
binary outcomes and Discrete ChoiceS

17.1
Introduction

This is the first of three chapters that will survey models used in microeconometrics. The analysis of individual choice that is the focus of this field is fundamentally about modeling discrete outcomes such as purchase decisions, for example whether or not to buy insurance, voting behavior, choice among a set of alternative brands, travel modes or places to live, and responses to survey questions about the strength of preferences or about self-assessed health or well-being. In these and any number of other cases, the “dependent variable” is not a quantitative measure of some economic outcome, but rather an indicator of whether or not some outcome has occurred. It follows that the regression methods we have used up to this point are largely inappropriate. We turn, instead, to modeling probabilities and using econometric tools to make probabilistic statements about the occurrence of these events. We will also examine models for counts of occurrences. These are closer to familiar regression models, but are, once again, about discrete outcomes of behavioral choices. As such, in this setting as well, we will be modeling probabilities of events, rather than conditional mean functions.
     The models used in this area of study are inherently (and intrinsically) nonlinear.  We have developed some of the elements of nonlinear modeling in Chapters 7 and 14.  Those elements are combined in whole in the study of discrete choices. This chapter will focus on “binary choices,”  where the model is the probability of an event.  Many general treatments of “nonlinear modeling” in econometrics in fact focus on only this segment of the field. This is reasonable. Nearly the full set of results used more broadly, for specification, estimation, inference and analysis can be developed and understood in this particular application.  We will take that approach here.  Several of the parts of nonlinear modeling will be developed in detail in this chapter, then invoked or extended in straightforward ways in the chapters to follow.
The models that are analyzed in this and the next chapter are built on a platform of preferences of decision makers. We take a random utility view of the choices that are observed. The decision maker is faced with a situation or set of alternatives and reveals something about their underlying preferences by the choice that they make. The choice(s) made will be affected by observable influences—this is, for example, the ultimate objective of advertising—and by unobservable characteristics of the chooser. The blend of these fundamental bases for individual choice is at the core of the broad range of models that we will examine here.

This chapter and Chapter 18 will describe four broad frameworks for analysis.  The first is the simplest:
Binary Choice:   The individual faces two choices and makes that choice between the two that provides the greater utility. Many such settings involve the choice between taking an action and not taking that action, for example the decision whether or not to purchase health insurance. In other cases, the decision might be between two distinctly different choices, such as the decision whether to travel to and from work via public or private transportation. In the binary choice case, the 
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 outcome is merely a label for “no/yes”—the numerical values are a mathematical convenience.  This chapter will present a lengthy survey of models and methods for binary choices.
     The binary choice case naturally extends to cases of more than two outcomes. For one example, in our our travel mode case, the individual choosing private transport might choose between private transport as driver and private transport as passenger, or public transport by train or by bus.  Such multinomial (many named) choices are unordered.  Another case is one that is a constant staple of the online experience.  Instead of being asked “did you like our service?,” a binary choice, the hapless surfer will be asked “on a scale from 1 to 5, how much did you like our service?,” an ordered multinomial choice.
Multinomial Choice:  The individual chooses among more than two choices, once again, making the choice that provides the greatest utility. At one level, this is a minor variation of the binary choice case—the latter is, of course, a special case of the former. But, more elaborate models of multinomial choice allow a rich specification of consumer preferences. In the multinomial case, the observed response is again a label for the selected choice; it might be a brand, the name of a place, or the type of travel mode. Numerical assignments are not meaningful in this setting.

Ordered Choice:  The individual reveals the strength of his or her preferences with respect to a single outcome. Familiar cases involve survey questions about strength of feelings about a particular commodity such as a movie, or self-assessments of social outcomes such as health in general or self-assessed well-being. In the ordered choice setting, opinions are given meaningful numeric values, usually 
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 for some upper limit, 
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. For example, opinions might be labeled 
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 to indicate the strength of preferences, for example, for a product, a movie, a candidate or a piece of legislation. But, in this context, the numerical values are only a ranking, not a quantitative measure. Thus a “1” is greater than a “0” only in a qualitative sense, not by one unit, and the difference between a “2” and a “1” is not the same as that between a “1” and a “0.”

In these three cases, although the numerical outcomes are merely labels of some nonquantitative outcome, the analysis will nonetheless have a regresson-style motivation. Throughout, the models will be based on the idea that observed “covariates” are relevant in explaining the observed choices and in how changes in those attributes can help to explain variation in choices. For example, in the binary outcome “did or did not purchase health insurance,” a conditioning model suggests that covariates such as age, income, and family situation will help to explain the choice. Chapter 18 will describe a range of models that have been developed around these considerations. 
We will also be interested in a fourth application of discrete outcome models:

Event Counts:  The observed outcome is a count of the number of occurrences. In many cases, this is similar to the preceding three settings in that the “dependent variable” measures an individual choice, such as the number of visits to the physician or the hospital, the number of derogatory reports in one’s credit history, the number of vehicles in a household’s capital stock, or the number of visits to a particular recreation site. In other cases, the event count might be the outcome of some natural process, such as the occurrence rate of a disease in a population or the number of defects per unit of time in a production process. In these settings, we will be doing a more familiar sort of regression modeling. However, the models will still be constructed specifically to accommodate the discrete (and nonnegative) nature of the observed response variable and the modeling of probabilities of occurrences of events rather than some measure of the events themselves.
We will consider these four cases in turn. The four broad areas have many elements in common; however, there are also substantive differences between the particular models and analysis techniques used in each. This chapter will develop the first topic, models for binary choices. In each section, we will include several applications and present the single basic model that is the centerpiece of the methodology, and, finally, examine some recently developed extensions of the model. This chapter contains a very lengthy discussion of models for binary choices. This analysis is as long as it is because, first, the models discussed are used throughout microeconometrics—the central model of binary choice in this area is as ubiquitous as linear regression. Second, all the econometric issues and features that are encountered in the other areas will appear in the analysis of binary choice, where we can examine them in a fairly straightforward fashion.

