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Maximum Likelihood Estimation

14.1
Introduction

The generalized method of moments discussed in Chapter 13 and the semiparametric, nonparametric, and Bayesian estimators discussed in Chapters 12 and 16 are becoming widely used by model builders. Nonetheless, the maximum likelihood estimator discussed in this chapter remains the preferred estimator in many more settings than the others listed. As such, we focus our discussion of generally applied estimation methods on this technique. Sections 14.2 through 14.6 present basic statistical results for estimation and hypothesis testing based on the maximum likelihood principle. Sections 14.7 and 14.8 present two extensions of the method, two-step estimation and pseudo maximum likelihood estimation. After establishing the general results for this method of estimation, we will then apply them to the more familiar setting of econometric models. The applications presented in Section 14.9 and 14.10 apply the maximum likelihood method to most of the models in the preceding chapters and several others that illustrate different uses of the technique.

14.2
The Likelihood Function and Identification of the Parameters
The probability density function, or pdf, for a random variable, 
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, conditioned on a set of parameters, , is denoted 
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 This function identifies the data-generating process that underlies an observed sample of data and, at the same time, provides a mathematical description of the data that the process will produce. The joint density of 
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 independent and identically distributed (i.i.d.) observations from this process is the product of the individual densities;
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(14-1)

This joint density is the likelihood function, defined as a function of the unknown parameter vector, 
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, where y is used to indicate the collection of sample data. Note that we write the joint density as a function of the data conditioned on the parameters whereas when we form the likelihood function, we will write this function in reverse, as a function of the parameters, conditioned on the data. Though the two functions are the same, it is to be emphasized that the likelihood function is written in this fashion to highlight our interest in the parameters and the information about them that is contained in the observed data. However, it is understood that the likelihood function is not meant to represent a probability density for the parameters as it is in Chapter 16. In this classical estimation framework, the parameters are assumed to be fixed constants that we hope to learn about from the data.

It is usually simpler to work with the log of the likelihood function:
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Again, to emphasize our interest in the parameters, given the observed data, we denote this function 
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. The likelihood function and its logarithm, evaluated at 
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, are sometimes denoted simply 
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It will usually be necessary to generalize the concept of the likelihood function to allow the density to depend on other conditioning variables. To jump immediately to one of our central applications, suppose the disturbance in the classical linear regression model is normally distributed. Then, conditioned on its specific 
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 and variance 
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. That means that the observed random variables are not i.i.d.; they have different means. Nonetheless, the observations are independent, and as we will examine in closer detail,
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where X is the 
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 matrix of data with 
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th row equal to 
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The rest of this chapter will be concerned with obtaining estimates of the parameters, 
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, and in testing hypotheses about them and about the data-generating process. Before we begin that study, we consider the question of whether estimation of the parameters is possible at all—the question of identification. Identification is an issue related to the formulation of the model. The issue of identification must be resolved before estimation can even be considered. The question posed is essentially this: Suppose we had an infinitely large sample—that is, for current purposes, all the information there is to be had about the parameters. Could we uniquely determine the values of 
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 from such a sample? As will be clear shortly, the answer is sometimes no.

Definition 14.1  Identification
The parameter vector 
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 is identified (estimable) if for any other parameter vector, 
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This result will be crucial at several points in what follows. We consider two examples, the first of which will be very familiar to you by now.

Example 14.1  Identification of Parameters
For the regression model specified in (14-3), suppose that there is a nonzero vector a such that 
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. Then there is another “parameter” vector, 
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. You can see in (14-3) that if this is the case, then the log-likelihood is the same whether it is evaluated at β
 or at γ
.  As such, it is not possible to consider estimation of 
β  in this model because 
β  cannot be distinguished from
 γ. This is the case of perfect collinearity in the regression model, which we ruled out when we first proposed the linear regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider a model in which identification is secured by the specification of the parameters in the model. (We will study this model in detail in Chapter 17.) Consider a simple form of the regression model considered earlier, 
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, where 
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 has a normal distribution with zero mean and variance 
[image: image38.wmf]2

s

. To put the model in a context, consider a consumer’s purchases of a large commodity such as a car where 
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 is the consumer’s income and 
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 is the difference between what the consumer is willing to pay for the car, pi*
 (their “reservation price”) and the price tag on the car, pi.
 Suppose rather than observing 
pi* or pi
, we observe only whether the consumer actually purchases the car, which, we assume, occurs when yi = pi* - pi  
is positive. Collecting this information, our model states that they will purchase the car if yi > 0
 and not purchase it if yi < 0.
 Let us form the likelihood function for the observed data, which are purchase (or not) and income. The random variable in this model is “purchase” or “not purchase”—there are only two outcomes. The probability of a purchase is
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where 
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 has a standard normal distribution. The probability of not purchase is just one minus this probability. The likelihood function is
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We need go no further to see that the parameters of this model are not identified. If 
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 are all multiplied by the same nonzero constant, regardless of what it is, then Prob(purchase) is unchanged, 1 
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 Prob(purchase) is also, and the likelihood function does not change. This model requires a normalization. The one usually used is 
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, but some authors [e.g., Horowitz (1993) and Lewbel (2014)] have used 
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 or β2 = 1, instead.
14.3
Efficient Estimation: The Principle of

Maximum Likelihood
The principle of maximum likelihood provides a means of choosing an asymptotically efficient estimator for a parameter or a set of parameters. The logic of the technique is easily illustrated in the setting of a discrete distribution. Consider a random sample of the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1. The density for each observation is
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Because the observations are independent, their joint density, which is the likelihood for this sample, is
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The last result gives the probability of observing this particular sample, assuming that a Poisson distribution with as yet unknown parameter 
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 generated the data. What value of 
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 would make this sample most probable? Figure 14.1 plots this function for various values of 
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. It has a single 
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                       Figure 14.1  Likelihood and Log-Likelihood Functions for a Poisson Distribution.
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, which would be the maximum likelihood estimate, or MLE, of 
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Consider maximizing 
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. Because the log function is monotonically increasing and easier to work with, we usually maximize 
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For the assumed sample of observations,

[image: image69.wmf]ln(|)1020ln12.242,

L

qqq

=-+-

y




[image: image70.wmf]ln(|)20

ˆ

1002,

dL

d

q

q

qq

=-+=Þ=

y


and

[image: image71.wmf]2

22

ln(|)20

0this is a maximum. 

dL

d

q

qq

-

=<Þ

y


The solution is the same as before. Figure 14.1 also plots the log of 
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 to illustrate the result.

The reference to the probability of observing the given sample is not exact in a continuous distribution, because a particular sample has probability zero. Nonetheless, the principle is the same. The values of the parameters that maximize 
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This is called the likelihood equation. The general result then is that the MLE is a root of the likelihood equation. The application to the parameters of the data generating process for a discrete random variable are suggestive that maximum likelihood is a “good” use of the data. It remains to establish this as a general principle. We turn to that issue in the next section.

Example 14.2  Log-Likelihood Function and Likelihood Equations for the Normal Distribution
In sampling from a normal distribution with mean 
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 and variance 
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To solve the likelihood equations, multiply (14-6) by 
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 and solve for 
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14.4
Properties of Maximum Likelihood Estimators
Maximum likelihood estimators (MLEs) are most attractive because of their large-sample or asymptotic properties.

Definition 14.2  Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally distributed (CAN), and has an asymptotic covariance matrix that is not larger than the asymptotic covariance matrix of any other consistent, asymptotically normally distributed estimator.2
If certain regularity conditions are met, the MLE will have these properties. The finite sample properties are sometimes less than optimal. For example, the MLE may be biased; the MLE of 
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 in Example 14.2 is biased downward. The occasional statement that the properties of the MLE are only optimal in large samples is not true, however. It can be shown that when sampling is from an exponential family of distributions (see Definition 13.1), there will exist sufficient statistics. If so, MLEs will be functions of them, which means that when minimum variance unbiased estimators exist, they will be MLEs. [See Stuart and Ord (1989).] Most applications in econometrics do not involve exponential families, so the appeal of the MLE remains primarily based on its asymptotic properties.

We use the following notation: 
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 is the maximum likelihood estimator; 
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 denotes the true value of the parameter vector; 
[image: image93.wmf]q

 denotes another possible value of the parameter vector, not the MLE and not necessarily the true values. Expectation based on the true values of the parameters is denoted 
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Theorem 14.1
Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following asymptotic properties:
M1
Consistency: 
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Asymptotic normality: 
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M3.
Asymptotic efficiency: 
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 is asymptotically efficient and achieves the Cramér–Rao lower bound for consistent estimators, given in M2 and Theorem C.2.
M4.
Invariance: The maximum likelihood estimator of 
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14.4.1
REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability density functions. We assume that 
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 and that the following regularity conditions hold. [Our statement of these is informal. A more rigorous treatment may be found in Stuart and Ord (1989) or Davidson and MacKinnon (2004).]
Definition 14.3  Regularity Conditions
R1.
The first three derivatives of 
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 are continuous and finite for almost all 
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. This condition ensures the existence of a certain Taylor series approximation to and the finite variance of the derivatives of 
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R2.
The conditions necessary to obtain the expectations of the first and second derivatives of 
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R3.
For all values of 
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 is less than a function that has a finite expectation. This condition will allow us to truncate the Taylor series.
With these regularity conditions, we will obtain the following fundamental characteristics of 
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: D1 is simply a consequence of the definition of the likelihood function. D2 leads to the moment condition which defines the maximum likelihood estimator. On the one hand, the MLE is found as the maximizer of a function, which mandates finding the vector that equates the gradient to zero. On the other, D2 is a more fundamental relationship that places the MLE in the class of generalized method of moments estimators. D3 produces what is known as the information matrix equality. This relationship shows how to obtain the asymptotic covariance matrix of the MLE.
14.4.2
PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition 14.3 have three properties that are used in establishing the properties of maximum likelihood estimators:
Theorem 14.2
Moments of the Derivatives of the Log-Likelihood
D1.
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 are all random samples of random variables. This statement follows from our assumption of random sampling. The notation 
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. Condition D1 is simply a consequence of the definition of the density.
D2.
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For the moment, we allow the range of 
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 to depend on the parameters; 
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Now, differentiate this expression with respect to 
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. Leibnitz’s theorem gives
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If the second and third terms go to zero, then we may interchange the operations of differentiation and integration. The necessary condition is that 
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. (Note that the uniform distribution suggested earlier violates this condition.) Sufficient conditions are that the range of the observed random variable, 
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 or that the density is zero at the terminal points. This condition, then, is regularity condition R2. The latter is usually assumed, and we will assume it in what follows. So,
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This proves D2.

Because we may interchange the operations of integration and differentiation, we differentiate under the integral once again to obtain
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But
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and the integral of a sum is the sum of integrals. Therefore,
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The left-hand side of the equation is the negative of the expected second derivatives matrix. The right-hand side is the expected square (outer product) of the first derivative vector. But, because this vector has expected value 0 (we just showed this), the right-hand side is the variance of the first derivative vector, which proves D3:
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14.4.3
THE LIKELIHOOD EQUATION

The log-likelihood function is
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The first derivative vector, or score vector, is
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Because we are just adding terms, it follows from D1 and D2 that at 
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which is the likelihood equation mentioned earlier.

14.4.4
THE INFORMATION MATRIX EQUALITY

The Hessian of the log-likelihood is
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Evaluating once again at 
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and, because of D1, dropping terms with unequal subscripts we obtain
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so that
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(14-11)
This very useful result is known as the information matrix equality. It states that the variance of the first derivative of ln L equals the negative of the second derivative.
14.4.5
ASYMPTOTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATOR
We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs of these results require some fairly intricate mathematics. Two widely cited derivations are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise, we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and indicate where it will be necessary to extend the derivation if it were to be fully general.

14.4.5.a
CONSISTENCY
We assume that 
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Consider, then, the random variable 
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. Because the log function is strictly concave, from Jensen’s Inequality (Theorem D.13.), we have
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The expectation on the right-hand side is exactly equal to one, as
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is simply the integral of a joint density. So, the right hand side of (14-13) equals zero. Divide the left hand side of (14-13) by 
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This produces a central result:
Theorem 14.3
Likelihood Inequality
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In words, the expected value of the log-likelihood is maximized at the true value of the parameters.

For any 
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is the sample mean of 
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? If there is a single parameter and the likelihood function is one to one, then clearly so. For more general cases, this requires a further characterization of the likelihood function. If the likelihood is strictly continuous and twice differentiable, which we assumed in the regularity conditions, and if the parameters of the model are identified which we assumed at the beginning of this discussion, then yes, it does, so we have the result.

This is a heuristic proof. As noted, formal presentations appear in more advanced treatises than this one. We should also note, we have assumed at several points that sample means converge to their population expectations. This is likely to be true for the sorts of applications usually encountered in econometrics, but a fully general set of results would look more closely at this condition. Second, we have assumed i.i.d. sampling in the preceding—that is, the density for 
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14.4.5.b     ASYMPTOTIC NORMALITY
At the maximum likelihood estimator, the gradient of the log-likelihood equals zero (by definition), so 
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(This is the sample statistic, not the expectation.) Expand this set of equations in a Taylor series around the true parameters 
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The K rows of the Hessian are each evaluated at a point 
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We may apply the Lindeberg–Levy central limit theorem (D.18) to 
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or
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which gives the asymptotic distribution of the MLE:
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This last step completes M2.

Example 14.3  Information Matrix for the Normal Distribution
For the likelihood function in Example 14.2, the second derivatives are
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For the asymptotic variance of the maximum likelihood estimator, we need the expectations of these derivatives. The first is nonstochastic, and the third has expectation 0, as 
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. Collecting these in the information matrix, reversing the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum likelihood estimators:
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14.4.5.c
ASYMPTOTIC EFFICIENCY
Theorem C.2 provides the lower bound for the variance of an unbiased estimator. Because the asymptotic variance of the MLE achieves this bound, it seems natural to extend the result directly. There is, however, a loose end in that the MLE is almost never unbiased. As such, we need an asymptotic version of the bound, which was provided by Cramér (1948) and Rao (1945) (hence the name):

Theorem 14.4
Cramér–Rao Lower Bound
Assuming that the density of 
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The asymptotic variance of the MLE is, in fact, equal to the Cramér–Rao Lower Bound for the variance of a consistent, asymptotically normally distributed estimator, so this completes the argument.

14.4.5.d
Invariance

Last, the invariance property, M4, is a mathematical result of the method of computing MLEs; it is not a statistical result as such. More formally, the MLE is invariant to one-to-one transformations of 
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. Any transformation that is not one to one either renders the model inestimable if it is one to many or imposes restrictions if it is many to one. Some theoretical aspects of this feature are discussed in Davidson and MacKinnon (2004, pp. 446, 539–540). For the practitioner, the result can be extremely useful. For example, when a parameter appears in a likelihood function in the form 
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The MLE for 
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 is clearly still 
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which has solution 
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, as expected. There is a second implication. If it is desired to analyze a function of an MLE, then the function of 
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 will, itself, be the MLE.

14.4.5.e
Conclusion

These four properties explain the prevalence of the maximum likelihood technique in econometrics. The second greatly facilitates hypothesis testing and the construction of interval estimates. The third is a particularly powerful result. The MLE has the minimum variance achievable by a consistent and asymptotically normally distributed estimator.

14.4.6
ESTIMATING THE ASYMPTOTIC VARIANCE OF THE

MAXIMUM LIKELIHOOD ESTIMATOR
The asymptotic covariance matrix of the maximum likelihood estimator is a matrix of parameters that must be estimated (i.e., it is a function of the 
[image: image231.wmf]0

q

 that is being estimated). If the form of the expected values of the second derivatives of the log-likelihood is known, then
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can be evaluated at 
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 to estimate the covariance matrix for the MLE. This estimator will rarely be available. The second derivatives of the log-likelihood will almost always be complicated nonlinear functions of the data whose exact expected values will be unknown. There are, however, two alternatives. A second estimator is
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This estimator is computed simply by evaluating the actual (not expected) second derivatives matrix of the log-likelihood function at the maximum likelihood estimates. It is straightforward to show that this amounts to estimating the expected second derivatives of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can be used to justify the computation. The only shortcoming of this estimator is that the second derivatives can be complicated to derive and program for a computer. A third estimator based on result D3 in Theorem 14.2, that the expected second derivatives matrix is the covariance matrix of the first derivatives vector, is
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where 
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is an 
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 matrix with 
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th row equal to the transpose of the ith vector of derivatives in the terms of the log-likelihood function. For a single parameter, this estimator is just the reciprocal of the sum of squares of the first derivatives. This estimator is extremely convenient, in most cases, because it does not require any computations beyond those required to solve the likelihood equation. It has the added virtue that it is always nonnegative definite. For some extremely complicated log-likelihood functions, sometimes because of rounding error, the observed Hessian can be indefinite, even at the maximum of the function. The estimator in (14-18) is known as the BHHH estimator
 and the outer product of gradients, or OPG, estimator.

None of the three estimators given here is preferable to the others on statistical grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will be the easiest to compute. One caution is in order. As the following example illustrates, these estimators can give different results in a finite sample. This is an unavoidable finite sample problem that can, in some cases, lead to different statistical conclusions. The example is a case in point. Using the usual procedures, we would reject the hypothesis that 
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 if either of the first two variance estimators were used, but not if the third were used. The estimator in (14-16) is usually unavailable, as the exact expectation of the Hessian is rarely known. Available evidence suggests that in small or moderate-sized samples, (14-17) (the Hessian) is preferable.

Example 14.4  Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form
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where 
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education. To find the maximum likelihood estimate of 
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The likelihood equation is
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which has the solution 
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(14-20)
Because the function 
[image: image250.wmf]()

ii

Eyx

b

=+

 is known, the exact form of the expected value in (14-20) is known. Inserting 
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 in (14-20) and taking the negative of the reciprocal gives the second estimate, 46.16337. Finally, by computing the reciprocal of the sum of squares of first derivatives of the densities evaluated at 
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we obtain the BHHH estimate, 100.5116.
14.5
CONDITIONAL LIKELIHOODS AND ECONOMETRIC

MODELS
All of the preceding results form the statistical underpinnings of the technique of maximum likelihood estimation. But, for our purposes, a crucial element is missing. We have done the analysis in terms of the density of an observed random variable and a vector of parameters, 
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, so the results must be extended. A workable approach is to treat this modeling framework the same as the one in Chapter 4, where we considered the large sample properties of the linear regression model. Thus, we will allow 
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where any nonstochastic elements in 
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 such as a time trend or dummy variable are being carried as constants. To proceed, we will assume as we did before that the process generating 
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 takes place outside the model of interest. For present purposes, that means that the parameters that appear in 
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As long as 
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 and 
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 have no elements in common and no restrictions connect them (such as 
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), then the two parts of the log-likelihood may be analyzed separately. In most cases, the marginal distribution of 
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 will be of secondary (or no) interest.

Asymptotic results for the maximum conditional likelihood estimator must now account for the presence of 
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and its gradient with respect to 
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 will converge in probability to their population expectations. We will also need to invoke central limit theorems to establish the asymptotic normality of the gradient of the log-likelihood, so as to be able to characterize the MLE itself. We will leave it to more advanced treatises such as Amemiya (1985) and Newey and McFadden (1994) to establish specific conditions and fine points that must be assumed to claim the “usual” properties for maximum likelihood estimators. For present purposes (and the vast bulk of empirical applications), the following minimal assumptions should suffice:

(
Parameter space. Parameter spaces that have gaps and nonconvexities in them will generally disable these procedures. An estimation problem that produces this failure is that of “estimating” a parameter that can take only one among a discrete set of values. For example, this set of procedures does not include “estimating” the timing of a structural change in a model. The likelihood function must be a continuous function of a convex parameter space. We allow unbounded parameter spaces, such as 
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 in the regression model, for example.

(
Identifiability. Estimation must be feasible. This is the subject of Definition 14.1 concerning identification and the surrounding discussion.

(
Well-behaved data. Laws of large numbers apply to sample means involving the data and some form of central limit theorem (generally Lyapounov) can be applied to the gradient. Ergodic stationarity is broad enough to encompass any situation that is likely to arise in practice, though it is probably more general than we need for most applications, because we will not encounter dependent observations specifically until later in the book. The definitions in Chapter 4 are assumed to hold generally.
With these in place, analysis is essentially the same in character as that we used in the linear regression model in Chapter 4 and follows precisely along the lines of Section 12.5.

14.6
HYPOTHESIS AND SPECIFICATION TESTS AND FIT

MEASURES
The next several sections will discuss the most commonly used test procedures: the likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of these procedures is given in Godfrey (1988).] We consider maximum likelihood estimation of a parameter 
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 The figure plots the log-likelihood function 
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. There are three approaches to testing the hypothesis suggested in the figure:
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Figure 14.2  Three Bases for Hypothesis Tests.

(
Likelihood ratio test. If the restriction 
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 is valid, then imposing it should not lead to a large reduction in the log-likelihood function. Therefore, we base the test on the difference, 
[image: image287.wmf]lnln

UR

LL

-

, where 
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 is the value of the likelihood function at the unconstrained value of 
[image: image289.wmf]q

 and 
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 is the value of the likelihood function at the restricted estimate.
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Wald test. If the restriction is valid, then 
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 should be close to zero because the MLE is consistent. Therefore, the test is based on 
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. We reject the hypothesis if this value is significantly different from zero.

(
Lagrange multiplier test. If the restriction is valid, then the restricted estimator should be near the point that maximizes the log-likelihood. Therefore, the slope of the log-likelihood function should be near zero at the restricted estimator. The test is based on the slope of the log-likelihood at the point where the function is maximized subject to the restriction.
These three tests are asymptotically equivalent under the null hypothesis, but they can behave rather differently in a small sample. Unfortunately, their small-sample properties are unknown, except in a few special cases. As a consequence, the choice among them is typically made on the basis of ease of computation. The likelihood ratio test requires calculation of both restricted and unrestricted estimators. If both are simple to compute, then this way to proceed is convenient. The Wald test requires only the unrestricted estimator, and the Lagrange multiplier test requires only the restricted estimator. In some problems, one of these estimators may be much easier to compute than the other. For example, a linear model is simple to estimate but becomes nonlinear and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic might be preferable. Alternatively, restrictions sometimes amount to the removal of nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

14.6.1
THE LIKELIHOOD RATIO TEST

Let 
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 be a vector of parameters to be estimated, and let 
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 specify some sort of restriction on these parameters. Let 
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 be the constrained maximum likelihood estimator. If 
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 are the likelihood functions evaluated at these two estimates, then the likelihood ratio is
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This function must be between zero and one. Both likelihoods are positive, and 
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. (A restricted optimum is never superior to an unrestricted one.) If 
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 is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from a sample of 10 from a Poisson population at the beginning of Section 14.3, we found the MLE of the parameter 
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 to be 2. At this value, the likelihood, which is the probability of observing the sample we did, is 
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, which is, as expected, smaller. This particular sample is somewhat less probable under the hypothesis.

The formal test procedure is based on the following result.

