The third and fourth models in Table 15.8 present the mixed model estimates. The first of
them imposes the restriction that I'y; = 0, or that the two random parameters are uncorrelated.
The second mixed model allows Am to be a free parameter. The implied estimators for o, Ouz
and Uu21 are the elements of AN or [

= A11 1

Uu 2= = Anfa,

Uuz = A212 + Az’ _
These estimates are shown separately in the. table. Note that in all three random parameters
models (including the random effects model which is equivalent to the mixed mode! with all a;,, =
0 save for ay 1 and az 1 as well as Ay = Ay = 0.0), the estimate of g, is relatively unchanged. The
three models decompose the variation across groups in the parameters differéntly, but the overall
variation of the dependent variable is largely the same.

The interesting coefficient in the ‘model is B;;. Reading across the row for Educ, one
might suspect that the random parameters model has washed out the impact of education, since
the “coefficient” declines from 0.04072 to 0.007607. However, in the mixed models, the “mean”
parameter 024, is not the coefficient of interest. The coefficient on education in the model is
Boy = @24 +a2, Ability+; s Mother's. educat:on*-ﬁu Father's educatfonwz, A rough indication of
the magnitude of this result can be seen by inserting the sample means for these variables,
0.062374, 11.4719, and 11.7092, respectively. With these values, the mean value for the
education coefficient is approximately 0.0327. This is comparable, though somewhat smaller,
than the estimates for the pooled and random effects model. Of course, variation in this

parameter across the sample individuals was the objective of this specification. Figure {57 plots

a kerne! density estimate for the estimated conditional means for the 2,178 sample individuals.
The figure shows the very wide range of variation in the sample estimates.
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TABLE $aa’  Estimated Random Parameter Models ,
, Random Effects FGLS Random Random
Pooled OLS - 1 [Random Effects MLE] Parameters Pagrameters
Sed Err. |, Estimate Std.Err. Estimate Estimate
Variable | Estimate {(Robust) IMLE] [MLE] (Std. Err) (Std. Err)
Exp 0.04157 0.001819 0.04698 0.001468 0.04758 0.04802
(0.002242) [0.04715] [0.001481] {0.001108) | (0.001118)
Exp? —0.00144 0.0001002 —0.00172 0.0000805 —0.001750 —0.001761
(0.000126) | [-0.00172] [0.000081] (0.000063) (0.0000631)
Broken —0.02781 0.005296 —0.03185 0.01089 -0.01236 ~0,01980
(0.01074) [-0.03224] [0.01172] (0.003669) (0.003534)
Sibs —0.00120 0.0009143 —0.002999 0.001925 (0.0000496 ~0,001953
(0.001975) | [-0.00310] [0.002071} (0.000662) (0.0006599)
Constant 0.09728 0.01589 0.03281 0.02438 03277 0.3935
‘ {0.02783) [0.03306] [0.02566] (0.03803) {0.03778)
Ability 0.04232 0.1107
(6.01064) (0.01077)
MEd —0.01393 —0.02887
(0.0040) | (0.003990)
FEd —0.007548 0.002657
(0.003252) {0.003299)
Ty 0.172278 0.004187 0.5026
[0.18767] (0.001320)
Educ 0.03854 | 0.001040 0.04072 0.001758 0.01253 0.007607
(0.002013) [0.04061] [0.001853] (0.003015) {0.002973)
Ability —{.0002560 —0.005316
(0.000869) (0.0008751)
MEd 0.001054 0.002142
(0.000321) (0.0003165)
Fed 0.0007754 0.00006752
(0.000255) (0.00001354)
Ty 0.01622 0.03365
(0.000114)
O 12 (0.0000 —-0,01560
0.0000 —0.92259
O, 02542736 0.187017 0.192741 0.1919182
[0.187742]
A 0.004187 0.5026
{0.001320}) (0.008775)
0.0000 —0.03104
An (D) {0.0001114)
0.01622 0.01298
Ax (0.000113) (0.0006841)
InL —885.6740 [10480.18] 3550.594 3587.611
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15.11 Mixed Models and Latent Class Models

Sections 15. 7-1 5-10 examined different approaches to modeling parameter heterogenelty
The fixed effects approach begun in Section 11.4 is extended to include the full set of regression

_coefficients in Section 11.11,1. where

y'=x.."§f+..8i> . _ - -
=-L3+P_i. S .

