightmost column is to be

expected; the sample is quite large and the number of replications is large. What is striking

(and reassuring) is the abmty of the bootstrapping procedure to detect and mimic the effect of

the clustering that is evident in the second and third column of estimated standard errors.


Bill
Sticky Note
add to KT list

Bill
Sticky Note
"Table 15.3 reproduces the least squares coefficients and the standard errors associated with the conventional s2(X'X)-1 and the robust standard errors using the clustering correction, and presents the bootstrapped standard errors using 1,000 bootstrap replications."


We also computed a confidence interval for the coefficient on Ed using the conventional,
symmetric approach, bey + 1.965(bgg), and the percentile method in (15- 7) { 15-8). The two
intervals are

Conventional: 0.051583 to 0.061825
Percentile: 0.045560 to 0.067909

"Not surprisingly (given the larger standard errors), the percentile method gives a much wider

interval. Figure 15.1 shows a kemel density estimator of the distribution of the [ statistics
computed using (15-7). I is substantially. wider than the (approximate) standard normal
density shown with it. This demonstrates the impact of the latent effect of the clustering on
the standard errors, and ultimately on the test statistic used to compute the confidence

intervals.

TABLE 15.3 Bootstrap Estimates of Standard Errors for a Wage Equation

Least Squares Standard Cluster Robust Bootstrap Bootstrap
Variable Estimate Error Std. Error Std. Error Coefficient
Constant 5.25112 0.07129 0.1233 0.12421 5.25907
Wis 0.00422 0.00108 0.001538 0.00159 0.00409
South -0.05564 0.01253 0.02610 0.02557 -0.05417
SMSA 0.15167 0.01207 0.02405 0.02383 0.15140
MS 0.04845 0.02057 0.04085 0.04208 0.04676
E;p 0.04010 0.00216 0.004067 0.00418 0.04017
Echz -0.000867 0.00004744 0.000069111 0.00009235 -0.00067
Occ -0.14001 0.014686 0.02718 0.02733 -0.13912
Ind 0.04679 0.01179 0.02361 0.02350 0.04728
Union 0.09263 0.01280 0.02362 0.02390 0.09126
Ed 0.05670 0.00261 0.005552 0.00576 0.05656
Fem -0.36779 0.02510 0.04547 0.04562 —0.36855
Blk ~0.16694 0.02204 0.04423 0.04663 ~0.16811
— P
295+
221
&
147
074
— 000 l.

" Figure 15.1 Distributions of Test Statistics:-
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5.5 % .
! . |34 F2 MONTE CARLO STUDIES analu®:

Simulated data gener ated by the methods of the precedmg sectloni have various uses in
econometrics. One of the more common applications is the of the properties

of estimators or in obtaining comparisons of the properties of estimators. For example,
in time-series settings, most of the known results for characterizing the sampling distri-
butions of estimators are asymptotic, large-sample results. But the typical time series
is not very long, and descriptions that rely on 7T, the number of observations, going to
infinity may not be very accurate. Exact, ﬁmtq.sample properties are usually intractable,
however, which leaves the analyst with only the choice of learning about the behavior
of the estimators experimentally.

In the typical application, one would either compare the. properties of two or more
estimators while holding the sampling conditions fixed or study how the properties of
an estimator are affected by changing conditions such as the sample size or the value

of an underlying garameter.
/ 5. 9’ ?l- Example Monte Carlo Study of the Mean Versus the Median

in Example D.8, we compared the asymptotic distributions of the sample mean and the
sample median in random sampling from the normal distribution. The basic result is that
both estimators are consistent, but the mean is asymptotically more efficient by a facter of

Asy.VarMedian] =
Agy Var[Mean] 2 1.5708.

This result is useful, but it does not tell which s the better estimator in small samples, nor does
it suggest how the estimators would behave in some other distribution. It is known that the
mean is affected by outlying observations whereas the median is not. The effect is averaged
out in large samples, but the small,sample behavior might be very different. To investigate
the issue, we constructed the following experiment: We sampled 500 observations from the
t distribution with d degrees of freedom by sampling d + 1 values from the standard normal
distribution and then computing

Zir g1 i=1,...,500, r=1,...,100.

by =
d
V _21=1 z_f":'.r

The # distribution with a low value of o was chosen because it has very thick tails and be-
cause large/ outlying values have high probability. For each value of d, we generated R=100
replications. For each of the 100 replications, we obtained the mean and median. Because
both areunbiased, we comparad the mean squared errors around the true expectations using