Theorem 14.5
Limiting Distribution of the Likelihood Ratio Test Statistic
Under regularity and under 
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 is chi-squared, with degrees of freedom equal to the number of restrictions imposed.
The null hypothesis is rejected if this value exceeds the appropriate critical value from the chi-squared tables. Thus, for the Poisson example,
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This chi-squared statistic with one degree of freedom is not significant at any conventional level, so we would not reject the hypothesis that 
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 on the basis of this test.

It is tempting to use the likelihood ratio test to test a simple null hypothesis against a simple alternative. For example, we might be interested in the Poisson setting in testing 
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. But the test cannot be used in this fashion. The degrees of freedom of the chi-squared statistic for the likelihood ratio test equals the reduction in the number of dimensions in the parameter space that results from imposing the restrictions. In testing a simple null hypothesis against a simple alternative, this value is zero.
 Second, one sometimes encounters an attempt to test one distributional assumption against another with a likelihood ratio test; for example, a certain model will be estimated assuming a normal distribution and then assuming a 
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 distribution. The ratio of the two likelihoods is then compared to determine which distribution is preferred. This comparison is also inappropriate. The parameter spaces, and hence the likelihood functions of the two cases, are unrelated.

14.6.2
THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation of both the restricted and unrestricted parameter vectors. In complex models, one or the other of these estimates may be very difficult to compute. Fortunately, there are two alternative testing procedures, the Wald test and the Lagrange multiplier test, that circumvent this problem. Both tests are based on an estimator that is asymptotically normally distributed.

These two tests are based on the distribution of the full rank quadratic form considered in Section B.11.6. Specifically,
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In the setting of a hypothesis test, under the hypothesis that 
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, the quadratic form has the chi-squared distribution. If the hypothesis that 
[image: image317.wmf]()

E

=

x

m

 is false, however, then the quadratic form just given will, on average, be larger than it would be if the hypothesis were true.
 This condition forms the basis for the test statistics discussed in this and the next section.

Let 
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 be the vector of parameter estimates obtained without restrictions. We hypothesize a set of restrictions
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If the restrictions are valid, then at least approximately 
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 should satisfy them. If the hypothesis is erroneous, however, then 
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 should be farther from 0 than would be explained by sampling variability alone. The device we use to formalize this idea is the Wald test.
Theorem 14.6  Limiting Distribution of the Wald Test Statistic
The Wald statistic is
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Under 
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 has a limiting chi-squared distribution with degrees of freedom equal to the number of restrictions [i.e., the number of equations in 
[image: image325.wmf]ˆ

()

-=

cq0

q

]. A derivation of the limiting distribution of the Wald statistic appears in Theorem 5.1.
This test is analogous to the chi-squared statistic in (14-22) if 
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 is normally distributed with the hypothesized mean of 0. A large value of 
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 leads to rejection of the hypothesis. Note, finally, that 
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 only requires computation of the unrestricted model. One must still compute the covariance matrix appearing in the preceding quadratic form. This result is the variance of a possibly nonlinear function, which we treated earlier.
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That is, C is the 
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 matrix whose jth row is the derivatives of the jth constraint with respect to the 
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 elements of 
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. A common application occurs in testing a set of linear restrictions.

For testing a set of linear restrictions 
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The degrees of freedom is the number of rows in R.

If 
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 is a single restriction, then the Wald test will be the same as the test based on the confidence interval developed previously. If the test is
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then the earlier test is based on
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where 
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 is the estimated asymptotic standard error. The test statistic is compared to the appropriate value from the standard normal table. The Wald test will be based on
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Here 
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 has a limiting chi-squared distribution with one degree of freedom, which is the distribution of the square of the standard normal test statistic in (14-25).

To summarize, the Wald test is based on measuring the extent to which the unrestricted estimates fail to satisfy the hypothesized restrictions. There are two shortcomings of the Wald test. First, it is a pure significance test against the null hypothesis, not necessarily for a specific alternative hypothesis. As such, its power may be limited in some settings. In fact, the test statistic tends to be rather large in applications. The second shortcoming is not shared by either of the other test statistics discussed here. The Wald statistic is not invariant to the formulation of the restrictions. For example, for a test of the hypothesis that a function 
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 would use a statistic based on the variance of this nonlinear function. An alternative approach would be to analyze the linear restriction 
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, which is an equivalent, but linear, restriction. The Wald statistics for these two tests could be different and might lead to different inferences. These two shortcomings have been widely viewed as compelling arguments against use of the Wald test. But, in its favor, the Wald test does not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange multiplier tests. The recent econometrics literature is replete with applications that are based on distribution free estimation procedures, such as the GMM method. As such, in recent years, the Wald test has enjoyed a redemption of sorts.

14.6.3
THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score) test. It is based on the restricted model instead of the unrestricted model. Suppose that we maximize the log-likelihood subject to the set of constraints 
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The solution to the constrained maximization problem is the root of
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where 
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 is the transpose of the derivatives matrix in the second line of (14-23). If the restrictions are valid, then imposing them will not lead to a significant difference in the maximized value of the likelihood function. In the first-order conditions, the meaning is that the second term in the derivative vector will be small. In particular, 
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 will be small. We could test this directly, that is, test 
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, which leads to the Lagrange multiplier test. There is an equivalent simpler formulation, however. At the restricted maximum, the derivatives of the log-likelihood function are
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If the restrictions are valid, at least within the range of sampling variability, then 
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. That is, the derivatives of the log-likelihood evaluated at the restricted parameter vector will be approximately zero. The vector of first derivatives of the log-likelihood is the vector of efficient scores. Because the test is based on this vector, it is called the score test as well as the Lagrange multiplier test. The variance of the first derivative vector is the information matrix, which we have used to compute the asymptotic covariance matrix of the MLE. The test statistic is based on reasoning analogous to that underlying the Wald test statistic.

Theorem 14.7  Limiting Distribution of the Lagrange Multiplier Statistic
The Lagrange multiplier test statistic is

[image: image357.wmf]1

ˆˆ

ln()ln()

ˆ

LM[()].

ˆˆ

RR

R

RR

LL

-

¢

æö

¶¶

=

ç÷

ç÷

¶¶

èø

æö

ç÷

ç÷

èø

I

qq

q

qq


Under the null hypothesis, LM has a limiting chi-squared distribution with degrees of freedom equal to the number of restrictions. All terms are computed at the restricted estimator.
The LM statistic has a useful form. Let 
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where 
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 and i is a column of 1s. If we use the BHHH (outer product of gradients) estimator in (14-18) to estimate the Hessian, then 
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 times the uncentered squared multiple correlation coefficient in a linear regression of a column of 1s on the derivatives of the log-likelihood function computed at the restricted estimator. We will encounter this result in various forms at several points in the book.
14.6.4
AN APPLICATION OF THE LIKELIHOOD-BASED TEST

PROCEDURES
Consider, again, the data in Example C.1. In Example 14.4, the parameter 
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was estimated by maximum likelihood. For convenience, let 
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. This exponential density is a restricted form of a more general gamma distribution,
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The restriction is 
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 We consider testing the hypothesis
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using the various procedures described previously. The log-likelihood and its derivatives are
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The three estimators of the asymptotic covariance matrix produce notably different results:
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Table 14.1  Maximum Likelihood Estimates

	Quantity 
	Unrestricted Estimate a
	Restricted Estimate
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[image: image395.wmf]ln

L

 
	
[image: image396.wmf]-

82.91605 
	
[image: image397.wmf]-

88.43626 

	
[image: image398.wmf]ln/

L

b

¶¶

 
	0.0000 
	0.0000 

	
[image: image399.wmf]ln/

L

r

¶¶

 
	0.0000 
	7.9145 

	
[image: image400.wmf]22

ln/

L

b

¶¶

 
	
[image: image401.wmf]-

0.85570 
	
[image: image402.wmf]-

0.02166 

	
[image: image403.wmf]22

ln/

L

r

¶¶

 
	
[image: image404.wmf]-

7.4592 
	
[image: image405.wmf]-

32.8987 

	
[image: image406.wmf]2

ln/

L

br

¶¶¶

 
	
[image: image407.wmf]-

2.2420 
	
[image: image408.wmf]-

0.66891


aEstimated asymptotic standard errors based on V are given in parentheses.
Given the small sample size, the differences are to be expected. Nonetheless, the striking difference of the BHHH estimator is typical of its erratic performance in small samples.
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Confidence interval test: A 95 percent confidence interval for 
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Likelihood ratio test: The LR statistic is 
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. The table value for the test, with one degree of freedom, is 3.842. The computed value is larger than this critical value, so the hypothesis is again rejected.
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Wald test: The Wald test is based on the unrestricted estimates. For this restriction, 
[image: image413.wmf]()1

cq

r

-=-

q

, 
[image: image414.wmf]ˆˆ

()/1

dcd

rr

=

, 
[image: image415.wmf]ˆˆ

Est. Asy. Var[ ()]Est. Asy. Var[ ]

cq

rr

-==

 
[image: image416.wmf]0.6309

, so 
[image: image417.wmf]2

(3.15171)/[0.6309]7.3384

W

=-=

. The critical value is the same as the previous one. Hence, 
[image: image418.wmf]0

H

 is once again rejected. Note that the Wald statistic is the square of the corresponding test statistic that would be used in the confidence interval test, 
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(
Lagrange multiplier test: The Lagrange multiplier test is based on the restricted estimators. The estimated asymptotic covariance matrix of the derivatives used to compute the statistic can be any of the three estimators discussed earlier. The BHHH estimator, 
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The conclusion is the same as before. Note that the same computation done using 
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 rather than 
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 produces a value of 5.1162. As before, we observe substantial small sample variation produced by the different estimators.
The latter three test statistics have substantially different values. It is possible to reach different conclusions, depending on which one is used. For example, if the test had been carried out at the 1 percent level of significance instead of 5 percent and LM had been computed using V, then the critical value from the chi-squared statistic would have been 6.635 and the hypothesis would not have been rejected by the LM test. Asymptotically, all three tests are equivalent. But, in a finite sample such as this one, differences are to be expected.
 Unfortunately, there is no clear rule for how to proceed in such a case, which highlights the problem of relying on a particular significance level and drawing a firm reject or accept conclusion based on sample evidence.

14.6.5
COMPARING MODELS AND COMPUTING MODEL FIT

The test statistics described in Sections 14.6.1–14.6.3 are available for assessing the validity of restrictions on the parameters in a model. When the models are nested, any of the three mentioned testing procedures can be used. For nonnested models, the computation is a comparison of one model to another based on an estimation criterion to discern which is to be preferred. Two common measures that are based on the same logic as the adjusted 
[image: image424.wmf]R

-squared for the linear model are

[image: image425.wmf]2ln2,

2lnln,

LK

LKn

=-+

=-+

Akaike  information  criterion  (AIC)

Bayes  (Schwarz)  information  criterion

  (BIC)


where 
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 is the number of parameters in the model. Choosing a model based on the lowest AIC is logically the same as using 
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The AIC and BIC are information criteria, not fit measures as such. This does leave open the question of how to assess the “fit” of the model. Only the case of a linear least squares regression in a model with a constant term produces an 
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 which measures the proportion of variation explained by the regression. The ambiguity in 
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 as a fit measure arose immediately when we moved from the linear regression model to the generalized regression model in Chapter 9. The problem is yet more acute in the context of the models we consider in this chapter. For example, the estimators of the models for count data in Example 14.10 make no use of the “variation” in the dependent variable and there is no obvious measure of “explained variation.”

A measure of “fit” that was originally proposed for discrete choice models in McFadden (1974), but surprisingly has gained wide currency throughout the empirical literature is the likelihood ratio index, which has come to be known as the Pseudo 
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 in a linear regression. The choice of name is for this statistic is unfortunate, however, because even in the discrete choice context for which it was proposed, it has no connection to the fit of the model to the data. In discrete choice settings in which log-likelihoods must be negative, the pseudo 
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With a small amount of manipulation, we find that the pseudo 
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while the “true” 
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—although the upper limit is one, there is no lower limit on this measure.  It can even be negative.  This same problem arises in any model that uses information on the scale of a dependent variable, such as the tobit model (Chapter 19). The computation makes even less sense as a fit measure in multinomial models such as the ordered probit model (Chapter 18) or the multinomial logit model. For discrete choice models, there are a variety of such measures discussed in Chapter 17. For limited dependent variable and many loglinear models, some other measure that is related to a correlation between a prediction and the actual value would be more useable. Nonetheless, the measure has gained currency in the contemporary literature. [The popular software package, Stata, reports the pseudo 
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 at length and then give similar cautions about it and urge their readers to seek a more meaningful measure of the correlation between model predictions and the outcome variable of interest. Wooldridge (2010, p. 575) dismisses it summarily, and argues that partial effects are more important.]  Notwithstanding the general contempt for the likelihood ratio index, practitioners are often interested in comparing models based on some idea of the fit of the model the data.  Constructing such a measure will be specific to the context, so we will return to the issue in the discussion of specific applications such as the binary choice in Chapter 17.
14.6.6
VUONG’S TEST AND THE KULLBACK–LEIBLER

INFORMATION CRITERION
Vuong’s (1989) approach to testing nonnested models is also based on the likelihood ratio statistic. The logic of the test is similar to that which motivates the likelihood ratio test in general. Suppose that 
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. The crucial element of Vuong’s analysis is that it need not be the case that either competing model is “true”; they may both be incorrect. What we want to do is attempt to use the data to determine which competitor is closer to the truth, that is, closer to the correct (unknown) model.
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. The restrictions of the null hypothesis will never increase the likelihood function. (In the linear regression model with normally distributed disturbances that we have examined so far, the log-likelihood and these results are all based on the sum of squared residuals, and as we have seen, imposing restrictions never reduces the sum of squares.) The limiting distribution of the 
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The first term on the right hand side is what we would estimate with (
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 is the proposed competing model. The KLIC would be the expected log-likelihood function for the true model minus the expected log-likelihood function for the second model, still assuming that the first one is the truth. By construction, the KLIC is positive. We will now say that one model is “better” than another if it is closer to the “truth” based on the KLIC. If we take the difference of the two KLICs for two models, the true log-likelihood function falls out, and we are left with
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To compute this using a sample, we would simply compute the likelihood ratio statistic, 
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 (without multiplying by 2) again. Thus, this provides an interpretation of the LR statistic. But, in this context, the statistic can be negative—we don’t know which competing model is closer to the truth.

Vuong’s general result for nonnested models (his Theorem 5.1) describes the behavior of the statistic
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He finds:
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Under the hypothesis that the models are “equivalent”, 
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This test is directional. Large positive values favor the null model while large negative values favor the alternative. The intermediate values (e.g., between 
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1.96 for 95 percent significance) are an inconclusive region. An application appears in Example 14.10.
14.7
Two-Step Maximum Likelihood Estimation

The applied literature contains a large and increasing number of applications in which elements of one model are embedded in another, which produces what are known as “two-step” estimation problems. [Among the best known of these is Heckman’s (1979) model of sample selection discussed in Example 1.1 and in Chapter 19.] There are two parameter vectors, 
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A two-step, procedure for this kind of model could be used by estimating the parameters of model 1 first by maximizing
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and then maximizing the marginal likelihood function for 
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, treating it as given. The second step involves maximizing
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There are at least two reasons one might proceed in this fashion. First, it may be straightforward to formulate the two separate log-likelihoods, but very complicated to derive the joint distribution. This situation frequently arises when the two variables being modeled are from different kinds of populations, such as one discrete and one continuous (which is a very common case in this framework). The second reason is that maximizing the separate log-likelihoods may be fairly straightforward, but maximizing the joint log-likelihood may be numerically 
complicated or difficult.
 The results given here can be found in an important reference on the subject, Murphy and Topel (2002, first published in 1985).

Suppose, then, that our model consists of the two marginal distributions, 
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Theorem 14.8
Asymptotic Distribution of the Two-Step MLE 
[Murphy and Topel (2002)]
If the standard regularity conditions are met for both log-likelihood functions, then the second-step maximum likelihood estimator of 
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The correction of the asymptotic covariance matrix at the second step requires some additional computation. Matrices 
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are used. The matrices 
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 and 
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 are obtained by summing the individual observations on the cross products of the derivatives. These are estimated with
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A derivation of this useful result is instructive. We will rely on (14-11) and the results of Section 14.4.5.b where the asymptotic normality of the maximum likelihood estimator is developed. The first step MLE of 
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Using the results in that section, we obtained the asymptotic distribution from (14-15),
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where the expression means that the limiting distribution of the two random vectors is the same,
and
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The second step MLE of 
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Expand the derivative vector, 
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, in a linear Taylor series as usual, and use the results in Section 14.4.5.b once again;
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To obtain the asymptotic distribution, we use the same device as before,

[image: image561.wmf](

)

(

)

1

(2)

2212212

22

ˆ

(),,

d

nn

-

éù

-¾¾®-

ëû

Hg

qqqqqq




[image: image562.wmf](

)

(

)

1

(2)(2)

121211

2221

ˆ

 ,,().

n

-

éùéù

+--

ëûëû

HH

qqqqqq


For convenience, denote 
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Consistency and asymptotic normality of the two estimators follow from our earlier results. To obtain the asymptotic covariance matrix for 
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 we will obtain the limiting variance of the random vector in the preceding expression. The joint normal distribution of the two first derivative vectors has zero means and
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Then, the asymptotic covariance matrix we seek is
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As we found earlier, the variance of the first derivative vector of the log-likelihood is the negative of the expected second derivative matrix [see (14-11)]. Therefore 
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From (14-15), 
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Two remaining terms are 
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 which is the covariance of the two first derivative vectors. This is being estimated by R in Theorem 14.8. Making these last two substitutions produces
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which completes the derivation.
Example 14.5  Two-Step ML Estimation
A common application of the two-step method is accounting for the variation in a constructed regressor in a second step model. In this instance, the constructed variable is often an estimate of an expected value of a variable that is likely to be endogenous in the second step model. In this example, we will construct a rudimentary model that illustrates the computations.

In Riphahn, Wambach, and Million (RWM, 2003), the authors studied whether individuals’ use of the German health care system was at least partly explained by whether or not they had purchased a particular type of supplementary health insurance. We have used their data set, German Socioeconomic Panel (GSOEP) at several points. (See, e.g., Example 7.6.) One of the variables of interest in the study is DocVis, the number of times an individual visits the doctor during the survey year. RWM considered the possibility that the presence of supplementary (Addon) insurance had an influence on the number of visits. Our simple model is as follows: The model for the number of visits is a Poisson regression (see Section 18.4.1). This is a loglinear model that we will specify as
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The model contains not the dummy variable 1 if the individual has Addon insurance and 0 otherwise, which is likely to be endogenous in this equation, but an estimate of 
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For purposes of the exercise, we will specify


[image: image594.wmf]11

() (,,,,),

yAddonconstantAgeEducationMarriedKids

==

x




[image: image595.wmf]22

()(,,,,).

yDocVisconstantAgeEducationIncomeFemale

==

x


As before, to sidestep issues related to the panel data nature of the data set, we will use the 4,483 observations in the 1988 wave of the data set, and drop the two observations for which Income is zero.

The log-likelihood for the logistic probability model is
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The derivatives of this log-likelihood are
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We will maximize this log-likelihood with respect to 
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The log-likelihood for the Poisson regression model is
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The derivatives of this log-likelihood are
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We will use 
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Table 14.2 presents the two-step maximum likelihood estimates of the model parameters and estimated standard errors. For the first-step logistic model, the standard errors marked 
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 compares the values computed using the negative inverse of the second derivatives matrix (
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) vs. the outer products of the first derivatives (
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). As expected with a sample this large, the difference is minor. The latter were used in computing the corrected covariance matrix at the second step. In the Poisson model, the comparison of 
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 in the constructed regressor has a substantial impact on the standard errors, even in this relatively large sample. Note that the effect of the correction is to double the standard errors on the coefficients for the variables that the equations have in common, but it is quite minor for Income and Female, which are unique to the second step model.
Table 14.2  Estimated Logistic and Poisson Models

	
	Logistic Model for Addon
	Poisson Model for DocVis

	
	Coefficient
	Standard Error 
(H1)
	Standard Error 
(V1)
	Coefficient
	Standard Error 
(V2)
	Standard Error 
(V2*)

	Constant
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	0.77808
	0.04884
	0.09319

	Age
	0.01486
	0.00912
	0.00924
	0.01752
	0.00044
	0.00111 

	Education
	0.16091
	0.03003
	0.03326
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0.03858
	0.00462
	0.00980

	Married
	0.22206
	0.23584
	0.23523
	
	
	

	Kids
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	0.21993
	
	
	

	Income
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	Female
	
	
	
	0.16409
	0.00601
	0.00770
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	3.91140
	0.77283
	1.87014


The covariance of the two gradients, R, may converge to zero in a particular application. When the first- and second-step estimates are based on different samples, R is exactly zero. For example, in our earlier application, R is based on two residuals,
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The two residuals may well be uncorrelated. This assumption would be checked on a model-by-model basis, but in such an instance, the third and fourth terms in 
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It has been suggested that this set of procedures might be more complicated than necessary. [E.g., Cameron and Trivedi (2005, p. 202).] There are two alternative approaches one might take. First, under general circumstances, the asymptotic covariance matrix of the second-step estimator could be approximated using the bootstrapping procedure that will be discussed in Section 15.4. We would note, however, if this approach is taken, then it is essential that both steps be “bootstrapped.” Otherwise, taking 
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, not the appropriate covariance matrix. The point of the exercise is to account for the variation in 
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. The second possibility is to fit the full model at once. That is, use a one-step, full information maximum likelihood estimator and estimate 
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 and 
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 simultaneously. Of course, this is usually the procedure we sought to avoid in the first place. And with modern software, this two-step method is often quite straightforward. Nonetheless, this is occasionally a possibility. Once again, Heckman’s (1979) famous sample selection model provides an illuminating case. The two-step and full information estimators for Heckman’s model are developed in Section 19.5.3.

14.8
Pseudo-Maximum Likelihood Estimation and 

Robust Asymptotic Covariance Matrices
Maximum likelihood estimation requires complete specification of the distribution of the observed random variable(s). If the correct distribution is something other than what we assume, then the likelihood function is misspecified and the desirable properties of the MLE might not hold. This section considers a set of results on an estimation approach that is robust to some kinds of model misspecification. For example, we have found that if the conditional mean function is 
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 then certain estimators, such as least squares, are “robust” to specifying the wrong distribution of the disturbances. That is, LS is MLE if the disturbances are normally distributed, but we can still claim some desirable properties for LS, including consistency, even if the disturbances are not normally distributed. This section will discuss some results that relate to what happens if we maximize the “wrong” log-likelihood function, and for those cases in which the estimator is consistent despite this, how to compute an appropriate asymptotic covariance matrix for it.
































































































14.8.1   A ROBUST COVARIANCE MATRIX ESTIMATOR FOR THE MLE
A heteroscedasticity robust covariance matrix for the least squares estimator was considered in Section 4.5.2.  Based on the general result


b – β = (XʹX)-1 Σi xiεi, 
(14-32)
a robust estimator of the asymptotic covariance matrix for b would be the White estimator,

Est.Asy.Var[b]  =  (XʹX)-1 [Σi (xiei)(xiei)ʹ] (XʹX)-1.