and no restriction is placed on E[u|X/]. Estimation produces a feasible GLS estimate of .
Estimation of B begins with separate least squares estimation with each group, i - because of the
correlation between u and x;, the pooled estimator is not consistent. The efﬁc:ent estimator of B_
is then a mixture of the blb We also examined an estimator of B;, using the optimal predlctor
from the conditional dlstrlbutlons (15-39). The crucial assumption underlying the analysis is the
possible correlation between X; and u;. We also considered two modifications of this random
coefficients model. First, a restriction of the model in which some coefficients are nonrandom
provides a useful simplification. The familiar fixed effects model of Section 11.4 is such a case,
in which only the constant term varies across individuals. Second, we considered a hierarchical
form of the model

=Rt Azt (1542)

LAl

This approach is applied to an analysis of mortgage rates in Example 11.20, [Pliimper and
Troeger’s (2007) FEVD estimator examined in Section 11.4.5 is essentially this model as well.]

A second approach to random parameters modeling builds from the crucial assumption
added to (15-42) that u; and X; are uncorrelated. The general model is defined in terms of the
conditional density of the random variable, ﬂy,-,[;_(_,:,,ﬁé@) and the marginal density of the random
coefficients, f{B/|z,Q) in which € is the separate parameters of this distribution. This leads to the
mixed models examiied in this chapter. The random effects model that we examined in Section
11.5 and several other points is a special case in which only the constant term is random (like the
fixed effects mode]) We also considered the specific case in which #; is distributed normally
with variance cs,, s

A third approach to modeling heterogeneity in parametric models is to use a discrete
distribution, either as an approx1mat10n to an underlying continuous distribution, or as the model
of the data generating process in its own right. (See Section 14.10.) This model adds to the
preceding a r}pparametric specification of the variation inB;

Prob(B, =B l2) =5,/ = 1o
A somewhat richer, semiparametric form that mimics (15-42) is

Q), j= 1T,

R i

We continue to assume that the process generating variation in B, across individuals is
independent of the process that produces X, ;; that is, in a broad sense, we retain the random
effects approach. This latent class model is gaining popularity in the current literature. In the last
example of this chapter, we will examine a comparison of mixed and finite mixture models for a
nonlinear model,

Prob(; = B [z) = =, (z

Ie-53)
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Example 15.17 Maximum Simulated Likelihood Estimation of a Binary Choice Model
Bertschek and Lechner (1998) analyzed the product innovations of a sample of German

manufacturing firms. They used a probit model (Sections 17. 2-»17 4) to study firm

innovations. The model is for Probfy; = 11xy,B] where
yp = 1 if firmi realized a product innovation in year t and 0 if not.
The independent variables in the model are
X1 = constant,*
X2 = log of sales,
X3 = relative size = ratio of employment in business unit to employment in the mdustry,
XM = ratio of industry imports to (industry sales + imports},-
X5 = ratio of industry foreign direct investment to (industry sales + imports),
Xye = productivity = ratio of industry value added to industry employment,.
X7 = dummy variable indicating firm is in the raw materials sector,-*
Xys = dummy variable indicating firm is in the investment goods sector..
The sample consists of 1,270 German firms observed for five years, 1984-1 988. (See
Appendix Table F15.1. )The density that enters the log-likelihood is

Ry l’,‘ft.f.tﬁf) = Problye X8 1= ®{(2ye ~ 1)%¢Bd: ¥ =0,

where
Bi=B+vi,vi~ N9 2]

To be consistent with Bertschek and Lechner (199 J we did not fit any firm specific, ' time—
invariant components in the main equation for 13, Table 15.9 presents the estimated "
coeflicients for the basic probit model in the first column. These are the values reported in

© the 1998 study. The estimates of the means, 8, are shown in the second column. There

. appear {o be large differences in the parameter estimates, although this can be misleading as

/ there is large variation across the firms in the posterior estimates. The third column presents
the square roots of the implied diagonal elements of £ computed as the diagonal elements of
CC". These estimated standard deviations are for the underlying distribution of the parameter
in the model—they are not estimates of the standard deviation of the sampling distribution of
the est[mator That is shown for the mean parameter in the second column. The fourth
column presents the sample means and standard deviations of the 1,270 estimated
conditional estimates of the coefficients. '

The latent class formulation developed in Sectlon 14.10 provides an alternative approach
for modeling latent parameter heterogenelty %" To illustrate the specification, we will
reestimate the random parameters innovation modet using a three-class latent class model,
Estimates of the model parameters are presented in Table 15.10. The estimated conditional
mean shown, which is comparable to the empirical means in the rightmost column in Table
17.4 for the random parameters model, are the sample average and standard deviation of the
1,270 firm-specific posterior mean parameter vectors. They are computed using

rﬁ,. :Ef,.=lf§y[3__ , where -ﬁ:y is the conditional estimator of the class probabilities in (14-102).

