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i ' Haiton Sequences, by Sample Size. ’ :

To use simulation for the estimation, we will average i1 draws an y = exp{x) where x is drawn
from the standard normal distribution. To examine the behavior of the Halton sequence as
compared to that of a set of random draws, we did the following experiment. Let x;; = the
seqjuence of values for a standard normally distributed variable. We draw t =1, ..., 10,000
draws. Fori = 1, weused arandom number generator. Fori = 2, weused the sequence ofthe
first 10,000 Halton draws usingr = 7. The Halton draws were converted to standard normal
[ ™ using the inverse normal transformation. To finish preparation of the data, we transformed x;;

to y+ = exp{x;;) Then, for n = 100, 110, ..., 10000, we averaged the first p cbhservations in

Fa B

| e
= the sample. Figure lots the evolution of the sample means as a function of the sample
/EQFWMG Iz.the sequence of Halton-based means. The greater stability of the
alton estimator is cleari\evident in the figure. /155
‘ cwevr .
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17.3.2 IMPORTANCE SAMPLING

Consider the general computation

u
Fxy = / F(x) glx)dx,
L

ut for current purposes, we limit
that g(x) is nonnegative in the eptife

g(x)dx
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e can draw a random sample
squaring the draws in a sampie

We carried out this experiment with 1,000
mean of our sample was 1.6974, compare
[ than 3 percent.
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/5. éz‘ b SN0 COMPUTING MULTIVARIATE NORMAL PROBABILITIES ¥ 4’3? i ca “"5‘

L

USING THE GHK SIMULATOR

The computation of bivariate normal probabilities Tequires a large amount of com-
puting effort, Quadrature methods have been developed for trivariate probabilities as
well, but the amount of computing effort needed at this level is erormous. For inte-
grals of level greater than three, satisfactory (in terms of speed and accuracy) direct
approximations remain to be developed. Our work thus far does suggest an alfernative
approach. Suppose that x has a K-variate normal distribution with mean vector @ and
covariance matrix ¥. (No generality is sacrificed by the assurnption of a zero mean,
because we could just subtract a nonzero mean from the random vector wherever it
appears in any result.) We wish to compute the K-variate probability, Probfe; <x; <5,
@ <Xy < by,....ax < Xg < bg]. Our Monte Carlo integration technique is well suited
for this welladefineebproblem. As a first approach, consider sampling R observations,
X, r=1,..., R from this multivariate normal distribution, using the method described
in Section 17.2.4. Now, define

d=Nai<xn<b,m<xo<h,. . .  ox<Xxg<bkl

(That is, d, = 1 if the condition is true and 0 otherwise.) Based on our earlier results, it
follows that

R (.
plimd = plim—:-lﬁZd,_ =Probla; <x <bi, a0 <X <by,...,ax <Xk < bx]kﬁ('/

re=1

This method is valid in principle, but in practice it has proved to be unsatisfactory for
several reasons. For large-order problems, it requires an enormous number of draws
from the distribution to give reasonable accuracy. Also, even with large numbers of
draws, it appears to be problematic when the desired tail area is very small. Nonetheless,
the idea is sound, and recent research has built on this idea to produce some quite

‘0 ;iﬁis method was suggested by Lerman and Manski (1981).
=
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. accurate and efficient simulation methods for this computation. A survey of the methods
is given in McFadden and Ruud (1994). "l" (KT _ ,
Among the simulation methods exammed in the survey, the GHK smnnﬂl recursive - @
simulator appears to be the most accmate‘( The method is sur pllsmgly slmp]e The

general approach uses ' 5 | g

L

2 ".."
Probla; <xi <bi,a2 <x2 <h.....ax < XK < by] = ZH Oriey , | el ! ;

- r...l k=l | Cees LR
N 40
6{, where (., are easily computed univariate probabilities. The piobablhtres Quparecom= = | oAl {aflacy

puted according to the followmg recursion: We first factor %, using the Cholesky- fac-———/|

Tl Sl B

y /. totization ¥ = LL' where-k is a lower triangular matrix ‘(see Section A 6. 11). The | LD el o

'F S elements of L are !;m,. where I,g,.,, = 0 if m > k. Then we begin the recursion with

gt

(i5- -4)
1 = (D(b_ll_!n)““@(_ﬂ][fu). in%

Note that /1) = 011,50 this is just the marginal probability, Probla1 < x1 < b1]. Now, we
generate a random observation g, from the truncated standard normal distribution in
the range )

An to B =a1/h tobifln.

(Note agam that the 1ange iS standardlzed since f11 = a11. )m
----- phsritt e CEY). For steps k = 2,..., K. compute

A = [ak““ Z!kmgrm} /!kk-
m=1

k-1
T By = [bk - Z[kmgrm] /{kk-
m=1

O = ®(Br) — ©(An).

Finally, in preparation for the next step in the recursion, we generate a random draw
from the truncated standard normal distribution in the range A,; to B,.. This process is
replicated R times, and the estimated probability is the sample average of the simulated
probabilities.

The GHK simulator has been found to be impressively fast and accurate for fairly
moderate numbers of replications. Its main usage has been in computing functions
and derivatives for maximum likelihood estimation of models that involve multivari-
ate normal integrals. We will revisit this in the context of the method of simulated

moments when we examine the probit mode! in Chaptelﬂg LSeErmmple=2S e
ol T i !

" Then

\1( P /‘TA symposium on the topic of simulation methods appearsin Review of Economic Statistics, Vol. 76, November
1994, See, especially, McFadden and Ruud (1994), Stern (1994), Geweke, Keane, and Runkle (1994). and |
Breslaw {1994). Sce. as well. Gourieroux and Monfort (1996).