If Var[εi|xi] = σ2 and Cov[εi,εj|X] =0, then we can simplify the calculation to Est.Asy.Var[b] = s2(XʹX)-1.  But, the first form is appropriate in either case – it is robust, at least, to heteroscedasticity.  This estimator is not robust to correlation across observations, as in a time series (considered in Chapter 20) or to clustered data (considered in the next section). The variance estimator is robust to omitted variables in the sense that b estimates something consistently, γ, though generally not β, and the variance estimator appropriately estimates the asymptotic variance of b around γ. The variance estimator might be similarly robust to endogeneity of one or more variables in X, though, again, the estimator, b, itself does not estimate β.  This point is important for the present context.  The variance estimator may still be appropriate for the asymptotic covariance matrix for b, but b estimates something other than β.
     Similar considerations arise in maximum likelihood estimation. The properties of the maximum likelihood estimator are derived from (14-15).  The empirical counterpart to (14-32) is
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(14-33)
where gi(θ0) = 
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 to obey a central limit theorem are met, the appropriate estimator for the variance of the MLE around θ0 would be 

Asy.Var
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(14-34) 
The missing element is what to use for the asymptotic variance of 
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.  If the information matrix equality (Property D3 in Theorem 14.2) holds, then Asy.Var[
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.  However, (14-34) applies whether or not the information matrix equality holds.  We can estimate the variance of 
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Est.Asy.Var[
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(14-35)
The variance estimator for the MLE is then
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(14-36)

This is a robust covariance matrix for the maximum likelihood estimator.
     If ln L(θ0|y,X) is the appropriate conditional log likelihood, then the MLE is a consistent estimator of θ0 and, because of the information matrix equality, the asymptotic variance of the MLE is (1/n) times the bracketed term in (14-33).  The issue of robustness would relate to the behavior of the estimator of θ0 if the likelihood were misspecified.  We assume that the function we are maximizing (we would now call it the “pseudo – log likelihood”) is regular enough that the maximizer that we compute converges to a parameter vector, β.  Then, by the results above, the asymptotic variance of the estimator is obtained without use of the information matrix equality.  As in the case of least squares, there are two levels of robustness to be considered.  To argue that the estimator, itself, is robust in this context, it must first be argued that the estimator is consistent for something that we want to estimate and that maximizing the “wrong” log likelihood nonetheless estimates the “right” parameter(s).  If the model is not linear, this will generally be much more complicated to establish.  For example, in the leading case, for a binary choice model, if one assumes that the probit model applies, and some other model applies, then the estimator is not robust to any of heteroscedasticity, omitted variables, autocorrelation, endogeneity, fixed or random effects, or the wrong distribution.  (It is difficult to think of a model failure that the MLE is robust to.)  Once the estimator, itself, is validated, then the robustness of the asymptotic covariance matrix is considered.

Example 14.6  A Regression with Non-Normal Disturbances
If one believed that the regression disturbances were more widely dispersed than implied by the normal distribution, then the logistic or t distribution might provide an alternative specification.  We consider the logistic.  The model is
y  =  xʹβ + ε,  
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where Λ(w) is the logistic CDF.  The logistic distribution is symmetric, as is the normal, but has a greater variance, (π2/3)σ2 compared to σ2 for the normal, and greater kurtosis (tail thickness), 4.2 compared to 3.0 for the normal.  Overall, the logistic distribution resembles a t distribution with 8 degrees of freedom, which has kurtosis 4.5 and variance (4/3)σ2.  The three densities for the standardized variable are shown in Figure 14.3.
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Figure 14.3  Standardized Normal, Logistic and t[8] Densities

The log likelihood function is
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(14-37)
The terms in the gradient and Hessian are
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The conventional estimator of the asymptotic covariance matrix of 
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     The data in Appendix File F14.1 are a panel of 247 dairy farms in Northern Spain, observed for 6 years, 1993 – 1998.  The model is a simple Cobb- Douglas production function,
ln yit = β0 + β1 lnx1,it + β2 lnx2,it + β3 lnx3,it + β4 lnx4,it + εit,
where yit is the log of milk production, x1,it is number of cows, x2,it is land in hectares, x3,it is labor and x4,it is feed.  The four inputs are transformed to logs, then to deviations from the means of the logs.  



We then estimated β and σ by maximizing the log likelihood for the logistic distribution.  Results are shown in Table 14.3. Standard errors are computed using 
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.  The robust standard errors shown in column (4) are based on (14-36). They are nearly identical to the uncorrected standard errors, which suggests that the departure of the logistic distribution from the true underlying model or the influence of heteroscedasticity are minor.  Column (5) reports the cluster robust standard errors based on (14-38) discussed in the next section.
Table 14.3   Maximum Likelihood Estimates of a Production Function
  

   (1)
    (2)
     
     (3)

    (4)

    (5)

Estimate
 Least
  MLE

Standard
 Robust

Clustered

Squares
Logistic
   Error

Std.Error
Std.Error  
β0
11.5775
11.5826
0.00353  
0.00364  
0.00751
β1
0.59518
0.58696
0.01944

0.02124

0.03697
β2
0.02305
0.02753
0.01086

0.01104

0.01924
β3
0.02319
0.01858
0.01248

0.01226

0.02325
β4
0.45176
0.45671
0.01069

0.01160

0.02071
σ
0.14012a
0.07807
0.00169

0.00164

0.00299
R2
0.92555
0.95253b
  

ln L
809.676
821.197





  
a MLE of ( = e(e/n
b R2 is computed as the squared correlation between predicted and actual values.
The departure of the data from the logistic distribution assumed in the likelihood function seems to be minor. The log likelihood does favor the logistic distribution, however, the models cannot be compared on this basis, since the “test” would have zero degrees of freedom – the models are not nested.  The Vuong test examined in Section 14.6.6 might be helpful.  The individual terms in the log likelihood are computed using (14-37).  For the normal distribution, the term in the log likelihood would be ln fit = -(1/2)[ln2π + lns2 + (yit – xitʹb)2/s2] where s2 = eʹe/n.  Using dit = (lnfit|logistic – lnfit|normal), the test statistic is 
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 = 1.682.  This slightly favors the logistic distribution, but is in the inconclusive region.  We conclude that for these data, the normal and logistic models are essentially indistinguishable.



















14.8.2   CLUSTER ESTIMATORS

Micro-level, or individual, data are often grouped or “clustered.” A model of production or economic success at the firm level might be based on a group of industries, with multiple firms in each industry.  Analyses of student educational attainment might be based on samples of entire classes, or schools, or statewide averages of schools within school districts. And, of course, such “clustering” is the defining feature of a panel data set. We considered several of these types of applications in Section 4.5.3 and in our analysis of panel data in Chapter 11. The recent literature contains many studies of clustered data in which the analyst has estimated a pooled model but sought to accommodate the expected correlation across observations with a correction to the asymptotic covariance matrix. We used this approach in computing a robust covariance matrix for the pooled least squares estimator in a panel data model [see (11-3) and Examples 11.7 and 11.11].

For the normal linear regression model, the log-likelihood that we maximize with the pooled least squares estimator is
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By multiplying and dividing by ((2)2, the “cluster-robust” estimator in (11-3) can be written
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The terms in the second line are the first and second derivatives of ln fit for the normal distribution mean 
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 and variance (2 shown in (14-3).  A general form of the result is
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(14-38)

This form of the correction would account for unspecified correlation across the observations (the derivatives) within the groups.  (The “finite population correction” in (11-4) is sometimes applied.)
Example 14.7  Cluster Robust Standard Errors

The dairy farm data used in Example 14.6 are a panel of 247 farms observed in 6 consecutive years.  A correction of the standard errors for possible group effects would be natural.  Column (5) of Table 14.3 shows the standard errors computed  using (14-38).  The corrected standard errors are nearly double the values in column (5).  This suggests that although the distributional specification is reasonable, there does appear to be substantial correlation across the observations.  We will examine this feature of the data further in Section 19.2.4 in the discussion of the stochastic production frontier model.








Consider the specification error that the estimator is intended to accommodate for the normal linear regression. Suppose that the observations in group 
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 were multivariate normally distributed with disturbance mean vector zero and unrestricted 
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. Then, the appropriate log-likelihood function would be
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where 
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 is the 
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 vector of disturbances for individual 
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. Therefore, by using pooled least squares, we have maximized the wrong likelihood function. Indeed, the 
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 that maximizes this log-likelihood function is the GLS estimator (see Chapter 9), not the OLS estimator. But, OLS, and the cluster corrected estimator given earlier, “work” in the sense that (1) the least squares estimator is consistent in spite of the misspecification and (2) the robust estimator does, indeed, estimate the appropriate asymptotic covariance matrix.

Now, consider the more general case. Suppose the data set consists of 
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. Once again, to preserve the generality of the result, we will allow the cluster sizes to differ. The appropriate log-likelihood for the sample is
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Instead of maximizing ln 
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, we maximize a pseudo-log-likelihood

[image: image774.wmf]11

lnln(|,),

i

T

n

Pitit

it

Lgy

==

=

åå

x

q


where we make the possibly unreasonable assumption that the same parameter vector, 
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, enters the pseudo-log-likelihood as enters the correct one. Using our familiar first-order asymptotics, the pseudo-maximum likelihood estimator (MLE) will satisfy
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where 
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. The trailing term in the expression is included to allow for the possibility that plim 
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. [Note, for example, Cameron and Trivedi (2005, p. 842) specifically assume consistency in the generic model they describe.] Taking the expected outer product of this expression to estimate the asymptotic mean squared deviation will produce two terms—the cross term vanishes. The first will be the cluster-corrected matrix that is ubiquitous in the current literature. The second will be the squared error that may persist as 
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 increases because the pseudo-MLE need not estimate the parameters of the model of interest.
We draw two conclusions. We can justify the cluster estimator based on this approximation. In general, it will estimate the expected squared variation of the pseudo-MLE around its probability limit. Whether it measures the variation around the appropriate parameters of the model hangs on whether the second term equals zero. In words, perhaps not surprisingly, this apparatus only works if the pseudo-MLE is consistent. Is that likely? Certainly not if the pooled model is ignoring unobservable fixed effects. Moreover, it will be inconsistent in most cases in which the misspecification is to ignore latent random effects as well. The pseudo-MLE is only consistent for random effects in a few special cases, such as the linear model and Poisson and negative binomial models discussed in Chapter 18. It is not consistent in the probit and logit models in which this approach is often used. In the end, the cases in which the estimator are consistent are rarely, if ever, enumerated. The upshot is stated succinctly by Freedman (2006, p. 302): “The sandwich algorithm, under stringent regularity conditions, yields variances for the MLE that are asymptotically correct even when the specification—and hence the likelihood function—are incorrect. However, it is quite another thing to ignore bias. It remains unclear why applied workers should care about the variance of an estimator for the wrong parameter.”
14.9  MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR
 
  REGRESSION MODELS
We will now examine several applications of the maximum likelihood estimator (MLE). We begin by developing the ML counterparts to most of the estimators for the classical and generalized regression models in Chapters 4 through 11. (Generally, the development for dynamic models becomes more involved than we are able to pursue here. The one exception we will consider is the standard model of autocorrelation.) We emphasize, in each of these cases, that we have already developed an efficient, generalized method of moments estimator that has the same asymptotic properties as the MLE under the assumption of normality. In more general cases, we will sometimes find that the GMM estimator is actually preferred to the MLE because of its robustness to failures of the distributional assumptions or its freedom from the necessity to make those assumptions in the first place. However, for the extensions of the classical model based on generalized least sqaures that are treated here, that is not the case. It might be argued that in these cases, the MLE is superfluous. There are occasions when the MLE will be preferred for other reasons, such as its invariance to transformation in nonlinear models and, possibly, its small sample behavior (although that is usually not the case). And, we will examine some nonlinear models in which there is no linear, method of moments counterpart, so the MLE is the natural estimator. Finally, in each case, we will find some useful aspect of the estimator, itself, including the development of algorithms such as Newton’s method and the EM method for latent class models.

14.9.1    LINEAR REGRESSION MODEL WITH NORMALLY

DISTRIBUTED DISTURBANCES

The linear regression model is
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The likelihood function for a sample of 
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 Making the transformation, we find that the likelihood function for the 
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 observations on the observed random variables is
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To maximize this function with respect to 
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, it will be necessary to maximize the exponent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood function for the classical regression model:
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The necessary conditions for maximizing this log-likelihood are
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The values that satisfy these equations are
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The slope estimator is the familiar one, whereas the variance estimator differs from the least squares value by the divisor of 
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 instead of 
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The Cramér–Rao bound for the variance of an unbiased estimator is the negative inverse of the expectation of

[image: image797.wmf]22

2

24

22

446

222

lnln

        

.

lnln

  

2

()

LL

n

LL

éù

¶¶

¢¢

éù

êú

--

êú

¢

¶¶

¶¶

êú

êú

=

êú

¢¢

êú

¶¶

--

êú

êú

ëû

êú

¢

¶¶¶

ëû

XXX

X

e

bb

b

eee

b

s

ss

sss

ss


In taking expected values, the off-diagonal term vanishes, leaving
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The least squares slope estimator is the maximum likelihood estimator for this model. Therefore, it inherits all the desirable asymptotic properties of maximum likelihood estimators.

We showed earlier that 
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Despite its small-sample bias, the maximum likelihood estimator of 
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 has the same desirable asymptotic properties. We see in (14-40) that 
[image: image803.wmf]2

s

 and 
[image: image804.wmf]2

ˆ

s

 differ only by a factor 
[image: image805.wmf]/

Kn

-

, which vanishes in large samples. It is instructive to formalize the asymptotic equivalence of the two. From (14-40), we know that
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But 
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 is the same as that of the maximum likelihood estimator.
14.9.2  SOME LINEAR MODELS WITH NONNORMAL DISTURBANCES
The log likelihood function for a linear regression model with normally distributed disturbances is 
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(14-41)
Example 14.6 considers maximum likelihood estimation of a linear regression model with logistically distributed disturbances. The appeal of the logistic distribution is its greater degree of kurtosis – its tails are thicker than those of the normal distribution.  The log likelihood function is
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(14-42)
The logistic specification fixes the shape of the distribution, as suggested earlier, similar to a t[8] distribution.  The t distribution with an unrestricted degrees of freedom parameter (a special case of the generalized hyperbolic distribution) allows greater flexibility in this regard.  The t distribution arises as the distribution of a sum of ( squares of normally distributed variables.  But, the degrees of freedom parameter need not be integer valued.  We allow ( to be a free parameter, though greater than 4 for the first four moments to be finite.  The density of a standardized t distributed random variable with degrees of freedom parameter ( is
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The log likelihood function is
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(14-43)
The centerpiece of the stochastic frontier model (Example 12.2 and Section 19.2.4) is a skewed distribution, the skew nor.mal distribution,
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where Φ(z) is the CDF of the standard normal distribution. If the skewness parameter, (, equals zero, this returns the standard normal distribution. The skew normal distribution arises as the distribution of ( = (vvi - (u|ui|, where vi and ui are standard normal variables, ( = (u/(v and (2 = (v2 + (u2.  (Note that (2 is not the variance of (.  The variance |ui| is ((-2)/(, not 1.)  The log likelihood function is
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Example 14.8 Logistic, t and Skew Normal Disturbances
Table 14.4 shows the maximum likelihood estimates for the four models.  There are only small differences in the slope estimators, as might be expected, at least for the first three, since the differences are in the spread of the distribution, not its shape.  The skew normal density has a nonzero mean; E[(u|ui|) = (2/()1/2(u, so the constant term has been adjusted.  As noted, it is not possible directly to test the normal as a restriction on the logistic, as they have the same number of parameters.  The Vuong test does not distinguish them.  The t distribution would seem to be amenable to a direct specification test, however, the “restriction” on the t distribution that produces the normal is ( ( ( which is not useable.  However, we can exploit the invariance of the maximum likelihood estimator (property M4 in Table 14.1).  The maximum likelihood estimator of 1/( is 
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.  We can use the delta method to obtain a standard error.  The estimated standard error will be (
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)2(2.54296) = 0.026342.  A Wald test of H0:
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=0 would test the normal vs. the t distribution.  The result is [(0.101797 – 0)/0.026342]2 = 14.934, which is larger than the critical value of 3.84, so the hypothesis of normality is rejected.  (There is a subtle problem with this test.  The value ( = 0 is on the boundary of the parameter space, not the interior. As such, the chi squared statistic does not have its usual properties.  This issue is explored in Kodde and Palm (1988) and Coelli (1995), who suggest that an appropriate critical value for a single restriction would be 2.706, rather than 3.84.
  The same consideration applies to the test of ( = 0 below.) We note, since the log likelihood function could have been parameterized in terms of ( to begin with, we should be able to use a likelihood ratio test to test the same hypothesis.  By the invariance result, the log likelihood in terms of ( would not change, so the test statistic will be (LR = -2(809.676 – 822.192) = 25.032.  This produces the same conclusion.  The normal distribution is nested within the skew normal, by ( = 0 or (u = 0.  We can test the first of these with a likelihood ratio test; (LR = -2(809.676 – 822.688) = 26.024.  The Wald statistic based on the derived estimate of (u would be (0.15573/0.00279)2 = 3115.56.
  The conclusion is the same for both cases.  As noted, the t and logistic are essentially indistinguishable.  The remaining question, then, is whether the respecification of the model favors skewness or kurtosis.  We do not have a direct statistical test available.  The OLS estimator of ( is consistent regardless, so some information might be contained in the residuals.  Figure 14.4 compares the OLS residuals to the normal distribution with the same mean (zero) and standard deviation (0.14012).  The figure does suggest the presence of skewness, not excess spread.  Given the nature of the production function application, skewness is central to this model, so the findings so far might be expected. The development of the stochastic production frontier model is continued in Section 19.2.4.
Table 14.4   Maximum Likelihood Estimates 



      
(Estimated standard errors in parentheses)
Estimate
 OLS/MLE
   MLE

    MLE 
 
    MLE 

  Normal
 Logistic
t  Frac. D.F.
Skew Normal
       

β0
11.5775
 11.5826
11.5813  
11.6966c

(0.00365)
 (0.00353 )
(0.00363)
(0.00447)
β1
 0.59518
  0.58696
 0.59042

 0.58369

(0.01958)
 (0.01944)
(0.01803)
(0.01887)
β2
 0.02305
  0.02753
 0.02576

 0.03555

(0.01122)
 (0.01086)
(0.01096)
(0.01113)
β3
 0.02319
  0.01858
 0.01971

 0.02256

(0.01303)
 (0.01248)
(0.01299)
(0.01281)
β4
 0.45176
  0.45671
 0.45220

 0.44948

(0.01078)
 (0.01069)
(0.00989)
(0.01035)
σ
 0.14012a
  0.07807
 0.12519

 0.13988d

(0.00275)
 (0.00169)
(0.00404)
(0.00279)
(



 9.82350




(2.54296)
(





 1.50164







(0.08748)
(u





 0.15573e






(0.00279)
R2
0.92555
 0.95253b
0.95254b

 0.95250b
ln L
809.676
 821.197
822.192

822.688


a MLE of ( = e(e/n
b R2 is computed as the squared correlation between predicted and actual values.
c Nonzero mean disturbance. Adjustment to (0 is (u(2/()1/2 = -0.04447.
d Reported (( = [(v2 + (u2((-2)/(]1/2. Estimated (v = 0.10371 (0.00418)
e (u is derived. (u = ((/(1 + (2)1/2. Est.Cov(
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Figure 14.4  Distribution of Least Squares Residuals
14.9.3  HYPOTHESIS TESTS FOR REGRESSION MODELS
The standard test statistic for assessing the validity of a set of linear restrictions, G( - q = 0, the linear model with normally distributed disturbances
 is the 
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With normally distributed disturbances, the 
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 test is valid in any sample size. The more general form of the statistic, 
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is useable in large samples when the disturbances are homoscedastic even if the disturbances are not normally distributed and with nonlinear restrictions of the general form c(() = 0.

  In the linear regression setting with linear restrictions, the Wald statistic, c(b)({Asy.Var[c(b)]}-1c(b), equals J(F[J,n-K], so the large sample validity extends beyond normal linear model.  (See Sections 5.3.1 and 5.3.2.)
        In this section, we will reconsider the Wald statistic and examine two related statistics, the likelihood ratio and Lagrange multiplier statistics. These statistics are both based on the likelihood function and, like the Wald statistic, are generally valid only asymptotically. 
No simplicity is gained by restricting ourselves to linear restrictions at this point, so we will consider general hypotheses of the form
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The Wald statistic for testing this hypothesis and its limiting distribution under 
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       The Wald statistic is based on the asymptotic distribution of the estimator.  The covariance matrix can be replaced with any valid estimator of the asymptotic covariance.  Also, for the same reason, the same distributional result applies to estimators based on the nonnormal distributions in Example 14.7, and indeed, for any estimator in any model setting in which 
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The general result, then, is
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The Wald statistic is robust in that it relies on the large sample distribution of the estimator, not on the specific distribution that underlies the likelihood function.  The Wald test will be the statistic of choice in a variety of settings, not only the likelihood based one considered here.
      The likelihood ratio (LR) test is carried out by comparing the values of the log-likelihood function with and without the restrictions imposed. We leave aside for the present how the restricted estimator 
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 is computed (except for the linear model, which we saw earlier). The test statistic and its limiting distribution under 
[image: image844.wmf]0

H

 are


[image: image845.wmf]2

*

2[lnln][].

d

LRLLJ

=--¾¾®

c


(14-48)
This result is general for any nested models fit by maximum likelihood. 

