APPENDIX A
Matrix Algebra

A.1   Terminology
A matrix is a rectangular array of numbers, denoted
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The typical element is used to denote the matrix. A subscripted element of a matrix is always read as 
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. An example is given in Table A.1. In these data, the rows are identified with years and the columns with particular variables.
Table A.1  Matrix of Macroeconomic Data

	
	Column

	
	
	2

Consumption (billions of dollars)
	3

GNP (billions of dollars)
	4

GNP Deflator
	5

Discount Rate (N.Y Fed., avg.)

	
	1

Year
	
	
	
	

	Row
	
	
	
	
	

	1
	1972
	737.1
	1185.9
	1.0000
	4.50

	2
	1973
	812.0
	1326.4
	1.0575
	6.44

	3
	1974
	808.1
	1434.2
	1.1508
	7.83

	4
	1975
	976.4
	1549.2
	1.2579
	6.25

	5
	1976
	1084.3
	1718.0
	1.3234
	5.50

	6
	1977
	1204.4
	1918.3
	1.4005
	5.46

	7
	1978
	1346.5
	2163.9
	1.5042
	7.46

	8
	1979
	1507.2
	2417.8
	1.6342
	10.28

	9
	1980
	1667.2
	2633.1
	1.7864
	11.77


Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing Office, 1983).

A vector is an ordered set of numbers arranged either in a row or a column. In view of the preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one column. Thus, in Table A.1, the five variables observed for 1972 (including the date) constitute a row vector, whereas the time series of nine values for consumption is a column vector.

A matrix can also be viewed as a set of column vectors or as a set of row vectors.
 The dimensions of a matrix are the numbers of rows and columns it contains. “ A is an 
[image: image3.wmf]nK

´

 matrix” (read “
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 by 
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)” will always mean that A has 
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, then A is a square matrix. Several particular types of square matrices occur frequently in econometrics.
(
A symmetric matrix is one in which 
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.

(
A diagonal matrix is a square matrix whose only nonzero elements appear on the main diagonal, that is, moving from upper left to lower right.

(
A scalar matrix is a diagonal matrix with the same value in all diagonal elements.

(
An identity matrix is a scalar matrix with ones on the diagonal. This matrix is always denoted I. A subscript is sometimes included to indicate its size, or order. For example, 
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 indicates a 
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 identity matrix.

(
A triangular matrix is one that has only zeros either above or below the main diagonal. If the zeros are above the diagonal, the matrix is lower triangular.
A.2   Algebraic Manipulation of Matrices
A.2.1   EQUALITY OF MATRICES
Matrices (or vectors) A and B are equal if and only if they have the same dimensions and each element of A equals the corresponding element of B. That is,
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A.2.2   TRANSPOSITION
The transpose of a matrix A, denoted 
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, is obtained by creating the matrix whose 
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 row is the 
[image: image18.wmf]th

k

 column of the original matrix.
 Thus, if 
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, then each column of A will appear as the corresponding row of B. If A is 
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An equivalent definition of the transpose of a matrix is
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The definition of a symmetric matrix implies that
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It also follows from the definition that for any A,
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Finally, the transpose of a column vector, a, is a row vector:
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A.2.3  VECTORIZATION
In some derivations and analyses, it is occasionally useful to reconfigure a matrix into a vector (rarely the reverse).  The matrix function Vec(A) takes the columns of an n(K matrix and rearranges them in a long nK(1 vector.  Thus, 
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.  A related operation is the half vectorization, which collects the lower triangle of a symmetric matrix in a column vector.  For example, 
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A.2.4   MATRIX ADDITION
The operations of addition and subtraction are extended to matrices by defining
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Matrices cannot be added unless they have the same dimensions, in which case they are said to be conformable for addition. A zero matrix or null matrix is one whose elements are all zero. In the addition of matrices, the zero matrix plays the same role as the scalar 0 in scalar addition; that is,
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It follows from (A-6) that matrix addition is commutative,
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and associative,
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and that
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A.2.5
VECTOR MULTIPLICATION
Matrices are multiplied by using the inner product. The inner product, or dot product, of two vectors, a and b, is a scalar and is written
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Note that the inner product is written as the transpose of vector a times vector b, a row vector times a column vector. In (A-12), each term 
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A.2.6   A NOTATION FOR ROWS AND COLUMNS OF A MATRIX
We need a notation for the 
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 row of a matrix. Throughout this book, an untransposed vector will always be a column vector. However, we will often require a notation for the column vector that is the transpose of a row of a matrix. This has the potential to create some ambiguity, but the following convention based on the subscripts will suffice for our work throughout this text:
(
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 of matrix A. Thus, 
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For example, from the data in Table A.1 it might be convenient to speak of 
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, where 
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 vector containing the five variables measured for the year 1972, that is, the transpose of the 1972 row of the matrix. In our applications, the common association of subscripts “
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” with time periods 
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 will be natural.
A.2.7
MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION
For an 
[image: image64.wmf]nK

´

 matrix A and a 
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 matrix B, the product matrix, 
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 of A and column 
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 of B. Thus, the product matrix C is
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[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in the first must be the same as the number of rows in the second, in which case they are conformable for multiplication.
 Multiplication of matrices is generally not commutative. In some cases, AB may exist, but BA may be undefined or, if it does exist, may have different dimensions. In general, however, even if AB and BA do have the same dimensions, they will not be equal. In view of this, we define premultiplication and postmultiplication of matrices. In the product AB, B is premultiplied by A, whereas A is postmultiplied by B.

Scalar multiplication of a matrix is the operation of multiplying every element of the matrix by a given scalar. For scalar 
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 and matrix A,
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     If two matrices A and B have the same number of rows and columns, then we can compute the direct product (also called the Hadamard product or the Schur product or the entrywise product), which is a new matrix (or vector) whose ij element is the product of the corresponding elements of A and B.  The usual symbol for this operation is “○.”  Thus,
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The product of a matrix and a vector is written
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The number of elements in b must equal the number of columns in A; the result is a vector with number of elements equal to the number of rows in A. For example,
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We can interpret this in two ways. First, it is a compact way of writing the three equations
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Second, by writing the set of equations as
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we see that the right-hand side is a linear combination of the columns of the matrix where the coefficients are the elements of the vector. For the general case,
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In the calculation of a matrix product 
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, each column of C is a linear combination of the columns of A, where the coefficients are the elements in the corresponding column of B. That is,
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Let 
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[image: image83.wmf]th

k

 position. Then 
[image: image84.wmf]k

Ae

 is a linear combination of the columns of A in which the coefficient on every column but the 
[image: image85.wmf]th

k

 is zero, whereas that on the 
[image: image86.wmf]th

k

 is one. The result is

[image: image87.wmf].

kk

=

aAe


(A-19)
Combining this result with (A-17) produces
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In matrix multiplication, the identity matrix is analogous to the scalar 1. For any matrix or vector 
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A conformable matrix of zeros produces the expected result: 
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Some general rules for matrix multiplication are as follows:

	(
Associative law: (AB)C = A(BC).
	(A-21)

	(
Distributive law: A(B + C) = AB + AC.
	(A-22)

	(
Transpose of a product: 
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Transpose of an extended product: 
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A.2.8
SUMS OF VALUES
Denote by i a vector that contains a column of ones. Then,
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If all elements in x are equal to the same constant 
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For any constant 
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 and vector x,
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If 
[image: image100.wmf]1/

an

=

, then we obtain the arithmetic mean,

[image: image101.wmf]1

11

,

n

i

i

xx

nn

=

¢

==

å

ix


(A-28)
from which it follows that
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The sum of squares of the elements in a vector x is
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while the sum of the products of the 
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 elements in vectors x and y is
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By the definition of matrix multiplication,
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is the inner product of the 
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 columns of X. For example, for the data set given in Table A.1, if we define X as the 
[image: image109.wmf]93

´

 matrix containing (year, consumption, GNP), then
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If X is 
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, then [again using (A-14)]
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This form shows that the 
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 matrices, each formed from a single row (year) of X. For the example given earlier, this sum is of nine 
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 matrices, each formed from one row (year) of the original data matrix.
A.2.9
A USEFUL IDEMPOTENT MATRIX
A fundamental matrix in statistics is the “centering matrix” that is used to transform data to deviations from their mean. First,

[image: image118.wmf]11

.

x

x

x

nn

x

éù

êú

êú

¢¢

===

êú

êú

ëû

iiixiix

M


(A-32)
The matrix 
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Because 
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Henceforth, the symbol 
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 will be used only for this matrix. Its diagonal elements are all 
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 is primarily useful in computing sums of squared deviations. Some computations are simplified by the result
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which implies that 
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For a single variable x, the sum of squared deviations about the mean is
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In matrix terms,
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Two properties of 
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 are useful at this point. First, because all off-diagonal elements of 
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definition A.1  Idempotent Matrix
An idempotent matrix, 
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, is one that is equal to its square, that is, 
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Thus, 
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Consider constructing a matrix of sums of squares and cross products in deviations from the column means. For two vectors x and y,
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so
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If we put the two column vectors x and y in an 
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A.3
Geometry of Matrices
A.3.1
VECTOR SPACES
The 
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 elements of a column vector
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can be viewed as the coordinates of a point in a 
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-dimensional space, as shown in Figure A.1 for two dimensions, or as the definition of the line segment connecting the origin and the point defined by a.

Two basic arithmetic operations are defined for vectors, scalar multiplication and addition. A scalar multiple of a vector, a, is another vector, say 
[image: image155.wmf]*

a

, whose coordinates are the scalar multiple of a’s coordinates. Thus, in Figure A.1,
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Figure A.1  Vector Space.