(1 /B) E,_,{medlan, D)2
(1/R) Er—1(xl'

We obtained ratios of 0.68761, 1.2779, and 1.3765 for d = 3, 6, and 10, respectively. (You
might want to repeat this expeariment with different degrees of freedom.} These results agree
with what intuition would suggest, As the degrees of freedom parameter increases, which
brings the distribution closer to the normal distribution, the sample mean becomes more
efflment-;the ratio should approach its limiting value of 1.6708 as d increases. What might
be surprising is the apparent overwhelming advantage of the median when the distribution
is very nonnormal even in a sample as large as 500. :

The preceding is a very small steaipifeforwerd application of the technique. In a
typical study, there are many more parameters to be varied and more dimensions upon
which the results are to be studied. One of the practical problems in this setting is how
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to organize the results. There is a tendency in Monte Carlo work to proliferate tables
indiscriminately. It is incumbent on the analyst to collect the results in a fashion that is
useful to the reader. For example, this requires some judgment on how finely one should
vary the parameters of interest. One useful possibility that will often mimic the thought
process of the reader is to collect the results of bivariate tables in carefully designed
confour plots.

There are any number of situations in which Monte Carlo simulation offers the
only method of learning about finite, sample properties of estimators. Still, there are a
number of problems with Monte Carlo studies. To achieve any level of generality, the
number of parameters that must be varied and hence the amount of information that
must be distilled can become enormous. Second, they are limited by the design of the
experiments, so the results they produce are rarely generalizable. For our example, we
may have learned something about the ¢ distributions But the results that would apply
in other distributions remain to be described. And. unfortunately, real data will rarely
conform to any specific distribution, so no matter how many other distributions we

= _analyze, our results would still only be suggestive. In more general terms, this problem

- of specificity [Hendry (1984)] limits most Monte Carlo studies to quite narrow ranges
of applicability. There are very few that have proved general enough to have provided
a widely cited result ™% 3

W THda— A MONTE CARLO STUDY: BEHAVIOR OF A TEST STATISTIC

B EDE A W

LY |
LR

Monte Carlo methods are often used to study the behavior of test statistics when their

true properties are uncertain. This is often the case with Lagrange Muitiplier statistics. ~
For example, Baltagi (2005) reports on the development of several new test statistics forl "'

panel data models such as a test for serial correlation, Examining the behavior of a test.”
statistic is fairly straightforward. We are interested in two characeristics: the‘trug'size of

x th(.. test-__that is, the probability that it rejects the null hypothesis when that ypothesns

is actually true (the probability of a type 1 error) and the power of the test——that is the
probability that it will correctly reject a false null hypothe51s (one minus the probability
of a type 2 error). As we will see, the power of a test is a function of the alternative
against which the null is tested.

To illustrate a Monte Carlo study of a test statistic, we consider how a familiar
procedure behaves when the model assumptions are incorrect. Consider the linear
regression model

yv=a+Bx+ys e 8|~ N0, o?].

The Lagrange multiplier statistic for testing the null hypothesis that y equals zero for
this model is

LM = e X(X’X) ™' X'eo/(ehea/m)

where X = (1 X. t) and ¢g is the vector of least squares residuals obtained from the

regression of ¥ on the constant and x (and not z). (See Section (36 6.3.) Under the
assumptions of the, model above, the large sample distribution of the LM statistic is
chi squared with one degl ee of freedom. Thus. our testing procedure is to compute

LM,,then reject the null hypothesis y = 0 1f LM is greater than the critical value. We
'r e |

3 ."'/iiTwo that have withstood the test of time are Gritiches and Rao (1969) and Kmenta and Gilbert (1968}.

)q' 367 -3
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ML L]
TABLE ¥#4 Size and Power Functions for LM Test
Gamma

60 o1 92 03 04 05 06 07 08 09 1O
01 -02 03 —04 -05 -06 -07 -08 -09 -l

Normatl 0.059 0.090 0235 0464 0691 0.85% 0957 0989 0998 1000 1.000
0.103 0236 0451 0.686 0863 0961 0989 059 1000 1000

Mode!