The log-likelihood for the normal/linear regression model is given in (14-39). The first-order conditions imply that regardless of how the slopes are computed, the estimator of 
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 and likewise for a restricted estimator 
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. Evaluated at the maximum likelihood estimator, the concentrated log-likelihood
 will be
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and likewise for the restricted case. If we insert these in the definition of LR, then we obtain
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(Note, this is a specific result that applies to the linear or nonlinear regression model with normally distributed disturbances.)
The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood function. The principle of the test is that if the hypothesis is valid, then at the restricted estimator, the derivatives of the log-likelihood function should be close to zero. There are two ways to carry out the LM test. The log-likelihood function can be maximized subject to a set of restrictions by using
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The first-order conditions for a solution are
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The solutions to these equations give the restricted least squares estimator, 
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; the usual variance estimator, now 
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; and the Lagrange multipliers. There are now two ways to compute the test statistic. In the setting of the classical linear regression model, when we actually compute the Lagrange multipliers, a convenient way to proceed is to test the hypothesis that the multipliers equal zero. For this model, the solution for 
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. This equation is a linear function of the unrestricted least squares estimator. If we carry out a Wald test of the hypothesis that 
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The disturbance variance estimator, 
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An alternative way to compute the LM statistic for the linear regression model produces an interesting result. In most situations, we maximize the log-likelihood function without actually computing the vector of Lagrange multipliers. (The restrictions are usually imposed some other way.) An alternative way to compute the statistic is based on the (general) result that under the hypothesis being tested,
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We can test the hypothesis that at the restricted estimator, the derivatives are equal to zero. The statistic would be
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In this form, the LM statistic is 
[image: image866.wmf]n

 times the coefficient of determination in a regression of the residuals 
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 on the full set of regressors.  Finally, for more general models and contexts, the same principle for the LM test produces
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where 
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There is evidence that the asymptotic results for these statistics are problematic in small or moderately sized samples. [See, e.g., Davidson and MacKinnon (2004, pp. 424–428).] The true distributions of all three statistics involve the data and the unknown parameters and, as suggested by the algebra, converge to the 
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 distribution from above. The implication is that the critical values from the chi-squared distribution are likely to be too small; that is, using the limiting chi-squared distribution in small samples is likely to exaggerate the significance of empirical results. Thus, in applications, the more conservative 
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 statistic (or 
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 for one restriction) may be preferable unless one’s data are plentiful.
Example 14.9  Testing for Constant Returns to Scale
The Cobb – Douglas production function estimated in Examples 14.6 and 14.7 has returns to scale parameter ( = (klny/lnxk = (1 + (2 + (3 + (4. The hypothesis of constant returns to scale, ( = 1, is routinely tested in this setting.  We will carry out this test using the three procedures defined earlier.  The estimation results are shown in Table 14.5.  For the likelihood ratio test, the chi squared statistic equals -2(794.624 – 822.688) = 56.129.  The critical value for a test statistic with one degree of freedom is 3.84, so the hypothesis will be rejected on this basis.  For the Wald statistic, based on the unrestricted results, c(() = [((1 + (2 + (3 + (4) – 1] and G = [1,1,1,1].  The part of the asymptotic covariance matrix needed for the test is shown with Table 4.5.  The statistic is  
W = c((
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)  = 57.312.  For the LM test, we need the derivatives of the log likelihood function. For the particular terms, 

g( = lnfi/(xi(() 
= (1/()[wi + (Ai], Ai = ((-(wi)/((-(wi),

g( = lnfi/(

= (1/()[-1 + wi2 +(wiAi],

g( = lnfi/( 

= -wiAi.
The calculation is in (14-48); LM = 56.398.  The test results are nearly identical for the three approaches.
Table 14.5   Testing for Constant Returns to Scale in a Production Function

(Estimated standard errors in parentheses)
Estimate
   Stochastic Frontier
 Stochastic Frontier

      Unrestricted
           Constant Returns to Scale


β0a
11.7014
 (0.00447)
11.7022a 
(.00457)
β1
  0.58369
 (0.01887)
  0.55979
(.01903)
β2
  0.03555
 (0.01113)
  0.00812
(.01075)
β3
  0.02256
 (0.01281)
 -0.04367
(.00959)
β4
  0.44948
 (0.01035)
  0.47575
(.00997)
σb
  0.13988
 (0.00279) 
  0.18962
(.00011)
(
  1.50164
 (0.08748)
  1.47082
(.08576)
(uc
  0.15573d
 (0.00279)
  0.15681
(0.00289)
ln L
             822.688


794.624



a Unadjusted for nonzero mean of (.
b Reported (( = [(v2 + (u2((-2)/(]1/2. Estimated (v = 0.10371 (0.00418)

c (u is derived. (u = ((/(1 + (2)1/2. Est.Cov(
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) = 2.3853e-7.  Standard error is 

  computed using the delta method.
  Estimated Asy.Var[b1,b2,b3,b4] (e-n = times 10-n.) 
  0.0003562
 -0.0001079
0.0001238
 -5.576e-5
9.193e-6
 0.0001642

 -0.0001542
1.810e-5
-1.235e-5
0.0001071
14.10
THE GENERALIZED REGRESSION MODEL
For the generalized regression model of Section 9.1,
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as before, we first assume that 
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 is a matrix of known constants. If the disturbances are multivariate normally distributed, then the log-likelihood function for the sample is
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      It might seem that simply using OLS and a heteroscedasticity robust covariance matrix (see Section 4.5) would be a simpler approach that does not rely on an assumption of normality.  There are at least two situations in which GLS, and possibly MLE, might be justified.  First, if there is known information about the disturbance variances, this simplicity is a minor virtue that wastes sample information.  The grouped data application in Example 14.11 is such a case.  Second, there are settings in which the variance, itself, is of interest, such as models of production risk Asche and Tvertas (1999) and in the heteroscedastic stochastic frontier model which is generally based on the model in Section 14.10.3 [Just and Pope (1978, 1979)].
14.10.1  GLS WITH KNOWN (
Because 
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 is a matrix of known constants, the maximum likelihood estimator of 
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 is the vector that minimizes the generalized sum of squares, 
[image: image891.wmf]1

*

()()()

yX

ΩyX

-

¢

=--

S

bbb



 
(hence the name generalized least squares). The necessary conditions for maximizing L are
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where X* = Ω-1/2X and y* = Ω-1/2y.   The solutions are the OLS estimators using the transformed data:
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which implies that with normally distributed disturbances, generalized least squares is also maximum likelihood. The maximum likelihood estimator of 
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 is biased. An unbiased estimator is the one in (9-20). The conclusion is that when 
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 is known, the maximum likelihood estimator is generalized least squares.

14.10.2  ITERATED FEASIBLE GLS WITH ESTIMATED (
When 
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 is unknown and must be estimated, then it is necessary to maximize the log-likelihood in (14-55) with respect to the full set of parameters 
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 for some smaller vector of parameters in the next several sections. We note only a few general results at this point.

1.
For a given value of 
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 the estimator of 
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2.
The likelihood equations for 
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The second step suggests a sort of back and forth iteration for this model that will work in many situations—starting with, say, OLS, iterating back and forth between 1 and 2 until convergence will produce the joint maximum likelihood estimator. Oberhofer and Kmenta (1974) showed that under some fairly weak requirements, most importantly that 
[image: image918.wmf]q

 not involve 
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 or any of the parameters in 
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, this procedure would produce the maximum likelihood estimator. The asymptotic covariance matrix of this estimator is the same as the GLS estimator. This is the same whether 
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 is known or estimated, which means that if 
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 brings no gain in asymptotic efficiency in the estimation of 
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 over estimation of 
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 with a consistent estimator of 
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14.10.3
MULTIPLICATIVE HETEROSCEDASTICITY
Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general model that includes many useful formulations as special cases. The general formulation is
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A model with heteroscedasticity of the form
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 results if the logs of the variables are placed in zi
. The groupwise heteroscedasticity model described in Section 9.7.2 is produced by making 
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The log-likelihood is
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The likelihood equations are
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14.10.4  THE METHOD OF SCORING
For this model, the method of scoring turns out to be a particularly convenient way to maximize the log-likelihood function. The terms in the Hessian are
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The method of scoring is an algorithm for finding an iterative solution to the likelihood equations. The iteration is
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 is partitioned likewise. [Newton’s method uses the actual second derivatives in (14-61) rather than their expectations in (14-62). The scoring method exploits the convenience of the zero expectation of the off-diagonal block (cross derivative) in (14-62).] Because 
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 is block diagonal, the iteration can be written as separate equations:
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Therefore, the updated coefficient vector 
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 is computed by FGLS using the previously computed estimate of γ
 to compute Ω
. We use the same approach for γ
:
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The 2 and 
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The remaining detail is to determine the starting value for the iteration. Any consistent estimator will do. The simplest procedure is to use OLS for 
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If desired, then 
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Testing the null hypothesis of homoscedasticity in this model,
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in (14-58), is particularly simple. The Wald test will be carried out by testing the hypothesis that the last M elements of 
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 are zero. Thus, the statistic will be
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Because the first column in Z is a constant term, this reduces to
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where 
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 using the OLS residuals. To compute the LM statistic, we will use the expected Hessian in (14-62). Under the null hypothesis, the part of the derivative vector in (14-60) that corresponds to 
[image: image1002.wmf]b

 is 
[image: image1003.wmf]2

(1/)

Xe0

¢

=

s

. Therefore, using (14-60), the LM statistic is


[image: image1004.wmf]1

22

22

1

11

1

111

1()

1

.

222

1

1

nn

ii

LM

i

ii

i

ee

ss

-

==

¢

éù

éù

æö

æöæö

æö

éù

¢

l=--

êú

ç÷

êú

ç÷ç÷

ç÷

êú

ëû

êú

èø

èøèø

èø

ëû

ëû

åå

ZZ

z

z


The first element in the derivative vector is zero, because 
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This is one-half times the explained sum of squares in the linear regression of the variable 
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 on Z, which is the Breusch–Pagan/Godfrey LM statistic from Section 9.5.2.

Example 14.10  Multiplicative Heteroscedasticity

In Example 6.6, we fit a cost function for the U.S. airline industry of the form
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where 
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 is total cost, 
[image: image1010.wmf],

it

Q

 is output, and 
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 is the price of fuel and the 90 observations in the data set are for six firms observed for 15 years. (The model also included dummy variables for firm and year, which we will omit for simplicity.) In Example 9.4, we fit a revised model in which the load factor appears in the variance of 
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Estimates were obtained by iterating the weighted least squares procedure using weights 
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 were obtained at each iteration by regressing the logs of the squared residuals on a constant and 
[image: image1017.wmf]it

Loadfactor

. It was noted at the end of the example [and is evident in (14-61)] that these would be the wrong weights to use for iterated weighted least squares if we wish to compute the MLE. Table 14.6 reproduces the results from Example 9.4 and adds the MLEs produced using Harvey’s method. The MLE of γ2 
 is substantially different from the earlier result. The Wald statistic for testing the homoscedasticity restriction (
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, which produces the same conclusion. However, the LM statistic is 2.96, which conflicts. This is a finite sample result that is not uncommon.  Figure 14.5 shows the pattern of load factors over the period observed.  The variances of log costs would vary correspondingly.  The increasing load factors in this period would have been a mixed benefit.



Table 14.6  Multiplicative Heteroscedasticity Model
	
	Constant
	Ln Q
	ln2 Q

	Ln Pf

	R2 a

	Sum of Squares

	OLSf
	 9.13823
	 0.92615
	 0.02915
	 0.41006
	0.986167
	1.57748

	  Std. Error

	(0.24507)
	(0.03231)
	(0.01230)
	(0.01881)
	
	

	  Het. Robust S.E.
  Cluster Robust S.E.
	(0.22595)
(0.33493)
	(0.03013)
(0.10235)
	(0.01135)
(0.04084)
	(0.01752)
(0.02477)
	
	

	Two-step
	 9.2463
	 0.92136
	 0.02445
	 0.40352 
	0.9861187
	1.612938

	  Std. Error
	(0.21896)
	(0.03303)
	(0.01141)
	(0.01697)
	
	

	Iteratedb
	 9.2774
	 0.91609
	 0.02164
	 0.40174
	0.9860708
	1.645693

	  Std. Error
	(0.20977)
	(0.03299)
	(0.01102)
	(0.01633)
	
	

	MLEc
	 9.2611
	 0.91931
	 0.02328
	 0.40266
	0.9860099
	1.626301

	  Std. Error

	(0.2099)
	(0.03229)
	(0.01099)
	(0.01630)
	
	


a

Squared correlation between actual and fitted values

b
Values of 
[image: image1027.wmf]2
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 by iteration: 8.25434, 11.6225, 11.7070, 11.7106, 11.7110,
cEstimate of γ2 
 is 9.78076 (2.83945).
ln LOLS = 54.2747,  ln LML=57.3122
[image: image1029.png]Load Factors 1970 - 1984





Figure 14.5  Load Factors for Six Airlines, 1970 – 1984.


























































	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	
	
	

	

	
	
	

	

	
	
	
	
	
	









Example 14.11  Maximum Likelihood Estimation of Gasoline Demand


In Example 9.3, we examined a two step FGLS estimator for the OECD gasoline demand.  The model is a groupwise heteroscedastic specification.  In (14-58), zit would be a set of country specific dummy variables.  The results from Example 9.3 are shown below in results (1) and (2).  The maximum likelihood estimates are shown in column (3).  The parameter estimates are similar, as might be expected.  It appears that the standard errors of the coefficients are quite a bit smaller using MLE compared to the two step FGLS.  However, the two estimators are essentially the same.  They differ numerically, as expected.  However, the asymptotic properties of the two estimators are the same.


Table 14.7.3  Estimated Gasoline Consumption Equations





      (1)


          (2)

            (3)
                                         OLS                                        FGLS                                    MLE                  
                          Coefficient    Std. Error           Coefficient     Std. Error         Coefficient    Std. Error 
ln Income
      0.66225
0.07277
      0.57507
0.02927
 0.45404
 0.02211
ln Price
     -0.32170
0.07277
     -0.27967
0.03519
-0.30461
 0.02578
ln Cars/Cap 
     -0.64048
0.03876
     -0.56540
0.01613
-0.47002
 0.01275   
14.11   NONLINEAR REGRESSION MODELS AND

    QUASI-MAXIMUM LIKELIHOOD ESTIMATION
In Chapter 7, we considered nonlinear regression models in which the nonlinearity in the parameters appeared entirely on the right-hand side of the equation. Maximum likelihood is often used when the disturbance in a regression, or the dependent variable, more generally, is not normally distributed. If the distribution departs from normality, a likelihood based approach may provide a useful, efficient way to proceed with estimation and inference. The exponential regression model provides an application.

Example 14.12  Identification in a Loglinear Regression Model

In Example 7.6, we estimated an exponential regression model, of the form
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This loglinear conditional mean is consistent with several different distributions, including the lognormal, Weibull, gamma, and exponential models. In each of these cases, the conditional mean function is of the form
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where 
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 is an additional parameter of the distribution and 
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. Two implications are:

      1.  
Nonlinear least squares (NLS) is robust at least to some failures of the distributional assumption. The nonlinear least squares estimator of 
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 will be consistent and asymptotically normally distributed in all cases for which 
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      2.
  The NLS estimator cannot produce a consistent estimator of 
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, which varies depending on the correct distribution. In the conditional mean function, any pair of values (θ, γ1) for which 
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 is the same will lead to the same sum of squares. This is a form of multicollinearity; the pseudoregressor for θ is 
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. The first is a constant multiple of the second.  NLS cannot provide separate estimates of  
and 
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 while MLE can—see the example to follow. Second, NLS might be less efficient than MLE since it does not use the information about the distribution of the dependent variable. This second consideration is uncertain. For estimation of 
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, the NLS estimator is less efficient for not using the distributional information. However, that shortcoming might be offset because the NLS estimator does not attempt to compute an independent estimator of the additional parameter, θ.

To illustrate, we reconsider the estimator in Example 7.6. The gamma regression model specifies 
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The conditional mean function for this model is
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Table 14.6 presents estimates of 
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 and 
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. Estimated standard errors appear in parentheses. The estimates in columns (1), (2) and (4) are all computed using nonlinear least squares. In (1), an attempt was made to estimate 
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 and 
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 separately. The estimator “converged” on two values. However, the estimated standard errors are essentially infinite. The convergence to anything at all is due to rounding error in the computer. The results in column (2) are for 
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. The sums of squares for these two estimates as well as for those in (4) are all 112.19688, indicating that the three results merely show three different sets of results for which 
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Table 14.6   Estimated Gamma Regression Model

	
	(1)

NLS
	(2) Constrained NLS
	(3)

MLE
	(4)

NLS/MLE

	Constant
	1.22468
	-1.69331
	-3.36826
	-3.36380

	
	(47722.5)a
	 (0.04408)
	 (0.05048)
	   (0.04408)

	Age
	 0.00207
	 0.00207
	 0.00153
	 0.00207

	
	 (0.00061)b
	 (0.00061)
	 (0.00061)
	 (0.00061)

	Education
	 0.04792
	 0.04792
	 0.04975
	 0.04792

	
	           (0.00247)b
	 (0.00247)
	 (0.00286)
	 (0.00247)

	Female
	-0.00658
	-0.00658
	 0.00696
	-0.00658

	
	  (0.01373)b
	 (0.01373)
	 (0.01322)
	 (0.08677)

	
[image: image1102.wmf]q


	0.62699
	—
	 5.31474
	 5.31474

	
	(29921.3)a
	—
	 (0.10894)
	(0.00000)


a Reported value is not meaningful – this is rounding error. See text for description.
b Standard errors are the same as in column (2)
14.11.1   MAXIMUM LIKELIHOOD ESTIMATION
The standard approach to modeling counts of events begins with the Poisson regression model,
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which has loglinear conditional mean function 
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. (The Poisson regression model and other specifications for data on counts are discussed at length in Chapter 18. We introduce the topic here to begin development of the MLE in a fairly straight-forward, typical nonlinear setting.) Appendix Table F7.1 presents the Riphahn et al. (2003) data, which we will use to analyze a count variable, DocVis, the number of visits to physicans in the survey year. We are using the 1988 wave of the panel, with 4,483 observations. The histogram in Figure 14.6 shows a distinct spike at zero followed by rapidly declining frequencies. While the Poisson distribution, which is typically hump-shaped, can accommodate this configuration if 
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 is less than one, the shape is nonetheless somewhat “non-Poisson.” [So-called “Hurdle” and “Zero Inflation” models (discussed in Chapter 18) are often used for this situation.]

The geometric distribution,


[image: image1106.wmf](|)(1),1/(1),exp(),0,1,,

i

y

iiiiiiiii

fyy

qqq

¢

=-=+ll==¼

xx

b


is a convenient specification that produces the effect shown in Figure 14.4. (Note that, formally, the specification is used to model the number of failures before the first success in successive independent trials each with success probability 
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, so in fact, it is misspecified as a model for counts. The model does provide a convenient and useful illustration, however.  Moreover, it will turn out that the specification can deliver a consistent estimator of the parameters of interest even if the Poisson is the right model.) The conditional mean function is also 
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 so this is a distinctly nonlinear regression model. We will construct a maximum likelihood estimator, then compare the MLE to the nonlinear least squares and (mis-specified) linear least squares estimates.
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Figure 14.6  Histogram for Doctor Visits.
The log-likelihood function is
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The likelihood equations are
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the likelihood equations simplify to
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To estimate the asymptotic covariance matrix, we can use any of the estimators of Asy.Var
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The negative inverse of the second derivatives matrix evaluated at the MLE is
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As noted earlier, 
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, is known, so we can also use the negative inverse of the expected second derivatives matrix,
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Finally, although we are confident in the form of the conditional mean function, but uncertain about the distribution, it might make sense to use the robust estimator in (14-36),
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To compute the estimates of the parameters, either Newton’s method, 
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or the method of scoring, 
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 can be used, where H and g are the second and first derivatives that will be evaluated at the current estimates of the parameters. Like many models of this sort, there is a convenient set of starting values, assuming the model contains a constant term. Because 
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, if we start the slope parameters at zero, then a natural starting value for the constant term is the log of 
[image: image1124.wmf]y

.
14.11.2    QUASI-MAXIMUM LIKELIHOOD ESTIMATION


If one is confident in the form of the conditional mean function (and that is the function of interest), but less sure about the appropriate distribution, they might seek a robust approach.  That is precisely the situation that arose in the preceding example.  Given that DocVis is a nonnegative count, the exponential mean function makes sense.  But, we gave equal plausibility to a Poisson model, a geometric model and a semiparametric approach based on nonlinear least squares.  The conditional mean function is correctly specified, but each of these three approaches has a significant shortcoming.  The Poisson model imposes an “equidispersion” (variance equal to the mean) that is likely to be transparently inconsistent with the data; the geometric model is manifestly an inappropriate specification, and the nonlinear least squares estimator ignores all information in the sample save for the form of the conditional mean function.  A quasi- maximum likelihood approach based on “linear exponential forms” provides a somewhat robust approach in this sort of circumstance.

      The exponential family of distributions is defined in Definition 13.1.  For a random variable, y with density f(y|θ), the exponential family of distributions is

ln f(y|θ) = a(y) + b(θ) + Σk ck(y)sk(θ).

Many familiar distributions are in this class, including the normal, logistic, Bernoulli, Poisson, gamma, exponential, Weibull, and others. Based on this framework, Gourieroux, Monfort and Trognon (1984) proposed the class of conditional “linear exponential families,”


ln f(y|μ(x,β)) = a(y) + b(μ(x,β)) + ys(μ(x,β)),
where the conditional mean function is E[y|x,β] = μ(x,β). The usefulness of this class of specifications is that maximizing the implied log likelihood produces a consistent estimator of β even if the true distribution of y|x is not f(y| μ(x,β)), so long as the mean is correctly specified.  

       Example 14.13 examines a count variable, DocVis = the number of doctor visits.  The assumed conditional mean function is E[yi|xi] = λi = exp(xiʹβ), but we are uncertain of the distribution.  Two candidates are considered, geometric with f(yi|xi,β) = θi(1 – θi)yi with 
θi = 1/(1 + λi), and Poisson with f(yi|xi,β) = exp(-λi)λiyi/Γ(yi+1).  Both of these distribution are in the LEF family; for the geometric, ln f(yi|xi,β) = ln[θi/(1 – θi)] + yi lnθi and for the Poisson, 
ln f(yi|xi,β) = -λi + yi lnλi – lnΓ(yi +1).  Since both are LEF’s involving the same mean function, either log likelihood will produce a consistent estimator of the same β.  

     The conditional variance is unspecified so far. In the two cases considered, the variance is a simple function of the mean. For the geometric distribution, Var[y|x] = λ(1+λ); for the Poisson, Var[y|x] = E[y|x] = λ.  This relationship will hold in general for linear exponential families.  For another example, the Bernoulli distribution for a binary or fractional variable, 
f(y|x) = Piyi (1 – Pi)(1 – yi), where Pi = λi/(1 + λi) has conditional variance, λi/[1 + λi]2 = Pi(1 – Pi).  The other models examined below, gamma, Weibull and negative binomial, all behave likewise.  The conventional estimator of the asymptotic variance based on the information matrix, (14-16) or (14-17) would apply if the distribution of the LEF were the actual distribution of yi.  However, since the variance has not actually been specified, this may not be the case. Thus, the heteroscedasticity makes the robust variance matrix estimator in (14-36) a logical choice.

      An apparently minor extension is needed to accommodate distributions that have an additional parameter, typically a shape parameter, such as the Weibull distribution, 
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for which E[yi|xi] = λi Γ(1 + 1/θ), or the gamma distribution,
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for which E[yi|xi] = λi .  These random variables satisfy the assumptions of the LEF models, but the more detailed specifications create complications both for estimation and inference.  First, for these models, the mean, (i, is no longer correctly specified.  In the cases shown, there is a scaling parameter.  If λi = exp(xi(β) as is typical, and β contains a constant term, then the constant term is offset by the log of that scaling term.  For the Weibull model, the constant term is offset by 
lnΓ(1 + 1/θ) while for the gamma model, the offset is lnθ.  These would seem to be innocuous, however, if the conditional mean, itself, or partial effects of the mean are the objects of estimation, this is a potentially serious shortcoming.  These two models noted are, like the candidates noted earlier, also heteroscedastic; for the gamma, Var[y|x] = θλ2, while for the Weibull, Var[y|x] = λ{Γ(1+2/θ) – Γ2(1+1/θ)}.  The robust estimator of the asymptotic covariance matrix in (14-36) for the QMLEs would still be preferred.