It will emerge that, at least in econometric terms, the models for multinomial and ordered choice considered in Chapter 18 can be built from the two fundamental building blocks, the model of random utility and the translation of that model into a description of binary choices. There are relatively few new econometric issues that arise here. Chapter 18 will be largely devoted to suggesting different approaches to modeling choices among multiple alternatives and models for ordered choices. Once again, models of preference scales, such as movie or product ratings, or self-assessments of health or well-being, can be naturally built up from the fundamental model of random utility. Finally, Chapter 18 will develop the well-known Poisson regression model for counts of events. We will then extend the model to demonstrate some recent applications and innovations.

Chapters 17 and 18 are a lengthy but far from complete survey of topics in estimating qualitative response (QR) models.  In general, since the outocome variable in the first three of
these four cases is merely the name of an event, not the event, itself, linear regression will be an inappropriate approach.  In most cases, the method of estimation is maximum likelihood.
 Therefore, readers interested in the mechanics of estimation may want to review the material in Appendices D and E before continuing. The various properties of maximum likelihood estimators are discussed in Chapter 14. We shall assume throughout these chapters that the necessary conditions behind the optimality properties of maximum likelihood estimators are met and, therefore, we will not derive or establish these properties specifically for the QR models. Detailed proofs for most of these models can be found in surveys by Amemiya (1981), McFadden (1984), Maddala (1983), and Dhrymes (1984). Additional commentary on some of the issues of interest in the contemporary literature is given by Manski and McFadden (1981) and Maddala and Flores-Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) contain numerous theoretical developments and applications. Greene (2008) and Greene and Hensher (2010) provide, among many others, general surveys of discrete choice models and methods.

17.2
Models for Binary Outcomes
For purposes of studying individual behavior, we will construct models that link a decision or outcome to a set of factors, at least in the spirit of regression. Our approach will be to analyze each of them in the general framework of probability models:
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(17-1)
The study of qualitative choice focuses on appropriate specification, estimation, and use of models for the probabilities of events, where in most cases, the “event” is an individual’s choice among a set of two or more alternatives.  Henceforth, we will use the shorthand,
Prob(Y = 1|x)  =  Probability that event of interest occurs|x
and, naturally, Prob(Y = 0|x) = [1 – Prob(Y = 1|x)] is the probability that the event does not occur.
Example 17.1 Labor Force Participation Model

In Example 5.2, we estimated an earnings equation for the subsample of 428 married women who participated in the formal labor market taken from a full sample of 753 observations. The semilog earnings equation is of the form
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where earnings is hourly wage times hours worked, education is measured in years of schooling, and kids is a binary variable which equals one if there are children under 18 in the household. What of the other 325 individuals? The underlying labor supply model described a market in which labor force participation is the outcome of a market process whereby the demanders of labor services are willing to offer a wage based on expected marginal product, and individuals themselves make a decision whether or not to accept the offer depending on whether it exceeds their own reservation wage. The first of these depends on, among other things, education, while the second (we assume) depends on such variables as age, the presence of children in the household, other sources of income (husband’s), and marginal tax rates on labor income. The sample we used to fit the earnings equation contains data on all these other variables. The models considered in this chapter would be appropriate for modeling the outcome y = 1 
(in the labor force, 428 observations) or 0 (not in the labor force, 325 observations).  For example, we would be interested how and how significantly the presence of children in the household (kids) affects the labor force participation.
Models for explaining a binary dependent variable are typically motivated in two contexts. The labor force participation model in Example 17.1 describes a process of individual choice between two alternatives in which the choice is influenced by observable effects (children, tax rates) and unobservable aspects of the preferences of the individual. The relationship between voting behavior and income is another example. In other cases, the binary choice model arises in a setting in which the nature of the observed data dictate the special treatment of a binary dependent variable model.  In these cases, the analyst is essentially interested in a regression-like model of the sort considered in Chapters 2 through 7. With data on the variable of interest and a set of covariates, they are interested in specifying a relationship between the former and the latter, more or less along the lines of the models we have already studied. For example, in a model of the demand for tickets for sporting events, in which the variable of interest is number of tickets, it could happen that the observation consists only of whether the sports facility was filled to capacity (demand greater than or equal to capacity so 
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). The event here is still qualitative, but now it is constructed as an indicator of a censoring (or not) of an underlying continuous variable, in this case, unobserved true demand. It will generally turn out that the models and techniques used in both cases (and, indeed, the underlying structure) are the same. Nonetheless, it is useful to examine both of them.

17.2.1
RANDOM UTILITY
An interpretation of data on individual choices is provided by a random utility model. Let 
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 represent an individual’s utility of two choices. For example, 
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 might be the utility of rental housing and 
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 that of home ownership. The observed choice between the two reveals which one provides the greater utility, but not the underlying unobservable utilities. Hence, the observed indicator equals 1 if 
[image: image14.wmf]ab

UU

>

 and 0 if 
[image: image15.wmf]ab

UU

£

. If we define,  U = Ua – Ub, then 
Y = 1(U > 0) (where 1(condition) equals 1 if condition is true and 0 if it is false).  This is precisely the same as the censoring case noted earlier.
A common formulation is the linear random utility model,
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(17-2)
In (17-2), the observable (measurable) vector of characteristics of the individual is denoted w; this might include gender, age, income, and other demographics. The vectors 
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 denote features (attributes) of the two choices that might be choice specific. In a voting context, for example, the attributes might be indicators of the competing candidates’ positions on important issues. The random terms, 
[image: image19.wmf]a

e

 and 
[image: image20.wmf]b

e

 represent the stochastic elements that are specific to and known only by the individual, but not by the observer (analyst). To continue our voting example, 
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 might represent an intangible, general “preference” for candidate 
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, such as party affiliation.
The completion of the model for the determination of the observed outcome (choice) is the revelation of the ranking of the preferences by the choice the individual makes. Thus, if we denote by 
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 the consumer’s choice of alternative 
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. Since the outcome is ultimately driven by the random elements in the utility functions, we have
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where 
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 collects all the observable elements of the difference of the two utility functions and 
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 denotes the difference between the two random elements.