The set of all possible scalar multiples of a is the line through the origin, 0 and a. Any scalar multiple of a is a segment of this line. The sum of two vectors a and b is a third vector whose coordinates are the sums of the corresponding coordinates of a and b. For example,
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Geometrically, c is obtained by moving in the distance and direction defined by b from the tip of a or, because addition is commutative, from the tip of b in the distance and direction of a. Note that scalar multiplication and addition of vectors are special cases of (A-16) and (A-6) for matrices.

The two-dimensional plane is the set of all vectors with two real-valued coordinates. We label this set 
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 (“R two,” not “R squared”). It has two important properties.
( 
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is closed under scalar multiplication; every scalar multiple of a vector in 
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 is also in 
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( 
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 is closed under addition; the sum of any two vectors in the plane is always a vector in 
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.
definition A.2  Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and addition.
Another example is the set of all real numbers, that is, 
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, that is, the set of vectors with one real element. In general, that set of 
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-element vectors all of whose elements are real numbers is a 
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-dimensional vector space, denoted 
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A.3.2   LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

In Figure A.2, 
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. As this exercise suggests, any vector in 
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 could be obtained as a linear combination of a and b.
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Figure A.2  Linear Combinations of Vectors.









definition A.3  Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly independent and any vector in the vector space can be written as a linear combination of that set of vectors.
As is suggested by Figure A.2, any pair of two-element vectors, including a and b, that point in different directions will form a basis for 
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. Consider an arbitrary set of three vectors in 
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, and 
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. If 
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 and 
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 are a basis, then we can find numbers 
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 and 
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The solutions ((1,(2) to this pair of equations are
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This result gives a unique solution unless 
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. If 
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, which means that b is just a multiple of a. This returns us to our original condition, that a and b must point in different directions. The implication is that if a and b are any pair of vectors for which the denominator in (A-41) is not zero, then any other vector c can be formed as a unique linear combination of a and b. The basis of a vector space is not unique, since any set of vectors that satisfies the definition will do. But for any particular basis, only one linear combination of them will produce another particular vector in the vector space.

A.3.3
LINEAR DEPENDENCE
As the preceding should suggest, 
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 vectors are required to form a basis for 
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. Although the basis for a vector space is not unique, not every set of 
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 vectors will suffice. In Figure A.2, a and b form a basis for 
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, but a and 
[image: image201.wmf]*

a

 do not. The difference between these two pairs is that a and b are linearly independent, whereas a and 
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definition A.4  Linear Dependence
A set of 
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 vectors is linearly dependent if at least one of the vectors in the set can be written as a linear combination of the others.
Because 
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 is a multiple of a, a and 
[image: image205.wmf]*

a

 are linearly dependent. For another example, if
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so a, b, and c are linearly dependent. Any of the three possible pairs of them, however, are linearly independent.

definition A.5  Linear Independence
A set of vectors is linearly independent if and only if the only solution ((1,...,(K) to
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The preceding implies the following equivalent definition of a basis.

definition A.6  Basis for a Vector Space
A basis for a vector space of 
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 dimensions is any set of 
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 linearly independent vectors in that vector space.
Because any 
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 vector can be written as a linear combination of the 
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 basis vectors, it follows that any set of more than 
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 vectors in 
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 must be linearly dependent.

A.3.4
SUBSPACES
definition A.7  Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is spanned by those vectors.
For example, by definition, the space spanned by a basis for 
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 is 
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. An implication of this is that if a and b are a basis for 
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. Of course, c is superfluous. Nonetheless, any vector in 
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 can be expressed as a linear combination of 
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Consider the set of three coordinate vectors whose third element is zero. In particular,
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Vectors a and b do not span the three-dimensional space 
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. Every linear combination of a and b has a third coordinate equal to zero; thus, for instance, 
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 could not be written as a linear combination of a and b. If 
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 is not equal to zero [see (A-41)]; however, then any vector whose third element is zero can be expressed as a linear combination of a and b. So, although a and b do not span 
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, they do span something; they span the set of vectors in 
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 whose third element is zero. This area is a plane (the “floor” of the box in a three-dimensional figure). This plane in 
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 is a subspace, in this instance, a two-dimensional subspace. Note that it is not 
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; it is the set of vectors in 
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 whose third coordinate is 0. Any plane in 
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 that contains the origin, (0, 0, 0), regardless of how it is oriented, forms a two-dimensional subspace. Any two independent vectors that lie in that subspace will span it. But without a third vector that points in some other direction, we cannot span any more of 
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 than this two-dimensional part of it. By the same logic, any line in 
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 that passes through the origin is a one-dimensional subspace, in this case, the set of all vectors in 
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 whose coordinates are multiples of those of the vector that define the line. A subspace is a vector space in all the respects in which we have defined it. We emphasize that it is not a vector space of lower dimension. For example, 
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 is not a subspace of 
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. The essential difference is the number of dimensions in the vectors. The vectors in 
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 that form a two-dimensional subspace are still three-element vectors; they all just happen to lie in the same plane.

The space spanned by a set of vectors in 
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 has at most 
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 dimensions. If this space has fewer than 
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 dimensions, it is a subspace, or hyperplane. But the important point in the preceding discussion is that every set of vectors spans some space; it may be the entire space in which the vectors reside, or it may be some subspace of it.

A.3.5
RANK OF A MATRIX
We view a matrix as a set of column vectors. The number of columns in the matrix equals the number of vectors in the set, and the number of rows equals the number of coordinates in each column vector. If the matrix contains 
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 rows, its column space might have K dimensions. But,
definition A.8  Column Space
The column space of a matrix is the vector space that is spanned by its column vectors.


as we have seen, it might have fewer dimensions; the column vectors might be linearly dependent, or there might be fewer than 
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 of them. Consider the matrix
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It contains three vectors from 
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, but the third is the sum of the first two, so the column space of this matrix cannot have three dimensions. Nor does it have only one, because the three columns are not all scalar multiples of one another. Hence, it has two, and the column space of this matrix is a two-dimensional subspace of 
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. It follows that the column rank of a matrix is
definition A.9  Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned by its column vectors.
equal to the largest number of linearly independent column vectors it contains. The column rank of A is 2. For another specific example, consider
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It can be shown (we shall see how later) that this matrix has a column rank equal to 3. Each column of B is a vector in 
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, so the column space of B is a three-dimensional subspace of 
[image: image253.wmf]4

¡

.

Consider, instead, the set of vectors obtained by using the rows of B instead of the columns. The new matrix would be
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This matrix is composed of four column vectors from 
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. (Note that C is 
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B

.) The column space of C is at most 
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, since four vectors in 
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 must be linearly dependent. In fact, the column space of C is 
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. Although this is not the same as the column space of B, it does have the same dimension. Thus, the column rank of C and the column rank of B are the same. But the columns of C are the rows of B. Thus, the column rank of C equals the row rank of B. That the column and row ranks of B are the same is not a coincidence. The general results (which are equivalent) are as follows:
Theorem A.1  Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row 
rank and its counterpart for column rank, we obtain the corollary, the row 
(A-42)
space and column space of a 
matrix have the same dimension.
Theorem A.1 holds regardless of the actual row and column rank. If the column rank of a matrix happens to equal the number of columns it contains, then the matrix is said to have full column rank. Full row rank is defined likewise. Because the row and column ranks of a matrix are always equal, we can speak unambiguously of the rank of a matrix. For either the row rank or the column rank (and, at this point, we shall drop the distinction), it follows that
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In most contexts, we shall be interested in the columns of the matrices we manipulate. We shall use the term full rank to describe a matrix whose rank is equal to the number of columns it contains.

Of particular interest will be the distinction between full rank and short rank matrices. The distinction turns on the solutions to 
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. If a nonzero x for which 
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 exists, then A does not have full rank. Equivalently, if the nonzero x exists, then the columns of A are linearly dependent and at least one of them can be expressed as a linear combination of the others. For example, a nonzero set of solutions to
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is any multiple of 
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In a product matrix 
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CAB

, every column of C is a linear combination of the columns of A, so each column of C is in the column space of A. It is possible that the set of columns in C could span this space, but it is not possible for them to span a higher-dimensional space. At best, they could be a full set of linearly independent vectors in A’s column space. We conclude that the column rank of C could not be greater than that of A. Now, apply the same logic to the rows of C, which are all linear combinations of the rows of B. For the same reason that the column rank of C cannot exceed the column rank of A, the row rank of C cannot exceed the row rank of B. Row and column ranks are always equal, so we can conclude that
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A useful corollary to (A-44) is
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Another application that plays a central role in the development of regression analysis is, for any matrix A,
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A.3.6
DETERMINANT OF A MATRIX
The determinant of a square matrix—determinants are not defined for nonsquare matrices—is a function of the elements of the matrix. There are various definitions, most of which are not useful for our work. Determinants figure into our results in several ways, however, that we can enumerate before we need formally to define the computations.
PROPOSITION

The determinant of a matrix is nonzero if and only if it has full rank.
Full rank and short rank matrices can be distinguished by whether or not their determinants are nonzero. There are some settings in which the value of the determinant is also of interest, so we now consider some algebraic results.