See Geweke {1989), Hajivassitiou (1990), and Keane (1994). Details on the properties of the simulator are | V¢ Loy & P
given in Barsch-Supan and Hajivassjl 990). | T
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15.6.3 SIMULATION BASED ESTIMATION OF RANDOM EFFECTS MODELS

In Section 15.4.2, (15-14)4and (15-5), we developed a random effects specification for the
Poisson regression model. - For feasible estimation and inference, we replace the log, likelihood
function,

L= .ln{ " [ 7 elong o ,-)]'[exp(g.;wcw,-)}”'z]]d)(wi) d_w,},
S Gl Rt R -

with the simulated log,llkellhood function,

Vi
In L = In{ Z,_ H 5 exp( exp(x,,ﬁ+w:}1 '[exp(xu[i+c )] } (15-16)
i
We now consider how to estimate the estimate the parameters via maximum simulated likelihood.
In spite of its complexity, the simulated log,likelihood will be treated in the same way that other
logylikelihoods were handled in Chapter 14. That is, we treat InZs as a function of the unknown
parameters conditioned on the data, lnLS(B 6); and maximize the function using the methods
described in Appendix E such as the DFP or BFGS gradient methods. What is needed here to
complete the derivation"is expressions for the derivatives of the function. We note that the
function is a sum of a terms; asymptotic results will be obtained in #; each observation can be
viewed as one T-variate observation.
In order to develop a general set of results, it will be convenient to write each single
density in the simulated function as

P E,IO') = __f(Yit[Xir,W{raﬂ,G) Pi(8) = Py

For our specific application in {15-16),

p, = Sxpl-exp(B+ o, llexp(xi Bt o, )]
= - Yol
The simulated log,likelihod is, then,

InLg=>"1 {Z,_H _,-,,(9_)}. (15-17)

Continuing this shorthand, then, we will also define

Pu=P@ =T, 2.®

so that
n o [1r ¥
InLg = Z_i=l In {E Z_r=l B ('e)}
And, finally,
1 R
Pi= P,(B) - EZ,.=1 Pr'r
so that

InL;=>" In B(6). (15-18)



With this general template, we will be able to accommodate richer specifications of the index
function, now.lx,-,_'_g + ow;, and other models such as the linear regression, binary choice models,
and so on, simply by changing the specification of Py,.

The algorithm will use the usual procedure,

R 12 = 0% + updare vector

starting from an initial value, Q(O), and will exit when the update vector is sufficiently small. A
natural initial value would be from a model with no random effects; that is, the pooled estimator
for the linear or Poisson or other model with ¢ = 0. Thus, at entry to the iteration (update), we
will compute

i £ = 37 1n { Ls® 1 expl-exp(x, B4 + 6% Dw, )lexp(x, B +5% D, )P ]}_
e =1 | gt Leat _ Ju!

To use a gradient method for the update, we will need the first derivatives of the function.
Computation of an asymptotic covariance matrix may require the Hessian, so we will obtain this
as well, '

Before proceeding, we note two important aspects of the computation. First, a question
remains about the number of draws, R, required for the maximum simulated likelihood estimator
to be consistent. The approximated function,

ELAG 5wl = X5 0l xm)

is an unbiased estimator of E,[f{y|x,w)]. However, what appears in the simulated log-likelthood
is In £,[f(y|x, w)], and the log of the estimator is a biased estimator of the log of its expectation.
To maintain the asymptotic equivalence of the MSL estimator of § and the true MLE (if w were
observed), it is necessary for the estimators of these terms in the log-likelihood to converge to
their expectations faster than the expectation of In L converges to its expectation. The
requirement [see Gourieroux and Monfort (1996)] is that /R — 0. The estimator remains
consistent if #" and R increase at the same rate; however, the asymptotic covariance matrix of
the MSL estimator will then be larger than that of the true MLE. In practical terms, this suggests
that the number of draws be on the order of #°* for some positive 8. [This does not state,
however, what R should be for a given #; it only establishes the properties of the MSL estimator
as n increases. For better or worse, researchers who have one sample of n observations often rely
on the numerical stability of the estimator with respect to changes in R as their guide.
Hajivassiliou (2000) gives some suggestions.] Note, as well, that the use of Halton sequences or
any other autocorrelated sequences for the simulation, which is becoming more prevalent,
interrupts this result. The appropriate counterpart to the Gourieroux and Monfort result for
random sampling remains to be derived. One might suspect that the convergence result would
persist, however. The usual standard is several hundred.
Second, it is essential that the same (pseudo- or Halton) draws be used every time the
fumction or derivatives or any function involving these is computed for observation i. This can be
achieved by creating the pool of draws for the entire sample before the optimization begins, and
simply dipping into the same point in the pool each time a computation is required for
observation 7. Alternatively, if computer memory is an issuc and the draws are recreated for each
individual each time, the same practical result can be achieved by setting a preassigned seed for

1532
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individual 7, seed(i) = (i) for some simple monotonic function of i, and resetting the seed when
draws for individual { are needed.
To obtain the derivatives, we begin with

dlin Lg 5 s R)Zi;a(]_[i, P,-fr(_?))/@@.
08 Lwe wRY T Be®
For the derivative term, - o
oI 2@/ =([T7 £:@)o(m[ T £.@)ro0.
- ( =1 ”f(ﬁ))z:;l Oln }_‘::'_tr (‘9)/@9
—PAB)(Z oln ,rr(B)fae) (15-20)

=F, (Q)Z_m]-g".” (e)

(15-19)

Nl

Now, insert the result of (15-20) in (15-19) to obtain

ALy (6) _yr PIALC)R ®
@ PINAC)
Define the weight 0.(8)= P,(8)/ZR, P (8) so that 0 < Qn® <1and X%, 0,(6) = 1. Then,

(15-21)

Ay Y 0.08,®-3" 5. (15-22)

To obtain the second derivatives, define H;{(0) = azh{_.i?g,(g)/agag' and let

H,(0)= 2,1 H,.(0)
and (15-23)

H@=>" 0,0H,®.

Then, working from (15-21), the second derivatives matrix breaks into three parts as follows:

(> P OH,O), ZH (@), @), @Y
Yee® o YER@

_[ZH £©,®] 3 Jr(e)gz,(e)]
hrean)|

& InLy(®)
5000’ =2 -t
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We can now use (15-20) -I'.( 15-23) to combine these terms;

*InLg

000 =2 {Eﬁﬁ)+Zﬁ%(@)[g;r(@)-.%(ﬁ)][g;.-&@) -2 |- (15-24)

“An-estimator of the asymptotic covariance matrix for the MSLE can be obtained by computmg

the negative inverse of this matrlx

Example 15.10 Poisson Regression Model \n.;ith Random Effects
For the Poisson regression model, 8 = (B*,c)" and

@) = exp[—exp(x;, B + ow, )llexp(x, B+ ow;, )% *] _ expl-py, (O)In,, (B
- V! Yi!
.'g_‘;’r (B) i [y;r p’m- @)][ X” J (15“25)

ir

i || X ’
.-!-Iflr (9) = ~Hig (\9)[r g J[ = J I
i Wir Wfr

i . Estimates of the random effects model parameters would be obtained by using these
Meteding | expressions in the\general templatg, above. We will apply these results in an application
' ¥ in Chapter 19 where the Poisson regression model is developed in greater detail.