Example 17.2  Structural Equations for a Binary Choice Model

Nakosteen and Zimmer (1980) analyzed a model of migration based on the following structure:
 For a given individual, the market wage that can be earned at the present location is
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Variables in the equation include age, sex, race, growth in employment, and growth in per capita income. If the individual migrates to a new location, then his or her market wage would be
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Migration entails costs that are related both to the individual and to the labor market:
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Costs of moving are related to whether the individual is self-employed and whether that person recently changed his or her industry of employment. They migrate if the benefit 
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 is greater than the cost, C*
. The net benefit of moving is
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Because 
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 is unobservable, we cannot treat this equation as an ordinary regression. The individual either moves or does not. After the fact, we observe only 
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 if the individual has moved or 
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 if he or she has not. But we do observe that 
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17.2.2    THE LATENT REGRESSION MODEL

Discrete dependent-variable models are often cast in the form of index function models. We view the outcome of a discrete choice as a reflection of an underlying regression. As an often-cited example, consider the decision to make a large purchase. The theory states that the consumer makes a marginal benefit/marginal cost calculation based on the utilities achieved by making the purchase and by not making the purchase (and by using the money for something else). We model the difference between perceived benefit and cost as an unobserved variable 
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Note that this is the result of the “net utility” calculation in the previous section and in Example 17.2. We assume that 
[image: image43.wmf]e

 has mean zero (there is a constant term in x) and has either a logistic distribution with variance 
[image: image44.wmf]2

/3

p

 or a standard normal distribution with variance one, or some other specific distribution with known variance. We do not observe the net benefit of the purchase (i.e., net utility), only whether it is made or not. Therefore, our observation is
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The statement in (17-3) is conveniently denoted y = 1(y* > 0).  In this formulation, 
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 is called the index function. The assumption of known variance of 
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 is an innocent normalization.   Note, once again, the outcomes 0 and 1 are merely labels of the event.  Now, suppose the variance of 
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 is, instead, an unrestricted parameter 
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 where now (* has variance one. But, 
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 is the same model with the same data. The observed data will be unchanged; 
[image: image53.wmf]y

 is still 0 or 1, depending only on the sign of y*
 not on its scale. This means that there is no information about (
 in the sample data so 
(  cannot be estimated. The parameter vector 
[image: image57.wmf]b

 in this model is only “identified up to scale.
” The assumption of zero for the threshold in (17-3) is likewise innocent if the model contains a constant term (and not if it does not).
 Let 
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 be a supposed nonzero threshold and 
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 be the unknown constant term and, for the present, x and 
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 contain the rest of the index not including the constant term. Then, the probability that 
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 equals one is
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Because 
[image: image63.wmf]a

 is unknown, the difference 
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 remains an unknown parameter. The end result is that if the model contains a constant term, it is unchanged by the choice of the threshold in 
(17-3). The choice of zero is a normalization with no significance. With the two normalizations, then,
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A remaining detail in the model is the choice of the specific distribution for 
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. We will consider several. The overwhelming majority of applications are based either on the normal or the logistic distribution. If the distribution is symmetric, as are the normal and logistic, then
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where 
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 is the cdf of the random variable, 
[image: image69.wmf]e

. This provides an underlying structural model for the probability.

17.2.3    FUNCTIONAL FORM AND PROBABILITY
Consider the model of labor force participation suggested in Example 17.1. The respondent either participates in the formal labor market (
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) in the period in which the survey is taken. We believe that a set of factors, such as age, marital status, education, and work experience, gathered in a vector x, explain the decision, so that

[image: image72.wmf]Prob(1 |)(,)

Prob(0|)1(,).

YF

YF

==

==-

xx

xx

b

b






(17-6)
	

	


The set of parameters 
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 reflects the impact of changes in x on the probability. For example, among the factors that might interest us is the partial effect of having children in the household on the probability of labor force participation. The challenge at this point is to devise a suitable specification for the right-hand side of the equation. 
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Figure 17.1  Model for a Probability.
Our requirement is a model that will produce predictions consistent with the underlying theory in (17-5)-(17-6). For a given regressor vector, we would expect
  0 < Prob(Y = 1|x) < 1,




(17-7) 
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See Figure 17.1. In principle, any proper, continuous probability distribution defined over the real line will suffice. The normal distribution has been used in many analyses, giving rise to the probit model,
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The function 
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 is a commonly used notation for the standard normal density function and Φ(t) is the cdf.  Partly because of its mathematical convenience, the logistic distribution,
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has also been used in many applications. We shall use the notation 
[image: image96.wmf]Λ

(.) to indicate the logistic distribution function. For this case, the density is Λ(t)[1 – Λ(t)]. This model is called the logit model for reasons we shall discuss below. Both of these distributions have the familiar bell shape of symmetric distributions and sigmoid shape shown in Figure 17.1. Other models which do not assume symmetry, such as the Gumbel or Type I extreme value model,
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complementary log log model,
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and the Burr model [or Scobit model, for “skewed logit” model –see Nagler (1994)],
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have also been employed. Still other distributions have been suggested,
 but the probit and logit models are by far the most common frameworks used in econometric applications.

The question of which distribution to use is a natural one. The logistic distribution is similar to the normal except in the tails, which are considerably heavier. (It more closely resembles a 
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 distribution with seven degrees of freedom.) For intermediate values of 
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, the two distributions tend to give very similar probabilities. The logistic distribution tends to give larger probabilities to 
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 is very large) than the normal distribution. It is difficult to provide practical generalities on this basis, however, as they would require knowledge of 
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. We might expect different predictions from the two models, however, if the sample contains (1) very few “responses” (
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 equal to 1) or very few “nonresponses” (
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 equal to 0) and (2) very wide variation in an important independent variable, particularly if (1) is also true. There are practical reasons for favoring one or the other in some cases for mathematical convenience, but it is difficult to justify the choice of one distribution or another on theoretical grounds. Amemiya (1981) discusses a number of related issues, but as a general proposition, the question is unresolved. In most applications, the choice between these two seems not to make much difference. As seen in the following example, the symmetric and asymmetric distributions can give somewhat different results, and here, the guidance on how to choose is unfortunately sparse.  On the other hand, for estimation of the quantities usually of interest (partial effects), in the sample sizes typical in modern research, it turns out that the different functional forms tend to give comfortably similar results.  The choice of which F(.) to use is ultimately less important than the choice of x and x((.  We will examine this proposition in more detail below.
17.2.4  PARTIAL EFFECTS IN BINARY CHOICE MODELS
Most analyses will be directed at examing the relationships between the covariates, x, and the probability of the event, Prob(Y=1|x) = F(y|x) = F(x((), typically, the partial effects. 