It is most convenient to begin with a diagonal matrix
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The column vectors of D define a “box” in 
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 whose sides are all at right angles to one another.
 Its “volume,” or determinant, is simply the product of the lengths of the sides, which we denote
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A special case is the identity matrix, which has, regardless of K, 
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 is equivalent to multiplying the length of each side of the box by 
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, which would multiply its volume by 
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Continuing with this admittedly special case, we suppose that only one column of D is multiplied by 
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. In two dimensions, this would make the box wider but not higher, or vice versa. Hence, the “volume” (area) would also be multiplied by 
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 is just DC, where C is a diagonal matrix with 
[image: image284.wmf]i

c

 as its ith diagonal element. The computation just described is, therefore,
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(The determinant of C is the product of the 
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 since C, like D, is a diagonal matrix.) In particular, note what happens to the whole thing if one of the 
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For 
[image: image288.wmf]22

´

 matrices, the computation of the determinant is
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Notice that it is a function of all the elements of the matrix. This statement will be true, in general. For more than two dimensions, the determinant can be obtained by using an expansion by cofactors. Using any row, say, 
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where 
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 is the matrix obtained from A by deleting row 
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 and column 
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, is added, it becomes a cofactor. This operation can be done using any column as well. For example, a 
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, and so on. Obviously, it is a good idea to base (A-51) on a row or column with many zeros in it, if possible. In practice, this rapidly becomes a heavy burden. It is unlikely, though, that you will ever calculate any determinants over 
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Although (A-48) and (A-49) were given for diagonal matrices, they hold for general matrices C and D. One special case of (A-48) to note is that of 
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. Multiplying a matrix by 
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1 does not necessarily change the sign of its determinant. It does so only if the order of the matrix is odd. By using the expansion by cofactors formula, an additional result can be shown:
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A.3.7  A LEAST SQUARES PROBLEM
Given a vector y and a matrix X, we are interested in expressing y as a linear combination of the columns of X. There are two possibilities. If y lies in the column space of X, then we shall be able to find a vector b such that
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Figure A.3 illustrates such a case for three dimensions in which the two columns of X both have a third coordinate equal to zero. Only y’s whose third coordinate is zero, such as 
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y

 in the figure, can be expressed as Xb for some b. For the general case, assuming that y is, indeed, in the column space of X, we can find the coefficients b by solving the set of equations in (A-53). The solution is discussed in the next section.
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Figure A.3  Least Squares Projections.

Suppose, however, that y is not in the column space of X. In the context of this example, suppose that y’s third component is not zero. Then there is no b such that (A-53) holds. We can, however, write
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(A-54)
where e is the difference between y and Xb. By this construction, we find an Xb that is in the column space of X, and e is the difference, or “residual.” Figure A.3 shows two examples, y and 
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. For the present, we consider only y. We are interested in finding the b such that y is as close as possible to Xb in the sense that e is as short as possible.


definition A.10  Length of a Vector
The length, or norm, of a vector 
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 is given by the Pythagorean theorem:
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The problem is to find the b for which
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is as small as possible. The solution is that b that makes e perpendicular, or orthogonal, to Xb.
definition A.11  Orthogonal Vectors
Two nonzero vectors 
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 and 
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 are orthogonal, written 
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Returning once again to our fitting problem, we find that the b we seek is that for which
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Expanding this set of equations gives the requirement
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or, assuming b is not 0, the set of equations
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The means of solving such a set of equations is the subject of Section A.4.

In Figure A.3, the linear combination Xb is called the projection of y into the column space of X. The figure is drawn so that, although y and 
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 are different, they are similar in that the projection of y lies on top of that of 
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. The question we wish to pursue here is, Which vector, y or 
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, is closer to its projection in the column space of X? Superficially, it would appear that y is closer, because e is shorter than 
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 is much more nearly parallel to its projection than y, so the only reason that its residual vector is longer is that 
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 is longer compared with y. A measure of comparison that would be unaffected by the length of the vectors is the angle between the vector and its projection (assuming that angle is not zero). By this measure, 
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 is smaller than 
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Theorem A.2  The Cosine Law
The angle 
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 between two vectors 
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The two vectors in the calculation would be y or 
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 and Xb or 
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. A zero cosine implies that the vectors are orthogonal. If the cosine is one, then the angle is zero, which means that the vectors are the same. (They would be if y were in the column space of X.) By dividing by the lengths, we automatically compensate for the length of y. By this measure, we find in Figure A.3 that 
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 is closer to its projection, 
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A.4
Solution of a System of Linear Equations
Consider the set of 
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 linear equations
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in which the 
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 elements of x constitute the unknowns. A is a known matrix of coefficients, and b is a specified vector of values. We are interested in knowing whether a solution exists; if so, then how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1
SYSTEMS OF LINEAR EQUATIONS
For most of our applications, we shall consider only square systems of equations, that is, those in which A is a square matrix. In what follows, therefore, we take 
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 to equal 
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. Because the number of rows in A is the number of equations, whereas the number of columns in A is the number of variables, this case is the familiar one of “
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 equations in 
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 unknowns.”
There are two types of systems of equations.

definition A.12  Homogeneous Equation System
A homogeneous system is of the form 
[image: image348.wmf]=

Ax0

.
By definition, a nonzero solution to such a system will exist if and only if A does not have full rank. If so, then for at least one column of A, we can write the preceding as
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This means, as we know, that the columns of A are linearly dependent and that 
[image: image350.wmf]||

=

A0

.

definition A.13  Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form 
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, where 
[image: image352.wmf]b

 is a nonzero vector.
The vector b is chosen arbitrarily and is to be expressed as a linear combination of the columns of A. Because b has K elements, this solution will exist only if the columns of A span the entire 
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-dimensional space, 
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.
 Equivalently, we shall require that the columns of A be linearly independent or that 
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 not be equal to zero.

A.4.2
INVERSE MATRICES
To solve the system 
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 for x, something akin to division by a matrix is needed. Suppose that we could find a square matrix B such that 
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. If the equation system is premultiplied by this B, then the following would be obtained:
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If the matrix B exists, then it is the inverse of A, denoted
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From the definition,
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In addition, by premultiplying by A, postmultiplying by 
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, and then canceling terms, we find
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as well.

If the inverse exists, then it must be unique. Suppose that it is not and that C is a different inverse of A. Then 
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We now consider the calculation of the inverse matrix. For a 
[image: image367.wmf]22

´

 matrix, 
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The solutions are
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Notice the presence of the reciprocal of 
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 in 
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. This result is not specific to the 
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 case. We infer from it that if the determinant is zero, then the inverse does not exist.

definition A.14  Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.
The simplest inverse matrix to compute is that of a diagonal matrix. If
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which shows, incidentally, that 
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.

We shall use 
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 to indicate the 
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where 
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 cofactor of A. [See (A-51).] It follows, therefore, that for A to be nonsingular, 
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Some computational results involving inverses are
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When both inverse matrices exist,
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Note the condition preceding (A-64). It may be that AB is a square, nonsingular matrix when neither A nor B is even square. (Consider, e.g., 
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Recall that for a data matrix 
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 is the sum of the outer products of the rows X. Suppose that we have already computed 
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 for a number of years of data, such as those given in Table A.1. The following result, which is called an updating formula, shows how to compute the new S that would result when a new row is added to X: For symmetric, nonsingular matrix A,
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Note the reversal of the sign in the inverse. Two more general forms of (A-66) that are occasionally useful are
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A.4.3
NONHOMOGENEOUS SYSTEMS OF EQUATIONS
For the nonhomogeneous system
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if A is nonsingular, then the unique solution is
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A.4.4
SOLVING THE LEAST SQUARES PROBLEM
We now have the tool needed to solve the least squares problem posed in Section A3.7. We found the solution vector, b to be the solution to the nonhomogenous system 
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. Let a equal the vector 
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 and let A equal the square matrix 
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By the preceding results, if A is nonsingular, then
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assuming that the matrix to be inverted is nonsingular. We have reached the irreducible minimum. If the columns of X are linearly independent, that is, if X has full rank, then this is the solution to the least squares problem. If the columns of X are linearly dependent, then this system has no unique solution.
A.5
Partitioned Matrices
In formulating the elements of a matrix, it is sometimes useful to group some of the elements in submatrices. Let
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A is a partitioned matrix. The subscripts of the submatrices are defined in the same fashion as those for the elements of a matrix. A common special case is the block-diagonal matrix:
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where 
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 and 
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 are square matrices.

A.5.1  ADDITION AND MULTIPLICATION OF PARTITIONED MATRICES
For conformably partitioned matrices A and B,
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and
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In all these, the matrices must be conformable for the operations involved. For addition, the dimensions of 
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 must be the same. For multiplication, the number of columns in 
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. That is, all the necessary matrix products of the submatrices must be defined. Two cases frequently encountered are of the form
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and
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A.5.2   DETERMINANTS OF PARTITIONED MATRICES
The determinant of a block-diagonal matrix is obtained analogously to that of a diagonal matrix:
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The determinant of a general 
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 partitioned matrix is
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A.5.3   INVERSES OF PARTITIONED MATRICES
The inverse of a block-diagonal matrix is
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(A-73)
which can be verified by direct multiplication. 
For the general 
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 partitioned matrix, one form of the partitioned inverse is
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where
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The upper left block could also be written as

[image: image423.wmf]11

111122221

().

--

=-

FAAAA


A.5.4   DEVIATIONS FROM MEANS
Suppose that we begin with a column vector of 
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 values x and let

[image: image425.wmf]1

2

11

.

n

i

i

nn

ii

ii

nx

xx

=

==

éù

êú

¢¢

éù

êú

==

êú

êú

¢¢

ëû

êú

êú

ëû

å

åå

iiix

A

xixx


We are interested in the lower-right-hand element of 
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 (A-74), this is
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Therefore, the lower-right-hand value in the inverse matrix is
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Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-right block of 
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which implies that the 
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. Thus, when a data matrix contains a column of ones, the elements of the inverse of the matrix of sums of squares and cross products will be computed from the original data in the form of deviations from the respective column means.

