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588 PART IV 4+ Estimation Methodology

likelihood estimator in the presence of fixed effects. The literature appears to take as
' given the qualitative wisdom of Hsiao and Abrevaya, that the FE/MLE is inconsistent
W hc. N —with Tissmall and fixed. (The 1mpllcatlon that the severity of the inconsistency declines
as T increases makes sense, but, again, remains to be shown analytically.)

The result for the two-period binary logit model is a standard result for discrete
choice estimation. Several authors, all using Monte Carlo methods have pursued the
result for the logit model for larger values of T. [See, for example, Katz (2001).] Greene
(2004) analyzed the incidental parameters problem for other discrete choice models
using Monte Carlo methods. We will examine part of that study.

The current studies are preceded by a small study in Heckman (1981) which exam-

ined the behavior of the fixed effects MLE in the following ew i
Nower cRSE g

Zir = 0.1 +0.5z,1+ Uity 20 = 5+10.0U5,
»Ujp ~ U[-05,05],i=1,...,100,1 =0, ..., 8,

Yy =0t + Bzt + i 7 ~ NJO, 1}, &, ~ N{O, 1],
Vi = 1if ¥, = 0, 0 otherwise.

Heckman attempted to learn something about the behavior of the MLE for the probit
model with I = 8. He used values of § = —1.0, —0.1, and 1.0 and o, = 0.5, 1.0, and 3.0. .
The mean values of the maximum likelihood estimates of 8 for the f cases ave as follows: Mine’

B=-10 g=-01 A=1.0

or =05 096 -0.10 0.93
or=10 095 —-0.09 0.91
or=30 -09 —0.10 0.90.

The findings here disagree with the received wisdom. Where there appears to be a bias
(that is, excluding the center column), it seems to be quite small, and toward, not away
from zero. -

The Heckman study used a very small sample and, moreover, analyzed the fixed
effects estimator in a random effects model (note that 7 is independent of 2, ). Greene
(2004a), using the same parameter values. number of replications, and sample design..
found persistent biases away from zero on the order of 15—20 percent. Numerous au-
thors have extended the logit result for 7 = 2 with lalgm values of 7, and likewise
persistently found biases, away from zero] that diminish with increases in 7. Greene
(2004a) redid the experiment for the loglt model} then replicated it for the probit and (y1c] | .
ordered probit models. The experiment is desxgned as follows: All models are based on ‘
the same index function

Wi = o; + BX; +8d;,. where f=48=1,
xie ~ N[O, 1], di¢ = 1[xis + fiy > 0], where by ~ N[0, 1],

i ’_-.__‘—‘“-—_-——-—p
o =~T% N[o, 1]. RIVAN

The regressors d; and x;; are constructed to be correlated. The random term £, is used
to produce independent variation in dj,. There is, however, no within group cotrelation
in x;; or d;, built into the data generator. (Other experiments suggested that the marginal
distribution of x;; mattered little to the outcome of the experiment.) The correlations
between the variables are approximately (0.7 between x;; and dj;, 0.4 between o; and
x;r, and 0.2 between «; and d;;. The individual effect is produced from independent
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5
TABLE Means of Empirical Sampling Distributions, N = 1,000 Individuals
Based on 200 Replications :
T=2 T=3 T=35 T=4 T=10 T=20
g & B 5 B 5 B & B 5§ p 8
Logit Coeff 2,020 2027 1698 1,668 1379 1323 1217 1156 1.161 LI135 1069 1.062
Lot MLE™ 1676 1.660 1523 1477 1319 1254 1.9t L1128 1.140 1111 1.034 1.052
Probit Coeff 2083 1.938 1.82t 1.777 1.589 1407 1328 1.243 1247 '1.169 1.108 1.068
Probit ME® 1.474 1388 1392 1.354 1406 123t 1241 1.452 1190 1110 1.088 1.047
Ord. Probit 2,328 2.605 1.592 1.806 13035 1413 1.166 1220 1131 1158 1.038 1.068
* Average ratio of estimated marginal effect to true marginal effect.
R .-vl.r . -3 . .
o variation ¥ “as well as the group mean of ;. The latter is scaled by \/— T to maintain