Whatever distribution is used, it is important to note that the parameters of the model ((), like those of any nonlinear model, are not necessarily the partial effects we are accustomed to analyzing. In general, via the chain rule,
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where 
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 is the density function that corresponds to the distribution function, 
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For the logistic distribution,

[image: image117.wmf]2

Λ()exp()

Λ()[1Λ()],

()[1exp()]

logitlogit

logitlogit

logitlogit

d

d

¢¢

¢¢

==-

¢¢

+

xx

xx

xx

bb

bb

bb


so, in the logit model,
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These values will vary with the values of x.  In index function models generally, the set of partial effects is a multiple of the coefficient vector.
As we will observe below in several applications, a common empirical regularity for estimates of probit and logit models is 
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.  This might suggest quite a large difference between the two models, however, that would be misleading.  As a general result, the partial effects produced by these two (and other) models will be nearly the same.  Near the middle of the range of the probabilities, where F(x(() is roughly 0.5, the logistic partial effects will be roughly 0.5(1-0.5)(logit while the probit partial effects will be roughly 0.4(probit (where 0.4 is the normal density at the point where the cdf equals 0.5).  If the two partial effects are to be the same, then .25(logit = 0.4(probit or (logit = 1.6(probit.  Observed estimates will vary around this general result.  An example is shown in Table 17.1.
For computing partial effects, one can evaluate the expressions at the sample means of the data, producing the partial effects at the averages (PEA)
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The means of the data do not always produce a realistic scenario for the computation.  For example, the mean gender of 0.5 does not correspond to any individual in the sample. It is more common to evaluate the partial effects at every actual observation and use the sample average of the individual partial effects, producing the average partial effects (APE).  The desired computation would be
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(17-12)
It is usually, the “average partial effect,” i.e., the expected value of the partial effect, that is actually of interest.  Let γ0 denote the population parameter. Then,
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      One might wonder whether the APE produces a different answer from the PEA. It is tempting to suggest that the difference is a small sample effect, but it is not, at least not entirely.  Assume the parameters are known, and let the average partial effect for variable xk be
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We will compute this at the MLE, 
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. Now, expand this function in a second-order Taylor series around the point of sample means, 
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where 
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 is the remaining higher-order terms. The first of the four terms is the partial effect at the sample means. The second term is zero. The third an average of functions of the variances and covariances of the data and the curvature of the probability function at the means. The final term is the remainder.  Little can be said to characterize these two terms in any particular sample. In applications, the difference is usually relatively small.
Another complication for computing partial effects in a nonlinear model arises because x will often include dummy variables—for example, a labor force participation equation will often contain a dummy variable for marital status. It is not appropriate to apply (17-12) for the effect of a change in a dummy variable, or a change of state. The appropriate partial effect for a binary independent variable, say, 
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where
 “(d),” denotes the other variables in the model excluding the dummy variable in question. Simply taking the derivative with respect to the binary variable as if it were continuous provides an approximation that is often surprisingly accurate. In Example 17.3, for the binary variable PSI, the average difference in the two probabilities for the probit model is
 0.374, whereas the derivative approximation is 0.222×1.426 = 0.317.  In a larger sample, the differences are often very small.  Nonetheless, the difference in the probabilities is the preferred computation, and is automated in standard software.  
If the dummy variable in the choice model is a “treatment” as PSI is in the example below, then the APE would estimate the average treatment, ATE, for the population.  But, the average treatment on the treated, ATET, would require a change in the computation.  If the treatment were exogenous (e.g., if students were carefully randomly assigned to PSI), then computing the APE over the subsample with di = 1, would be an appropriate estimator.
  Any difference between ATE and ATET would then be attributable to systematic differences in x|d=1 and x|(d=0 or d=1).  If the treatment were endogenous, then neither APE nor APE|d=1 would be an appropriate estimator – indeed, the model itself would have to be extended.  We will treat this case in Section 17.6.
17.2.5  ODDS RATIOS IN LOGIT MODELS

The odds “in favor” an event is the ratio Prob(Y = 1)/Prob(Y = 0).  For the logit model – the result is not meaningful for the other models considered – the odds “in favor of Y = 1” are
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Consider the effect on the odds of the change of a dummy variable, d;



[image: image134.wmf]exp(1)/[1exp(1)]

1/[1exp(1)]

(,1)

 exp().

(,0)

exp(0)/[1exp(0)]

1/[1exp(0)]

Oddsd

OddsRatio

Oddsd

¢¢

éù

+d´++d´

êú

¢

++d´

=

ëû

===d

¢¢

=

éù

+d´++d´

êú

¢

++d´

ëû

xx

x

x

x

xx

x

bb

b

bb

b


Therefore, the change in the odds when a variable changes by one unit somewhat resembles a partial effect, though in fact it is not a derivative.  “Odds ratios” are reported in many studies that are based on logit models.  When the experiment of changing the variable in question, xk, by one unit is meaningful, exp(βk) for the respective coefficient reports the multiplicative change in the ratio.  The proportional change would be exp(δ) – 1.  (Received studies always report exp(δ), not exp(δ)-1.)  If the experiment of a change in one unit is not meaningful, the odds ratio, like the simple partial effect, could be misleading.  Note, in Example 17.8 (Table 17.5) below, we have computed a partial effect for income of roughly -0.03.  However, a change in income of a full unit in these data is not a meaningful experiment – the full range of values is about 1.0 – 3.0.  The more useful calculation, for a variable xk is ∂Prob(Y=1|x)/∂xk × dxk.  In example 17.8, for the income variable, dxk= 0.1 would be more informative.  A similar computation would be appropriate for the odds ratios, though it is unclear how that might be constructed independently of the specific change for a specific variable, in which case, the partial effect (or elasticity) might be more straightforward.  The odds ratio is meaningful for a dummy variable, however.  We examine an application in Example 17.11.
Example 17.3  Probability Models

The data listed in Appendix Table F14.1 were taken from a study by Spector and Mazzeo (1980), which examined whether a new method of teaching economics, the Personalized System of Instruction (PSI), significantly influenced performance in later economics courses. The “dependent variable” used in the application is GRADE, which indicates the whether a student’s grade in an intermediate macroeconomics course was higher than that in the principles course. The other variables are GPA, their grade point average; TUCE, the score on a pretest that indicates entering knowledge of the material; and PSI, the binary variable indicator of whether the student was exposed to the new teaching method. (Spector and Mazzeo’s specific equation was somewhat different from the one estimated here.)