A.5.5   KRONECKER PRODUCTS
A calculation that helps to condense the notation when dealing with sets of regression models (see Chapter 10) is the Kronecker product. For general matrices A and B,
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Notice that there is no requirement for conformability in this operation. The Kronecker product can be computed for any pair of matrices. If A is 
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If A is 
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 and B is 
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(The trace of a matrix is defined in Section A.6.7.) For A, B, C, and D such that the products are defined,
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A.6   Characteristic Roots and Vectors
A useful set of results for analyzing a square matrix A arises from the solutions to the set of equations
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The pairs of solutions (c,() are the characteristic vectors c and characteristic roots 
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. If c is any nonzero solution vector, then 
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 is also for any value of 
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The solution then consists of 
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 unknown elements in c.

A.6.1   THE CHARACTERISTIC EQUATION
Solving (A-77) can, in principle, proceed as follows. First, (A-77) implies that
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This equation is a homogeneous system that has a nonzero solution only if the matrix 
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 is a solution, then
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This polynomial in 
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 is the characteristic equation of A. For example, if
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The two solutions are 
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In solving the characteristic equation, there is no guarantee that the characteristic roots will be real. In the preceding example, if the 2 in the lower-left-hand corner of the matrix were 
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 instead, then the solution would be a pair of complex values. The same result can emerge in the general 
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 case. The characteristic roots of a symmetric matrix such as 
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 are real, however.
 This result will be convenient because most of our applications will involve the characteristic roots and vectors of symmetric matrices.

For an 
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 matrix, the characteristic equation is an 
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. Its solutions may be 
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A.6.2   CHARACTERISTIC VECTORS
With 
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 in hand, the characteristic vectors are derived from the original problem,

[image: image474.wmf],

=l

Acc


or

[image: image475.wmf]().

-l=

AIc0


(A-79)
Neither pair determines the values of 
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A.6.3   GENERAL RESULTS FOR CHARACTERISTIC ROOTS AND VECTORS
A 
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and the 
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Then, the full set of equations
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Because the vectors are orthogonal and 
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Result (A-81) implies that
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Consequently,
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as well, so the rows as well as the columns of C are orthogonal.

A.6.4  DIAGONALIZATION AND SPECTRAL DECOMPOSITION OF A MATRIX
By premultiplying (A-80) by 
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 and using (A-81), we can extract the characteristic roots of A.
definition A.15  Diagonalization of a Matrix
The diagonalization of a matrix 
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 is 
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Alternatively, by post multiplying (A-80) by 
[image: image501.wmf]¢

C

 and using (A-83), we obtain a useful representation of A.
definition A.16  Spectral Decomposition of a Matrix
The spectral decomposition of 
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 is
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In this representation, the 
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 matrix A is written as a sum of 
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 rank one matrices. This sum is also called the eigenvalue (or, “own” value) decomposition of A. In this connection, the term signature of the matrix is sometimes used to describe the characteristic roots and vectors. Yet another pair of terms for the parts of this decomposition are the latent roots and latent vectors of A.

A.6.5
RANK OF A MATRIX
The diagonalization result enables us to obtain the rank of a matrix very easily. To do so, we can use the following result.

Theorem A.3  Rank of a Product
For any matrix 
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 and nonsingular matrices 
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By (A-45), rank
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Because C and 
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 are nonsingular, we can use them to apply this result to (A-84). By an obvious substitution,
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Finding the rank of 
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 is trivial. Because 
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 is a diagonal matrix, its rank is just the number of nonzero values on its diagonal. By extending this result, we can prove the following theorems. (Proofs are brief and are left for the reader.)

Theorem A.4  Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots it contains.
Note how this result enters the spectral decomposition given earlier. If any of the characteristic roots are zero, then the number of rank one matrices in the sum is reduced correspondingly. It would appear that this simple rule will not be useful if A is not square. But recall that
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Because 
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 is always square, we can use it instead of A. Indeed, we can use it even if A is not square, which leads to a fully general result.

Theorem A.5  Rank of a Matrix
The rank of any matrix 
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 equals the number of nonzero characteristic roots in 
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.
The row rank and column rank of a matrix are equal, so we should be able to apply Theorem A.5 to 
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 as well. This process, however, requires an additional result.

Theorem A.6  Roots of an Outer Product Matrix
The nonzero characteristic roots of 
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.
The proof is left as an exercise. A useful special case the reader can examine is the characteristic roots of 
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If a characteristic root of a matrix is zero, then we have 
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. Thus, if the matrix has a zero root, it must be singular. Otherwise, no nonzero c would exist. In general, therefore, a matrix is singular; that is, it does not have full rank if and only if it has at least one zero root.

A.6.6
CONDITION NUMBER OF A MATRIX
As the preceding might suggest, there is a discrete difference between full rank and short rank matrices. In analyzing data matrices such as the one in Section A.2, however, we shall often encounter cases in which a matrix is not quite short ranked, because it has all nonzero roots, but it is close. That is, by some measure, we can come very close to being able to write one column as a linear combination of the others. This case is important; we shall examine it at length in our discussion of multicollinearity in Section 4.9.1. Our definitions of rank and determinant will fail to indicate this possibility, but an alternative measure, the condition number, is designed for that purpose. Formally, the condition number for a square matrix A is
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For nonsquare matrices X, such as the data matrix in the example, we use 
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. As a further refinement, because the characteristic roots are affected by the scaling of the columns of X, we scale the columns to have length 1 by dividing each column by its norm [see (A-55)]. For the X in Section A.2, the largest characteristic root of A is 4.9255 and the smallest is 0.0001543. Therefore, the condition number is 178.67, which is extremely large. (Values greater than 20 are large.) That the smallest root is close to zero compared with the largest means that this matrix is nearly singular. Matrices with large condition numbers are difficult to invert accurately.

A.6.7   TRACE OF A MATRIX
The trace of a square 
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 matrix is the sum of its diagonal elements:
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Some easily proven results are
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The permutation rule can be extended to any cyclic permutation in a product:
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By using (A-84), we obtain
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Because 
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 is diagonal with the roots of A on its diagonal, the general result is the following.

Theorem A.7  Trace of a Matrix
The trace of a matrix equals the sum of its characteristic roots.
(A-96)
A.6.8
DETERMINANT OF A MATRIX
Recalling how tedious the calculation of a determinant promised to be, we find that the following is particularly useful. Because
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Using a number of earlier results, we have, for orthogonal matrix C,
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Because 
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 is just the product of its diagonal elements, the following is implied.

Theorem A.8  Determinant of a Matrix
The determinant of a matrix equals the product of its characteristic roots.
(A-99)

Notice that we get the expected result if any of these roots is zero. The determinant is the product of the roots, so it follows that a matrix is singular if and only if its determinant is zero and, in turn, if and only if it has at least one zero characteristic root.

A.6.9
POWERS OF A MATRIX
We often use expressions involving powers of matrices, such as 
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. For positive integer powers, these expressions can be computed by repeated multiplication. But this does not show how to handle a problem such as finding a B such that 
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[image: image556.wmf]22

()().

¢¢¢¢¢¢¢

======

AAAC

ΛCCΛCCΛCCΛCCΛIΛCCΛΛCCΛC

 
(A-100)



Two results follow. Because 
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 is a diagonal matrix whose nonzero elements are the squares of those in 
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, the following is implied.
For any symmetric matrix, the characteristic roots of 
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(A-101)
The proof is obtained by observing that the last result in (A-100) is the spectral decomposition of the matrix 
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, whereas the characteristic vectors are the same as those of A. If A is nonsingular, so that all its roots 
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 are nonzero, then this proof can be extended to negative powers as well.

If 
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where we have used the earlier result, 
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. This gives an important result that is useful for analyzing inverse matrices.

Theorem A.9  Characteristic Roots of an Inverse Matrix
If 
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By extending the notion of repeated multiplication, we now have a more general result.

Theorem A.10  Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix 
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We now turn to the general problem of how to compute the square root of a matrix. In the scalar case, the value would have to be nonnegative. The matrix analog to this requirement is that all the characteristic roots are nonnegative. Consider, then, the candidate
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This equation satisfies the requirement for a square root, because
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If we continue in this fashion, we can define the nonnegative powers of a matrix more generally, still assuming that all the characteristic roots are nonnegative. For example, 
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. If all the roots are strictly positive, we can go one step further and extend the result to any real power. For reasons that will be made clear in the next section, we say that a matrix with positive characteristic roots is positive definite. It is the matrix analog to a positive number.

definition A.17  Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C(rC(
,  for any real number, r.

           (A-105)
The characteristic roots of 
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 power of those of A, and the characteristic vectors are the same.

If A is only nonnegative definite—that is, has roots that are either zero or positive—then (A-105) holds only for nonnegative 
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.

A.6.10
IDEMPOTENT MATRICES
Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their importance in econometrics, we collect a few results related to idempotent matrices at this point. First, (A-101) implies that if (
  is a characteristic root of an idempotent matrix, then 
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 for all nonnegative integers 
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. As such, if A is a symmetric idempotent matrix, then all its roots are one or zero. Assume that all the roots of A are one. Then 
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. If the roots are not all one, then one or more are zero. Consequently, we have the following results for symmetric idempotent matrices:

(
The only full rank, symmetric idempotent matrix is the identity matrix 
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.
(A-106)
(
All symmetric idempotent matrices except the identity matrix are singular.
(A-107)
The final result on idempotent matrices is obtained by observing that the count of the nonzero roots of A is also equal to their sum. By combining Theorems A.5 and A.7 with the result that for an idempotent matrix, the roots are all zero or one, we obtain this result:
(
The rank of a symmetric idempotent matrix is equal to its trace.
(A-108)
A.6.11  FACTORING A MATRIX: THE CHOLESKY DECOMPOSITION
In some applications, we shall require a matrix P such that
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as desired.
 Thus, the spectral decomposition of 
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 is a useful result for this kind of computation.