These estimates differ considerably from the probit model, but they are quite similar to the
empirical means in Table 15.8. In each case, a confidence interval around the posterior mean
contains the one-class; pooled probit estimator. Finally, the (identical) prior and average of
the sample posterior class probabilities are shown at the bottom of the table. The much larger
empirical standard deviations reflect that the posterior estimates are based on aggregating
the sample data and involve, as well, complicated functions of all the model parameters. The
estimated numbers of class members are computed by assigning to each firm the predicted
class associated with the highest posterior class probability.
=!-
o Apparently they did not use the second derivatives to compute the standard errorsf—we could not
rephcate these. Those shown in the Table 15.9 are our results.
#¥'See Greene (2001) for a survey. For two examples, Nagin and Land (1993) employed the model to study
age transitions through stages of criminal careers and Wang et al. (1998) and Wedel et al. (1993)-and”
used the Poisson regression model to study counts of patents.
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| 5.7
TABLE &8t Estimated Random Paramisters Model - A
Probit RP Mean RP Std, Devr. Empirical istn.
Constant -1.96 —-3.91 2.70 —3.27
(0.23) (0.20) (0.57)
- ~InSales 0.18 (.36 0.28 0.32
(0.022) {(0.019) - (0.15)
Relative Size 1.07 6,01 . 5.99 3.33
(0.14) (0.22) (2.25)
Import 113 1.51 (.84 2.01
(0.15) {0.13) (0.58)
FDI 2.85 3.81 6.51 3.76
(0.40) (0.33) (1.69)
Productivity ~2.34 ~5,10 13.03 ~8.15
(0.72) (0.73) (8.29)
Raw Materials —(328 —{.31 [.65 —(0.18
(0.08]) (0.075) (.57
Investment 0.19 0.27 1.42 (.27
{(0.039) (0.032) {(1.38)
InL ~4114.05 ~2495.654
L2 =) e o e
STABLE 85  Estimated Latent Class Modat BT R ey Lot S
' Class 1 Class 2 Class 3 Posterior
Constant ~2.32 =271 -8.97 —3.38
(0.59) {0.69) (2.20) {(2.14)
In Sales .32 0.23 0.57 0.34
(0.061) (0.072) (0.18) (0.09)
Relative Size 4.38 0.72 1.42 2.58
(0.89) {0.37) (0.76) (1.30)
Import 0.94 2.26 312 1.81
(0.37) {0.53) (1.38)- (0.74)
FI>1 2.20 2.81 837 3.63
(1.16) (1.11) (1.93) (1.98)
Productivity ~5.86 -1.70 A =5.48
{270 {4.69) (6.76) {1.78)
Raw Malterials ~0.11 -(.60 0.86 —(.08
(0.24) (0.42) (0.70) (0.37)
Investment 013 0.41 0.47 .29
(0.11) (0.12) {0.26) (0.13)
In L —3503.55 :
Ciass Prob (Prior) (.469 0.331 (1.200
(0.0332) (0.0333) (0.0246)
Class Prob (Posterior) 0.469 {(1.331 0.200
- ((0L394) (0.289) (0.325)
Pred. Couat 649 366 255
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a7 SUMMARY AND CONCLUSIONS

This chapter has outlined several applications of simulation, assisted estimation and inference.
The essential ingredient in any of these applications is a random number generator\We examined
the most common method of generating what appear to be samples of random draws from a
‘.population'—in fact, they are deterministic Markov chains that only appear to be random.
Random number generators are -used directly to obtain draws from the standard uniform
distribution. The inverse probability transformation is then used to transform these to draws from
other distributions. We examined several major applications involving random sampling:

* Random sampling, in the form of bootstrapping, allows us to infer the characteristics of the
sampling distribution of an estimator, in particular its asymptotic variance. We used this result to
examine the sampling variance of the median in random sampling from a nonnormal population.
Bootstrapping is also a useful, robust method of constructing confidence intervals for parameters.