Table 17.1 presents five sets of parameter estimates. The coefficients and average partial effects were computed for four probability models: probit, logit, Gompertz and complementary log log and for the linear regression of GRADE on the covariates. The last four sets of estimates are computed by maximizing the appropriate log-likelihood function. Inference is discussed in the next section, so standard errors are not presented here. The scale factor given in the last row is the average of the density function evaluated at the means of the variables. 
If one looked only at the coefficient estimates, then it would be natural to conclude that the five models had produced radically different estimates. But a comparison of the columns of average partial effects shows that this conclusion is clearly wrong. The models are very similar; in fact, the logit and probit models results are nearly identical.
       The data used in this example are only moderately unbalanced between 0s and 1s for the dependent variable (21 and 11). As such, we might expect similar results for the probit and logit models.
 One indicator is a comparison of the coefficients. In view of the different variances of the distributions, one for the normal and 
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, which is the regularity observed by Amemiya. Note, though, that as we depart from the center of the distribution, the relationship will move away from 1.6. Because the logistic density descends more slowly than the normal, for unbalanced samples such as ours, the ratio of the logit coefficients to the probit coefficients will tend to be larger than 1.6. The ratios for the ones in Table 17.1 are closer to 1.7 than 1.6.
Table 17.1  Estimated Probability Models









                            Linear                     Logit                     Probit             Comp. Log Log            Gompertz     
Variable        Coeff.      APE       Coeff.      APE      Coeff.    APE        Coeff.      APE             Coeff.      APE 

Constant
-1.498
    -
-13.021
    -
  -7.452
      -
   -10.361
        -
     -7.141
        -


GPA
 0.464
0.464
   2.826
 0.363
   1.626
  0.361
      2.293
    0.413
      1.584
     0.319

TUCE
 0.010
0.010
   0.095
 0.012
   0.052
  0.011
      0.041
    0.007
      0.060
     0.012

PSIa
 0.379
0.379
   2.379
 0.358
   1.426
  0.374
      1.562
    0.312   
      1.616
     0.411

Mean f(xʹβ)

1.000

 0.128

  0.222

    0.180

     0.201  
a Partial effects for PSI computed as average of [Prob(Grade=1|x(PSI),PSI=1) – Prob(Grade=1|x(PSI),PSI=0)]

	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	

	
	
	
	

































The computation of effects of dummy variables in binary choice settings is an important (one might argue, the most important) element of the analysis.  One way to analyze the effect of a dummy variable on the whole distribution is to compute Prob(
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 (using the sample estimates) and with the two values of the binary variable. Using the coefficients from the probit model in Table 17.1, we have the following probabilities as a function of GPA, at the mean of TUCE (21.938):
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Figure 17.2 shows these two functions plotted over the range of GPA observed in the sample, 2.0 to 4.0. The partial effect of PSI is the difference between the two functions, which ranges from only about 0.06 at 
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 to about 0.50 at GPA of 3.5. This effect shows that the probability that a student’s grade will increase after exposure to PSI is far greater for students with high GPAs than for those with low GPAs. At the sample mean of GPA of 3.117, the effect of PSI on the probability is 0.465. The simple estimate of the partial effect at the mean is 0.468. But, of course, this calculation does not show the wide range of differences displayed in Figure 17.2.  The APE averages over the entire distribution, and equals 0.374.  This latter figure is probably more representative of the desired effect.  (In the typical application with a much larger sample, the differences in these results will usually be much smaller.)  
The “odds ratio” for the PSI variable is exp(2.379) = 10.6. This would imply that the odds of a grade increase for those who take the PSI are more than 10 times the odds for a student who does not.  From Figure 17.2, for the average student, the odds ratio would appear to be about (0.571/0.429)/(0.106/0.894) = 11.1, which is essentially the same result.  The partial effect of PSI for that student is 0.571 – 0.106 = 0.465.  It is clear from Figure 17.2, however, that the partial effect of PSI varies greatly depending on the GPA.  The odds ratio, being  a constant, will mask that aspect of the results. The plot in Figure 17.2, is suggestive, but imprecise.  A more direct analysis would examine the effect of PSI on the probability as it varies with GPA.  Figure 17.3 shows that effect.  The unsurprising conclusion is that the impact of PSI is greatest for students in the middle of the grade distribution, not at the low end which might have been expected.  We also see that the marginal benefit of PSI actually begins to diminish for the students with the highest GPAs, probably because they are most likely already to have GRADE = 1.  (Figure 17.3 also shows the estimated effect from the linear probability, model (Section 17.2.6) which, like the odds ratio, oversimplifies the relationship.)
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Figure 17.2  Effect of GPA on Predicted Probabilities.
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FIGURE 17.3  Effect of PSI on GRADE by GPA