     These four distributions noted, and the others listed below are all members of the LEF, which would suggest that any of them could form the basis of a quasi-MLE for (y|x).  The distributions listed are, in principle, for binary (Bernoulli), count (Poisson, geometric) and continuous (gamma, Weibull, normal) random variables.  The LEF approach should work best if the random variable studied is of the type that is natural for the form of the distribution used, or at least closest to it.  Thus, in the example below, we have modeled the count variable using the geometric and Poisson.  One could use the Bernoulli framework for a binary or fractional variable as the basis for the quasi-MLE.  Given the results thus far, the Bernoulli LEF could also be used for a continuous variable, but the gamma or Weibull distribution would be a better choice.  In general, the support of the observed variable should match that of the variable that underlies the candidate distribution, for example, the nonnegative integers in Example 14.13. (Continuity is not essential; the Poisson (exponential) LEF would work for a continuous (discrete) nonnegative variable.)

           If interest centers on estimation of β, our results would seem to imply that several of these distributions would suffice as the vehicle for estimation in a given situation. But, intuition should suggest (no doubt correctly), that some choices should be better than others. On the other hand, why not just use nonlinear least squares (GMM) in all cases if only the conditional mean has been specified?  The argument so far does not distinguish any of these estimators; they are all consistent.  The criterion function chosen implies a weighting of the observations, and it would seem that some weighting schemes would be better (more efficient) than others, based on the same logic that makes generalized least squares better than ordinary least squares.
    
The preceding efficiency argument is somewhat ambiguous.  It remains a question why one would use this approach instead of nonlinear least squares.  The leading application of these methods (and the focus of Gourieroux et al. (1984) who developed them) is about modeling counts such as our doctor visits variable, in the presence of unmeasured heterogeneity.  Consider that in the canonical model for counts, the Poisson regression, there is no explicit place in the specification for unmeasured heterogeneity.  The entire specification builds off the conditional mean, λi = exp(xiʹβ) and the marginal Poisson distribution.  A natural way to extend the Poisson regression specification is λi|εi = exp(xiʹβ + εi).  


The conditional mean function is Λi  =  E[exp(εi)]λi.  If the model contains a constant term, then nothing is lost by assuming that E[exp(εi)] = 1, so Λi = λi.  Left unspecified are the variance of yi|xi and the distribution of i.  We assume that εi is a conventional disturbance, exogenous to the rest of the model.  Thus, the conditional (on x) mean is correctly specified by (i which implies that the Poisson QMLE is a robust estimator for this model with only vaguely specified heterogeneity – it is exogenous and has mean 1.
    The marginal distribution is f(yi|xi) = 
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. If exp(i) has a gamma distribution with mean 1, G(,),  this produces the negative binomial type 2 regression model,

f(yi|xi) = 
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This random variable has mean (i and 
variance = λi[1 +  λi /θ].
  The negative binomial density is a member of the LEF. The advantage of this formulation for count data is that the Poisson quasi-log likelihood will produce a consistent estimator of β regardless of the distribution of εi as long as εi is exogenous, homoscedastic (with respect to xi) and is parameterized free of β.
     To conclude, the QMLE would seem to be a competitor to the GMM estimator for certain kinds of models.  In the leading application, it is a robust estimator that follows the form of the random variable while nonlinear least squares does not.
Example 14.13  Geometric Regression Model For Doctor Visits

In Example 7.6, we considered nonlinear least squares estimation of a loglinear model for the number of doctor visits variable shown in Figure 14.6. (41 observations for which DocVis > 50 out of 27,326 in total are omitted from the figure.) The data are drawn from the Riphahn et al. (2003) data set in Appendix Table F7.1. We will continue that analysis here by fitting a more detailed model for the count variable DocVis. The conditional mean analyzed here is
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(This differs slightly from the model in Example 11.16). For this exercise, with an eye toward the fixed effects model in Example 14.13, we have specified a model that does not contain any time-invariant variables, such as Female.  Also, for this application, we will use the entire sample.) Sample means for the variables in the model are given in Table 14.7. Note, these data are a panel. In this exercise, we are ignoring that fact, and fitting a pooled model. We will turn to panel data treatments in the next section, and revisit this application.

We used Newton’s method for the optimization, with starting values as suggested earlier. The five iterations are shown in Table 14.7:
Table 14.7  Newton Iterations
	Start values:
	0.11580e+1
	0.00000
	0.00000
	0.00000
	0.00000

	1st derivatives
	0.00000
	-0.61777e+5
	0.73202e+4
	0.42575e+4
	0.16464e+4

	Parameters:
	0.11580e+1
	0.00000
	0.00000
	0.00000
	0.00000

	Iteration 1 F  =
	0.6287e+5
	   g(H-1g = .1907e+4
	 
	
	

	1st derivatives
	0.48616e+3
	-0.22449e+5
	0.57162e+4
	-0.17112e+3
	-0.16521e+3

	Parameters:
	0.11186e+1
	0.1762e-1
	-0.50263e-1
	-0.46274e-1
	-0.15609

	Iteration 2 F =
	0.6192e+5
	   g(H-1g = .1258e+2
	
	
	

	1st derivatives
	-0.31284e+1
	-0.15595e+3
	-0.37197e+2
	-0.10630e+1
	-0.77186

	Parameters:
	0.10922e+1
	0.17981e-1
	-0.47303e-1
	-0.46739e-1
	-0.15683

	Iteration 3 F =
	0.6192e+5
	   g(H-1g = .6759e-3
	
	
	

	1st derivatives
	-0.18417e-3
	-0.99368e-2
	-0.21992e-2
	-0.59354e-4
	-0.25994e-4

	Parameters:
	0.10918e+1
	0.17988e-1
	-0.47274e-1
	-0.46751e-1
	-0.15686

	Iteration 4 F =
	0.6192e+5
	   g(H-1g = .1831e-8
	 
	
	

	1st derivatives
	-0.35727e-11
	0.86745e-10
	-0.26302e-10
	-0.61006e-11
	-0.15620e-11

	Parameters:
	0.10918e+1
	0.17988e-1
	-0.47274e-1
	-0.46751e-1
	-0.15686

	Iteration 5 F =
	0.6192e+5
	   g(H-1g = .177e-12
	
	
	

	
	
	
	
	
	


Convergence based on the LM criterion, 
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 is achieved after the fourth iteration. Note that the derivatives at this point are extremely small, albeit not absolutely zero. Table 14.8 presents the quasi-maximum likelihood estimates of the parameters. Several sets of standard errors are presented. The three sets based on different estimators of the information matrix are presented first. The fourth set are based on the cluster corrected covariance matrix discussed in Section 14.8.4. Because this is actually an (unbalanced) panel data set, we anticipate correlation across observations. Not surprisingly, the standard errors rise substantially. The partial effects listed next are computed in two ways. The “Average Partial Effect” is computed by averaging 
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 across the individuals in the sample. The “Partial Effect” is computed for the average individual by computing 
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 at the means of the data. The next-to-last column contains the ordinary least squares coefficients. In this model, there is no reason to expect ordinary least squares to provide a consistent estimator of 
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. The question might arise, What does ordinary least squares estimate? The answer is the slopes of the linear projection of DocVis on 
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. The resemblance of the OLS coefficients to the estimated partial effects is more than coincidental, and suggests an answer to the question.

    The analysis in Table 14.9 suggests three competing approaches to modeling DocVis. The results for the geometric regression model are given first in Table 14.8. At the beginning of this section, we noted that the more conventional approach to modeling a count variable such as DocVis is with the Poisson regression model. The quasi-log-likelihood function and its derivatives are even simpler than the geometric model
, 
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A third approach might be a semiparametric, nonlinear regression model,
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Without the distributional assumption, nonlinear least squares is robust, but inefficient compared to the QMLE. But, the distributional assumption can be dropped altogether, and the model fit as a simple exponential regression. Note the similarity of the Poisson QMLE and the NLS estimator.  For the QMLE, the likelihood equations, 
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= 0, imply that at the solution, the residuals, 
(yi - (i), are orthogonal to the actual regressors, xi.  The NLS normal equations, 
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 will imply that at the solutions, the residuals are orthogonal to the pseudo-regressors, (ixi.
Table 14.9 presents the three sets of estimates.  It is not obvious how to choose among the alternatives. Of the three, the Poisson model is used most often by far. The Poisson and geometric models are not nested, so we cannot use a simple parametric test to choose between them. However, these two models will surely fit the conditions for the Vuong test described in Section 14.6.6. To implement the test, we first computed
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using the respective QMLEs of the parameters. The test statistic given in Section 14.6.6 is then
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This statistic converges to standard normal under the underlying assumptions. A large positive value favors the geometric model. The computed sample value is 37.885, which strongly favors the geometric model over the Poisson.  Figure 14.6 suggests an explanation for this finding.  The very large mass at DocVis = 0 is distinctly nonPoisson.  This would motivate an extended model such as the negative binomial model, or more likely a two part model such as the hurdle model examined in Section 18.4.8.  The geometric model would likely provide a better fit to a data set such as this one.  The three approaches do display a substantive difference.  The average partial effects in Table 14.9 differ noticeably for the three specifications.
Table 14.8  Estimated Geometric Regression Model Dependent Variable: 
                      DocVis: Mean 
[image: image1141.wmf]=

 3.18352, Standard Deviation 
[image: image1142.wmf]=

 5.68969, n = 27,326
	
	
	St. Er.
	St. Er.
	St. Er.
	St. Er.
	
	PE
	
	Var.

	Variable
	Estimate
	H
	E[H]
	BHHH
	Cluster
	APE
	Mean
	OLS
	Mean

	Constant
	1.0918
	0.0524
	0.0524
	0.0354
	0.1083
	—
	—
	2.656
	

	Age
	0.0180
	0.0007
	0.0007
	0.0005
	0.0013
	0.0572
	0.057
	0.061
	43.52

	Education
	
-0.0473
	0.0033
	0.0033
	0.0023
	0.0067
	
-0.150
	
-0.144
	
-0.121
	11.32

	Income
	
-0.4684
	0.0411
	0.0423
	0.0278
	0.0727
	
-1.490
	
-1.424
	
-1.621
	0.352

	Kids
	
-0.1569
	0.0156
	0.0155
	0.0103
	0.0306
	
-0.487
	
-0.477
	
-0.517
	0.403


Table 14.9  Estimates of Three Models for DocVis
	
	Geometric Model
	Poisson Model
	Nonlinear Reg.

	Variable
	Estimate
	    St. Er.   APE
	Estimate
	 St. Er.   APE
	Estimate
	St. Er.     APE

	Constant
	1.0918
	0.1083
	 1.0480
	0.1137
	 0.9802
	0.1814

	Age
	 0.0180
	0.0013     0.057
	 0.0184
	0.0013   0.060
	 0.0187
	0.0020    0.060

	Education
	
-0.0473
	0.0067    -0.150
	
-0.0433
	0.0070  -0.138
	
-0.0361
	0.0123   -0.115

	Income
	
-0.4684
	0.0727    -1.490
	
-0.5207
	0.0822  -1.658
	
-0.5919
	0.1283   -1.884

	Kids
	
-0.1569
	0.0306    -0.487
	
-0.1609
	0.0312  -0.500
	
-0.1693
	0.0488   -0.539






14.12    SYSTEMS OF REGRESSION EQUATIONS
The general form of the seemingly unrelated regression (SUR) model is given in (10-1)–(10-3);
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(14-66)

FGLS estimation of this model is examined in detail in Section 10.2.3. We will now add the assumption of normally distributed disturbances to the model and develop the maximum likelihood estimators. This suggests a general approach for multiple equation systems. Given the covariance structure defined in (14-66), the joint normality assumption applies to the vector of 
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 disturbances observed at time 
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, which we write as
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(14-67)

14.12.1
THE POOLED MODEL
The pooled model, in which all coefficient vectors are equal, provides a convenient starting point. With the assumption of equal coefficient vectors, the regression model becomes
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(14-68)

This is a model of heteroscedasticity and cross-sectional correlation. With multivariate normality, the log-likelihood is
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(14-69)

As we saw earlier, the efficient estimator for this model is GLS as shown in (10-22). Because the elements of 
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 must be estimated, the FGLS estimator based on (10-12)-(10-13) is used.

The maximum likelihood estimator of 
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, given 
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, is GLS, based on (10-22). The maximum likelihood estimator of 
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 is
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(14-70)

based on the MLE of 
[image: image1177.wmf]b

. If each MLE requires the other, how can we proceed to obtain both? The answer is provided by Oberhofer and Kmenta (1974), who show that for certain models, including this one, one can iterate back and forth between the two estimators. Thus, the MLEs are obtained by iterating to convergence between (14-70) and
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The process may begin with the (consistent) ordinary least squares estimator, then (14-70), and so on. The computations are simple, using basic matrix algebra. Hypothesis tests about 
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 may be done using the familiar Wald statistic. The appropriate estimator of the asymptotic covariance matrix is the inverse matrix in brackets in (10-22).

For testing the hypothesis that the off-diagonal elements of 
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 are zero—that is, that there is no correlation across firms—there are three approaches. The likelihood ratio test is based on the statistic
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where 
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 obtained from the maximum likelihood estimates of the groupwise heteroscedastic model and 
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 is the maximum likelihood estimator in the unrestricted model. (Note how the excess variation produced by the restrictive model is used to construct the test.) The large-sample distribution of the statistic is chi-squared with 
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 degrees of freedom. The Lagrange multiplier test developed by Breusch and Pagan (1980) provides an alternative. The general form of the statistic is
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where 
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 residual correlation coefficient. If every equation had a different parameter vector, then equation specific ordinary least squares would be efficient (and ML) and we would compute 
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 from the OLS residuals (assuming that there are sufficient observations for the computation). Here, however, we are assuming only a single-parameter vector. Therefore, the appropriate basis for computing the correlations is the residuals from the iterated estimator in the groupwise heteroscedastic model, that is, the same residuals used to compute 
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. (An asymptotically valid approximation to the test can be based on the FGLS residuals instead.) Note that this is not a procedure for testing all the way down to the homoscedastic regression model. That case involves different LM and LR statistics based on the groupwise heteroscedasticity model. If either the LR statistic in (14-72) or the LM statistic in (14-73) are smaller than the critical value from the table, the conclusion, based on this test, is that the appropriate model is the groupwise heteroscedastic model.

14.12.2
THE SUR MODEL
The Oberhofer–Kmenta (1974) conditions are met for the seemingly unrelated regressions model, so maximum likelihood estimates can be obtained by iterating the FGLS procedure. We note, once again, that this procedure presumes the use of (10-11) for estimation of 
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 at each iteration. Maximum likelihood enjoys no advantages over FGLS in its asymptotic properties.
 Whether it would be preferable in a small sample is an open question whose answer will depend on the particular data set.




































































































Example 14.14  ML Estimates of a Seemingly Unrelated Regressions Model

Although a bit dated, the Grunfeld data used in Application 11.2 have withstood the test of time and are still a standard data set used to demonstrate the SUR model. The data in Appendix Table F10.4 are for 10 firms and 20 years (1935–1954). For the purpose of this illustration, we will use the first four firms. [The data are downloaded from the Web site for Baltagi (2005), at
http://www.wiley.com/legacy/wileychi/baltagi/supp/Grunfeld.fil. See also Kleiber and Zeileis (2010).]

The model is an investment equation:
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The OLS estimates for the four equations are shown in the left panel of Table 14.10. The correlation matrix for the four OLS residual vectors is
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Before turning to the FGLS and MLE estimates, we carry out the LM test against the null hypothesis that the regressions are actually unrelated. We leave as an exercise to show that the LM statistic in (14-73) can be computed as
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The 95 percent critical value from the chi squared distribution with 6 degrees of freedom is 12.59, so at this point, it appears that the null hypothesis is not rejected. We will proceed in spite of this finding.

Table 14.10  Estimated Investment Equations

	
	
	OLS
	FGLS
	MLE

	Firm
	Variable
	Estimate
	St. Err.
	Estimate
	St. Err.
	Estimate
	St. Err.

	
	Constant 
	-149.78
 
	97.58 
	-160.68

	90.41 
	
179.41
	86.66

	1 
	F 
	0.1192 
	0.02382 
	0.1205 
	0.02187 
	0.1248 
	0.02086

	
	C 
	0.3714 
	0.03418 
	0.3800 
	0.03311 
	0.3802 
	0.03266

	
	Constant 
	-49.19
 
	136.52 
	21.16 
	116.18 
	36.46 
	106.18

	2 
	F 
	0.1749 
	0.06841 
	0.1304 
	0.05737 
	0.1244 
	0.05191

	
	C 
	0.3896 
	0.1312 
	0.4485 
	0.1225 
	0.4367 
	0.1171

	
	Constant 
	-9.956

	28.92 
	-19.72

	26.58 
	-24.10

	25.80

	3 
	F 
	0.02655 
	0.01435 
	0.03464 
	0.01279 
	0.03808 
	0.01217

	
	C 
	0.1517 
	0.02370 
	0.1368 
	0.02249 
	0.1311 
	0.02223

	
	Constant 
	-6.190

	12.45 
	0.9366 
	11.59 
	2.581 
	11.54

	4 
	F 
	0.07795 
	0.01841 
	0.06785 
	0.01705 
	0.06564 
	0.01698

	
	C 
	0.3157 
	0.02656 
	0.3146 
	0.02606 
	0.3137 
	0.02617


The next step is to compute the covariance matrix for the OLS residuals using
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where E is the 
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 matrix of OLS residuals. Stacking the data in the partitioned matrices
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we now compute 
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 and the FGLS estimates,
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The estimated asymptotic covariance matrix for the FGLS estimates is the bracketed inverse matrix. These results are shown in the center panel in Table 14.10.  
To compute the MLE, we will take advantage of the Oberhofer and Kmenta (1974) result and iterate the FGLS estimator. Using the FGLS coefficient vector, we recompute the residuals, then recompute W, then reestimate 
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. The iteration is repeated until the estimated parameter vector converges. We use as our convergence measure the following criterion based on the change in the estimated parameter from iteration 
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The sequence of values of this criterion function are: 0.21922, 0.16318, 0.00662, 0.00037, 0.00002367825, 0.000001563348, 
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. We exit the iterations after iteration 7. The ML estimates are shown in the right panel of Table 14.10.  
We then carry out the likelihood ratio test of the null hypothesis of a diagonal covariance matrix. The maximum likelihood estimate of 
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The estimate for the constrained model is the diagonal matrix formed from the diagonals of W shown earlier for the OLS results. (The estimates are shown in boldface in the preceding matrix.) The test statistic is then
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Recall that the critical value is 12.59. The results contradict the LM statistic. The hypothesis of diagonal covariance matrix is now rejected.

Note that aside from the constants, the four sets of coefficient estimates are fairly similar. Because of the constants, there seems little doubt that the pooling restriction will be rejected. To find out, we compute the Wald statistic based on the MLE results. For testing
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The Wald statistic is
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. Under the null hypothesis, the Wald statistic has a limiting chi-squared distribution with 9 degrees of freedom. The critical value is 16.92, so, as expected, the hypothesis is rejected. It may be that the difference is due to the different constant terms. To test the hypothesis that the four pairs of slope coefficients are equal, we replaced the 
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 zero vector, The resulting chi-squared statistic equals 229.005. The critical value is 12.59, so this hypothesis is rejected as well.

14.13
SIMULTANEOUS EQUATIONS MODELS
In Chapter 10, we noted two approaches to maximum likelihood estimation of the equation
system
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(14-73)
full information maximum likelihood (FIML) and limited information maximum likelihood (LIML).  The FIML approach simultaneously estimates all model parameters. The FIML estimator for a linear equation system is extremely complicated both theoretically and practically.  However, its asymptotic properties are identical to three stage least squares (3SLS), which is straightforward and a standard feature of modern econometric software.  (See Section 10.4.5).  Thus, the additional assumption of normality in the system brings no theoretical or practical advantage.
       The limited information maximum likelihood (LIML) estimator is a single-equation approach that estimates the parameters of the model one equation at a time.  We examined two approaches to computing the LIML estimator, both straightforward, when the equations are linear.  The least variance ratio approach shown in Section 10.4.4 is based on some basic matrix algebra calculations – the only unconventional calculation involves the characteristic roots of an asymmetric matrix (or obtaining the matrix square root of a symmetric matrix).   The more direct approach in Section (8.4.3) provides some useful results for interpreting the model.
      The leading application of LIML estimation is for an equation that contains one endogenous variable.  (This is the application in most of Chapter 8.)  Let that be the first equation in (14-73);

y1γ11  +  y2γ21 + x1ʹb1 =  ε1.  

Normalize the equation, so the coefficient on y1 is 1 and the other variables apprear on the right hand sied.  Then,

y1  =  y2 δ1+ x1ʹβ1 +  w1. 
(14-74)
This is the structural form for the first equation that contains a single included endogenous variable. The reduced form for the entire system is yʹ = xʹ(-BΓ-1) + vʹ. (See Section 10.4.2 and (10-36).) The second equation in the reduced form is


y2  =  xʹπ2 + u2.
(14-75)
Note that the structural equation for y1 involves only some of the exogenous variables in the system while the reduced form involves all of them including at least one that is not contained in x1.  As we developed in Section 10.4.3, there must be exogenous variables in the system that are excluded from the y1 equation – this is the order condition for identification.  The disturbances in the two equations are linear functions of the disturbances in (14-73), so with normality, the disturbances in (14-74) – (14-75) are joint normal.
    The two equation system (14-74,14-75) is precisely the same as the one we examined in Section 8.4.3,





y  = x1(( + x2( + (




(14-76)





x2 = z(( + u





(14-77)
where y2 in (14-74) is the x2 in (14-76) and z = (x1,…).  Equation (14-77) is the reduced form equation for y2.  This formalizes the results for an equation in a simultaneous equations model that contains one endogenous variable. The estimator is actually based on two equations, the structural equation of interest and the reduced form for the endogenous variable that appears in that equation. The log likelihood function for the LIML estimator for this (actually) two equation system is shown in (8-17).  In the typical equation, (14-76)-(14-77) might well be the recursive structure.  This construction of the model underscores the point that in a model that contains an endogenous variable, there is a second equation that “explains” the endogeneity.
For the practitioner, a useful result is that the asymptotic variance of the two-stage least squares (2SLS) estimator is the same as that of the LIML estimator. This would generally render the LIML estimator, with its additional normality assumption, moot. The  exception would be the invariance of the LIML estimator to normalization of the equation (i.e., which variable appears on the left of the equals sign). This turns out to be useful in the context of analysis in the presence of weak instruments. (See Section 8.7.)  















More generally, the LIML and FIML estimators have been supplanted in the literature by much simpler GMM estimators, 2SLS, 3SLS, and extensions that accommodate heteroscedasticity.  Interest remains in these estimators, but largely as a component of the ongoing theoretical research. 
