the unit variances of the two par ts--«wﬂhout the scaling. the covariance between a;
and x;, falls to zero as T increases and ¥ X; converges to its mean of zero). Thus, the data
generator for the index function satisfies the assumptions of the fixed effects model. The
sample used for the results below contains # = 1,000 individuals. The data:generating
processes for the discrete dependent variables are as follows:

probir: yie = Mwir + &; > O}, & ~ N[0, 1],
ordered probit: vy, = ¥wi + &, > 0] + 1w + &5 > 3], 81, ~ N[0, 1],
Aogit; Vi = I{w,, + vy > 0], vy = log[u”/(l — wi)], i ~ U[0, 1],

{The three discrete dependent variables are described in Chapter 28y —————ou_ __— } _71' -
[ L @/"’[&W reports the results of computing the MLE with 200 replications. Models
bl ' IS were fit with T =2, 3,5, 8, 10, and 20. (Note that this includes Heckman’s experiment.)
Each model specification and group size (1) is fit 200 times with random draws for g;;
ot ;. The data on the regressors were drawn at the beginning of each experiment (that
is, for each T) and held constant for the replications. The table contains the average
estimate of the coefficient and, for the binary choice models, the partial effects. The
value at the extreme left corresponds to the received result, the 100 percent bias in
the T = 2 case. The remaining values show, as intuition would suggest, that the bias
decreases with increasing I'. The benchmark case of T.= 8, appears to be less benign
than Heckman's results suggested. One encouraging finding for the model builder is that
the biases in I)Ke estimated marginal effects appears to be somewhat less than for the
coefficients. [Greene (2004b) extends this analysis to some other models, including the
tobit and truncated regression models discussed in Chapter 24, elesultsthele suggest [€
that the conventional wisdom for the tobit model may not be conect———the incidental
parameters problem seems to appear in the estimator of o in the tobit model, not in

the estimators of the stopes. This is consistent with the linear regression model. but not
M with the binary choice models.] ,
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15.6 SIMULATION,BAS ED ESTIMATION

Sections 15.3 L 15.5 developed a set of tools for inference about model parameters using
simulation methods This section will describe methods for using simulation as part of the
~ estimation process. The modeling framework arises when integrals that cannot be computed
“directly appear in the estimation criterion function (sum of squares, loglikelihood, and so on).
To illustrate, and begin the development, in Section 15.6.1, we will construct a nonlinear model
with random effects. Section 15.6:2 will describe how simulation is used to evaluate integrals for
maximum likelihood estimation, Section 15.6.3 will develop an application, the random effects
regression model.

15.6.1 Random Effects in a Nonlinear Model

In Example 11.16, we considered a nonlinear regression model for the number of doctor visits in
the German Socioeconomic Panel. The basic form of the nonlinear regression model is

Elyulxul = exp(xi B), t= MWiT, i = 1,_.;.:-,'11.

In order to accommodate unobserved heterogeneity in the panel data, we extended the model to
include a random effect,

Elyulxau] = exp(x: B + w), . (15-9)

where z is an unobserved random effect with zero mean and constant variance, possibly normally
distributed —; we will turn to that shortly. We will now go a step further and specify a particular
probablllty distribution for Yi. Since it is a count, the Poisson regression model would be a
natural choice, 7
exp(—p,, Jud . '
J207%) X !’j‘_i_) = Ml‘ » it = GXP(!FH B+ u). (15-10)

!

Conditioned on x;, and u, the 7; observations for individual i are independent. That is, by
conditioning on u;, we treat it as data, the same as x;. Thus, the T observations are independent
when they are conditioned on Xi and ;. The joint densnty for the T observations for individual J
is the product,

exp(—t, )i

ir'

p(yzliyﬂ! i, 7 ] - ralu ) 1_‘[1 -1 s Mir = exp(!‘j!'ﬁ + ui): = 1,...,]'; (15'1 1)