Example 17.4  The Light Bulb Puzzle: Examining Partial Effects
The “light bulb puzzle” refers to an observed sluggishness by consumers in adopting energy efficient and environmentally less harmful CFL (compact fluorescent light) bulbs in spite of their advantageous cost and environmental impacts.  Di Maria, Ferreira and Lazarova (2010) examined a survey of Irish energy consumers to learn about the underlying preferences that seem to be driving this puzzling outcome.  The authors develop a model of utility maximization over consumption of conventional lighting and CFL lighting.  Utility is derived from two sources, consumption of the lighting (in lumens) and environmental impact, I.  Determination of the binary outcome, “adopt CFL,” is based on maximizing utility from the two sources, subject to the costs of adoption, including effort.  Individual heterogeneity enters the utility calculation (as a random component) through differences in environmental preferences, perceived costs, understanding of the technology, the costs of the effort in adoption, and differences in individual discount rates.
The empirical analysis is based on a survery of 1,500 Irish lighting consumers in the 2001 Urban Institute Ireland National Survey on Quality of Life.  Inputs to the adoption model are in three components,
  
Environmental Interest:
  
Support of Kyoto Protocol (1-4), Importance of Environment (1,2,3), 

Knowledge of Environment (0,1). 
Demographics: 
Age, Gender, Marital Status, Family Size, Education (4 levels), Income
Housing Attributes:

Rural, Own/Rent, Detached or Semidetached Number of Rooms,

House Built Before the 1960s.
The authors report coefficient estimates for probit models with standard errors and partial effects evaluated at the means of the data.  Among the statistically significant results reported are partial effects of 0.098 for support of the Kyoto Protocal, 0.044 for the Importance of the Environment and 0.115 for Knowledge of the Environment. Overall, about 30% of the sample are adopters.  The environmental interest variables, therefore, are found to exert a very large influence.  The mean values of these variables are 3.05, 2.51 and 0.85, respectively.  Thus, starting from the base of 3.05, increased support for Kyoto increases the acceptance rate from about 0.30 to about 0.398, or roughly a third.  For the Importance variable, the change from the average to the highest would be about 0.5, and the partial effect is 0.044, so the probability would increase by about 0.022 from a base of about 0.3, or about 7.3%, a much smaller increase.  For the Knowledge variable, the partial effect is 0.115.  Increasing this variable from 0 to 1 would increase the probability from 0.3 by about 0.115, or, again, by about one third.  
The average income in the sample is €22,987. The log of the mean is about 10.  An increase in the log of income of one unit would take it to 11, or income of about €62,500, which is larger than the maximum in the sample.  A more reasonable experiment might be to raise income by about 10%, in which case the log income rises by about 0.095. The partial effect for log income is 0.073.  An increase in the log of income of 0.095 would be associated with an increase in the average probability of .095×.073 = 0.007. This would correspond to a 2.3% increase in the probability, from 0.30 to 0.307.

The authors report an experiment with the marginal effects:  “As robustness checks we first estimated the marginal effects associated with the coefficients in Table 5 at different levels of income (1st, 25th, 50th, 75th, and 99th percentile) and educational attainment. The marginal impacts discussed above increase monotonically with the level of income and education, but these increases are not statistically significant.”  That is, they examined the changes in the partial effect of education associated with changes in income.  Superficially, this is an estimation of ∂[∂Prob(Adopt=1)/∂Education]/∂income.  This is the analysis in Figure 17.3.
17.2.6   THE LINEAR PROBABILITY MODEL


The binary outcome suggests a regression
 model,

[image: image165.wmf](,)

F

¢

=

xx

bb


and

[image: image166.wmf][|]{0[1(,)]}{1[(,)]}(,),

EyFFF

=´-+´=

xxxx

bbb


 This implies the regression model, 
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The linear probability model (LPM) has a number of shortcomings. A minor complication arises because 
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 is heteroscedastic in a way that depends on 
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We could manage this complication with an FGLS estimator in the fashion of Chapter 9, though this only solves the estimation problem, not the theoretical one.
 A more serious flaw is that without some ad hoc tinkering with the disturbances, we cannot be assured that the predictions from this model will truly look like probabilities. We cannot constrain 
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 to the 0–1 interval. Such a model produces both nonsense probabilities and negative variances. Five of the 32 observations in Example 17.3 predict negative probabilities.  (This failure of the model to adhere to the basic assumptions of the theory is sometimes labeled “incoherence.”)

In spite of the list of shortcomings, the linear probability model (LPM) has been used in a number of recent studies.  The principal motivation is that it appears to reliably reproduce the partial effects obtained from the formal models such as probit and logit – often only the signs and statistical significance are of interest.   Proponents of the LPM argue that it produces a good approximation to the partial effects in the nonlinear models.  (The authors of the study in Example 17.5 state that they obtained similar results from a logit model (in the 2002 version, a probit model in the 2003 version).  If that is always the case, and given the restrictiveness and incoherence of the linear specification, what is the LPM’s advantage?  Proponents point to two: (1) Simplicity.  This is of course, dubious, since modern software requires merely the press of a different button, or two buttons for the nonlinear models.  The argument gains more currency in models that contain endogenous variables.  We will return to this case below.  (2) Robustness.  The assumptions of normality or logisticality (?) are fragile while linearity is distribution free.  This remains actually to be verified.  Researchers disagree on the appropriateness of the LPM.  For discussion, see Lewbel, Dong and Yang (2012) and Angrist and Pischke (2009).
EXAMPLE 17.5  Cheating in the Chicago School System – An LPM

Jacob and Levitt (2002, 2003) used a binary choice model to detect cheating by teachers on behalf of their students in the Chicago School system.  The study developed a method of detecting whether test results had been altered. The model used to generate the final results in the study is an LPM for the variable “Indicator of classroom cheating.”  In one of the main results in the paper,the authors report (2002, p. 41): “[T]eachers are roughly 6 percentage points more likely to cheat for students who scored in the second quartile (between the 25th and 50th percentile) in the prior year, as compared to students scoring at the third or fourth quartiles.”  The coefficient on the relevant variable in the LPM is 0.057, or roughly 6%.  This seems like a moderate result.  However, only about 1% of the observations in their sample are actually classified as having cheated, overall.  As such, if 1% is the baseline, the “6 percentage points” is actually a 600% increase!  The moderate result is actually extreme.  The result is not surprising, however.  The linear probability model forces the probability function to have the same slope all the way from zero to one.  It is clear from Figure 17.1, however, that in the extreme tails, such as F(.) = 0.01, the function will be much flatter than in the center of the distribution.
  Unless the entire distribution of the data is confined to the extreme ends of the range, having to accommodate the middle of the distribution will make the LPM highly inaccurate in the tails. [See, also, Wooldridge (2010, pp. 562-564).]  An implication of this restriction is shown in Figure 17.3. 
17.3    ESTIMATION AND INFERENCE FOR BINARY