* Monte Carlo studies are used to examine the behavior of statistics when the precise sampling
distribution of the statistic cannot be derived. We examined the behavior of a certain test statistic
and of the maximum likelihood estimator in a ﬁxed effects model.

* Many integrals that do not have closed forms can be transformed into expectations of random
variables that can be sampled with a random number generator. This produces the technique of
Monte Carlo integration. The technique of maximum simulated likelihood estimation allows the
researcher to formulate likelihood functions (and other criteria such as moment equations) that
involve expectations that can be integrated out of the function using Monte Carlo techniques. We
used the method to fit random parameters models.

The techniques suggested here open up a vast range of applications of Bayesian statistics and
econometrics in which the characteristics of a posterior distribution are deduced from random
samples from the distribution, rather than brute force derivation of the analytic form. Bayesian
methods based on this principle are discussed in the next chapter.
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Key Terms and Concepts

s Bootstrapping « Cholesky factorization ~Fundamental probability transformation — ; .
* GHK simulator + Halton sequence « Importance function [ o T S 2
+ Incidéntal parametersproblem - Markov chain + Maximum:simulated likelihood |
* Monte Carlo.integration + Monte Carlo study * Paricid ~ | Py
- »Power of a test + Pseudograndom number generator » Random parameters S =
< Seed [ . Slmuiatmn . +.Size of a test
+ Specificity e Shuifling . -~ . o Discrete uniform distribution
* Gauss-Hermite quadrature = "e Pseudo maximum likelihood estimator
o-Paired bootstrap -~ » Parametric bootstrap ﬂ‘éoup_a_ramctr[c hootstrap
 Block bootstrap » Antithetic draws » Hadamgrii'prﬂd;_lpi .
+ Schur product » Direct product e Kronecker produci ™
; :;-Mixed modei e Hierarchical linear mode!- » Latent class modei..
Exercises

1. The exponential distribution has density f{x) = Bexp(wt?x) How would you obtain a random
sample of observations from an exponential populatlon'?

2. TheWeibull population has survival function S(x) = Ap exp(—(4x)p). How would you obtain a
random sample of observations from a Weibull population? (The survival function equals
one minus the cdf.)

3. Suppose x and y are bivariate normally distributed with zero means, variances equal to one and
correlation equal to p. Show how to use a Gibbs sampler to estimate E[x2exp(y) + yjexp(x)]

4, Derive the first order conditions for nonlinear least squares estimation of the parameters in
(15 2). How would you estimate the asymptotic covariance matrix for your estimator of 8 =

3. G)"
. Application

1. Does the Wald statistic reject the null too often? Construct a Monte Carlo study of the behavior
of the Wald statistic for testing the hypothesis that y equals zero in the model of Section
17.4.1. Recall, theWald statistic is the square of the ¢ ratio on the parameter in question. The
procedure of the test is to reject the null hypothesis if theWald statistic is greater than 3.84,
the critical value from the chi,squared distribution with one degree of freedom. Replicate the
study in Section 17.4.1, that is for all three assumptions about the underlying data.

2. A regression model that describes income as a function of experience is
In Income; = By + B, Experience, + [} Expeziegcq,-z +g.

The model implies that In fncome is largest when 6Inffncome/6Expenence equals zero. The
=« value of Experience at which this occurs is where (3, + 2B5|Experzence = (), or Experience*

(MW= ="_By/Bs. Describe how to use the delta method to obtain a confidence interval for
Experience*. Now, describe how to use bootstrapping for this computation. A model of this
sort using the Cornwell and Rupert data appears in Example 15.6. Using your proposals here,
carry out the computations for that model; using the Cornwell and Rupert data.
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_ Block bootstrap
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Cholesky factorization
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Discrete uniform distribution
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GHK smooth recursive stimulator
Hadarnard product
% Halton sequence
Hierarchical linear model
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Mixed model
Monte Carlo integration
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Period )
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Pseudo-maximum likelihood estimator
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Importance function: delete
Latent class model: delete
Maximum simulated likelihood: In header on p. 15-35
Monte Carlo study: Header on 15-15
Random parameters: Header on 15-36
Simulation: Chapter title p. 15-1

Add to list
Poisson
Delta method
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