	
	

	
	

	


	
	
	
	
	

	
	
	
	
	

	
	

	

	

	


	
	
	
	
	

	
	

	

	

	


	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

	
	
	
	

	
	
	
	
	








































































	
	
	
	
	
	

	
	

	

	

	

	


	
	


	


	

	

	


	
	

	

	

	

	


	

	

	

	

	
	

	
	

	


	


	


	



	
	

	

	


	


	



	

	

	

	

	
	

	
	


	


	


	


	



	
	

	

	


	


	



	

	

	

	

	
	

	
	


	


	


	


	



	
	

	

	


	


	



	

	

	

	

	
	

	
	


	

	


	


	



	
	

	

	


	


	



	

	

	

	

	
	












	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	
	

	

	

	

	
	

	
	
	
	
	

	

	

	

	
	

	
	
	
	
	

	

	

	



	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	

	
	

	
	

	

	
	

	
	

	
	

	















14.14
PANEL DATA APPLICATIONS
Application of panel data methods to the linear panel data models we have considered so far is a fairly marginal extension. For the random effects linear model, considered in the following Section 14.14.1, the MLE of 
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 is, as always, FGLS given the MLEs of the variance parameters. The latter produce a fairly substantial complication, as we shall see. This extension does provide a convenient, interesting application to see the payoff to the invariance property of the MLE—we will reparameterize a fairly complicated log-likelihood function to turn it into a simple one. Where the method of maximum likelihood becomes essential is in analysis of fixed and random effects in nonlinear models. We will develop two general methods for handling these situations in generic terms in Sections 14.14.3 and 14.14.4, then apply them in several models later in the book.

14.14.1
ML ESTIMATION OF THE LINEAR RANDOM EFFECTS MODEL
The contribution of the 
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 individual to the log-likelihood for the random effects model [(11-28) to (11-32)] with normally distributed disturbances is
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where
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 is the constant term) using FGLS. Unfortunately, the convenience and compactness come unraveled in the unbalanced case. We consider, instead, what Baltagi labels a “brute force" approach, that is, direct maximization of the log-likelihood function in (14-78). (See, op. cit, pp. 169–170.)

Using (A-66), we find that
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We will also need the determinant of 
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 It follows that the log of the determinant is
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Expanding the parts and multiplying out the third term gives the log-likelihood function


[image: image1527.wmf](

)

1

22

2

222

111

lnln

()

11

ln2lnln(1)

‍.

22

n

i

i

nnn

uii

iiii

iii

iu

LL

T

TT

T

ee

=

===

=

éù

é

+

ù

¢

=-++--

êú

êú

ë

+

û

ëû

å

ååå

e

ee

s

psg

sss

e


Note that in the third term, we can write 
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Now, let 
[image: image1532.wmf]2

1/,1,

ii

RT

==+

e

qsg

 and 
[image: image1533.wmf]/

ii

QR

=

g

. The individual contribution to the log-likelihood becomes


[image: image1534.wmf]2

1

ln[ (())lnlnln2].

2

iiiiiiiii

LQTRTT

ee

¢

-+

--

=+

qqp

e


The likelihood equations are
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These will be sufficient for programming an optimization algorithm such as DFP or BFGS. (See Section E3.3.) We could continue to derive the second derivatives for computing the asymptotic covariance matrix, but this is unnecessary. For 
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, we know that because this is a generalized regression model, the appropriate asymptotic covariance matrix is
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(See Section 11.5.2.) We also know that the MLEs of the variance components estimators will be asymptotically uncorrelated with the MLE of 
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. Breusch and Pagan’s (1979) LM statistic in (11-42) extended to the unbalanced panel case considered here would be
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Example 14.15   Maximum Likelihood and FGLS Estimates Of A Wage Equation

Example 11.11 presented FGLS estimates of a wage equation using Cornwell and Rupert’s panel data. We have reestimated the wage equation using maximum likelihood instead of FGLS. The parameter estimates appear in Table 14.11, with the FGLS and pooled OLS estimates. The estimates of the variance components are shown in the table as well. The similarity of the MLEs and FGLS slope estimates is to be expected given the large sample size. The difference in the estimates of σu is perhaps surprising. The estimator is not based on a simple sum of squares, however, so this kind of variation is common. The LM statistic for testing for the presence of the common effects is 3,497.02, which is far larger than the critical value of 3.84. With the MLE, we can also use an LR test to test for random effects against the null hypothesis of no effects. The chi-squared statistic based on the two log-likelihoods is 3,662.25, which leads to the same conclusion.





TABLE 14.11  Wage Equation Estimated by FGLS and MLE

Least Squares
Clustered
Random
Standard
Random
Standard

Variable        Estimate       Std.Error
    Effects FGLS         Error
Effects MLE
    Error



Constant
 5.25112
0.12355
 4.04144
0.08330    
   3.12622
  0.17761
Exp 
 0. 04010
0.00408
 0.08748
0.00225    
   0.10721
  0.00248
ExpSq
-0.00067
0.000091
-0.00076
0.0000496
  -0.00051
  0.0000545   
Wks
 0.00422
0.00154
 0.00096
0.00059
   0.00084
  0.00060
Occ
-0.14001
0.02724
-0.04322
0.01299
  -0.02512
  0.01378
Ind 
 0.04679
0.02366
 0.00378
0.01373
   0.01380
  0.01529  
South
-0.05564
0.02616
-0.00825
0.02246
   0.00577
  0.03159
SMSA
 0.15167
0.02410
-0.02840
0.01616
  -0.04748
  0.01896      
MS
 0.04845
0.04094
-0.07090
0.01793
  -0.04138  
  0.01899 
Union
 0.09263
0.02367
 0.05835
0.01350
   0.03873      
  0.01481 
Ed
 0.05670
0.00556
 0.10707
0.00511
   0.13562   
  0.01267 
Fem
-0.36779
0.04557
-0.30938
0.04554
  -0.17562   
  0.11310 
Blk
-0.16694
0.04433
-0.21950
0.05252
  -0.26121
  0.13747   


θ




   42.5265
γ




   29.9705
σε
 0.34936

 0.15206

   0.15335
σu
 0.00000

 0.31453

   0.83949



	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	
	
	
	
	

	

	
	

	
	

	
	

	

	
	
	
	

	
	

	

	
	
	
	

	
	

	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	

	

	

	
	

	

	

	

	
	


14.14.2
NESTED RANDOM EFFECTS
Consider a data set on test scores for multiple school districts in a state. To establish a notation for this complex model, we define a four-level unbalanced structure,
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Thus, from the outset, we allow the model to be unbalanced at all levels. In general terms, then, the random effects regression model would be
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Strict exogeneity of the regressors is assumed at all levels. All parts of the disturbance are also assumed to be uncorrelated. (A normality assumption will be added later as well.) From the structure of the disturbances, we can see that the overall covariance matrix, 
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, is block-diagonal over 
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, with each diagonal block itself block-diagonal in turn over 
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, each of these is block-diagonal over 
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, and, at the lowest level, the blocks, for example, for the class in our example, have the form for the random effects model that we saw earlier.

Generalized least squares has been well worked out for the balanced case. [See, for example, Baltagi, Song, and Jung (2001), who also provide results for the three-level unbalanced case.] Define the following to be constructed from the variance components, 
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Then, full generalized least squares is equivalent to OLS regression of


[image: image1579.wmf]11223

1.. .

ijktijktijkiji

yyyy

y

æö

æöæö

=-----¼

ç÷

ç÷ç÷

èøèø

èø

-

%

eeeee

sssss

sssss


on the same transformation of 
[image: image1580.wmf]ijkt
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. FGLS estimates are obtained by three groupwise between estimators and the within estimator for the innermost grouping.

The counterparts for the unbalanced case can be derived [see Baltagi et al. (2001)], but the degree of complexity rises dramatically. As Antwiler (2001) shows, however, if one is willing to assume normality of the distributions, then the log-likelihood is very tractable. (We note an intersection of practicality with nonrobustness.) Define the variance ratios
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Construct the following intermediate results:
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and sums of squares of the disturbances 
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The log-likelihood is
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where 
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 is the total number of observations. (For three levels, 
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.) Antwiler (2001) provides the first derivatives of the log-likelihood function needed to maximize 
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. However, he does suggest that the complexity of the results might make numerical differentiation attractive. On the other hand, he finds the second derivatives of the function intractable and resorts to numerical second derivatives in his application. The complex part of the Hessian is the cross derivatives between 
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 and the variance parameters, and the lower right part for the variance parameters themselves. However, these are not needed. As in any generalized regression model, the variance estimators and the slope estimators are asymptotically uncorrelated. As such, one need only invert the part of the matrix with respect to 
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 to get the appropriate asymptotic covariance matrix. The relevant block is
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(14-79)
The maximum likelihood estimator of 
[image: image1593.wmf]b

 is FGLS based on the maximum likelihood estimators of the variance parameters. Thus, expression (14-79) provides the appropriate covariance matrix for the GLS or maximum likelihood estimator. The difference will be in how the variance components are computed. Baltagi et al. (2001) suggest a variety of methods for the three-level model. For more than three levels, the MLE becomes more attractive.


Example 14.16  Statewide Productivity

Munnell (1990) analyzed the productivity of public capital at the state level using a Cobb–Douglas production function. We will use the data from that study to estimate a three-level log linear regression model,
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where the variables in the model are
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and we have defined M = 9 regions each consisting of a group of the 48 continental states:
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For each state, we have 17 years of data, from 1970 to 1986.
 The two- and three-level random effects models were estimated by maximum likelihood. The two-level model was also fit by FGLS using the methods developed in Section 11.5.3.

Table 14.12 presents the estimates of the production function using pooled OLS, OLS for the fixed effects model and both FGLS and maximum likelihood for the random effects models. Overall, the estimates are similar, though the OLS estimates do stand somewhat apart. This suggests, as one might suspect, that there are omitted effects in the pooled model. The 
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 statistic for testing the significance of the fixed effects is 76.712 with 47 and 762 degrees of freedom. The critical value from the table is 1.379, so on this basis, one would reject the hypothesis of no common effects. Note, as well, the extremely large differences between the conventional OLS standard errors and the robust (cluster) corrected values. The three or four fold differences strongly suggest that there are latent effects at least at the state level. It remains to consider which approach, fixed or random effects is preferred. The Hausman test for fixed vs. random effects produces a chi-squared value of 18.987. The critical value is 12.592. This would imply that the fixed effects model would be the preferred specification. When we repeat the calculation of the Hausman statistic using the three-level estimates in the last column of Table 14.12, the statistic falls slightly to 15.327. Finally, note the similarity of all three sets of random effects estimates. In fact, under the hypothesis of mean independence, all three are consistent estimators. It is tempting at this point to carry out a likelihood ratio test of the hypothesis of the two-level model against the broader alternative three-level model. The test statistic would be twice the difference of the log-likelihoods, which is 2.46. For one degree of freedom, the critical chi-squared with one degree of freedom is 3.84, so on this basis, we would not reject the hypothesis of the two-level model. We note, however, that there is a problem with this testing procedure. The hypothesis that a variance is zero is not well defined for the likelihood ratio test—the parameter under the null hypothesis is on the boundary of the parameter space 
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. In this instance, the familiar distribution theory does not apply.  The results of Kodde and Palm (1988) in Example 14.8 can be used instead of the standard test.
Table 14.12  Estimated Statewide Production Function
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aRobust (cluster) standard errors in parentheses. The covariance matrix is multiplied by a degrees of freedom correction, 
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14.14.3  CLUSTERING OVER MORE THAN ONE LEVEL
Given the complexity of (14-79), one might prefer simply to use OLS in spite of its inefficiency. As might be expected, the standard errors will be biased owing to the correlation across observations; there is evidence that the bias is downward. [See Moulton (1986).] In that event, the robust estimator in (11-4) would be the natural alternative. In the example given earlier, the nesting structure was obvious. In other cases, such as our application in Example 11.16, that might not be true. In Example 14.16 [and in the application in Baltagi (2013)], statewide observations are grouped into regions based on intuition. The impact of an incorrect grouping is unclear. Both OLS and FGLS would remain consistent—both are equivalent to GLS with the wrong weights, which we considered earlier. However, the impact on the asymptotic covariance matrix for the estimator remains to be analyzed.  
The nested structure of the data would call the clustering computation in (11-4) into question. If the grouping is done only on the innermost level (on teachers in our example), then the assumption that the clusters are independent is incorrect (teachers in the same school in our example). A two or more level grouping might be called for in this case.  For two levels, as in clusters within stratified data (such as panels on firms within industries) or panel data on individuals within neighborhoods), a reasonably compact procedure can be constructed.  [See, e.g., Cameron and Miller (2015).]  The pseudo-log likelihood function is
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Where there are S strata, s=1,…,S, Cs clusters in stratum s, c = 1,…,Cs and Ncs individual observations in cluster c in stratum s, i = 1,…,Ncs. We emphasize, this is not the true log likelihood for the sample; the assumed clustering and stratification of the data imply that observations are correlated.  Let 
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(14-81)
Then, the corrected covariance matrix for the pseudo-MLE would be
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(14-82) 
For a linear model estimated using least squares, we would use gics = (eics/s2)xics and Hics = (1/s2)xicsxicsʹ.  The appearances of s2 would cancel out in the final result.  One last consideration concerns some finite population corrections.  The terms in G might be weighted by a factor ws = (1 – Cs/Cs*) if stratum s consists of a finite set of clusters of which Cs is a significant proportion, times the within cluster correction, Cs/(Cs-1) that appears in (11-4), and finally, times (n-1)/(n-K) where n is the full sample size and K is the number of parameters estimated.
14.14.4
RANDOM EFFECTS IN NONLINEAR MODELS: 

MLE USING QUADRATURE
Example 14.13 describes a nonlinear model for panel data, the geometric regression model,
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As noted, this is a panel data model, although as stated, it has none of the features we have used for the panel data in the linear case. It is a regression model,
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This is simply a tautology that defines the deviation of 
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 from its conditional mean. It might seem natural at this point to introduce a common fixed or random effect, as we did earlier in the linear case, as in
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However, the difficulty in this specification is that whereas 
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 is defined residually just as the difference between 
[image: image1629.wmf]it

y

 and its mean, 
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 is a freely varying random variable. Without extremely complex constraints on how 
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 varies, the model as stated cannot prevent 
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 from being negative. When building the specification for a nonlinear model, greater care must be taken to preserve the internal consistency of the specification. A frequent approach in index function models such as this one is to introduce the common effect in the conditional mean function. The random effects geometric regression model, for example, might appear
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By this specification, it is now appropriate to state the model specification as
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That is, our statement of the probability is now conditioned on both the observed data and the unobserved random effect. The random common effect can then vary freely and the inherent characteristics of the model are preserved.

Two questions now arise:

(
How does one obtain maximum likelihood estimates of the parameters of the model? We will pursue that question now.

(
If we ignore the individual heterogeneity and simply estimate the pooled model, will we obtain consistent estimators of the model parameters? The answer is sometimes, but usually not. The favorable cases are the simple loglinear models such as the geometric and Poisson models that we consider in this chapter. The unfavorable cases are most of the other common applications in the literature, including, notably, models for binary choice, censored regressions, two part models, sample selection, and, generally, nonlinear models that do not have simple exponential means. [Note that this is the crucial issue in the consideration of robust covariance matrix estimation in Section 14.8. See, as well, Freedman (2006).]

We will now develop a maximum likelihood estimator for a nonlinear random effects model. To set up the methodology for applications later in the book, we will do this in a generic specification, then return to the specific application of the geometric regression model in Example 14.13. Assume, then, that the panel data model defines the probability distribution of a random variable,yit,
 conditioned on a data vector, 
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 observations in the group, and the data on xit
 and now ui 
are assumed to be strictly exogenously determined. Our model for one individual is, then,
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 defines the functional form and emphasizes the vector of parameters to be estimated. We are also going to assume that, but for the common 
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because conditioned on 
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, the observations are independent. But because 
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 is part of the observation on the group, to construct the log-likelihood, we will require the joint density,
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The likelihood function is the joint density for the observed random variables. Because 
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 is an unobserved random effect, to construct the likelihood function, we will then have to integrate it out of the joint density. Thus,
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The contribution to the log-likelihood function of group 
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 is, then,
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There are two practical problems to be solved to implement this estimator. First, it will be rare that the integral will exist in closed form. (It does when the density of 
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 is normal with linear conditional mean and the random effect is normal, because, as we have seen, this is the random effects linear model.) As such, the practical complication that arises is how the integrals are to be computed. Second, it remains to specify the distribution of 
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 over which the integration is taken. The distribution of the common effect is part of the model specification. Several approaches for this model have now appeared in the literature. The one we will develop here extends the random effects model with normally distributed effects that we have analyzed in the previous section. The technique is Butler and Moffitt’s (1982) method. It was originally proposed for extending the random effects model to a binary choice setting (see Chapter 17), but, as we shall see presently, it is straightforward to extend it to a wide range of other models. The computations center on a technique for approximating integrals known as Gauss–Hermite quadrature.

We assume that 
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With this assumption, the 
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 term in the log-likelihood is
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To put this function in a form that will be convenient for us later, we now let 
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. Now, we make the change of variable in the integral, to produce the function
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For the moment, let
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Then, the function we are manipulating is
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The payoff to all this manipulation is that integrals of this form can be computed very accurately by Gauss–Hermite quadrature. Gauss–Hermite quadrature replaces the integration with a weighted sum of the functions evaluated at a specific set of points. For the general case, this is
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where 
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 is the weight and 
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 is the node. Tables of the weights and nodes are found in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and weights for a four-point quadrature are
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In practice, it is common to use eight or more points, up to a practical limit of about 96. Assembling all of the parts, we obtain the approximation to the contribution to the log-likelihood,
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The Hermite approximation to the log-likelihood function is
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(14-83)

This function is now to be maximized with respect to 
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 and 
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. Maximization is a complex problem. However, it has been automated in contemporary software for some models, notably the binary choice models mentioned earlier, and is in fact quite straightforward to implement in many other models as well. The first and second derivatives of the log-likelihood function are correspondingly complex but still computable using quadrature. The estimate of 
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. The hypothesis of no cross-period correlation can be tested with a likelihood ratio test.

Example 14.17  Random Effects Geometric Regression Model

We will use the preceding to construct a random effects model for the DocVis count variable analyzed in Example 14.10. Using (14-90), the approximate log-likelihood function will be
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The derivatives of the log-likelihood are approximated as well. The following is the general result—development is left as an exercise:
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It remains only to specialize this to our geometric regression model. For this case, the density is given earlier. The missing components of the preceding derivatives are the partial derivatives with respect to 
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 and 
[image: image1687.wmf]f

 that were obtained in Section 14.9.5. The necessary result is
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Maximum likelihood estimates of the parameters of the random effects geometric regression model are given in Example 14.13 with the fixed effects estimates for this model.

14.14.5
FIXED EFFECTS IN NONLINEAR MODELS: 

THE INCIDENTAL PARAMETERS PROBLEM
Using the same modeling framework that we used in the previous section, we now define a fixed effects model as an index function model with a group-specific constant term. As before, the “model” is the assumed density for a random variable,
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where 
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 is a dummy variable that takes the value one in every period for individual 
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 and zero otherwise. (In more involved models, such as the censored regression model we examine in Chapter 19, there might be other parameters, such as a variance. For now, it is convenient to omit them—the development can be extended to add them later.) For convenience, we have redefined 
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 to be the nonconstant variables in the model.
 The parameters to be estimated are the 
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 elements of 
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 and the 
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 individual constant terms, αi. The log-likelihood function for the fixed effects model is
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where 
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 is the probability density function of the observed outcome, for example, the geometric regression model that we used in our previous example. It will be convenient to let 
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In the fixed effects linear regression case, we found that estimation of the parameters was made possible by a transformation of the data to deviations from group means that eliminated the person-specific constants from the equation. (See Section 11.4.1.) In a few cases of nonlinear models, it is also possible to eliminate the fixed effects from the likelihood function, although in general not by taking deviations from means. One example is the exponential regression model that is used in duration modeling, for example for lifetimes of electronic components and electrical equipment such as light bulbs:
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It will be convenient to write 
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. The log-likelihood is
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The MLE will be found by equating the 
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Equating this to zero provides a solution for 
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[Note the analogous result for the linear model in (11-16b).] Inserting this solution back in the log-likelihood function in (14-84), we obtain the concentrated log likelihood,
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which is now only a function of 
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. This function can now be maximized with respect to 
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 alone. The MLEs for 
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 are then found as the logs of the results of (14-92). Note, once again, we have eliminated the constants from the estimation problem, but not by computing deviations from group means. That is specific to the linear model.

The concentrated log-likelihood is only obtainable in only a small handful of cases, including the linear model, the exponential model (as just shown), the Poisson regression model, and a few others. Lancaster (2000) lists some of these and discusses the underlying methodological issues. In most cases, if one desires to estimate the parameters of a fixed effects model, it will be necessary to actually compute the possibly huge number of constant terms, 
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, at the same time as the main parameters, 
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. This has widely been viewed as a practical obstacle to estimation of this model because of the need to invert a potentially large second derivatives matrix, but this is a misconception. [See, for example, Maddala (1987), p. 317.] The likelihood equations for the general fixed effects, index function model are
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and
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The second derivatives matrix is
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where 
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 is a negative definite matrix. The likelihood equations are a large system, but the solution turns out to be surprisingly straightforward. [See Greene (2004a).]

By using the formula for the partitioned inverse, we find that the 
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, which would provide the asymptotic covariance matrix for the MLE, is
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Note the striking similarity to the result we had in (11-17) for the fixed effects model in the linear case. [A similar result is noted briefly in Chamberlain (1984).] By assembling the Hessian as a partitioned matrix for 
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 and the full vector of constant terms, then using (A-66b) and the preceding definitions to isolate one diagonal element, we find
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Once again, the result has the same format as its counterpart in the linear model. In principle, the negatives of these would be the estimators of the asymptotic variances of the maximum likelihood estimators. (Asymptotic properties in this model are problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand, so that in fact, practical estimation of the model is not really the obstacle. [This must be qualified, however. Consider the likelihood equation for one of the constants in the geometric regression model. This would be
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Suppose 
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 equals zero in every period for individual 
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 is between zero and one, so the sum must be negative and cannot equal zero. The likelihood equation has no solution with finite coefficients. Such groups would have to be removed from the sample to fit this model.]

It is shown in Greene (2004a) in spite of the potentially large number of parameters in the model, Newton’s method can be used with the following iteration, which uses only the 
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and
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This is a large amount of computation involving many summations, but it is linear in the number of parameters and does not involve any 
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 matrices.