  CHOICE MODELS
With the exception of the linear probability model, estimation of binary choice models is usually based on the method of maximum likelihood. Each observation is treated as a single draw from a Bernoulli distribution (binomial with one draw). The model with success probability 
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 and independent observations leads to the joint probability, or likelihood function,
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where X denotes 
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. The likelihood function for a sample of n observations can be conveniently written as
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Taking logs, we obtain
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The likelihood equations are
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where 
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 is the density, 
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. [In (17-17) and later, we will use the subscript i to indicate that the function has an argument 
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Unless we are using the linear probability model, the likelihood equations in (17-17) will be nonlinear and require an iterative solution. All of the models we have seen thus far are relatively straightforward to calibrate. For the logit model, by inserting (17-10) in (17-17), we get, after a bit of manipulation, the likelihood equations
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Note that if 
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 contains a constant term, the first-order conditions imply that the average of the predicted probabilities must equal the proportion of ones in the sample.
 This implication also bears some similarity to the least squares normal equations if we view the term 
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 For the probit model, the log-likelihood is
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The first-order conditions for maximizing 
[image: image192.wmf]ln

L

 are

[image: image193.wmf]01

0101

ln

.

1

ΦΦ

iiii

ii

iiiiii

yyyy

ii

L

x

b

====

++

-

¶

==ll

¶-

åååå

xxx

ff


Using the device suggested in footnote 17, we can reduce this to
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where 
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The actual second derivatives for the logit model are quite simple:
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The second derivatives do not involve the random variable 
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, so Newton’s method is also the method of scoring for the logit model. The Hessian is always negative definite, so the log-likelihood is globally concave. Newton’s method will usually converge to the maximum of the log-likelihood in just a few iterations unless the data are especially badly conditioned. The computation is slightly more involved for the probit model. A useful simplification is obtained by using the variable 
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This matrix is also negative definite for all values of 
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. The proof is less obvious than for the logit model.
 It suffices to note that the scalar part in the summation is 
[image: image202.wmf]Var[|]1

b

¢

£-

x

ee

 when 
[image: image203.wmf]1

y

=

 and 
[image: image204.wmf]Var[|]1

b

¢

³--

x

ee

 when 
[image: image205.wmf]0

y

=

. The unconditional variance is one. Because truncation always reduces variance—see Theorem 18.2—in both cases, the variance is between zero and one, so the value is negative.

The asymptotic covariance matrix for the maximum likelihood estimator can be estimated by using the negative inverse of the Hessian evaluated at the maximum likelihood estimates. There are also two other estimators available. The Berndt, Hall, Hall, and Hausman estimator [see (14-18) and Example 14.4] would be (B)-1 where
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 for the probit model [see (17-20)]. The third estimator would be based on the expected value of the Hessian. As we saw earlier, the Hessian for the logit model does not involve 
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 [see (17-20)], this result is not true for the probit model. Amemiya (1981) showed that for the probit model,
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Once again, the scalar part of the expression is always negative [note in (17-20) that 
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 is always positive]. The estimator of the asymptotic covariance matrix for the maximum likelihood estimator is then the negative inverse of whatever matrix is used to estimate the expected Hessian. Since the actual Hessian is generally used for the iterations, this option is the usual choice. As we shall see later, though, for certain hypothesis tests, the BHHH estimator is a more convenient choice.

17.3.1
ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likelihood estimator (QMLE) in view of the possibility that the normal probability model might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic covariance matrix of the QMLE (see Section 14.11 for discussion),
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has been used in a number of studies based on the probit model [e.g., Fernandez and Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner (1993)]. (Indeed, it is ubiquitous in the contemporary literature.)  If the probit model is correctly specified, then 
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 and either single matrix will suffice, so the robustness issue is moot. On the other hand, the probit ( Q-) maximum likelihood estimator is not consistent in the presence of any form of heteroscedasticity, unmeasured heterogeneity, omitted variables (even if they are orthogonal to the included ones), nonlinearity of the functional form of the index, or an error in the distributional assumption [with some narrow exceptions as described by Ruud (1986)]. Thus, in almost any case, the sandwich estimator provides an appropriate asymptotic covariance matrix for an estimator that is biased in an unknown direction. [See Section 14.11 and Freedman (2006).] White raises this issue explicitly, although it seems to receive little attention in the literature: “It is the consistency of the QMLE for the parameters of interest in a wide range of situations which insures its usefulness as the basis for robust estimation techniques” (1982a, p. 4). His very useful result is that if the quasi-maximum likelihood estimator converges to a probability limit, then the sandwich estimator can, under certain circumstances, be used to estimate the asymptotic covariance matrix of that estimator. But there is no guarantee that the QMLE will converge to anything interesting or useful. Simply computing a robust covariance matrix for an otherwise inconsistent estimator does not give it redemption. Consequently, the virtue of a robust covariance matrix in this setting is unclear.  It is true, however, that the “robust” estimator does appropriately estimate the asymptotic covariance for the parameter vector that is estimated by maximizing the log likelihood, whether that is β or something else. In practice, because the model is generally reasonably specified, the correction usually makes little difference.