The Cholesky factorization of a symmetric positive definite matrix is an alternative representation that is useful in regression analysis. Any symmetric positive definite matrix A may be written as the product of a lower triangular matrix L and its transpose (which is an upper triangular matrix) 
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. This result is the Cholesky decomposition of A. The square roots of the diagonal elements of L, 
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, are the Cholesky values of A. By arraying these in a diagonal matrix D, we may also write 
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, which is similar to the spectral decomposition in (A-85). The usefulness of this formulation arises when the inverse of A is required. Once L is computed, finding 
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 is also straightforward as well as extremely fast and accurate. Most recently developed econometric software packages use this technique for inverting positive definite matrices.
A.6.12  SINGULAR VALUE DECOMPOSITION
A third type of decomposition of a matrix is useful for numerical analysis when the inverse is difficult to obtain because the columns of A are “nearly” collinear. Any 
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 matrix A for which 
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. This result is called the singular value decomposition (SVD) of A, and 
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 (Note that if A is square, then the spectral decomposition is a singular value decomposition.) As with the Cholesky decomposition, the usefulness of the SVD arises in inversion, in this case, of 
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. Once the SVD of A is computed, the inversion is trivial. The other advantage of this format is its numerical stability, which is discussed at length in Press et al. (2007).
A.6.13.  QR DECOMPOSITION
Press et al. (2007) recommend the SVD approach as the method of choice for solving least squares problems because of its accuracy and numerical stability. A commonly used alternative method similar to the SVD approach is the QR decomposition. Any 
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 matrix, X, with 
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 in which the columns of Q are orthonormal 
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 and R is an upper triangular matrix. Decomposing X in this fashion allows an extremely accurate solution to the least squares problem that does not involve inversion or direct solution of the normal equations. Press et al. suggest that this method may have problems with rounding errors in problems when X is nearly of short rank, but based on other published results, this concern seems relatively minor.

A.6.14
THE GENERALIZED INVERSE OF A MATRIX
Inverse matrices are fundamental in econometrics. Although we shall not require them much in our treatment in this book, there are more general forms of inverse matrices than we have considered thus far. A generalized inverse of a matrix A is another matrix 
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3.
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 is symmetric.
4.
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 is symmetric.
A unique 
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 can be found for any matrix, whether A is singular or not, or even if A is not square.
 The unique matrix that satisfies all four requirements is called the Moore–Penrose inverse or pseudoinverse of A. If A happens to be square and nonsingular, then the generalized inverse will be the familiar ordinary inverse. But if 
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An important special case is the overdetermined system of equations
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where A has 
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which can be verified by multiplication. A “solution” to the system of equations can be written
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This is the vector that minimizes the length of 
[image: image632.wmf]Aby

-

. Recall this was the solution to the least squares problem obtained in Section A.4.4. If y lies in the column space of A, this vector will be zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be computed. An alternative solution can be obtained, however. We continue to use the matrix 
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. In the spectral decomposition of Section A.6.4, if A has rank 
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 terms in the summation in (A-85). In (A-102), the spectral decomposition using the reciprocals of the characteristic roots is used to compute the inverse. To compute the Moore–Penrose inverse, we apply this calculation to 
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which is very similar to the previous result.

If A is a symmetric matrix with rank 
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, the Moore–Penrose inverse is computed precisely as in the preceding equation without postmultiplying by 
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where 
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 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7
Quadratic Forms and Definite Matrices
Many optimization problems involve double sums of the form
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This quadratic form can be written
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where A is a symmetric matrix. In general, 
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 may be positive, negative, or zero; it depends on A and x. There are some matrices, however, for which 
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 will be positive regardless of x, and others for which 
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 will always be negative (or nonnegative or nonpositive). For a given matrix A,
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If 
[image: image652.wmf]() 0

xAx

¢

³£

 for all nonzero x, then A is nonnegative definite or positive semidefinite (nonpositive definite).
It might seem that it would be impossible to check a matrix for definiteness, since x can be chosen arbitrarily. But we have already used the set of results necessary to do so. Recall that a symmetric matrix can be decomposed into
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Therefore, the quadratic form can be written as
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If 
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 is positive for all 
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, then regardless of y—that is, regardless of x—
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 will be positive. This case was identified earlier as a positive definite matrix. Continuing this line of reasoning, we obtain the following theorem.

Theorem A.11  Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of 
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 if the remainder are positive (negative). If 
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The preceding statements give, in each case, the “if” parts of the theorem. To establish the “only if” parts, assume that the condition on the roots does not hold. This must lead to a contradiction. For example, if some 
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 can be negative, then 
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 could be negative for some y, so A cannot be positive definite.

A.7.1    NONNEGATIVE DEFINITE MATRICES
A case of particular interest is that of nonnegative definite matrices. Theorem A.11 implies a number of related results.
(
If A is nonnegative definite, then 
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Proof: The determinant is the product of the roots, which are nonnegative.

The converse, however, is not true. For example, a 
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 matrix with two negative roots is clearly not positive definite, but it does have a positive determinant.
(
If A is positive definite, so is 
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Proof: The roots are the reciprocals of those of A, which are, therefore positive.
(
The identity matrix I is positive definite.
(A-113)
Proof: 
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A very important result for regression analysis is
(
If A is 
[image: image677.wmf]´

nK

 with full column rank and 
[image: image678.wmf]>

nK

, then 
[image: image679.wmf]AA

¢

 is positive definite and 
[image: image680.wmf]AA

¢

 is nonnegative definite.
(A-114)
Proof: By assumption, 
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A similar proof establishes the nonnegative definiteness of 
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. The difference in the latter case is that because A has more rows than columns there is an x such that 
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(
If A is positive definite and B is a nonsingular matrix, then 
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(A-115)
Proof: 
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Finally, note that for A to be negative definite, all A’s characteristic roots must be negative. But, in this case, 
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 is positive if A is of even order and negative if A is of odd order.

A.7.2   IDEMPOTENT QUADRATIC FORMS
Quadratic forms in idempotent matrices play an important role in the distributions of many test statistics. As such, we shall encounter them fairly often. Two central results are of interest.
(
Every symmetric idempotent matrix is nonnegative definite.
(A-116)
Proof: All roots are one or zero; hence, the matrix is nonnegative definite by definition.

Combining this with some earlier results yields a result used in determining the sampling distribution of most of the standard test statistics.
(
If A is symmetric and idempotent, 
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Proof: This result is (A-110) with 
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 one or zero.

A.7.3    COMPARING MATRICES
Derivations in econometrics often focus on whether one matrix is “larger” than another. We now consider how to make such a comparison. As a starting point, the two matrices must have the same dimensions. A useful comparison is based on
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 is always positive for any nonzero vector, x, then by this criterion, we can say that A is larger than B. The reverse would apply if 
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If 
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 is only greater than or equal to zero, then 
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 is nonnegative definite. The ordering is not complete. For some pairs of matrices, 
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 could have either sign, depending on x. In this case, there is no simple comparison.

A particular case of the general result which we will encounter frequently is.
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Consider, for example, the “updating formula” introduced in (A-66). This uses a matrix

[image: image703.wmf].

ABBbbBB

¢¢¢

=+³


Finally, in comparing matrices, it may be more convenient to compare their inverses. The result analogous to a familiar result for scalars is:
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To establish this intuitive result, we would make use of the following, which is proved in Goldberger (1964, Chapter 2):

Theorem A.12  Ordering for Positive Definite Matrices
If 
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 and 
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 are two positive definite matrices with the same dimensions and if every characteristic root of 
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 is larger than (at least as large as) the corresponding characteristic root of 
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 when both sets of roots are ordered from largest to smallest, then 
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 is positive (nonnegative) definite.
The roots of the inverse are the reciprocals of the roots of the original matrix, so the theorem can be applied to the inverse matrices.

A.8
Calculus and Matrix Algebra

A.8.1  DIFFERENTIATION AND THE TAYLOR SERIES

A variable 
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 is a function of another variable 
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A frequent use of the derivatives of 
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 is in the Taylor series approximation. A Taylor series is a polynomial approximation to 
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The choice of P, the number of terms, is arbitrary; the more that are used, the more accurate the approximation will be. The approximation used most frequently in econometrics is the linear approximation,
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where, by collecting terms in (A-121), 
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We can regard a function 
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The vector 
[image: image732.wmf]()

gx

 or g is used to represent the gradient. Notice that it is a column vector. The shape of the derivative is determined by the denominator of the derivative.

A second derivatives matrix or Hessian is computed as
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In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous and continuously differentiable functions from Young’s theorem.) Each column of H is the derivative of g with respect to the corresponding variable in 
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The first-order, or linear Taylor series approximation is
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The right-hand side is
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This produces the linear approximation,
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The second-order, or quadratic, approximation adds the second-order terms in the expansion,
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to the preceding one. Collecting terms in the same manner as in (A-126), we have
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where
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A linear function can be written
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Note, in particular, that 
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Collecting all terms, we find that 
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A quadratic form is written
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For example,
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which is the general result when A is a symmetric matrix. If A is not symmetric, then
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Referring to the preceding double summation, we find that for each term, the coefficient on 
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Derivatives involving determinants appear in maximum likelihood estimation. From the cofactor expansion in (A-51),
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[image: image768.wmf]||

C

ji

 is the 
[image: image769.wmf]th

ji

 cofactor in A. The inverse of A can be computed using
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(note the reversal of the subscripts), which implies that
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or, collecting terms,
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Because the matrices for which we shall make use of this calculation will be symmetric in our applications, the transposition will be unnecessary.