In addition to the theoretical virtues and shortcomings (yet to be addressed) of this model, we note the practical aspect of estimation of what are possibly a huge number of parameters, 
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. In the fixed effects case, 
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 is not limited, and could be in the thousands in a typical application. [In Examples 14.15 and 14.16, 
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 is 7,293.  Two large application of the method described here  are Kingdon and Cassen’s (2007) study in which they fit a fixed effects probit model with well over 140,000 dummy variable coefficients and Fernandez-Val’s (2009), which analyzes a model with 500,000 groups.
The problems with the fixed effects estimator are statistical, not practical.
 The estimator relies on 
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 increasing for the constant terms to be consistent—in essence, each 
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 is estimated with 
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 observations. In this setting, not only is 
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 fixed, it is also likely to be quite small. As such, the estimators of the constant terms are not consistent (not because they converge to something other than what they are trying to estimate, but because they do not converge at all). There is, as well, a small sample (small 
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) bias in the slope estimators. This is the incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] The source of the problem appears to arise from estimating n+K parameters with n multivariate observations – the number of parameters estimated grows with the sample size.  The precise implication of the incidental parameters problem differs from one model to the next. In general, the slope estimators in the fixed effects model do converge to a parameter vector, but not to β. In the most familiar cases, binary choice models such as probit and logit, the small T bias in the coefficient estimators appears to be proportional (e.g., 100% when T = 2), and away from zero, and to diminish monotonically with T, becoming essentially negligible as T reaches 15 or 20.  In other cases involving continuous variables, the slope coefficients appear not to be biased at all, but the impact is on variance and scale parameters.  The linear fixed effects model noted in Footnote 10 in Chapter 11 is an example; the stochastic frontier model (Section 19.2) is another. Yet, in models for truncated variables (Section 19.2), the incidental parameters bias appears to affect both the slopes (biased toward zero) and the variance parameters (also attenuated). We will examine the incidental parameters problem in more detail in Section 15.5.2.


	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	

	
	

	
	

	

	
	

	
	

	
	

	




Example 14.18  Fixed and Random Effects Geometric Regression
Example 14.13 presents pooled estimates for a geometric regression model
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We will now reestimate the model under the assumptions of the random and fixed effects specifications. The methods of the preceding two sections are applied directly—no modification of the procedures was required. Table 14.13 presents the three sets of maximum likelihood estimates. The estimates vary considerably. The average group size is about five. This implies that the fixed effects estimator may well be subject to a small sample bias. Save for the coefficient on Kids, the fixed effects and random effects estimates are quite similar. On the other hand, the two panel models give similar results to the pooled model except for the Income coefficient. On this basis, it is difficult to see, based solely on the results, which should be the preferred model. The model is nonlinear to begin with, so the pooled model, which might otherwise be preferred on the basis of computational ease, now has no redeeming virtues. None of the three models is robust to misspecification. Unlike the linear model, in this and other nonlinear models, the fixed effects estimator is inconsistent when 
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 is small in both random and fixed effects models. The random effects estimator is consistent in the random effects model, but, as usual, not in the fixed effects model. The pooled estimator is inconsistent in both random and fixed effects cases (which calls into question the virtue of the robust covariance matrix). It might be tempting to use a Hausman specification test (see Section 11.5.5); however, the conditions that underlie the test are not met—unlike the linear model where the fixed effects is consistent in both cases, here it is inconsistent in both cases. For better or worse, that leaves the analyst with the need to choose the model based on the underlying theory.
Table 14.13  Panel Data Estimates of a Geometric Regression for DOCVIS

	
	Pooled
	Random Effectsa
	Fixed Effects

	Variable
	Estimate
	St. Er.b
	Estimate
	St. Er.
	Estimate
	St. Er.

	Constant
	1.09189
	0.10828
	0.39936
	0.09530 
	
	

	Age
	0.01799
	0.00130
	0.02209
	0.00122
	0.04845
	0.00351

	Education
	-0.04725
	0.00671
	-0.04506
	0.00626
	-0.05434
	0.03721

	Income
	-0.46836
	0.07265
	-0.19569
	0.06106
	-0.18760
	0.09134 

	Kids
	-0.15684
	0.03055
	-0.12434
	0.02336
	-0.00253
	0.03687


a Estimated  σu = 0.95441.
b Standard errors corrected for clusters in the panel.
14.15
  Latent Class and Finite Mixture Models

In this final application of maximum likelihood estimation, rather than explore a particular model, we will develop a technique that has been used in many different settings. The latent class modeling framework specifies that the distribution of the observed data is a mixture of a finite number of underlying populations. The model can be motivated in several ways:

(
In the classic application of the technique, the observed data are drawn from a mixture of distinct underlying populations. Consider, for example, a historical or fossilized record of the intersection (or collision) of two populations.
 The anthropological record consists of measurements on some variable that would differ imperfectly, but substantively, between the populations. However, the analyst has no definitive marker for which subpopulation an observation is drawn from. Given a sample of observations, they are interested in two statistical problems: (1) estimate the parameters of the underlying populations (models) and (2) classify the observations in hand as having originated in which population. The technique has seen a number of recent applications in health econometrics. For example, in a study of obesity, Greene, Harris, Hollingsworth, and Maitra (2008) speculated that their ordered choice model (see Chapter 19) might systematically vary in a sample that contained (it was believed) some individuals who have a genetic predisposition toward obesity and most that did not. In another application, Lambert (1992) studied the number of defective outcomes in a production process. When a “zero defectives” condition is observed, it could indicate either regime 1, “the process is under control,” or regime 2, “the process is not under control but just happens to produce a zero observation.”

(
In a narrower sense, one might view parameter heterogeneity in a population as a form of discrete mixing. We have modeled parameter heterogeneity using continuous distributions in Section 11.10. The “finite mixture” approach takes the distribution of parameters across individuals to be discrete. (Of course, this is another way to interpret the first point.)

(
The finite mixing approach is a means by which a distribution (model) can be constructed from a mixture of underlying distributions. Quandt and Ramsey’s mixture of normals model in Example 13.4 is a case in which a nonnormal distribution is created by mixing two normal distributions with different parameters.

14.15.1
A Finite Mixture Model

To lay the foundation for the more fully developed model that follows, we revisit the mixture of normals model from Example 13.4. Consider a population that consists of a latent mixture of two underlying normal distributions. Neglecting for the moment that it is unknown which applies to a given individual, we have, for individual 
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The contribution to the likelihood function is 
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The parameters to be estimated are 
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This is the mixture density that we saw in Example 13.4. We suggested the method of moments as an estimator of the five parameters in that example. However, this appears to be a straightforward problem in maximum likelihood estimation.
Example 14.19  A Normal Mixture Model for Grade Point Averages
Appendix Table F14.1 contains a data set of 32 observations used by Spector and Mazzeo (1980) to study whether a new method of teaching economics, the Personalized System of Instruction (PSI), significantly influenced performance in later economics courses. Variables in the data set include
GPA
=  the student’s grade point average,

GRADE
=  dummy variable for whether the student’s grade in intermediate


    Macroeconomics was higher than in the principles course,

PSI
=  dummy variable for whether the individual participated in the PSI,

TUCE
=  the student’s score on a pretest in economics.


We will use these data to develop a finite mixture normal model for the distribution of grade point averages.

We begin by computing maximum likelihood estimates of the parameters in (14-89). To estimate the parameters using an iterative method, it is necessary to devise a set of starting values. It might seem natural to use the simple values from a one-class model, 
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 and 
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, and a value such as 1/2
 for  λ
. However, the optimizer will immediately stop on these values, as the derivatives will be zero at this point. Rather, it is common to use some value near these—perturbing them slightly (a few percent), just to get the iterations started. Table 14.14 contains the estimates for this two-class finite mixture model. The estimates for the one-class model are the sample mean and standard deviation of GPA. [Because these are the MLEs, 
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.] The means and standard deviations of the two classes are noticeably different—the model appears to be revealing a distinct splitting of the data into two classes. (Whether two is the appropriate number of classes is considered in Section 14.15.5.) It is tempting at this point to identify the two classes with some other covariate, either in the data set or not, such as PSI. However, at this point, there is no basis for doing so—the classes are “latent.” As the analysis continues, however, we will want to investigate whether any observed data help to predict the class membership.

Table 14.14  Estimated Normal Mixture Model

	
	One Class
	Latent Class 1
	Latent Class 2

	Parameter
	Estimate
	Std. Err.
	Estimate
	Std. Err.
	Estimate
	Std. Err.
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	3.1172
	0.08251
	3.64187
	0.3452
	2.8894
	0.2514
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	0.4594
	0.04070
	0.2524
	0.2625
	0.3218
	0.1095

	Probability
	1.0000
	0.0000
	0.3028
	0.3497
	0.6972
	0.3497

	ln L
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14.15.2
MODELING THE CLASS PROBABILITIES
The development thus far has assumed that the analyst has no information about class membership. Estimation of the “prior” probabilities (
λ in the preceding example) is part of the estimation problem. There may be some, albeit imperfect, information about class membership in the sample as well. For our earlier example of grade point averages, we also know the individual’s score on a test of economic literacy (TUCE). Use of this information might sharpen the estimates of the class probabilities. The mixture of normals distribution, for example, might be formulated
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where 
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 is the vector of variables that help to explain the class probabilities. To make the mixture model amenable to estimation, it is necessary to parameterize the probabilities. The logit probability model is a common device. (See Section 17.2. For applications, see Greene (2005, Section 2.3.3) and references cited.) For the two-class case, this might appear as  follows:
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(The more general 
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 class case is shown in Section 14.15.6.) The log-likelihood for the mixture of two normal densities becomes
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The log-likelihood is now maximized with respect to 
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 contains a constant term and some other observed variables, then the earlier model returns if the coefficients on those other variables all equal zero. In this case, it follows that 
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. (This device is usually used to ensure that 
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 in the earlier model.)
14.15.3
Latent Class REGRESSION Models
To complete the construction of the latent class model, we note that the means (and, in principle, the variances) in the original model could be conditioned on observed data as well. For our normal mixture models, we might make the marginal mean, 
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In the data of Example 14.17, we also observe an indicator of whether the individual has participated in a special program designed to enhance the economics program (PSI). We might modify the model,
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and similarly for 
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. The model is now a latent class linear regression model.

More generally, as we will see shortly, the latent class, or finite mixture model for a variable 
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where 
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 and so on. The marginal class probabilities are
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The methodology can be applied to any model for 
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. In the example in Section 14.15.6, we will model a binary dependent variable with a probit model. The methodology has been applied in many other settings, such as stochastic frontier models [Orea and Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)], and a wide variety of count, discrete choice, and limited dependent variable models [McLachlan and Peel (2000), Greene (2007b)].
Example 14.20  Latent Class Regression Model for Grade Point Averages

Combining 14.15.2 and 14.15.4, we have a latent class model for grade point averages,
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     The log-likelihood is now
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     Maximum likelihood estimates of the parameters are given in Table 14.13.

Table 14.15  Estimated Latent Class Linear Regression Model for GPA

	
	One Class
	Latent Class 1
	Latent Class 2

	Parameter
	Estimate
	Std. Err.
	Estimate
	Std. Err.
	Estimate
	Std. Err.

	β1
	3.1011
	0.1117
	3.3928
	0.1733
	2.7926
	0.04988

	β2
	0.03675
	0.1689
	
[image: image1814.wmf]-

0.1074
	0.2006
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0.5703
	0.07553

	σ
	0.4443
	0.0003086
	0.3812
	0.09337
	0.1119
	0.04487

	θ1
	0.0000
	0.0000
	
[image: image1816.wmf]-

6.8392
	3.07867
	0.0000
	0.0000

	θ2
	0.0000
	0.0000
	0.3518
	0.1601
	0.0000
	0.0000

	P(class|TUCE)
	1.0000
	0.7063
	0.2937

	ln L
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20.48752
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13.39966


14.15.4
Predicting Class Membership and βi
The model in (14-91) now characterizes two random variables, yi,
 the outcome variable of interest, and classi
, the indicator of which class the individual resides in. We have a joint distribution,
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. These can be viewed as the “prior” probabilities in a Bayesian sense. If we wish to make a prediction as to which class the individual came from, using all the information that we have on that individual, then the prior probability is going to waste some information; it wastes the information on the observed outcome. The “posterior,” or conditional (on the remaining data) probability,
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will be based on more information than the marginal probabilities. We have the elements that we need to compute this conditional probability. Use Bayes’s theorem to write this as
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The denominator is Li (not ln Li) from (14-91).  The numerator is the first term in Li.  To continue our 






our mixture of two normals example, the conditional (posterior) probability is
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while the unconditional probability is in (14-90). The conditional probability for the second class is computed using the other two marginal densities in the numerator (or by subtraction from one). Note that the conditional probabilities are functions of the data even if the unconditional ones are not. To come to the problem suggested at the outset, then, the natural predictor of 
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 is the class associated with the largest estimated posterior probability.

In random parameter settings, we have also been interested in predicting E[βi|yi,Xi].  There are two candidates for the latent class model.  Having made the best guess as to which specific class an individual resides in, a natural estimator of βi would be the βj associated with that class.  A preferable estimator that uses more information would be the posterior expected value,
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Example 14.21   Predicting Class Probabilities

Table 14.14 lists the observations sorted by GPA. The predictions of class membership reflect what one might guess from the coefficients in the table of coefficients. Class 2 members on average have lower GPAs than in class 1. The listing in Table 14.14 shows this clustering. It also suggests how the latent class model is using the sample information. If the results in Table 14.12—just estimating the means, constant class probabilities—are used to produce the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in class 2. The more elaborate model is adding information on TUCE to the computation. A low TUCE score can push a high GPA individual into class 2. (Of course, this is largely what multiple linear regression does as well.) 
Table 14.16  Estimated Latent Class Probabilities

	GPA
	TUCE
	PSI
	CLASS
	P1
	P1*
	P2
	P2*

	2.06
	22
	1
	2
	0.7109
	0.0116
	0.2891
	0.9884

	2.39
	19
	1
	2
	0.4612
	0.0467
	0.5388
	0.9533

	2.63
	20
	0
	2
	0.5489
	0.1217
	0.4511
	0.8783

	2.66
	20
	0
	2
	0.5489
	0.1020
	0.4511
	0.8980

	2.67
	24
	1
	1
	0.8325
	0.9992
	0.1675
	0.0008

	2.74
	19
	0
	2
	0.4612
	0.0608
	0.5388
	0.9392

	2.75
	25
	0
	2
	0.8760
	0.3499
	0.1240
	0.6501

	2.76
	17
	0
	2
	0.2975
	0.0317
	0.7025
	0.9683

	2.83
	19
	0
	2
	0.4612
	0.0821
	0.5388
	0.9179

	2.83
	27
	1
	1
	0.9345
	1.0000
	0.0655
	0.0000

	2.86
	17
	0
	2
	0.2975
	0.0532
	0.7025
	0.9468

	2.87
	21
	0
	2
	0.6336
	0.2013
	0.3664
	0.7987

	2.89
	14
	1
	1
	0.1285
	1.0000
	0.8715
	0.0000

	2.89
	22
	0
	2
	0.7109
	0.3065
	0.2891
	0.6935

	2.92
	12
	0
	2
	0.0680
	0.0186
	0.9320
	0.9814

	3.03
	25
	0
	1
	0.8760
	0.9260
	0.1240
	0.0740

	3.10
	21
	1
	1
	0.6336
	1.0000
	0.3664
	0.0000

	3.12
	23
	1
	1
	0.7775
	1.0000
	0.2225
	0.0000

	3.16
	25
	1
	1
	0.8760
	1.0000
	0.1240
	0.0000

	3.26
	25
	0
	1
	0.8760
	0.9999
	0.1240
	0.0001

	3.28
	24
	0
	1
	0.8325
	0.9999
	0.1675
	0.0001

	3.32
	23
	0
	1
	0.7775
	1.0000
	0.2225
	0.0000

	3.39
	17
	1
	1
	0.2975
	1.0000
	0.7025
	0.0000

	3.51
	26
	1
	1
	0.9094
	1.0000
	0.0906
	0.0000

	3.53
	26
	0
	1
	0.9094
	1.0000
	0.0906
	0.0000

	3.54
	24
	1
	1
	0.8325
	1.0000
	0.1675
	0.0000

	3.57
	23
	0
	1
	0.7775
	1.0000
	0.2225
	0.0000

	3.62
	28
	1
	1
	0.9530
	1.0000
	0.0470
	0.0000

	3.65
	21
	1
	1
	0.6336
	1.0000
	0.3664
	0.0000

	3.92
	29
	0
	1
	0.9665
	1.0000
	0.0335
	0.0000

	4.00
	21
	0
	1
	0.6336
	1.0000
	0.3664
	0.0000

	4.00
	23
	1
	1
	0.7775
	1.0000
	0.2225
	0.0000


14.15.5
Determining the Number of Classes

There is an unsolved inference issue remaining in the specification of the model. The number of classes has been taken as a known parameter—two in our main example thus far, three in the following application. Ideally, one would like to determine the appropriate number of classes statistically. However, 
[image: image1863.wmf]J

 is not a parameter in the model. A likelihood ratio test, for example, will not provide a valid result. Consider the original model in Example 14.17. The model has two classes and five parameters in total. It would seem natural to test down to a one-class model that contains only the mean and variance using the LR test. However, the number of restrictions here is actually ambiguous. If 
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, then the mixing probability is irrelevant—the two class densities are the same, and it is a one-class model. Thus, the number of restrictions needed to get from the two-class model to the one-class model is ambiguous. It is neither two nor three. One strategy that has been suggested is to test upward, adding classes until the marginal class insignificantly changes the log-likelihood or one of the information criteria such as the AIC or BIC (see Section 14.6.5). Unfortunately, this approach is likewise problematic because the estimates from any specification that is too short are inconsistent. The alternative would be to test down from a specification known to be too large. Heckman and Singer (1984b) discuss this possibility and note that when the number of classes becomes larger than appropriate, the estimator should break down. In our Example 14.15, if we expand to four classes, the optimizer breaks down, and it is no longer possible to compute the estimates. A five-class model does produce estimates, but some are nonsensical. This does provide at least the directions to seek a viable strategy. The authoritative treatise on finite mixture models by McLachlan and Peel (2000, Chapter 6) contains extensive discussion of this issue.

14.15.6
A Panel Data Application

The latent class model is a useful framework for applications in panel data. The class probabilities partly play the role of common random effects, as we will now explore. The latent class model can be interpreted as a random parameters model with a discrete distribution of the parameters.

Suppose that 
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 is generated from a discrete distribution with 
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 outcomes, or classes, so that the distribution of 
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 is over these classes. Thus, the model states that an individual belongs to one of the 
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 latent classes, indexed by the parameter vector, but it is unknown from the sample data exactly which one. We will use the sample data to estimate the parameter vectors, the parameters of the underlying probability distribution and the probabilities of class membership. The corresponding model formulation is now
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(14-92)
where it remains to parameterize the class probabilities, 
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 contains a constant term if the class probabilities are fixed parameters as in Example 14.17. Finally, to accommodate the panel data nature of the sampling situation, we suppose that conditioned on 
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The log-likelihood function for a panel of data is
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The class probabilities must be constrained be in (0,1) and to sum to 1. The approach that is usually used is to reparameterize them as a set of logit probabilities, as we did in the preceding examples. Then,
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(See Section 18.2.2 for development of this model for the set of probabilities.) Note the restriction on 
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. This is an identification restriction. Without it, the same set of probabilities will arise if an arbitrary vector is added to every 
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. The resulting log-likelihood is a continuous function of the parameters 
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. For all its apparent complexity, estimation of this model by direct maximization of the log-likelihood is not especially difficult. [See Section E.3 and Greene (2001, 2007b). The EM algorithm discussed in Section E.3.7 is especially well suited for estimating the parameters of latent class models. See McLachlan and Peel (2000).] The number of classes that can be identified is likely to be relatively small (on the order of 5 or 10 at most), however, which has been viewed as a drawback of the approach. In general, the more complex the model for 
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, the more difficult it becomes to expand the number of classes. Also, as might be expected, the less rich the data set in terms of cross-group variation, the more difficult it is to estimate latent class models.

Estimation produces values for the structural parameters, (
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. With these in hand, we can compute the prior class probabilities, 
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 using (14-94). For prediction purposes, we are also interested in the posterior (on the data) class probabilities, which we can compute using Bayes theorem [see (14-93)]. The conditional probability is
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The set of probabilities, 
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 gives the posterior density over the distribution of values of 
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].  For a particular model and allowing for grouping within a panel data set, the posterior probability for class j is found as
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EXAMPLE 14.22  A Latent Class Two Part Model for Health Care Utilization

Jones and Bago D’Uva (2009) examined health care utilization in Europe using 8 waves of the ECHP panel data set. The variable of interest was numbers of visits to the physician.  They examined two outcomes, visits to general practitioners and visits to specialists.  The modeling framework was the latent class model in (14-92).  The class specific model was a two part, negative binomial “hurdle” model for counts;
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(This is their equation (2) with k = 0.) The first equation is a “participation” equation, for whether the number of doctor visits equals 0 or some positive value.  The second equation is the “intensity” equation that predicts the number of visits, given that the number of visits is positive.  The count model is a “negative binomial model.”  This is an extension of the Poisson regression model. The Poisson model is a limiting case when (j ( 0.  The hurdle and count equations involve different coefficient vectors, (1 and (2, so that the determinants of care have different effects on the two stages.  Interpretation of this model is complicated by the results that variables appear in both equations, and that the conditional mean function is complex.  The simple conditional mean, if there were no hurdle effects, would be E[yit|xit] = (2it.  However, with the hurdle effects, 
E[yit|xit]  =  Prob(yit > 0|xit)(E[yit|yit > 0,xit].  The authors examined the two components of this result separately. (The elasticity of the mean would be the sum of these two elasticities.) The mixture model involves two classes (as typical in this literature) A sampling of their results appears in Table 14.17 below.  (The results are extracted from their Table 8.)  Note that separate tables are given for “Low Users” and “High Users.”  The results in Section 14.15.4 are used to classify individuals into Class 1 and Class 2.  It is then discovered that the average usage of those individuals classified as in class 1 is far lower than the average use of those in class 2.
Table 14.17. Country-Specific Estimated Income Coefficients and Elasticities for GP Visits 





        Low Users

 
High Users

Country



Coefficient   Elasticity
  Coefficient   Elasticity
Austria

P(y > 0)

-0.051

-0.012
      -0.109
-0.005



E[y|y>0]
 0.012

 0.009
       0.039
 0.035
Denmark

P(y>0)

 0.083

 0.033
       0.261
 0.023



E[y|y>0]
 0.042

 0.021
      -0.030
-0.024
The Netherlands
P(y>0)

 0.082

 0.035
       0.094
 0.009



E[y|y>0]
-0.037

-0.019
      -0.085
-0.068
Example 14.23  Latent Class Models for Health Care Utilization

In Examples 7.6 and 11.21, we proposed an exponential regression model,
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for the variable DocVis, the number of visits to the doctor, in the German health care data. (See Example 11.20 for details.) The regression results for the specification,
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are repeated (in parentheses) in Table 14.18 for convenience. The nonlinear least squares estimator is only semiparametric; it makes no assumption about the distribution of DocVisit 
or about   εit
. We do see striking increases in the standard errors when the “cluster robust” asymptotic covariance matrix is used. (The estimates are given parentheses.) The analysis at this point assumes that the nonlinear least squares estimator remains consistent in the presence of the cross-observation correlation. Given the way the model is specified, that is, only in terms of the conditional mean function, this is probably reasonable. The extension would imply a nonlinear generalized regression as opposed to a nonlinear ordinary regression.