HJ‘
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Example 15.11 Maximum Simulated Likelhood Estimation of the Random Effects Linear
Regression Model
afeceding
The) method outlined-above can also be used to estimate a linear regression model with
random effects. We have already seen two ways to estimate this model, using two)step
FGLS in Section 11.5.3 and by (closed form) maximum likelihood in Section 14.9.6.a. it
“might seem reduntant to construct yet a third estimator for the model. However, this third -
approach will be the only feasible method when we generalize the model to have other
random parameters in the next section. To use the simulation estimator, we define
0= (B.oyo;). We will require

1 (,V» [3 oW
P e = XN — i lf u-ir ,
iy ( ¢ ) ] r—-—2 pl: 2 s :I

#[ (Y~ :ﬂ OuWir J( Xy )_ X
s -wir (Sm /0-:) {Wﬂ )
g = w

(yn er oW ar i (1/ G, )[(8;2" /Gz) _ 1]
o, ) -

€ €

X, X ' X,
_ 1/ 25 | it i _ 2 - / 3y [ weit
H, @)= e )(W;‘r J(Wir J P Ga)[-wrr )

~(28,, /o)X, w,) —(¢l,/ch)+(/c))

8. (0)= (15-26)

Note in the computation of the disturbance variance, cri , we are using the sum of squared

simulated residuals. However, the estimator of the variance of the heterogeneity, o, is not
being computed as a mean square. It is essentially the regression coefficient on w;. One
surprising implication is that the actual estimate of ¢, can be negative. This is the same
result that we have encountered in other situations. In no case is there a natural estimator of
o{f that is based on a sum of squares. However, in this context, there is yet another
surprising aspect of this calculation. In the simulated log, likelihood function, if every w; for
every individual were changed to —w; and g is changed to —o, then the exact same value of
the function and all derivatives results. The lmpllcatlon is that the 5|gn of & is not identified in i
this setting. With no loss of generality, it is normalized to + Ito be consistent with the >5[V
underlying theory that it is a standard deviation.
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15.7 A RANDOM PARAMETERS LINEAR REGRESSION MODEL

We will slightly reinterpret the random effects model as

i = Boi T X B+ &,
Bo: = Bo + . - (15-27)
This is equivalent to the random effeets'n'lode], though in (15-27), we reinterpret it as a regression
model with a randomly distributed constant term. In Section 11.11.1, we built a linear regression
model that provided for parameter heterogeneity across individuals,

Yu=Xa Bt e,
B.=B *t (15-28)

where u; has mean vector 0 and covariance matrix I. In that development, we took a fixed effects
approach n that no restriction was placed on the covariance between u; and x;. Consistent with
these assumptions, we constructed an estimator that involved » regressions of y; on X; to estimate
B one unit at a time. Each estimator is consistent in 7;. (This is precisely the approach taken in

‘the fixed effects model, where there are n unlt specnﬁe constants and a common B. The approach

there is to estimate B fi rst, ‘then to regress y, X ibLspv on d, to estimate o) In the same way that
assuming that % is uncorrelated with Xi in the fixed effects model provided a way to use FGLS to
estimate the parameters of the random effects model, if we assume in (15-28) that w; is
uncorrelated with X;, we can extend the random effects model in Section 15.4.3 to a model in
which some or all of the other coefficients in the regressnon model, not Just the constant term, are
randomly distributed. The theoretical proposition is that the model is now extended to allow
individual heterogeneity in all coefficients.

To lmplement the extended model, we will begm with a simple formulation in which u;
has diagonal covariance matrix - this specification is quite common in the literature. The
implication is that thé random parameters are uncorrelated; ;4 has mean f3; and variance . The
model in (15-26) can modified to allow this case with a few minor changes in notation. Write

Bi =B + Aw (15-29)
where A is a diagonal matrix with the standard deviations (y1,y2iiliye) of (wa)ilbux) on the

diagonal and w;, is now a random vector with zero means and unit standard deviations. The
parameter vector in the model is now

9 = (B],'JJ!,BK,?H,I.'.-.!,'?\.K,GE).

(In an application, some of the ys might be fixed at zero to make the corresponding parameters,
nonrandom.) In order to extend the model, the disturbance in (15-16), g, = (Vi _gg,,_ﬁ q,,wi,)
becomes ( frun s ]

S_r'rr an : Xrt (B + Awtr) (15—30)

Now, combine (15-17) and (15-29) with (15-26) to produce

—~x (B+Aw,))
lnLS_Z—[ Z,—_ I_['l pl:(yrr x_"g'i:—w”)) ] ‘ (15“31)

) e

1536
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In the derivatives in (15-26), the only change needed to accommodate this extended model is that
the scalar w; becomes the vector (w;, Wirls Wir2Xin 244 s Wi, kit K) This is the element,.by element,

IS-3%

product of the regressors, X;.and the vector of random draws, Wy, which is the Hadamard“"-

) product direct _product or Schur product of the two vectors, denoted Xi ® W

Although only a minor change in notation in the random effects template in (15-26), this
formulation brings a substantial-change in the formulation of the model. The integral in (15-16)
is now a K dimensional integral. -Maximum simulated likelihood estimation proceeds as before,
with potentially much more computation as each “draw” now requires a K-variate vector of
pseudo-random draws.