A.8.2
OPTIMIZATION
Consider finding the 
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 where 
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. This result implies the first-order or necessary condition for an optimum (maximum or minimum):
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For a maximum, the function must be concave; for a minimum, it must be convex. The sufficient condition for an optimum is.
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Some functions, such as the sine and cosine functions, have many local optima, that is, many minima and maxima. A function such as 
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, which is a damped cosine wave, does as well but differs in that although it has many local maxima, it has one, at 
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 is greater than it is at any other point. Thus, 
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 is the global maximum, whereas the other maxima are only local maxima. Certain functions, such as a quadratic, have only a single optimum. These functions are globally concave if the optimum is a maximum and globally convex if it is a minimum.

For maximizing or minimizing a function of several variables, the first-order conditions are

[image: image785.wmf]()

.

f

¶

=

¶

x

0

x


(A-136)
This result is interpreted in the same manner as the necessary condition in the univariate case. At the optimum, it must be true that no small change in any variable leads to an improvement in the function value. In the single-variable case, 
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 must be positive for a minimum and negative for a maximum. The second-order condition for an optimum in the multivariate case is that, at the optimizing value,
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must be positive definite for a minimum and negative definite for a maximum.

In a single-variable problem, the second-order condition can usually be verified by inspection. This situation will not generally be true in the multivariate case. As discussed earlier, checking the definiteness of a matrix is, in general, a difficult problem. For most of the problems encountered in econometrics, however, the second-order condition will be implied by the structure of the problem. That is, the matrix H will usually be of such a form that it is always definite.

For an example of the preceding, consider the problem
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Using some now familiar results, we obtain
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The solutions are
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The sufficient condition is that
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must be negative definite. The three characteristic roots of this matrix are 
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, and 
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. Because all three roots are negative, the matrix is negative definite, as required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian to verify the sufficient condition. For a general matrix of order larger than 2, this will normally require a computer. Suppose, however, that A is of the form
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where B is some known matrix. Then, as shown earlier, we know that A will always be positive definite (assuming that B has full rank). In this case, it is not necessary to calculate the characteristic roots of A to verify the sufficient conditions.

A.8.3
CONSTRAINED OPTIMIZATION
It is often necessary to solve an optimization problem subject to some constraints on the solution. One method is merely to “solve out” the constraints. For example, in the maximization problem considered earlier, suppose that the constraint 
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 is imposed on the solution. For a single constraint such as this one, it is possible merely to substitute the right-hand side of this equation for 
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 in the objective function and solve the resulting problem as a function of the remaining two variables. For more general constraints, however, or when there is more than one constraint, the method of Lagrange multipliers provides a more straightforward method of solving the problem. We seek to

[image: image799.wmf]1

2

maximize()subject to ()0

()0,

()0.

J

fc

c

c

=

=

=

x

xx

x

x

L


(A-140)
The Lagrangean approach to this problem is to find the stationary points—that is, the points at which the derivatives are zero—of
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The solutions satisfy the equations
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The second term in 
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where C is the matrix of derivatives of the constraints with respect to x. The 
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th row of the 
[image: image805.wmf]Jn

´

 matrix C is the vector of derivatives of the 
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There is one very important aspect of the constrained solution to consider. In the unconstrained solution, we have 
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which will not equal 0 unless 
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. This result has two important implications:
(
The constrained solution cannot be superior to the unconstrained solution. This is implied by the nonzero gradient at the constrained solution. (That is, unless 
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 which could happen if the constraints were nonlinear. But, even if so, the solution is still not better than the unconstrained optimum.)

(
If the Lagrange multipliers are zero, then the constrained solution will equal the unconstrained solution.
To continue the example begun earlier, suppose that we add the following conditions:
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To put this in the format of the general problem, write the constraints as 
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The Lagrangean function is
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Note the dimensions and arrangement of the various parts. In particular, C is a 
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 matrix, with one row for each constraint and one column for each variable in the objective function. The vector of Lagrange multipliers thus has two elements, one for each constraint. The necessary conditions are
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and
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These may be combined in the single equation
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Using the partitioned inverse of (A-74) produces the solutions
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and
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The two results, (A-147) and (A-148), yield analytic solutions for 
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 and x. For the specific matrices and vectors of the example, these are 
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 is obtained from (A-147), the solution can be inserted in (A-146) for a much simpler computation. The solution
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suggests a useful result for the constrained optimum:
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Finally, by inserting the two solutions in the original function, we find that 
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, which illustrates again that the constrained solution (in this maximization problem) is inferior to the unconstrained solution.

A.8.4 TRANSFORMATIONS
If a function is strictly monotonic, then it is a one-to-one function. Each 
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 is associated with exactly one value of 
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An example is the inverse relationship between the log and the exponential functions.

The slope of the inverse function,
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is the Jacobian of the transformation from 
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 to 
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. For example, if
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is the inverse transformation and
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Looking ahead to the statistical application of this concept, we observe that if 
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 were vertical, then this would no longer be a functional relationship. The same 
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 would be associated with more than one value of 
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. In this case, at this value of 
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If y is a column vector of functions, 
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Consider the set of linear functions 
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. The inverse transformation is 
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if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the matrix of partial derivatives of the inverse functions:
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The absolute value of the determinant of J,
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is the Jacobian determinant of the transformation from y to x. In the nonsingular case,
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In the singular case, the matrix of partial derivatives will be singular and the determinant of the Jacobian will be zero. In this instance, the singular Jacobian implies that A is singular or, equivalently, that the transformations from x to y are functionally dependent. The singular case is analogous to the single-variable case.

Clearly, if the vector x is given, then 
[image: image858.wmf]=
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 can be computed from x. Whether x can be deduced from y is another question. Evidently, it depends on the Jacobian. If the Jacobian is not zero, then the inverse transformations exist, and we can obtain x. If not, then we cannot obtain x.

� Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (A-1), and a vector as a boldfaced lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a column vector.


� Authors sometimes denote the transpose of a matrix with a superscript “T,” as in AT = the transpose of A.  We will use the prime notation throughout this book.


� A simple way to check the conformability of two matrices for multiplication is to write down the dimensions of the operation, for example, � EMBED Equation.DSMT4 ��� times � EMBED Equation.DSMT4 ���. The inner dimensions must be equal; the result has dimensions equal to the outer values.


� Each column vector defines a segment on one of the axes.


� If � EMBED Equation.DSMT4 ��� equals � EMBED Equation.DSMT4 ���, then the determinant is a principal minor.


� If A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, namely, any b in the column space of A. But we are interested in the case in which there are solutions for all nonzero vectors b, which requires A to have full rank.


� A proof may be found in Theil (1971).


� For proofs of these propositions, see Strang (19882014).


� This statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right” characteristic vectors, � EMBED Equation.DSMT4 ���, and “left” characteristic vectors, � EMBED Equation.DSMT4 ���, which may not be equal.


� Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work, however.


� We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are other candidates. The reader can easily verify that � EMBED Equation.DSMT4 ��� works as well.


� Discussion of the singular value decomposition (and listings of computer programs for the computations) may be found in Press et al. (1986).


� The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these problems, which include some extremely difficult, ill-conditioned data sets, we found that the QR method would reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR method should be satisfactory for all but the worst problems.  NIST’s benchmark for hard to solve least squares problems, the “Filipelli problem,” is solved accurately to at least 9 digits with the QR method.  Evidently, other methods of least squares solution fail to produce an accurate result.


� A proof of uniqueness, with several other results, may be found in Theil (1983).


� For a complete exposition, see Magnus and Neudecker (19882007).





[image: image859.wmf]()

nK

´

[image: image860.wmf]()