	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	
	

	
	
	
	
	

	
	

	
	

	
	

	

	
	

	
	
	
	
	

	
	

	
	

	
	

	

	
	

	
	
	
	
	



Table 14.18  Panel Data Estimates of a Geometric Regression for DOCVIS
	
	Pooled
	Random Effectsa
	Fixed Effects

	Variable
	Estimate
	St. Er.b
	Estimate
	St. Er.
	Estimate
	St. Er.

	Constant
	1.09189
(0.98017)c
	0.10828
(0.18137)
	0.39936
	0.09530 
	
	

	Age
	0.01799
(0.01873)
	0.00130
(0.00198)
	0.02209
	0.00122
	0.04845
	0.00351

	Education
	-0.04725
(-0.03609)
	0.00671
(0.01287)
	-0.04506
	0.00626
	-0.05434
	0.03721

	Income
	-0.46836
(-0.59189)
	0.07265
(0.12827)
	-0.19569
	0.06106
	-0.18760
	0.09134 

	Kids
	-0.15684
(-0.16930)
	0.03055
(0.04882)
	-0.12434
	0.02336
	-0.00253
	0.03687


a Estimated  σu = 0.95441.

b Standard errors corrected for clusters in the panel.
c Nonlinear least squares results in parentheses.
      In Example 14.13, we narrowed this model by assuming that the observations on doctor visits were generated by a geometric distribution,
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The conditional mean is still 
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, but this specification adds the structure of a particular distribution for outcomes. The pooled model was estimated in Example 14.13. Examples 14.17 and 14.18 added the panel data assumptions of random then fixed effects to the model. The model is now
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The pooled, random effects and fixed effects estimates appear in Table 14.17. The pooled estimates, where the standard errors are corrected for the panel data grouping, are comparable to the nonlinear least squares estimates with the robust standard errors. The parameter estimates are similar—both are consistent and this is a very large sample. The smaller standard errors seen for the MLE are the product of the more detailed specification.

      We will now relax the specification by assuming a two-class finite mixture model. We also specify that the class probabilities are functions of gender and marital status. For the latent class specification,
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The model structure is the geometric regression as before. Estimates of the parameters of the latent class model are shown in Table 14.19. See Section E3.7 for discussion of estimation methods.
     Deb and Trivedi (2002)  and Bago D’Uva and Jones (2009) suggested that a meaningful distinction between groups of health care system users would be between “infrequent” and “frequent” users. To investigate whether our latent class model is picking up this distinction in the data, we used (14-96) to predict the class memberships (class 1 or 2). We then linearly regressed 
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 on a  constant and a dummy variable for class 2. The results are


DocVisit = 5.8034 (0.0465) – 4.7801 (0.06282)Class2i + eit,


where estimated standard errors are in parentheses. The linear regression suggests that the class membership dummy variable is strongly segregating the observations into frequent and infrequent users. The information in the regression is summarized in the descriptive statistics in Table 14.20. 
     Finally, we did a specification search for the number of classes.  Table 14.20 reports the log likelihoods and AICs for models with 1 to 8 classes.  The lowest value of the AIC occurs with 7 classes, although the marginal improvement ends near to J = 4.  The rightmost 8 columns show the averages of the conditional probabilities, which equal the unconditional probabilities. Note that when J = 8, three of the classes (2, 5 and 6) have extremely small probabilities.  This suggests that the model might be overspecified.  We will see another indicator in the next section.

 
Table 14.19  Estimated Latent Class Geometric Regression Model for DocVis
	
	One Class
	Latent Class 1
	Latent Class 2

	Parameter
	Estimate
	Std. Err.
	Estimate
	Std. Err.
	Estimate
	Std. Err.

	β1

	1.0918
	0.1082
	1.6423
	0.05351
	
[image: image1926.wmf]-

0.3344
	0.09288

	β2

	0.0180
	0.0013
	0.01691
	0.0007324
	0.02649
	0.001248

	β3
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0.0473
	0.0067
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0.04473
	0.003451
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0.06502
	0.005739

	β4
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0.4687
	0.0726
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0.4567
	0.04688
	0.01395
	0.06964

	β5
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0.1569
	0.0306
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0.1177
	0.01611
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0.1388
	0.02738

	θ1

	0.0000
	0.0000
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0.4280
	0.06938
	0.0000
	0.0000

	θ2

	0.0000
	0.0000
	0.8255
	0.06322
	0.0000
	0.0000

	θ3

	0.0000
	0.0000
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0.07829
	0.07143
	0.0000
	0.0000

	
[image: image1944.wmf]Prob|

z

 

	1.0000
	0.47697
	0.52303

	ln L

	
[image: image1947.wmf]-

61917.97
	
	
[image: image1948.wmf]-

58708.63
	


Table 14.20  Descriptive Statistics for Doctor Visits

	Class
	Mean
	Standard Deviation

	All,        n = 27,326

	3.18352
	5.68979

	Class 1, n = 12,349

	5.80347
	7.47579

	Class 2, n = 14,977

	1.02330
	1.63076


Table 14.21   Specification Search for Number of Latent Classes



      
J
ln L
    AIC           P1
P2
   P3
     P4         P5
          P6
P7
P8 
1
-61917.77
1.23845
1.0000

2
-58708.48
1.17443
0.4770
0.5230

3
-58036.15
1.16114
0.2045
0.6052
0.1903
4
-57953.02
1.15944
0.1443
0.5594
0.2407
0.0601
5
-57866.34
1.15806
0.0708
0.0475
0.4107
0.3731
0.0979
6
-57829.96
1.15749
0.0475
0.0112
0.2790
0.1680
0.4380
0.0734
7
-57808.50
1.15723
0.0841
0.0809
0.0512
0.3738
0.0668
0.0666
0.2757
8
-57808.07
1.15738
0.0641
0.0038
0.4434
0.3102
0.0029
0.0002
0.1115
0.0640
14.15.7   A semiparametric random effects model 
Heckman and Singer (1984a,b) suggested a nonparametric maximum likelihood approach to modeling latent heterogeneity in a duration model (Section 19.4) for unemployment spells.  The methodology applies equally well to other settings, such as the one we are examining here. Their method can be applied as a finite mixture model in which only the constant term varies across classes.  The log likelihood in this case would be
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(14-97)
This is a restricted form of (14-93).  The specification is a random effects model in which the heterogeneity has a discrete, multinomial distribution with unconditional mixing probabilities.
EXAMPLE 14.24  Semiparametric Random Effects Model
     Estimates of a random effects geometric regression model are given in Table 14.17.  The random effect (random constant term) is assumed to be normally distributed; the estimated standard deviation is 0.95441.  Table 14.21 and 14.22 present estimates of the semiparametric random effects model.    The estimated constant terms and class probabilities are shown in Table 14.22.  We fit mixture models for 2 through 7 classes.  The AIC stopped falling at J = 7.  The results for 6 and 7 are shown in the table.  Note in the 7 class model, the estimated standard errors for the constant for classes 2 and 4 are essentially infinite – the values shown are the result of rounding error.  As Heckman and Singer noted, this should be taken as evidence of overfitting the data.  The remaining coefficients for the parametric parts of the model are shown in Table 14.23.  The two approaches to fitting the random effects model produce similar results.  The coefficients on the regressors and their estimated standard errors are very similar.  The random effects in the normal model are estimated to have a mean of 0.39936 and standard deviation 0.95441.  The multinomial distribution in the mixture model has estimated mean 0.27770 and standard deviation 1.2333.  Figure 14.7 shows a comparison of the two estimated distributions.

Table 14.22  Heckman and Singer Semiparametric Random Effects Model


Standard


    Standard
Class
    α
  Error
  P(class)
    α 
  Error

P(class)
1
 -3.17815
 0.28542
 0.07394
 -0.72948
 0.16886
0.16825
2
 -0.72948
 0.15847
 0.16825
  1.23774
 358561.2
0.04030
3
  0.38886
 0.11867
 0.41734
  0.38886
 0.15112
0.41734
4
  1.23774
 0.12295
 0.28452
  1.23774
 59175.41
0.24421
5
  2.11958
 0.28568
 0.05183
  2.11958
 0.41549
0.05183
6
  2.69846
 0.98622
 0.00412
  2.69846
 1.17124
0.00412
7



 -3.17815
 0.28863
0.07394
Table 14.23  Estimated Random Effects Exponential Count Data Model


       Finite Mixture Model        
Normal Random Effects Model

  Estimate

Std. Error
Estimate

Std. Error       .
Constant
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 =0.277697

 0.39936
 
0.09530
Age
     0.02136
 0.00115
 0.02209

0.00122
Educ.
    -0.03877
 0.00607
-0.04506

0.00626
Income
    -0.23729
 0.05972
-0.19569

0.06106
Kids
    -0.12611
 0.02280
-0.12434

0.02336

      sα  =  1.23333

 σu = 0.95441
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Figure 14.7  Estimated Distributions of Random Effects

14.16   Summary and Conclusions

This chapter has presented the theory and several applications of maximum likelihood estimation, which is the most frequently used estimation technique in econometrics after least squares. The maximum likelihood estimators are consistent, asymptotically normally distributed, and efficient among estimators that have these properties. The drawback to the technique is that it requires a fully parametric, detailed specification of the data generating process. As such, it is vulnerable to misspecification problems. The previous chapter considered GMM estimation techniques that are less parametric, but more robust to variation in the underlying data generating process. Together, ML and GMM estimation account for the large majority of empirical estimation in econometrics.
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Exercises

1.
Assume that the distribution of 
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 In random sampling from this distribution, prove that the sample maximum is a consistent estimator of 
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 Note that you can prove that the maximum is the maximum likelihood estimator of 
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 But the usual properties do not apply here. Why not? ( Hint: Attempt to verify that the expected first derivative of the log-likelihood with respect to 
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 is zero.)

2.
In random sampling from the exponential distribution 
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 find the maximum likelihood estimator of 
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 and obtain the asymptotic distribution of this estimator.

3.
Mixture distribution. Suppose that the joint distribution of the two random variables 
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 and 
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 is
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a.
Find the maximum likelihood estimators of β
 and 
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 and their asymptotic joint distribution.

b.
Find the maximum likelihood estimator of 
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 and its asymptotic distribution.

c.
Prove that 
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 is of the form
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and find the maximum likelihood estimator of 
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 and its asymptotic distribution.

d.
Prove that 
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Prove that 
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 integrates to 1. Find the maximum likelihood estimator of 
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 and its asymptotic distribution. (Hint: In the conditional distribution, just carry the 
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 along as constants.)

e.
Prove that



[image: image1977.wmf](),0,0.

y

fyey

-

=³>

q

qq


Find the maximum likelihood estimator of 
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 and its asymptotic variance.

f.
Prove that


[image: image1979.wmf]()

(|),0,1,2,,0.

!

yx

ey

fxyx

x

-

==¼>

b

b

b


Based on this distribution, what is the maximum likelihood estimator of 
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4.
Suppose that 
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 has the Weibull distribution
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a.
Obtain the log-likelihood function for a random sample of 
[image: image1983.wmf]n

 observations.

b.
Obtain the likelihood equations for maximum likelihood estimation of 
[image: image1984.wmf]a

 and 
[image: image1985.wmf].

b

 Note that the first provides an explicit solution for 
[image: image1986.wmf]a

 in terms of the data and 
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 But, after inserting this in the second, we obtain only an implicit solution for 
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 How would you obtain the maximum likelihood estimators?

c.
Obtain the second derivatives matrix of the log-likelihood with respect to 
[image: image1989.wmf]a

 and 
[image: image1990.wmf].

b

 The exact expectations of the elements involving 
[image: image1991.wmf]b

 involve the derivatives of the gamma function and are quite messy analytically. Of course, your exact result provides an empirical estimator. How would you estimate the asymptotic covariance matrix for your estimators in part b?

d.
Prove that 
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 (Hint: The expected first derivatives of the log-likelihood function are zero.)

5.
The following data were generated by the Weibull distribution of Exercise 4:

	1.3043
	0.49254
	1.2742
	1.4019
	0.32556
	0.29965
	0.26423

	1.0878
	1.9461
	0.47615
	3.6454
	0.15344
	1.2357
	0.96381 

	0.33453
	1.1227
	2.0296
	1.2797
	0.96080
	2.0070
	


a.
Obtain the maximum likelihood estimates of 
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 and 
[image: image1994.wmf]b

, and estimate the asymptotic covariance matrix for the estimates.

b.
Carry out a Wald test of the hypothesis that 
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c.
Obtain the maximum likelihood estimate of 
[image: image1996.wmf]a

 under the hypothesis that 
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d.
Using the results of parts a and c, carry out a likelihood ratio test of the hypothesis that 
[image: image1998.wmf]1.
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e.
Carry out a Lagrange multiplier test of the hypothesis that 
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6.
Limited Information Maximum Likelihood Estimation. Consider a bivariate distribution for 
[image: image2000.wmf]x

 and 
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 that is a function of two parameters, 
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 and 
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 The joint density is 
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 We consider maximum likelihood estimation of the two parameters. The full information maximum likelihood estimator is the now familiar maximum likelihood estimator of the two parameters. Now, suppose that we can factor the joint distribution as done in Exercise 3, but in this case, we have 
[image: image2005.wmf](,|,)(|,,)(|).

fxyfyxfx

=

ababa

 That is, the conditional density for 
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 is a function of both parameters, but the marginal distribution for 
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 involves only 
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a.
Write down the general form for the log-likelihood function using the joint density.

b.
Because the joint density equals the product of the conditional times the marginal, the log-likelihood function can be written equivalently in terms of the factored density. Write this down, in general terms.

c.
The parameter 
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 can be estimated by itself using only the data on 
[image: image2010.wmf]x

 and the log-likelihood formed using the marginal density for 
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x

 It can also be estimated with 
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 by using the full log-likelihood function and data on both 
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 and 
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 Show this.

d.
Show that the first estimator in part c has a larger asymptotic variance than the second one. This is the difference between a limited information maximum likelihood estimator and a full information maximum likelihood estimator.

e.
Show that if 
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 then the result in part d is no longer true.

7.
Show that the likelihood inequality in Theorem 14.3 holds for the Poisson distribution used in Section 14.3 by showing that 
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 ( Hint: First show that the expectation is 
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 Show that the likelihood inequality in Theorem 14.3 holds for the normal distribution.

8.
For random sampling from the classical regression model in (14-3), reparameterize the likelihood function in terms of 
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 Find the maximum likelihood estimators of 
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 and 
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 and obtain the asymptotic covariance matrix of the estimators of these parameters.

9.
Consider sampling from a multivariate normal distribution with mean vector 
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 and covariance matrix 
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 The log-likelihood function is
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Show that the maximum likelihood estimators of the parameters are 
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Derive the second derivatives matrix and show that the asymptotic covariance matrix for the maximum likelihood estimators is


[image: image2028.wmf]1

2

2

4

/

ln

.

2/()

n

L

E

nM

qq

-

ìü

éù

éù

¶

ïï

-=

íý

êú

êú

¢

¶¶

ïï

ëû

ëû

îþ

I0

0

s

s


Suppose that we wished to test the hypothesis that the means of the 
[image: image2029.wmf]M

 distributions were all equal to a particular value 
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. Show that the Wald statistic would be
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where 
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 is the vector of sample means.

11.
Prove the result claimed in Example 4.7.

Applications

1.  Binary Choice. This application will be based on the health care data analyzed in Example 14.13 and several others. Details on obtaining the data are given in Appendix F Table 7.1. We consider analysis of a dependent variable, yit
, that takes values 1 and 0 with probabilities 
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, where 
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 is a function that defines a probability. The dependent variable,
 yit, is constructed from the count variable DocVis, which is the number of visits to the doctor in the given year. Construct the binary variable 

yit = 1 if DocVis > 0, 0 otherwise.


We will build a model for the probability that 
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 equals one. The independent variables of interest will be,
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a.
According to the model, the theoretical density for 
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We will assume that a “logit model” (see Section 17.2) is appropriate, so that
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Show that for the two outcomes, the probabilities may be combined into the density function
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Now, use this result to construct the log-likelihood function for a sample of data on (
[image: image2045.wmf],
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y
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). ( Note: We will be ignoring the panel aspect of the data set. Build the model as if this were a cross section.)

b.
Derive the likelihood equations for estimation of 
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.

c.
Derive the second derivatives matrix of the log-likelihood function. (Hint: The following will prove useful in the derivation: 
[image: image2047.wmf]Λ()/Λ()[1Λ()].)

dtdttt

=-


d.
Show how to use Newton’s method to estimate the parameters of the model.

e.
Does the method of scoring differ from Newton’s method? Derive the negative of the expectation of the second derivatives matrix.

f.
Obtain maximum likelihood estimates of the parameters for the data and variables noted. Report your results: estimates, standard errors, etc., as well as the value of the log-likelihood.

g.
Test the hypothesis that the coefficients on female and marital status are zero. Show how to do the test using Wald, LM, and LR tests, and then carry out the tests.

h.
Test the hypothesis that all the coefficients in the model save for the constant term are equal to zero.
2.  The geometric distribution used in Examples 14.13, 14.17, 14.18 and 14.22 would not be the typical choice for modeling a count such as DocVis.  The Poisson model suggested at the beginning of Section 14.11.1 would be the more natural choice (at least at the first step in an analysis).  Redo the calculations in Exercises 14.13 and 14.17 using a Poisson model rather than a geometric model.  Do the results change very much?  It is difficult to tell from the coefficient estimates.  Compute the partial effects for the Poisson model and compare them to the partial effects shown in Table 14.9.
3.  (This application will require an optimizer. Maximization of a user supplied function is provided by commands in Stata, R, SAS, EViews or NLOGIT.)  Use the following pseudo-code to generate a random sample of 1,000 observations on y from a mixed normals population:

Set the seed of the random number generator at any specific value.
Generate two sets of 1,000 random draws from normal populations with

standard deviations 1. For the means, use 1 for y1 and 5 for y2.
Generate a set of 1,000 random draws, c, from uniform(0,1) population.
For each observation, if c < .3, y = y1; if c > .3, use y = y2.
The log likelihood function for the mixture of two normals is given in (14-89).  (The first step 
sets the seed at a particular value so that you can replicate your calculation of the data sets.)
a.   Find the values that maximize the log likelihood function.  As starting values, use the sample mean of y (the same value) and sample standard deviation of y (again, same value) and 0.5 for (.
b.   You should have observed the iterations in part a. never get started.  Try again using 
      .9
[image: image2048.wmf]y

, .9sy , 1.1
[image: image2049.wmf]y

, 1.1sy and 0.5.  This should be much more satisfactory.

c.   Experiment with the estimator by generating y1 and y2 with more similar means, such as 
     1 and 3, or 1 and 2.



� Later we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that would complicate the notation without adding anything of substance to the discussion.


� Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that of the efficient estimator plus a nonnegative definite matrix.


� A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that, in principle, there do exist CAN functions of the data with smaller variances than the MLE. But, the finding is a narrow result with no practical implications. For practical purposes, the statement may be taken as given.


� It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).


� See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points of intersection have no significance.


� Of course, our use of the large-sample result in a sample of 10 might be questionable.


� Note that because both likelihoods are restricted in this instance, there is nothing to prevent � EMBED Equation.DSMT4 ��� from being negative.


� If the mean is not � EMBED Equation.DSMT4 ���, then the statistic in (14-22) will have a noncentral chi-squared distribution. This distribution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom, but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be larger than a random observation from the central distribution.


� The gamma function � EMBED Equation.DSMT4 ��� and the gamma distribution are described in Sections B.4.5 and E2.3.


� For further discussion of this problem, see Berndt and Savin (1977).


� There is a third possible motivation. If either model is misspecified, then the FIML estimates of both models will be inconsistent. But if only the second is misspecified, at least the first will be estimated consistently. Of course, this result is only “half a loaf,” but it may be better than none.


� The following will sketch a set of results related to this estimation problem. The iImportant references on this subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); and Amemiya (1985). A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations in these works are complex, and we will only attempt to provide an intuitive introduction to the topic.


� There is a trend in the current literature routinely to report “robust standard errors,”based on (14-36) regardless of the likelihood function (which defines the model). Rarely, if ever mentioned is the specific failures of the model assumptions to which the robust standard errors have been immunized.


� See (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we will leave this aspect of the model implicit in the results. As noted earlier, we assume that the data generating process for X does not involve � EMBED Equation.DSMT4 ��� or � EMBED Equation.DSMT4 ��� and that the data are well behaved as discussed in Chapter 4.


� As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.


� The critical value is found by solving for c in .05 = (1/2)Prob((2[1] > c].  For a chi squared variable with one degree of freedom, the .90 percentile is 2.706.


� Greene and McKenzie (2015) show that for the stochastic frontier model examined here, the LM test for the hypothesis that (u = 0 can be based on the OLS residuals; the chi squared statistic with one degree of freedom is (n/6)(m3/s3)2 where m3 is the third moment of the residuals and s2 equals e(e/n.  The value for this data set is 21.665.


� See Section E4.3.


� This makes use of the fact that the Hessian is block diagonal.


� See Godfrey (1988, pp. 49–51).


� He also presents a correction for the asymptotic covariance matrix for this first step estimator of � EMBED Equation.DSMT4 ���.


� The two-step estimator obtained by stopping here would be fully efficient if the starting value for � EMBED Equation.DSMT4 ��� were consistent, but it would not be the maximum likelihood estimator.


� Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the estimator that allows for the possibility that the normality assumption might be violated.


� See, for example, Joreskog (1973).


� This equivalence establishes the Oberhofer–Kmenta conditions.


� See Attfield (1998) for refinements of this calculation to improve the small sample performance.


� By this derivation, we have established a useful general result. The characteristic roots of a � EMBED Equation.DSMT4 ��� matrix of the form � EMBED Equation.DSMT4 ��� are 1 with multiplicity (� EMBED Equation.DSMT4 ���) and � EMBED Equation.DSMT4 ��� with multiplicity 1. The proof follows precisely along the lines of our earlier derivation.


� The data were downloaded from the web site for Baltagi (2005) at http://www.wiley.com/legacy/wileychi/ baltagi3e/. See Appendix Table F10.1.


� In estimating a fixed effects linear regression model in Section 11.4, we found that it was not possible to analyze models with time-invariant variables. The same limitation applies in the nonlinear case, for essentially the same reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns of the dataerivatives matrix withcorresponding to time-invariant variables will be transformed to columns of zeros when we compute derivatives of the log-likelihood function.


� Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973) and Chamberlain (1980, 1984).


� See Vytlacil, Aakvik, and Heckman (2005), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano (1997), and Chen (1998) and Fernandez-Val (2009) for some extensions of parametric and semiparametric forms of the binary choice models with fixed effects.


� The first application of these methods was Pearson’s (1894) analysis of 1,000 measures of the “forehead breadth to body length” of two intermingled species of crabs in the Bay of Naples.


� The multinomial distribution has interior boundaries at the midpoints between the estimated constants.  The mass points have height equal to the probabilities.  The rectangles sum to slightly more than one – about 1.15.  As such, tThise figure is only a sketch of thean implied approximation to the normal distribution in the parametric model.
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