The random parameters model can now be extended to one with a full covariance matrix,

L as we did with the fixed effects case. ~We will now let A in (15-29) be the Cholesky

factorization of I, so.I' = AA". (This was already the case for the simpler model with diagonal

T The 1mplementat10n in (15-26) will be complicateda bit. The derivatives with respect to 8

are unchanged. For the derivatives with respect to, A, it is useful to assume for the moment that A
is a full matrix, not a lower trlangular one. Then the scalar w;, in the derivative expression
becomes a K %1 vector in which the (!’c—1)><K+Ith element is x; ,-cxw,, - The full set of these is the

e Kronecker product of x;; and W, x,,®w,, The necessary elements for maximization of the fog:
likelihood function are then obtained by dlscardmg the elements for which Ay are known to be ¥

zero *- these correspond to / > k.
- In (15—26) for the full model, for computing the MSL estimators, the derivatives with

respect to (B;A) are equated to zero. The result after some manipulation is

OInLg (- xu(B"'AV.Y,,)) Xy _
o(B, A) -Z‘ =1 RZ =1 Z: =1 LE” ®-‘?_V_ir:|_"ﬂ0”:'

By multiplying this by o,’, we find, as usual, that cLz is not needed for computation of the
estimates of{3,A% Thus, we can view the solution as the counterpart to least squares, which might
call, instead, the minimum simulated sum of squares estimator. Once the simulated sum of
squares is minimized with respect to B and A, then the solution for o5 can be obtained via the
likelihood equation,

a].nL n -T ;f‘_ Yu «r(B+__A
aG'ZS :.Z’=l _Z’— ]( 2:54 ) :,9.-:

s

Multiply both sides of this equation by 26" to obtain the equivalent condition

2
oL <n lsn | o Za{n-xG+Av))
60'2 fZ\_j:l RZr:le"- GE+ T

frrr A
€ - =

Al
"

By expanding this expression and manipulating it a bit, we find the solution for ¢.” is

To( )
*z" Q= Zr[ s Where gw_zf=l(yr‘r "}"-’}@+A"_:,r))

i

and O, = T}(Z;T; is a weight for each group that equals 1/n if 7} is the same for all i,
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Example 15.12 Random Parameters Wage Equation

Estimates of the random effects log wage equation from the Cornwell and Rupert study in
Examples 11.1 and 15.6 are shown in Table 15.6. The table presents estimates based on
several assumptions. The encompassing model is

In Wagey = Br,+ Bay WKS; + ... + Prog Fom; + fys, Bl + &, (15-32)
Bii = B+ M Wi Wae ~ N[0,1], k= 1,13, (15-33)

Under the assumption of homogeneity, that is, A, = 0, the pooled OLS estimator is consistent
and efficient. As we saw in Chapter 11, under the random effects assumption, that is X, = 0
for k = 2,11.,13 but 44 # 0, the OLS estlmator is consistent, as are the next three estimators
that expllculy account for the heterogeneity. To consider the full specification, write the model
in the equivalent form

InWage, =x, B+ (7L Wiy + oW, %y i ) &,

r
= ¥1r§ +W, + Ep-

This is still a regressson ElWis+exX] = 0. (For the product terms,

E s Xl = lkx,,kE[w, klx,fk] = 0.) Therefore, even OLS remains consistent. The
heterogeneity induces heteroskedasﬂcﬂy in Wi so the OLS estimator is inefficient and the
conventional covariance matrix will be inapproptiate. The random effects estimators of B.in
the center three columns of Table 15.6 are aiso consistent, by a simiiar logic. However, ‘they
likewise are inefficient. The result at work, which is specific to the linear regression model, is
that we are estimating the mean parameters, By, and the variance parameters, Ay and Og
separately. Certainly, if A is nonzero for k =2,..1,13, then the pooled and RE estimators] that
assume they are zero, are all inconsistent. Wlth B, estimated consistently in an otherwise
. misspecified model, we would call the MLE and MSLE pseudo-maxumum Ilkellhood
{51 )" estimators. -

Comparing the ML and MSL estimators of the random effects model, we find the
estimates are similar, though in a few cases, noticeably different nonetheless. The estimates
tend to differ most when the estimates themselves have large standard errors (small { ratios).
This is partly due to the different methods of estimation in a finite sample of 595 observations.
We could attribute at least some of the difference to the approximation error in the simulation
compared to the exact evaluation of the (closed form) integral in the MLE. The difference in
the log, likelihood functions would be attrlbutable to this as well. Note, however, that the
difference is smaller than it first appears — the comparison of 586.446 to 307.883 is

~~ . misleading; the comparison should be of the difference of the two values from the Iog :
{ %22 ikelihood from the pooled model of -1523.254. This produces a difference of about 14%. 5. ras w1
The full random parameters model is shown in the last two columns. Based on the
likelihood ratio statistic of 2(668.630 — 568.446) = 200.368 with 12 degrees of freedom, we
would reject the hypothESlS that 2, = A3 =4..'= A3 = 0. The 95% critical value with 12
degrees of freedom is 21.03. This random parameters formulation of the model suggests a
need to reconsider the notion of “statistical significance” of the estimated parameters. In view
of (15-33), it may be the case that the mean parameter might well be significantly different
from zero while the corresponding standard deviation, A, might be large as well, suggesting
that a large proportion of the population remains statistically close to zero. Consider the( i us
estimate of By, the coefficient on Fem;. The estimate of the mean, B4z,is <0.03864 with an
.  estimated standard error of 0.02467. This implies a confidence interval for this parameter of
Suh S 710.03864 + 1.96(0.02467) = [*0.086993,0.009713] But, this is only the location of the center
of the distribution. With an estimate of A, of 0.2831, the random parameters model suggests
: that in the population, 95% of individuals have an effect of Fem; within
A= 720.03864 + 1.96(0.2831) = [0 5935 0.5163). This is still centered near zero;'but has a



different interpretation from the simple confidence interval for 13'. itseif. This analysis suggests
that it might be an interesting exercise to estimate p; rather than just the parameters of the
distribution. We will consider that estimation problem in Section 15.10.

Table 15.6 Estimated Wage Equations (Standard Errors in Parentheses)