In principle at this point, the log_llikelihood function to be maximized would be

n T expl—-u, ;v" '
i S T 2 | wmewipran, 0512

But, it is not possible to maximize this log,likelihood because the unobserved u;, i = 1.1 0,
appears in it. The joint distribution of (y,,,v,z, Vi r,,u,) is equal to the marginal distribution for U

times the conditional distribution of yi= (¥i,.. ,y, 7,) given u,,

P(J”rlaJ’m ’yJT’u |X) p(yf]’yJZ’ !er |Xr:| ;)f(u)



where flu;) is the marginal density for u. Now, we can obtain the marginal distribution of
(y[],ym, ?}r 7:) without Ui by |

p(y;lsy;z: ,J’,Tlx) _[ P(y,;;y,zs ?er!XI’ )_f(u,)duu

“For the specific application, with the Poisson conditional distributions for y u; and a normal
distribution for the random effect, "

@ 1, exp(—i, ) 11
p(yﬂ,y,.z,...,yi_?} |\\Z_(,.)=I_m [HM L;l':)—p'—]glb( )du,a}iu GXP(XHB"'M)
Fi

The log:.llikelihood function will now be

n ® T CXpl—L; f{'.l i y
ln'L=Z_i=l ln{j_w |:Hr_;l Mkd’(%)du,},un=expﬁ.’~‘_::4[3.+.uz).;-.(15~13)

V!

The optimization problem is now free of the unobserved u, but that complication has been traded
for another one, the integral that remains in the function.

To complete this part of the derivation, we will simplify the loglr likelihood function
slightly in a way that will make it fit more naturally into the derivations to follow. Make the
change of variable ¥ = ow; where w; has mean zero and standard deviation one. Then, the
Jacobian is du; = cdw;, and the limits of integration for w; are the same as for ». Making the
substitution and multiplying by the Jacobian, the log likelihood function becomes

n ® 7, exp(—p ) .
InL= ZH ln{'l-"_a0 [H : L(yl"-lf)ﬂ-'q}b(wj)d%}, Ry =exp(x;B+ow). (15-14)
i

The log, likelihood is then maximized over \(:Eaé)' The purpose of the simplification is to
parameterize the model so that the distribution of the variable that is being integrated out has no
parameters of its own. Thus, in (15-14), w; is normally distributed with mean zero and variance
one. ,

In the next section, we will turn to how to compute the integrals. Section 14.9.6.c

analyzes this model and suggests the Gauss—Hermlte guadrature method for computing the”

.'\'.: [

integrals. In this section, we will derive a method based on simulation, Monte Carlo

(L) _1nte%rat10n\'

*" The term “Monte Carlo” is in reference to the casino at Monte Carlo, where random number generation is
a crucial element of the business.
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156.6.2 Monte Carlo Integration

Integrals often appear in econometric estimators in**open form;”that is, in a form for which there |t _
is no specific form function that is equivalent to them. (E.g., the integral, | G g Tes

_c Bexp(—Ow)dw =1-exp(—6¢), is in closed form. The integral in (15-14) is in open form.) |

There are various devices available for approximating open.form integrals - Gauss-Hermite and
Gauss;Laguerre quadrature noted in Section 14.9.6.c and in Appendix E2.4 are two. The
technique of Monte Carlo integration can often be used when the integral is in the form

W)= el W)_f(w)dw= E,[g(y|w)]

where f{w) is the density of w and and w is a random variable that can be simulated. [There are
some necessary conditions on w and g()y{w) that will be met in the applications that interest us
here. Some details appear in Cameron and Trivedi (2005) and Train (2003).]

If wy,wa,|11, 1, are a random sample of observations on the random variable w and g(w) is
a function of w with finite mean and variance, then by the law of large numbers [Theorem D.4
and the corollary in (D-5)],

plimiz,’;, g0w) = Elg(w)].

The function in (15-14) is in this form;

[ [H’ﬂ exP[_ex"(z‘;’E'+"Wa)][exp(zc}1ﬁ+6wi)]y!']}¢(w.)dw.
=1 y_,-,! w.)aw,
=L | 8Os Vs 1w, ,'Ix_,.,'_ﬁ, c)]
where

expl-cxp(x,B + 0w, I[exp(x,B-+ o] ]
Yy !