H(5) 0.052 0083 0169 0320 0508 0.680 0816 0911 0956 0976 0.99%
0.080 0177 0312 0500 0677 0822 0921 093 0984 099
Hel. 0071 0098 0249 0457 0666 0835 0944 0984 099 0998 1000

0.107 0239 0442 0651 0832 0940 0985 09% 1.000 1.000

will use a nominal size of (.05, so the critical value is 3.84. The theory for the statistic
is well developed when the specification of the model is correct. [See, for example,
Godfrey (1988).] We are interested in two specification errors. First, how does the
statistic behave if the normality assumption is not met? Because the LM statistic is based
on the likelihood function, if some distribution other than the novmal governs £, then the
LM statistic would not be based on the OLS estimator. We will examine the behavior of
the statisticunder the true specification that £; comes from a¢ distribution with 2 degrees 11ic
of freedom. Second, how does the statistic behave if the homoscedasticity assumption is
not met? The statistic is entirely wrong if the disturbances are heteroscedastic. We will
examine the case in which the conditional variance is Var[s; | (x7, 21)] = o?[exp(0.2x) .

The design of the experiment is as follows: We will base the analysis on a sample
of 50 observations. We draw 50 observations on x; and z from independent/ N[0, 1]
populations at the outset of each cycle. For each of 1,000 replications, we draw a sample
of 50 &js according to the assumed specification. The LM statistic is computed and the
proportion~of the computed statistics that exceed 3.84 is recorded. The experiment is
repeated for y = 0 to ascertain the true size of the test and for values of y including
-1,...,—02,-0.1,0,0.1,0.2,... ., 1.0 to assess the power of the test. The cycle of tests
is repeated for the two scenarios, the {(5) distribution and the model with hetero-
scedasticity,

| e H ) ,/,Iabk@lists the results of the experiment. The first row shows the expected
pe S U%V results for the LM statistic under the model assumptions for which is is appropriate.
\$
/: e %

g
||." \

The size of the test appears to be in line with the theoretical results. Comparing the first
and third rows, it appears that the presence of heteroscedasticity seems not to degrade E
=G the power of the statistic. But the different distributional assumption does. Figure 74+ 150

i

L rgaRd plots the values in the table, and displays the characteristic form of the power function
- for a test statistic.
/ f(f“" }W)mm A MONTE CARLO STUDY: THE INCIDENTAL

PARAMETERS PROBLEM

} ‘f ,q,g_ d Section o examines the maximum likelihood estimator of a panel data moded with

fixed effectg.
_f(,\’ir L’.‘_r‘r) =_S’(.,\f':'n.x:';ﬁ.+ o N

where the individual effects may be coirelated with x;;. The extra parameter vector 8
represents M other parameters that might appear in the model, such as the disturbance
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variance, o2, in a linear regression model with normally distributed disturbance. The
development there considers the mechanical problem of maximizing the log- -likelihood

n %
InL=>3"%" Ing(XB8+.0)
- i=1 t=1
with lespcct to the n + K + M parameters (ay, .. ., ap, 8, 8). A statistical problem with [/~
. this estimator that was suggested there is a phenomenon labeled the incidental pata- -
) “meters problem [see Neyman and Scott (1948), Lancaster (2000)]. With the exception
of a very small number of specific models (such as the Poisson regression model in
1 Section25.3.2), the “brute force,” unconditional maximnm likelihood estimator of the shen T
I"\.?' parameters in thig model is inconsistent. The result i tiforwarg.to visualize with
respect to the individual effects. Suppose that 8 and # were actually known. Then, eacho;
would be estimated with T; observations. Because 7; is assumed to be fixed (and small),
there is no asymptotie result to provide consistency for the MLE of ;. But, 8 and @ are 4
estimated with ; 7; = /N observations, so their large sample behavior is fess tr rent. | ':l— - 4.
’ One known result concerns the logit model for binary choice (see Sectionf 23.2-23.5
" Kalbfleisch and Sprott (1970), Andersen (1973), Hsiao (1996), and Abrevaya (1997)
have established that in the binary logit model, if 77 = 2, then plim Sy e = 28. Two
other cases are known with certainty. In the linear regression model with fixed effectsand
normally distributed disturbances. the slope estimator, by spy is unbiased and consistent,
however, the MLE of the variance, 62 converges to (I’ — 1)o?/T. (The degrees of
freedom correction will adjust for this, but the MLE does not_correct for degrees of
freedom.) Finally, in the Poisson regression model (Sectio@—the unconditional /9.3.2
MLE is consistent [see Cameron and Trivedi {1988)]. Almost nothing else is known
with certainty—that is. as a firm theoretical result-—about the behavior of the maximum

omara