Feasible Maximum Maximum Random Parameters Max.
Pooled OLS Two . Likelihood Simulated Simulated Likelihood®”
Variable StepGLS - | . Likelihood® A
Wks .00422 .00096 .00084 .00086 -.00029 .00614
{.00108) {.00059) {.00060) (.00099}) {.00082) {.00042)
South -.05564 -.00825 .00577 .00935 .04941 .20997
(.01253) (.02246) {.03159) {.03106) (.02002) (.01702)
SMSA .15167 -.02840 ~-.04748 -.04913 ~.054886 .01165
{.01207) {.01618) (.01896) {.03710) {.01747) (.02738)
MS . 04845 -.07090 -.04138 -.04142 -.06358% .02524
(.02057) {.01793) (.01899) (.02176) {.01896) {.03190)
Exp .04010 .08748 .10721 .10668 .09291 . 01803
(.00216) (.00225) (.00248) {.002390) (.00216) (.00092)
Exp’ -. 00067 -.00076 -.00051 ~.00050 -.0001% .0000812
(.0000474) (.0000496) (.0000545) {.0000661) (.0000732} {.00002)
Occ -.14001 -.04322 -.02512. -.02437 -.00963 .02565
(.01468) (.01299) {.01378) {.02485) (.01331) {.01019)
Ind ,04679 ,00378 ,01380 .01610 .00207 .02575
{(.01179) {.01373) (.01529) {.03670) {.01357) {.02420)
Union .09263 05835 .03873 .03724 .05749 ,15260
(.01280) (.01350) {.014B1) {.02814) (.01469) (.02022)
Ed ,05670 .10707 .13562 .13952 . 09356 .00409
{.00261} {.00511} (.01267) (.03746) {.00359) {.00160)
Fem -.36779 ~.30938 -.17562 -.11694 -.03864 .28310
(.02510) (.04554) {.11310) {.10784) (.02467) {.00760)
BIk —.16694 ~.21950 ~.26121 —.15184 ~.26864 02930
{.02204) {.05252) (.13747) {.08356) {.03156) {.03841)
Constant 5.25112 4.04144 3.12622 3.08362 3.81680 .26347
(.07129) (.08330) [(.17761) (.48917) (.06905) {.01628)
o, .00000 .31453 .15334 .21164
- {.03070)
o, .34936 .15206 .B3949 .15326 .14354
(.00217) (.00208}
-1523,254 307.873 568,446 668.630

L

“*Based on 500 Halton draws

The next example examines a random parameters model in which the covariance matrix
of the random parameters is allowed to be a free, positive definite matrix. That is

Yi = XilBy + €

B=B+u, E{!l_ilx] =0, Var[n{X] = X.

(15-34)

This is the counterpart to the fixed effects model in Section 11.4. Note that the difference in the
specifications is the random effects assumption, E[u/X] = 0. We continue to use the Cholesky
decomposition of Z in the reparameterized model

Bi=B+ Aw,, E[wiX] =0, Var[wiX] = L
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| Example 15.13 Least Simulated Sum of Squares Estimates of a Production
Function Model

In Example 11#19 we examined Munell's production model for gross state product, : @

In gspe = 1 + Bz In pcie + B In hWJ’ft"' B4 In watery ) p
+ BS In Uff!.u!'i' Be In emp,t+ BTUnemp‘r+ E;;, ,__1 ‘ 48| f= 1’ . 17, l'.’-ln'_-l i

The panel consists of state;_level data for 17 years. The model in Example 22/29 (and ' .
Munnell's) provide no means for parameter heterogeneity save for the constant term. We | ©*""Y
have reestimated the model using the Hildreth and Houck approach. The OLS, Feasible GLS | yiumih
and maximum lkelihood estimates are given in Table 15.7. The chl-squared statistic for
testing the null hypothesis of parameter homogeneity is 25,556.28, with 7(47) =329 degrees
of freedom. The critical value from the table is 372.299, so the hypothesis would be rejected.
Unlike the other cases we have examined in this chapter, the FGLS estimates are very
different from OLS in these estimates, in spite of the fact that both estimators are consistent
and the sample is fairly large. The underlying standard deviations are computed using G as
the covariance matrix. [For these data, subtracting the second matrix rendered G not p05|t|ve
definite so; in the table, the standard deviations are based on the estimates using only the
first term in (11-86).] The increase in the standard errors is striking. This suggests that there
is considerable variation in the parameters across states. We have used (11-87) to compute
the estimates of the state specific coefficients.

The rightmost columns of Table 15.7 present the maximum simulated likelihood
estimates of the random parameters production function model. They somewhat resemble
the OLS estimates, more so than the FGLS estimates, which are computed by an entirely
different method, The values in parentheses under the parameter estimates are the estimates
of the standard deviations of the distribution of u;, the square roots of the diagonal elements
of Z. These are obtained by computing the square roots of the diagonal elements of AA". The
estimate of A is shown here. ' '

0.04114 - 0| 0 0 0 0 0
0.00715 ~ 0,07266 0| o| 0 0 0
_ -0.02446 012392 007247 0 | 0
A= 000972 -0.00644 0.31916 007614 0 0 0|
~0.08928 0.02143 —0.25105 0.07583  0/04053 0l 0
0.03842 -0.06321 —0.03992 -0.06693 -0.05490 000857 0|

MG.OOBSS -0.00257 -0.02478 0.01594  0.00102 -0.00185 0;0018

An estimate of the correiatlon matrix for the parameters might also be informative. This is

correlations by dwldlng by the products of the respectlve standard deviations (the values in
parentheses in Table 16.7). The resultis

1
0.0979 1
~0.1680  0.83040 1

R=02007 - 0.00980  0.3983 1

© ~0.3180 0.04481 -0.3266 -0.8659 1
0.3176 -0.48890 --0.6622 -0.3277 -0.06073 1

—0.2700 -0.10940 --0.4253 -0.7097 0.94120 -0.08228 1.
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TABLE 15.7 Estimated Random Coefficients Production Models

Meaximum Simulated

Least Squares Feasible GLS Likelillood
: Standard Standard  Pepn. Sid. Std.
Variable  Estimate Error”  Estimate Error Deviation Fostimarte Error
Constant [.9260) 0.05250 1.6533 - 1.08331 70782 [.9463 (1L.O3569
Pc (0.0411)
In po 0.3120 0.01109 0.09409 (05152 0,3036 0.2v62 (L0O0OKS82
10.0730)
i hwey 0.0588%  0.0151 0.1050 01736 11112 0.09515 0.01157
' (0.146)
In water 01186 0.01236 0.07672 006742 0.4340 0.2434 0.01929
: (0.343)
I waril 000856 (L01235 001489 (1L9R8H 0.6322 ~0.1855 002713
. (0.281) ‘
in emp (3.5497 (L1554 {3,910 (L1044 0.6595 (0.6795 002274
(0.121)
unemp 000727  0.001384 0004706 0002067 0.01266 002318  0.002712
(0.0308)
e 0.08542 02129 (0.02748
§33.1372 1567.233

In L,

( IQ':‘”'
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5.8 HIERARCHICAL LINEAR MODELS

Example 11.20 examined an application of a “two;_level model,” or “hierarchical model” for
mortgage rates,

RM,; = By, + Ba,; Ju + various terms relating to the mortgate + &,

The second Ievel equation is

i = a1 + a;GFA, + a3 one-year treasury rate + g, ten-year treasure rate
+ as credit risk + ag prepayment risk +'.0, + w5,

Recent research in many fields has extended the idea of hierarchical modeling to the full set of
parameters in the model. (Dependmg on the field studied, the reader may find these labeled
“hierarchical models,” mlxed models, ‘random parameters models,” or “random effects models.”
The last of these generahzes our notion of random effects.) A two level formulation of the model
in (11-82) might appear as

Y=, Z‘_i:r.ﬁ_i + &y,
=g+ Az, tu.