I T
g (J’:lst;z,,-:-'.-'; Yir, | Y_Vn:)..{_f ’.E".G) = H ol

and w; is a random variable with standard normal distribution. It follows, then, that

e e expl-exp(x; B+ ow, Nlexp(x;, B+ ow, )]* ]
pllm—zr_ H: 1 T

, , (15-15)
= J‘; [HL exp(-exp(x; B+ ow, ) [exp(x;B + ow, )" ]} 8(w,) dw,.

Yur!

This suggests the strategy for computing the integral. We can use the methods developed in
Section 15.2 to produce the necessary set of random draws on w; from the standard normal
distribution',lthen compute the approximation to the integral according to (15-15).



s Loy
/ Wwsy
i L=
L

,ff- !'.-!~

Is-24

Example 15.8 Fractional Moments of the Truncated Normal Distribution

The following function appeared in Greene's (1990) study of the stochastic frontier model;

[z 14{——2 ~Ce- 9“2)}_4&_
. (o3

0 (o]

(M e)= - ld{f—w}dz
G [0}

0

The integral only exists in closed form for integer values of M. However, the weighting
function that appears in the integral is of the form

i.“l:'.!""_')‘-; )

)
f(z]z>0)=—oAZ) G\ 0O iy
SR & PrOb[Z>0] '[°° Jud)(ﬂ)dz ll_f'lj_""-"v"__:

° O o )

This is a truncated normal distribution. It is the distribution of a normally distributed variable z
with mean p and standard deviation g, conditioned on z being greater than zero. The integral
is equal fo the expected value of Z¥ given that z is greater than zero when z is normally
distributed with mean y =t — 80 and variance o°.

The truncated normal distribution is examined in Section 18.2. The function H(M.e) is
the expected value of _z_@-when_z is the truncation of of a normal random variable with mean
M and standard deviation 0. To evaluate the integral by Monte Carlo integration, we would
require a sample__zq,...,,f from this distribution. We have the results we need in (15-4) with L
= 0 so0 P, = ®[0:(-e-80°)0] = ®(e/o + B0) and U =+ 50 P, =1. Then, a draw on z is
obtained by o AR P '

VLARILE.Y & il l.'l,"_; \

z= i + o®'[p, + F(1LP)).

where F is the primitive draw from 1[0,1]. Finally, the integral is approximated by the simple
average of the draws,

1«
h(M Je) ~ }Z}a Z[e,8,0, F, 1.
LR
The-preceding is an application of Monte Carlo integration. In certain cases, an integral can be
approximated by computing the sample average of a set of function values. The approach taken
here was to interpret the integral as an expected value. Our basic statistical result for the behavior
of sample means implies that with a large enough sample, we can approximate the integral as
closely as we like. The general approach is widely applicable in Bayesian econometrics and has
begun to appear in classical statistics and econometrics as well?>”

>See Geweke (1986, 1988, 71989, 2005) for discussion and applications. A number of other references are
given in Poirier (1995, p. 654) and Koop (2003).
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weighting function. But now the range ¢

tegratlon is not Ngo to oo itis —u/a to +o00.
There is another approach. Suppose

t 2 is a random variable with N[, ]

1 /) e
TR 0 [~ -
rob[z‘> ] '/0' :‘,¢' [zap,]

, ), and the function being
n that z is greater than zero.
Thatis. hir, £) is a pefesibly fractional moment —we do notregtrict rto integer values —from the

Now that ye have identified the function, how d
cluded thal/the familiar quadrature methods will
derived cjosed forms for the fractional moments &f the normal distribution, truncated or not))
But, if wé can draw a random sample of obseryations from this tnuncated normal distributi
{7}, thén the sample mean of w; = z/ will cehverge in probability (mean square) to its
ulatjdn countsrpart. [The remaining detail j€ to establish that this expectation is finite #¢hich
it j# for the tnuncated normal distributiony’see Amemiya (1973).] Because we showed earlier
w to draw observations from a trunggited normal distribution, this remaining step’is simple.

compute it? We have already con-
ot suffica. (And, no one has previoustly

zhtforward application of Monte Carlo integration.
be approximated by computlng theSample average

The preceding is a fairly str
In certain cases, an integral ¢

pplicable in Bayesian econometrics ghd has begun to appear in
nd econometrics as well.?