KM

´

[image: image861.wmf]i

[image: image862.wmf]k

[image: image863.wmf]=l

Acc

[image: image864.wmf]¢¢

=l

dAd

[image: image865.wmf]1/21/2

--

¢

=

C

ΛCA

_1516533486.unknown

_1516533754.unknown

_1516534353.unknown

_1516537798.unknown

_1516538417.unknown

_1516538911.unknown

_1516539279.unknown

_1516539469.unknown

_1526554298.unknown

_1526560257.unknown

_1526561920.unknown

_1526562053.unknown

_1526563791.unknown

_1526566928.unknown

_1526562199.unknown

_1526561964.unknown

_1526561106.unknown

_1526561708.unknown

_1526560799.unknown

_1526557600.unknown

_1526560221.unknown

_1526560239.unknown

_1526557672.unknown

_1526555075.unknown

_1526555820.unknown

_1526554711.unknown

_1516712269.unknown

_1516713780.unknown

_1516714077.unknown

_1526553412.unknown

_1516714188.unknown

_1516714049.unknown

_1516713978.unknown

_1516712673.unknown

_1516713028.unknown

_1516713044.unknown

_1516712760.unknown

_1516712501.unknown

_1516539541.unknown

_1516539549.unknown

_1516539554.unknown

_1516539559.unknown

_1516711861.unknown

_1516539552.unknown

_1516539544.unknown

_1516539528.unknown

_1516539530.unknown

_1516539488.unknown

_1516539370.unknown

_1516539412.unknown

_1516539430.unknown

_1516539443.unknown

_1516539424.unknown

_1516539378.unknown

_1516539398.unknown

_1516539372.unknown

_1516539345.unknown

_1516539351.unknown

_1516539360.unknown

_1516539349.unknown

_1516539300.unknown

_1516539324.unknown

_1516539288.unknown

_1516539098.unknown

_1516539129.unknown

_1516539245.unknown

_1516539266.unknown

_1516539175.unknown

_1516539115.unknown

_1516539122.unknown

_1516539103.unknown

_1516539057.unknown

_1516539085.unknown

_1516539090.unknown

_1516539071.unknown

_1516538975.unknown

_1516539035.unknown

_1516538957.unknown

_1516538535.unknown

_1516538638.unknown

_1516538741.unknown

_1516538816.unknown

_1516538901.unknown

_1516538795.unknown

_1516538685.unknown

_1516538734.unknown

_1516538678.unknown

_1516538558.unknown

_1516538620.unknown

_1516538631.unknown

_1516538560.unknown

_1516538544.unknown

_1516538552.unknown

_1516538537.unknown

_1516538479.unknown

_1516538506.unknown

_1516538512.unknown

_1516538514.unknown

_1516538509.unknown

_1516538484.unknown

_1516538486.unknown

_1516538482.unknown

_1516538453.unknown

_1516538462.unknown

_1516538476.unknown

_1516538458.unknown

_1516538431.unknown

_1516538437.unknown

_1516538421.unknown

_1516538053.unknown

_1516538142.unknown

_1516538315.unknown

_1516538362.unknown

_1516538404.unknown

_1516538340.unknown

_1516538240.unknown

_1516538251.unknown

_1516538237.unknown

_1516538086.unknown

_1516538122.unknown

_1516538138.unknown

_1516538112.unknown

_1516538069.unknown

_1516538083.unknown

_1516538062.unknown

_1516537855.unknown

_1516537964.unknown

_1516538034.unknown

_1516538041.unknown

_1516538028.unknown

_1516537948.unknown

_1516537956.unknown

_1516537942.unknown

_1516537832.unknown

_1516537840.unknown

_1516537847.unknown

_1516537838.unknown

_1516537815.unknown

_1516537819.unknown

_1516537810.unknown

_1516537247.unknown

_1516537421.unknown

_1516537517.unknown

_1516537533.unknown

_1516537784.unknown

_1516537790.unknown

_1516537777.unknown

_1516537525.unknown

_1516537529.unknown

_1516537521.unknown

_1516537495.unknown

_1516537504.unknown

_1516537513.unknown

_1516537499.unknown

_1516537476.unknown

_1516537480.unknown

_1516537473.unknown

_1516537318.unknown

_1516537353.unknown

_1516537378.unknown

_1516537388.unknown

_1516537365.unknown

_1516537322.unknown

_1516537338.unknown

_1516537320.unknown

_1516537288.unknown

_1516537307.unknown

_1516537315.unknown

_1516537292.unknown

_1516537269.unknown

_1516537275.unknown

_1516537266.unknown

_1516537140.unknown

_1516537184.unknown

_1516537225.unknown

_1516537240.unknown

_1516537244.unknown

_1516537233.unknown

_1516537214.unknown

_1516537218.unknown

_1516537196.unknown

_1516537153.unknown

_1516537171.unknown

_1516537178.unknown

_1516537161.unknown

_1516537145.unknown

_1516537150.unknown

_1516537142.unknown

_1516534484.unknown

_1516537115.unknown

_1516537127.unknown

_1516537133.unknown

_1516537120.unknown

_1516535448.unknown

_1516537106.unknown

_1516534493.unknown

_1516534380.unknown

_1516534447.unknown

_1516534476.unknown

_1516534387.unknown

_1516534370.unknown

_1516534376.unknown

_1516534362.unknown

_1516534009.unknown

_1516534042.unknown

_1516534059.unknown

_1516534245.unknown

_1516534321.unknown

_1516534339.unknown

_1516534345.unknown

_1516534325.unknown

_1516534309.unknown

_1516534316.unknown

_1516534274.unknown

_1516534067.unknown

_1516534212.unknown

_1516534230.unknown

_1516534237.unknown

_1516534224.unknown

_1516534071.unknown

_1516534073.unknown

_1516534076.unknown

_1516534077.unknown

_1516534074.unknown

_1516534072.unknown

_1516534069.unknown

_1516534070.unknown

_1516534068.unknown

_1516534063.unknown

_1516534065.unknown

_1516534066.unknown

_1516534064.unknown

_1516534061.unknown

_1516534062.unknown

_1516534060.unknown

_1516534050.unknown

_1516534055.unknown

_1516534057.unknown

_1516534058.unknown

_1516534056.unknown

_1516534052.unknown

_1516534053.unknown

_1516534051.unknown

_1516534046.unknown

_1516534048.unknown

_1516534049.unknown

_1516534047.unknown

_1516534044.unknown

_1516534045.unknown

_1516534043.unknown

_1516534025.unknown

_1516534034.unknown

_1516534038.unknown

_1516534040.unknown

_1516534041.unknown

_1516534039.unknown

_1516534036.unknown

_1516534037.unknown

_1516534035.unknown

_1516534029.unknown

_1516534031.unknown

_1516534033.unknown

_1516534030.unknown

_1516534027.unknown

_1516534028.unknown

_1516534026.unknown

_1516534017.unknown

_1516534021.unknown

_1516534023.unknown

_1516534024.unknown

_1516534022.unknown

_1516534019.unknown

_1516534020.unknown

_1516534018.unknown

_1516534013.unknown

_1516534015.unknown

_1516534016.unknown

_1516534014.unknown

_1516534011.unknown

_1516534012.unknown

_1516534010.unknown

_1516533787.unknown

_1516533804.unknown

_1516534001.unknown

_1516534005.unknown

_1516534007.unknown

_1516534008.unknown

_1516534006.unknown

_1516534003.unknown

_1516534004.unknown

_1516534002.unknown

_1516533997.unknown

_1516533999.unknown

_1516534000.unknown

_1516533998.unknown

_1516533806.unknown

_1516533807.unknown

_1516533805.unknown

_1516533796.unknown

_1516533800.unknown

_1516533802.unknown

_1516533803.unknown

_1516533801.unknown

_1516533798.unknown

_1516533799.unknown

_1516533797.unknown

_1516533792.unknown

_1516533794.unknown

_1516533795.unknown

_1516533793.unknown

_1516533789.unknown

_1516533791.unknown

_1516533788.unknown

_1516533770.unknown

_1516533778.unknown

_1516533782.unknown

_1516533784.unknown

_1516533786.unknown

_1516533783.unknown

_1516533780.unknown

_1516533781.unknown

_1516533779.unknown

_1516533774.unknown

_1516533776.unknown

_1516533777.unknown

_1516533775.unknown

_1516533772.unknown

_1516533773.unknown

_1516533771.unknown

_1516533762.unknown

_1516533766.unknown

_1516533768.unknown

_1516533769.unknown

_1516533767.unknown

_1516533764.unknown

_1516533765.unknown

_1516533763.unknown

_1516533758.unknown

_1516533760.unknown

_1516533761.unknown

_1516533759.unknown

_1516533756.unknown

_1516533757.unknown

_1516533755.unknown

_1516533621.unknown

_1516533690.unknown

_1516533722.unknown

_1516533738.unknown

_1516533746.unknown

_1516533750.unknown

_1516533752.unknown

_1516533753.unknown

_1516533751.unknown

_1516533748.unknown

_1516533749.unknown

_1516533747.unknown

_1516533742.unknown

_1516533744.unknown

_1516533745.unknown

_1516533743.unknown

_1516533740.unknown

_1516533741.unknown

_1516533739.unknown

_1516533730.unknown

_1516533734.unknown

_1516533736.unknown

_1516533737.unknown

_1516533735.unknown

_1516533732.unknown

_1516533733.unknown

_1516533731.unknown

_1516533726.unknown

_1516533728.unknown

_1516533729.unknown

_1516533727.unknown

_1516533724.unknown

_1516533725.unknown

_1516533723.unknown

_1516533706.unknown

_1516533714.unknown

_1516533718.unknown

_1516533720.unknown

_1516533721.unknown

_1516533719.unknown

_1516533716.unknown

_1516533717.unknown

_1516533715.unknown

_1516533710.unknown

_1516533712.unknown

_1516533713.unknown

_1516533711.unknown

_1516533708.unknown

_1516533709.unknown

_1516533707.unknown

_1516533698.unknown

_1516533702.unknown

_1516533704.unknown

_1516533705.unknown

_1516533703.unknown

_1516533700.unknown

_1516533701.unknown

_1516533699.unknown

_1516533694.unknown

_1516533696.unknown

_1516533697.unknown

_1516533695.unknown

_1516533692.unknown

_1516533693.unknown

_1516533691.unknown

_1516533658.unknown

_1516533674.unknown

_1516533682.unknown

_1516533686.unknown

_1516533688.unknown

_1516533689.unknown

_1516533687.unknown

_1516533684.unknown

_1516533685.unknown

_1516533683.unknown

_1516533678.unknown

_1516533680.unknown

_1516533681.unknown

_1516533679.unknown

_1516533676.unknown