(A three, level model is shown in Example 15.14, following.) This model retains the earlier
stochastic specification but adds the measurement equation to the generation of the random
parameters. In principle, this is actually only a minor extension of the model used thus far. The
mode] of the previous section now becomes

Y =Xu'( B+ Az + Aw)y+ g,

which is essentially the same as our earlier model in (15-28)-(15-31) with the addition of product
(interaction) terms of the form &uxzy, which suggests how it might be estimated (simply by
adding the interaction terms to the previous formulation.) In the template in (15-26), the term
0,W; becomes x;'(Az; + Aw;), | 0.= (B, '8' A,0:) where &' is a row vector composed of the rows of
A, A’ is a row vector composed of the rows of A. The scalar term w;, in the derivatives is replaced
by a column vector of terms contained in (x,,®z,,x,,®w,,)

The hierarchical model can be extended in several useful directions. Recent analyses
have expanded the model to accommodate multilevel stratification in data sets such as those we
considered in the treatment of nested random effects in Section 14.9.6.b. A three, level model
would appear as in the next example, that relates to home sales,

Yir = Xyt By + €ir, 1 = site, j = neighborhood, i = community,
By =B+ Az, + ny (15-35).
B, =g+ SDr, + i

Example 15.14 Hierarchical Linear Model of Home Prices
Beron, Murdoch, and Thayer (1999) used a hedonic pricing model to analyze the sale prices
of 76,343 homes in four California counties: Los Angeles, San Bernardino, Riverside, and
Orange. The data set is stratified into 2,185 census tracts and 131 school districts. Home
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; prices are modeled using a three-level random parameters pricing model. (We will change @
L their notation somewhat to make roles of the components of the model more obvious.) Let
site denote the specific location (sale), nef denote the neighborhood, and com denote the

community, the highes"t Ie_-vei of aggregation. The pricing equation is _,f'_}'{'_, o het ¥
: ; 3 'K i | Wi na TR
- § i 1 P ot
In PrCEsue,nel.com = Mrgjcom T Z J’!’,_’,‘e,-'mm){k.site,nel,com + Esite, net,com: i Dkl ~y
= S bl O 3

L
k 0.k 1N K_ —
el com = Peom + E ,Gggm?k,nef.com + 1 et coms k= 0,... '_K'
=1

M
L e pO N ylke o U L =1, L
m=1 ]
There are K level,one variables, X, and a constant in the main equation, L leveltwo variables,
z, and a constant in the second-level equations, and M level;three variables, ap, and a
constant in the third-level equations. The variables in the model are as follows. The Ieveji one
variables define the hedonic pricing model, ’

X = house size, number of bathrooms, lot size, presence of central heating,
presence of air conditioning, presence of a pool, quality of the view,
age of the house, distance to the nearest beach.

Levels two and three are measured at the neighborhood and community levels

,2 = percentage of the neighborhood below the poverty line,
' racial makeup of the neighborhood,
percentage of residents over 65,
average time to travel to work

and =

e = FBl crime index, average achievernent test score in school district,
air quality measure, visibility index.

The model is estimated by maximum simulated likelihood.

The hi/g{,qrdﬁg;i!ﬁ;r model analyzed in this section is also called a “mixed model”
and “random parameters” model. Although the three terms are usually used inter- (15-357)
changeably, each highlights a different aspect of the structural model.in ( . The
“hierarchical” aspect of the model refers to the layering of coefficients that is built into /5
stratified and panel data structures, such as in Example 83 The random parameters */5)
feature is a signature feature of the model that relates to the modeling of heterogeneity (/¢ - 3 5—)
across units in the sample. Note that the model in {9-63701 Beron et al.’s application '
could be formulated without the random terms in the lower level equations. This would

then provide a convenient way to introduce interactions of variables in the linear regres- ;
sion model. The addition of the random component is motivated on precisely the same o8 Ong
basis that ; appears in the familiar random effects model in Section 9-5@_. ' — @
(/r,g@ eﬁ%ﬂ:ﬂleﬂlﬂ&-ﬂlﬁPea A5 C ol i he peblro-e0r e (P Itis | :"|s 1 ‘.‘: o (
= important to bear in mind, in all these structures, strict mean independence is maintained | = VT
between y;, and all other variables in the model. In most treatments, we go yetastep | /7770 [
further and assume a particular distribution for u;, typically joint normal. Finally, the

P “ rt
“mixed” model aspect of the spw.me unconditional estimated _M,,L,O 16 & \v:\ \j"h
Jhe unde rl‘a'mg integ caliwn Hroot- 0{--“-{, underl in

h
fCmoves -"L& \\e-\-fﬁaaenc‘i"'a) -ro 3:?;}13-:?":‘::%

examp\g t (15 - I3). Mivdure are

=84 ar | o
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15.9 NONLINEAR RANDOM PARAMETER MODELS

Gppucahions NAW (e e prg nsT g le

Most of the preceding has used the linear regression model to 1llustrate  the procedures ;and
demonstratethe- apphcations However, the template used to build the model has no intrinsic
features that limit it to the linear regression. The initial description of the model and the first

—example were applied to a nonlinear model, the Poisson regression. We will examine a random

parameters binary choice model in the next section as well.. This random parameters model has
been used in a wide variety of settings. One of the most common is the multinomial choice
models that we will discuss in Chapter 17.

The s:mulatlon:,based random parameters estimator/model is extremely flexible. [See
Train and McFadden (2000) for discussion.] The simulation method.in addition to extending the
reach of a wide variety of model classes, also allows great flexibility in terms of the model] itself.
For example, constraining a parameter to have only one sign is a perennial issue. Use of a
lognormal specification of the parameter, ;= exp(B + ow;) provides one method of restricting a
random parameter to be consistent with a theoretical restriction, Researchers often find that the
lognormal distrbution produces unrealistically large values of the parameter. A model with
parameters that vary in a restricted range that has found use is the random variable with
symmetric about zero triangular distribution,

ST ]
Sow) = 1[4 <lw < 0@ wia K 1[0]< wi< al(a - w)/d.
A draw from this distribution with @ = 1 can be computed as _ S
¥ ,-1!"

w=1[u/<.5][2%)"* - 1] +;l[§4'.% SIL— )™,

where u is the U[O 1] draw. Then, the parameter restricted to the range B = X is obtained as p +

Aw, A further refinement to restrict the sign of the random coefficient is to force A = B, so that B

ranges from 0 to 2A. [Discussion of this sort of model construction is given in Train and Sonnier
(2003) and Train (2009).] There are a large variety of methods for simulation that allow the
model to be extended beyond the linear model and beyond the simple normal distribution for the
random parameters.