— - /
o {ﬁmm HALTON SEQUENGES AND RANDOM DRAWS
[{.b 1- FOR SIMULATION-BASED INTEGRATION

Monte Carlo integration is used to evaluate the expectation

Elg(0] = [ () f00) dx

where f(x) is the density of the random variable x and g(x) is a smooth function. The
Monte Carlo approximation is )

Hew] = Zg(xr)
r--l
Convergence of the approximation to the expectation is based on the law of large
numbers—a random sample of draws on g(x) will converge in probability to its ex-
pectatlon ‘The standard approach to simulation-based integration is to use random
draws from the specified distribution. Conventional simulation-based estimation uses

Geweke ( 1988 1989/for discussion and a /i)lu:atlons. A numb of other rcfcrcn Te g@vVen in
mcr (1995, ]




a random number generator to produce the draws from a specified distribution. The central
component of this approach is draws from the standard continuous uniform distribution, o\

Draws from other distributions are obtained from these draws by using transformations. In -

particular, for a draw from the normal distribution, where w is one draw from UJ0!1],

2y = CI);](;J,_-)‘ Given that the initial draws satisfy the necessary assumptions, the central issue for

“purposes of specifying the simulation is the number of draws. Good performance in this

connection requires very large numbers of draws. Results differ on the number needed in a given
application, but the general finding is that when simulation is done in this fashion, the number is
large (hundreds or thousands). A consequence of this is that for large-scale problems, the amount
of computation time in simulation-based estimation can be extremely large. Numerous methods
have been devised for reducing the numbers of draws needed to ‘obtain a satisfactory
approximation. One such method is to introduce some autocorrelation into the draws - a small
amount of negative correlation across the draws will reduce the variance of the simulation.
Antithetic draws, whereby each draw in a sequence is included with its mirror image (w; and —w,
for normally distributed draws, w; and 1-w; for uniform, for example) is one such method. [See
Geweke (1988) and Train (2009, Chapter 9).]

Procedures have been devised in the numerical analysis literature for taking “intelligent”

draws from the uniform distribution, rather than random ones. [See Train (1999, 2009) and Bhat '

(1999) for extensive discussion and further references.] An emerging literature has documented

.. dramatic speed gains with no degradation in simulation performance through the use of a smaller
' number of Halton draws or other constructed, nonrandom sequences instead of a large number
, of random draws. These procedures appear jvastlylto reduce!the number of draws needed for

estimation (sometimes by a factor of 90% or more) and reduce the simulation error associated
with a given number of draws. In one application of the method to be discussed here, Bhat (1999)
found that 100 Halton draws produced lower simulation error than 1,000 random numbers.

A sequence of Halton draws is generated as follows: Let r be a prime number. Expand
the sequence of integers g= 1, 2, . . . in terms of the base r as

g= Z;o b,._r"_- where, by construction, OS. b; St 1 and #/ .S EAN s

The Halton sequence of values that corresponds to this series is

!

H@= D, br™"
For example, using base 5, the integer 37 has by =2, b; = 2, and b; = !. Then
Hi(37)=2x5"+2x52+1x57%=0488

The sequence of Halton values is efficiently spread over the unit interval. The sequence is not
random as the sequence of pseudo-random numbers is; it is a well-defined deterministic
sequence. Buf, randomness is not the key to obtaining accurate approximations to integrals.
Uniform coverage of the support of the random variable is the central requirement. The large
numbers of random draws are required to obtain smooth and dense coverage of the unit interval,
Figures 153 and 15.4 show two sequences of 1,000 Halton draws and two sequences of 1,000
pseudo-random draws. The Halton draws are based on » = 7 and » = 9. The clumping evident in
the first figure is the feature (among others) that mandates large samples for simulations,
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FIGURE 135% Bivariate Distribution of Halton (7) and Hailton (g).
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Example iﬁz Estimating the Lognormal Mean
We are interested in estimating the mean of a standard lognormally distributed variable.
Formally, this is

ElY] = f exp(.x)J% exp [— -12—x"’] dx = 1.648,