_1516533677.unknown

_1516533675.unknown

_1516533666.unknown

_1516533670.unknown

_1516533672.unknown

_1516533673.unknown

_1516533671.unknown

_1516533668.unknown

_1516533669.unknown

_1516533667.unknown

_1516533662.unknown

_1516533664.unknown

_1516533665.unknown

_1516533663.unknown

_1516533660.unknown

_1516533661.unknown

_1516533659.unknown

_1516533640.unknown

_1516533649.unknown

_1516533653.unknown

_1516533655.unknown

_1516533656.unknown

_1516533654.unknown

_1516533651.unknown

_1516533652.unknown

_1516533650.unknown

_1516533645.unknown

_1516533647.unknown

_1516533648.unknown

_1516533646.unknown

_1516533642.unknown

_1516533643.unknown

_1516533641.unknown

_1516533631.unknown

_1516533636.unknown

_1516533638.unknown

_1516533639.unknown

_1516533637.unknown

_1516533633.unknown

_1516533634.unknown

_1516533632.unknown

_1516533625.unknown

_1516533629.unknown

_1516533630.unknown

_1516533627.unknown

_1516533623.unknown

_1516533624.unknown

_1516533622.unknown

_1516533553.unknown

_1516533586.unknown

_1516533605.unknown

_1516533613.unknown

_1516533617.unknown

_1516533619.unknown

_1516533620.unknown

_1516533618.unknown

_1516533615.unknown

_1516533616.unknown

_1516533614.unknown

_1516533609.unknown

_1516533611.unknown

_1516533612.unknown

_1516533610.unknown

_1516533607.unknown

_1516533608.unknown

_1516533606.unknown

_1516533595.unknown

_1516533599.unknown

_1516533602.unknown

_1516533604.unknown

_1516533601.unknown

_1516533597.unknown

_1516533598.unknown

_1516533596.unknown

_1516533591.unknown

_1516533593.unknown

_1516533594.unknown

_1516533592.unknown

_1516533588.unknown

_1516533590.unknown

_1516533587.unknown

_1516533570.unknown

_1516533578.unknown

_1516533582.unknown

_1516533584.unknown

_1516533585.unknown

_1516533583.unknown

_1516533580.unknown

_1516533581.unknown

_1516533579.unknown

_1516533574.unknown

_1516533576.unknown

_1516533577.unknown

_1516533575.unknown

_1516533572.unknown

_1516533573.unknown

_1516533571.unknown

_1516533561.unknown

_1516533566.unknown

_1516533568.unknown

_1516533569.unknown

_1516533567.unknown

_1516533564.unknown

_1516533565.unknown

_1516533562.unknown

_1516533557.unknown

_1516533559.unknown

_1516533560.unknown

_1516533558.unknown

_1516533555.unknown

_1516533556.unknown

_1516533554.unknown

_1516533521.unknown

_1516533537.unknown

_1516533545.unknown

_1516533549.unknown

_1516533551.unknown

_1516533552.unknown

_1516533550.unknown

_1516533547.unknown

_1516533548.unknown

_1516533546.unknown

_1516533541.unknown

_1516533543.unknown

_1516533544.unknown

_1516533542.unknown

_1516533539.unknown

_1516533540.unknown

_1516533538.unknown

_1516533529.unknown

_1516533533.unknown

_1516533535.unknown

_1516533536.unknown

_1516533534.unknown

_1516533531.unknown

_1516533532.unknown

_1516533530.unknown

_1516533525.unknown

_1516533527.unknown

_1516533528.unknown

_1516533526.unknown

_1516533523.unknown

_1516533524.unknown

_1516533522.unknown

_1516533502.unknown

_1516533513.unknown

_1516533517.unknown

_1516533519.unknown

_1516533520.unknown

_1516533518.unknown

_1516533515.unknown

_1516533516.unknown

_1516533514.unknown

_1516533509.unknown

_1516533511.unknown

_1516533512.unknown

_1516533510.unknown

_1516533506.unknown

_1516533507.unknown

_1516533503.unknown

_1516533494.unknown

_1516533498.unknown

_1516533500.unknown

_1516533501.unknown

_1516533499.unknown

_1516533496.unknown

_1516533497.unknown

_1516533495.unknown

_1516533490.unknown

_1516533492.unknown

_1516533493.unknown

_1516533491.unknown

_1516533488.unknown

_1516533489.unknown

_1516533487.unknown

_1516533355.unknown

_1516533420.unknown

_1516533452.unknown

_1516533469.unknown

_1516533478.unknown

_1516533482.unknown

_1516533484.unknown

_1516533485.unknown

_1516533483.unknown

_1516533480.unknown

_1516533481.unknown

_1516533479.unknown

_1516533474.unknown

_1516533476.unknown

_1516533477.unknown

_1516533475.unknown

_1516533472.unknown

_1516533473.unknown

_1516533470.unknown

_1516533460.unknown

_1516533464.unknown

_1516533467.unknown

_1516533468.unknown

_1516533465.unknown

_1516533462.unknown

_1516533463.unknown

_1516533461.unknown

_1516533456.unknown

_1516533458.unknown

_1516533459.unknown

_1516533457.unknown

_1516533454.unknown

_1516533455.unknown

_1516533453.unknown

_1516533436.unknown

_1516533444.unknown

_1516533448.unknown

_1516533450.unknown

_1516533451.unknown

_1516533449.unknown

_1516533446.unknown

_1516533447.unknown

_1516533445.unknown

_1516533440.unknown

_1516533442.unknown

_1516533443.unknown

_1516533441.unknown

_1516533438.unknown

_1516533439.unknown

_1516533437.unknown

_1516533428.unknown

_1516533432.unknown

_1516533434.unknown

_1516533435.unknown

_1516533433.unknown

_1516533430.unknown

_1516533431.unknown

_1516533429.unknown

_1516533424.unknown

_1516533426.unknown

_1516533427.unknown

_1516533425.unknown

_1516533422.unknown

_1516533423.unknown

_1516533421.unknown

_1516533387.unknown

_1516533404.unknown

_1516533412.unknown

_1516533416.unknown

_1516533418.unknown

_1516533419.unknown

_1516533417.unknown

_1516533414.unknown

_1516533415.unknown

_1516533413.unknown

_1516533408.unknown

_1516533410.unknown

_1516533411.unknown

_1516533409.unknown

_1516533406.unknown

_1516533407.unknown

_1516533405.unknown

_1516533396.unknown

_1516533400.unknown

_1516533402.unknown

_1516533403.unknown

_1516533401.unknown

_1516533398.unknown

_1516533399.unknown

_1516533397.unknown

_1516533392.unknown

_1516533394.unknown

_1516533395.unknown

_1516533393.unknown

_1516533390.unknown

_1516533391.unknown

_1516533389.unknown

_1516533388.unknown

_1516533371.unknown

_1516533379.unknown

_1516533383.unknown

_1516533385.unknown

_1516533386.unknown

_1516533384.unknown

_1516533381.unknown

_1516533382.unknown

_1516533380.unknown

_1516533375.unknown

_1516533377.unknown

_1516533378.unknown

_1516533376.unknown

_1516533373.unknown

_1516533374.unknown

_1516533372.unknown

_1516533363.unknown

_1516533367.unknown

_1516533369.unknown

_1516533370.unknown

_1516533368.unknown

_1516533365.unknown

_1516533366.unknown

_1516533364.unknown

_1516533359.unknown

_1516533361.unknown

_1516533362.unknown

_1516533360.unknown

_1516533357.unknown

_1516533358.unknown

_1516533356.unknown

_1516533289.unknown

_1516533321.unknown

_1516533338.unknown

_1516533347.unknown

_1516533351.unknown

_1516533353.unknown

_1516533354.unknown

_1516533352.unknown

_1516533349.unknown

_1516533350.unknown

_1516533348.unknown

_1516533342.unknown

_1516533344.unknown

_1516533346.unknown

_1516533343.unknown

_1516533340.unknown

_1516533341.unknown

_1516533339.unknown

_1516533329.unknown

_1516533333.unknown

_1516533335.unknown

_1516533336.unknown

_1516533334.unknown

_1516533331.unknown

_1516533332.unknown

_1516533330.unknown

_1516533325.unknown

_1516533327.unknown

_1516533328.unknown

_1516533326.unknown

_1516533323.unknown

_1516533324.unknown

_1516533322.unknown

_1516533305.unknown

_1516533313.unknown

_1516533317.unknown

_1516533319.unknown

_1516533320.unknown

_1516533318.unknown

_1516533315.unknown

_1516533316.unknown

_1516533314.unknown

_1516533309.unknown

_1516533311.unknown

_1516533312.unknown

_1516533310.unknown

_1516533307.unknown

_1516533308.unknown

_1516533306.unknown

_1516533297.unknown

_1516533301.unknown

_1516533303.unknown

_1516533304.unknown

_1516533302.unknown

_1516533299.unknown

_1516533300.unknown

_1516533298.unknown

_1516533293.unknown

_1516533295.unknown

_1516533296.unknown

_1516533294.unknown

_1516533291.unknown

_1516533292.unknown

_1516533290.unknown

_1516533255.unknown

_1516533272.unknown

_1516533280.unknown

_1516533285.unknown

_1516533287.unknown

_1516533288.unknown

_1516533286.unknown

_1516533283.unknown

_1516533284.unknown

_1516533282.unknown

_1516533276.unknown

_1516533278.unknown

_1516533279.unknown

_1516533277.unknown

_1516533274.unknown

_1516533275.unknown

_1516533273.unknown

_1516533264.unknown

_1516533268.unknown

_1516533270.unknown

_1516533271.unknown

_1516533269.unknown

_1516533266.unknown

_1516533267.unknown

_1516533265.unknown

_1516533260.unknown

_1516533262.unknown

_1516533263.unknown

_1516533261.unknown

_1516533258.unknown

_1516533259.unknown

_1516533257.unknown

_1516533239.unknown

_1516533247.unknown

_1516533251.unknown

_1516533253.unknown

_1516533254.unknown

_1516533252.unknown

_1516533249.unknown

_1516533250.unknown

_1516533248.unknown

_1516533243.unknown

_1516533245.unknown

_1516533246.unknown

_1516533244.unknown

_1516533241.unknown

_1516533242.unknown

_1516533240.unknown

_1516533231.unknown

_1516533235.unknown

_1516533237.unknown

_1516533238.unknown

_1516533236.unknown

_1516533233.unknown

_1516533234.unknown

_1516533232.unknown

_1516533227.unknown

_1516533229.unknown

_1516533230.unknown

_1516533228.unknown

_1516533225.unknown

_1516533226.unknown

_1516533224.unknown