Random parameters models have been implemented in several contemporary computer
pacakges. The PROC MIXED package of routines in SAS uses a kind of generalized least
squares for linear, Poisson,and binary choice models. The GLAMM program [Rabe-Hesketh,
Skrondal, and Pickles (2005)] written for Stata uses quadrature methods for several models
mcludmg linear, Poisson. and binary choice. ©~ The RPM and RPL procedures in
LIMDEP/NLOGIT use$ the methods described here for linear, binary choice, censored data,
multinomial; -and ordered choice, and several others. Finally, the MLWin package
(http:'//émm.bristol.ac.uk/MLwiN/) is a large implementation of some of the models discussed
here. MLWin uses MCMC methods with noninformative priors to carry out maximum simulated
likelihood estimation.
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15.10 INDIVIDUAL PARAMETER ESTIMATES

In our analysis of the various random parameters specifications, we have focused on estimation of
the population parameters, 3, A and A in the model,

Bi=B+A.zi+A-_Wis - %

]“ LM 5‘-5;:_ &:g., in Example 15.13, where we estlmated the parameters of the normal distribution of Bremi | L

Ata few pomts it is noted that it might be vseful to estimate the individual specific B, We dida . .
similar exercise in analyzing the Hildreth/Houck/Swamy model in Section 1] 1 1.1. The model is Aud €8

, -. ,B,"‘S. | ;.I-_1:-.; i
..[35' ‘,.@Jf.-»‘{{, _ | Che

where no restriction is placed on the correlation between wand X;. In this “fixed effects” case,
we obtained a feasible GLS estimator for the population mean, B,

=3 Wh,

where W, =32, [B+520x%)° '} [£+8208%)°
and | bi = (X/X)'Xy.

For each group, we then proposed an estimator ofJE[|/3§| information in hand about group /] as

Est E[BlysX] = B+Q, b, ~B)
where (/5-3 6)

6 -{[rox)] ] 1

The estimator of _E[]_Si_lyr,-,_X_,-] is equal to the estimator of the population mean plus a proportion of
the difference between B and b, (The matrix Q. is between 0 and 1. If there were a single

column in X;, then g, would equal (1/%)/{(1/9)+[1 /(S /__)IK,;;,)]} )

We can obtain an analogous result for the mixed models we have examined in this
chapter. From the initial model assumption, we have

f(y::!xm ue) M

where

Bi=pB+ Az + Aw,; (15-37)

and § is any other parameters in the model, such as o, in the linear regression model. For a panel,
since we are conditioning on Bl, that is, on Wi, the T observations are independent, and it follows
that

Syya -!-:-:.)’_r'rf[?@'a_ﬁfse) =ﬂ_}’_f|.3..(:;ﬂ;,ﬂ) = Hr_j_(y;:le:;ﬁf;ﬁ). (15-38)

This is the contribution of group i to the likelihood function (not its log) for the sample, given B,
it S, e, note that the log of this term is what appears in the simulated log likelihood function in
(15-3 1) for the normal linear model and in (15-16) for the Poisson model. The marginal density
for (3 is induced by the density of W, in (15-37). For example, if w; is joint normally distributed,
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then AB) = N[ﬁ+Az,,AA'] As we noted earlier in Section 15.9, some other distribution might
apply. Write this gerrerlcally as the marginal density of B;, AB; IZI,Q), where £ is the parameters of

the underlying distribution of 3, for example (B,A,A) in (15-37). Then the joint distribution of i

and |3, is

RVABI 20,0 = S0 APl
) :

We will now use Bayes Theorem to obtam j(B,Iy,, azzl,B Q),

1( Iy

SO 1X8,0/ 2.9
S, X02100)

_ L0 IX B0/ 12)\Q)

B £ (108, 1 X298,

_ £, “,,B,,B)f(B L,,, |
b £ 1X1BAOSB |2, Q0B

S, 13,-X.2,8.9) =

The denominator of this ratio is the integral of the term that appears in the log, likelihood
conditional on B;, We will return momentarily to computation of the integral. We now have the
conditional distribution of _[,’:_,]y,,w f J,_Q,IQ The conditional expectation of _B,ly,,_;_(,,z,,,l}) Q is

Sl =y s L v

[ B/ 1X8.0/B |2,
[ SG1XBI0) (B 1z 4B,

[p] y»xfazr:eﬂ] ==

Neither of these integrals will exist in closed form. However, using the methods already
developed in this chapter, we can compute them by simulation. The simulation estimator will be

1/ R)ZE B IF .f(y,, IX,,-ﬁwue)
1/ Rlzf_lﬂi.f O %08 (15-39)
- ;;1 Q_,-,E,-,
where (), is defined in (15-20)(1 5:21) and

EstlE[B . ,,m,,'sa%gz]

This can be computed after the estimation of the population parameters. (It may be more efficient
to do this computation during the iterations, since everything needed to do the calculation will be
in place and available while the iterations are proceeding.) For example, for the random
parameters linear model, we will use

(.J_}_n _.-)-5_;! (ﬁ +-'A—Z_.f' +f«'A‘-‘v,"’))2

~2
2G;

1
it xfr’ ir 3 €Xp| — . (15-40)
Sl |3 5o p

(15 -4H6



We can also estimate the conditional variance of B; by estimating first, one element at a time,
E[B, f |y,, X2 ‘,,B Q] then, again one element at a time

{EszEm,,,lv,,x,, 0.91} -

-.--"

EstVar(B,, 1Y, X:»2,,8; Ql= (15-41)

Ll {Eer[ﬁ,,Jy,, ,,;,,Q,“ }2_

With the estimates of the conditional mean and conditional variance in hand, we can then

compute the limits of an interval that resembles a confidence interval as the mean plus and minus

two-estimated standard deviations. This will construct an interval that contains at least 95%e.of
the conditional distribution of §;.
Some aspects worth noting about this computatlon are as follows:

. The interval suggested-above is a classical (sampling theory,, based) counterpart to the highest
posterlor density interval that would be computed for Bifora hierarchical Bayesian estimator.

» The conditional distribution from which B, is drawn mlght not be symmetric or normal, so a
symmetric interval of the mean plus and minus two standard deviations may pick up more or
less than 95%.of the actual distribution. This is likely to be a small effect. In any event, in any
population, whether symmetric or not, the mean plus and minus two standard deviations will
typically encompass at least 95%.0f the mass of the distribution.

* It has been suggested that this classical interval is too narrow because it does not account for the
sampling variability of the parameter estimators used to construct it. But, the suggested
compuiation should be viewed as,“poini” estimate of the interval, not an interval estimate as
such. Accounting for the sampling variability of the estimators might well suggest that the
endpoints of the interval should be somewhat farther apart. The Bayes1an interval that produces
the same estimation would be narrower because the estimator is posterior to, that is, applies
only to the sample data.

* Perhaps surprisingly so, even if the analysis departs from normal marginal dtstrlbutlons B, the
sample distributiorr of the » estimated conditional means is necessarily normal. Kernel
estimators based on the n estimators, for example, can have variety of shapes.

* A common misperception found in the Bayesian and classical literatures alike is that the
preceding produces an estimator of B,. In fact, it is an estimator of conditional mean of the
distribution from which B, is an observation. By construction, for example, every individual
with the same (v Xoz) has the same prediction even though the w; and any other stochastic
elements of the model such as g;, will differ across individuals.
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Example 15.15 Individual State Estimates of Private Capital Coefficient

Example 15.13 presents feasible GLS and maximum simulated likelihood estimates of
Munnell's state production model. We have computed the estimates of E[8;| y.X; ] for the 48
states in the sample using (15-36) for the fixed effects estimates and (15-39) for the random
effects estimates. Figures 15.6 and 15.7 examine the estimated coefficients for private
capital. Figure 15.6 displays kemel density estimates for the population distributions based

“on the fixed and random effects estimates computed using (15-36} and (15-39). The much

narrower distribution correspends to.the random effects estimates. The substantial overall
difference of the distributions is presumably due in large part to the difference between the
fixed effects and random effects assumptions. One might suspect on this baais that the
random effects assumption is restrictive. Figure 15.7 shows the results based o@ random
parameters model, using {(15-39) and {15-41) to compute the estimates. As espected, the
range of variation of the estimators in the conditional distributions is much smaller than the
averall range of variation shown in Figure 15.6.
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Figure 15.7 Estimates of Conditional Distributions for Private Capital Coefficient.
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Example 15.16 Mixed Linear Model for Wages

Koop and Tobias (2004) analyzed,a panel of 17,919 observations in their study of the relationship
between wages and education, ability and family characteristics. (See the end of chapter
applications in Chapters 3 and 5 and Appendix Table F3.2 for details on the location of the data.)

The variables used in the analysis are

Person id, - _ .

_Education, (time varying), -
Log of hourly wage;” - (time varying},

Potential experience” (time varying),

Time trend s {time varying},

Abllity - {time invariant},.

Mother’s education, {time invariant),,

Father's.education,~  (time invariant), :

Dummy variable for residence in a broken home/(time invariant),/
Number of siblings,— (time invariant),

B
This is an unbalanced panel of 2,178 individuals; Figure 15.8 shows a frequency count of the
numbers of observations in the sample. We will estimate the following hierarchical wage model

In Wagey = Bs; + Bp; Education, + Bz Experience; + s Expenence,,

+Bs Broken Home; + Bs Siblings; + & ,
B = gy 4 + a1 Ability, + a, 3 Mother's education; + a, 4 Father's education; + uy ,
ﬁg,,:__ =0yt O Abllity; + a» 3 Mother's education; + a; 4 Father's education; + u s

Estimates are computed using the maximum simulated likelihood method described in Sections
15.8.3 and 15.7. Estimates of the model parameters appear in Table 15.8. The four models in
Table 15.8 are the pooled OLS estimates, the random effects model, and the random parameters
models first assuming that the random parameters are uncorrelated (I = 0)"jthen allowing free
correlation {I'»; = nonzero) . The differences between the conventional and the robust standard
errors in the pooled modei are fairly large, which suggests the presence of latent common effects.
The formal estimates of the random effects model confirm this. There are only minor differences
between the FGLS and the ML estimates of the random effects model. But, the hypothesis of the
pooled model is soundly rejected by the likelihcod ratio test. The LM statistic [Section 11.5.4 and
{11-39)] is 11,709.7, which is far larger than the critical value of 3.84. So, the hypothesis of the
pooled model is firmly rejected. The likelihood ratio statistic based on the MLEs is
2(10,840.18-(~885.674)) = 23,451.71, which produces the same conclusmn An alternative
approach would be to test the hypothesis that o,_, = 0 using a Wald statlstlc——the standard { test.
The software used for this exercise reparameterizes the log;likelihood in terms of 8; = oj¥/c\? and
8, = 1/c:2. One approach, based on the defta method (see Section 4.4.4), would be to estimate
oy with the MLE of 8,/8,. The asymptotic variance of this estimator would be estimated using
Theorem 4.5. Alternatively, we might note that 0.2 must be positive in this model, so it is sufficient
simply to test the hypothesis that 8; = 0. Qur MLE of 8, is 0.999206 and the' estimated asymptotic
standard error is 0.03934. Following this logic, then, the test statistic is 0.9992067/0.03934 =
25.397. This is far larger than the critical value of 1.98, so, once again, the hypothesm is rejected.
We do note a problem with the LR and Wald tests. The hypothesns that cr,, = 0 produces a
nonstandard test under the null hypothesis, because ou =0is on the boundary of the parameter
space. Our standard theory for likelihood ratio testing (see Chapter 14) requires the restricted
parameters to be in the interior of the parameter space, not on the edge. The distribution of the
test statistic under the null hypothesis is not the familiar chi squared. This issue is confronted in
Breusch and Pagan (1980) and Godfrey (1988) and analyzed at (great) length by Andrews (1598,
1898, 2000, 2001, 2002) and Andrews and Ploberger (1994, 1995). The simple expedient in this
complex situation is to use the LM statistic, which remains consistent with the earlier conclusion.
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