Similar considerations apply to the cluster correction of the asymptotic covariance matrix for the MLE described in Section 14.8.2.  For data with clustered structure, the estimator is

[image: image218.wmf]11

22

1111111

ˆˆˆˆ

lnlnlnln

ˆˆˆˆˆˆ

1

()()()()

cccc

NNNN

CCC

ctctctct

ctcttct

ffff

C

C

--

=======

¶¶¶¶

=-

¢¢¢

-

¶¶¶¶¶¶

éù

æöæöæöæö

-

ç÷ç÷ç÷ç÷

êú

ç÷ç÷ç÷ç÷

êú

èøèøèøèø

ëû

ååååååå

V

qqqq

qqqqqq

. (17-24)
(The analogous form will apply for a panel data arrangement with n groups and Ti observations in group i.)  The matrix provides an appropriate estimator for the asymptotic variance for the MLE.  Whether the MLE, itself, estimates the parameter vector of interest when the observations are correlated (clustered) is a separate issue.
Example 17.6  Robust Covariance Matrices for Probit and LPM Estimators
In Example 7.6, we considered nonlinear least squares estimation of a loglinear model for the number of doctor visits variable shown in Figure 14.6. The data are drawn from the Riphahn et al. (2003) data set in Appendix Table F7.1. We will continue that analysis here by fitting a more detailed model for the binary variable Doctor = 1(DocVis > 0). The index function for the model is
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The data are an unbalanced panel of 27,326 year-households in 7,293 groups. We will examine the 3,377 observations in the 1994 wave, then the full data set.  Descriptie statistics for the variables in the model are given in Table 17.2.  (We will use these data in several examples to follow.)  Table 17.3 presents two sets of estimates for each of the Probit model and the linear probability model.  The 1994 wave of the panel is used for the top panel of results.  The comparison is between the conventional standard errors and the robust standard errors.  These would be the While estimator for the LPM and the robust estimator in (14-36) for the MLE.  In both cases, there is essentially no difference in the estimated standard errors.  This would be the typical result.  The lower panel shows the impact of correcting the standard errors of the pooled estimator in a panel.  The robust standard errors are based on (17-24).  In this case, there is a tangible difference, though perhaps less than one might expect.  The correction for clustering produces a 20-50% increase in the standard errors.
Table 17.2  Descriptive Statistics for Binary Choice Model



                               Full Panel: n = 27,326                                     1994 Wave: n = 3,377
                                    Standard                                                                       Standard
Variable       Mean      Deviation       Minimum       Maximum         Mean      Deviation 
Doctor
  0.629
  0.483
    0
    1
  0.658
  0.474
Age
43.526
11.330
  25  
  64
42.627
11.586
Education
11.321
  2.325
    7
  18
11.506
  2.403
Income
  0.352
  0.177
0.0015
  3.0671
  0.445
  0.217
Kids
  0.403
  0.490
    0
    1
  0.388
  0.487
Health Sat.
  6.786
 2.294  
    0
  10 
  6.643
  2.215
Married
  0.759
  0.428
    0
    1
  0.710
  0.454
Table 17.3  Estimates for Binary Choice Models
                                                  Cross Section Estimates, 1994 Wave


     
                                          Probit Model                                       Linear Probability Model      
                                          Standard          Robust                                  Standard         Robust
Variable      Coefficient       Error          Std. Error         Coefficient        Error          Std. Error

Constant
 1.69384
0.18199
0.18063
  1.05062
0.05986
0.05840
Age
 0.00448
0.00240
0.00238
  0.00147
0.00080
0.00079
Education
-0.01205
0.01002
0.01002
-0.00448
0.00343
0.00351
Income
-0.09149
0.11187
0.11473
-0.02671
0.03842
0.04016
Kids
-0.24557
0.05514
0.05541
-0.08398
0.01874
0.01907
Health Sat.
-0.18503
0.01201
0.01187
-0.05800
0.00363
0.00319
Married
 0.10571
0.06134
0.06131
 0.03666
0.02055
0.02040
                                                             Full Panel Data Pooled Estimates                                  
                                          Standard       Clustered                                  Standard     Clustered
Variable      Coefficient       Error          Std. Error         Coefficient        Error          Std. Error

Constant
 1.46973
0.06538
0.08687
 0.99472
0.02246
0.02988
Age
 0.00617
0.00082
0.00107
 0.00213
0.00029
0.00037
Education
-0.01527
0.00360
0.00499
-0.00587
0.00127
0.00180
Income
-0.02838
0.04746
0.05727
-0.00285
0.01667
0.02031
Kids
-0.12993
0.01868
0.02354
-0.04508
0.00656
0.00837
Health Sat.
-0.17466
0.00396
0.00490
-0.05757
0.00126
0.00141
Married
 0.06591
0.02103
0.02762
 0.02363
0.00730
0.00958
17.3.2    HYPOTHESIS TESTS

The full menu of procedures is available for testing hypotheses about the coefficients. The simplest method for a single restriction would be the usual t tests, using the standard errors from the estimated asymptotic covariance matrix for the MLE. Based on the asymptotic normal distribution of the estimator, we would use the standard normal table rather than the t table for critical points. (See the several previous examples.)  For more involved restrictions, it is possible to use the Wald test. For a set of restrictions 
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For example, for testing the hypothesis that a subset of the coefficients, say, the last M, are zero, the Wald statistic uses 
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where the subscript M indicates the subvector or submatrix corresponding to the M variables and V is the estimated asymptotic covariance matrix of 
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Likelihood ratio and Lagrange multiplier statistics can also be computed. The likelihood ratio statistic is
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 are the likelihood functions evaluated at the restricted and unrestricted estimates, respectively.
A common test, which is similar to the F test that all the slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in the probit or logit model are zero. For this test, the constant term remains unrestricted. In this case, the restricted log-likelihood is the same for both probit and logit models,
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where P is the proportion of the observations that have dependent variable equal to 1.  These tests of models ML1 and ML2 are shown in Table 17.9 in Example 17.14.
It might be tempting to use the likelihood ratio test to choose between the probit and logit models. But, there is no restriction involved, and the test is not valid for this purpose. To underscore the point, there is nothing in its construction to prevent the chi-squared statistic for this “test” from being negative.  Note, again, in Example 17.14, the log likelihood for the logit model is -1991.13 while for the probit model (not shown) it is -1990.36.  This might suggest a preference for the probit model, but one could not carry out a test based on these results.






       The Lagrange multiplier test statistic is 
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, where g is the first derivatives of the unrestricted model evaluated at the restricted parameter vector and V is any of the estimators of the asymptotic covariance matrix of the maximum likelihood estimator, once again computed using the restricted estimates. Davidson and MacKinnon (1984) find evidence that 
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where 
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 is defined in (17-21) for the logit model and in (17-23) for the probit model.  One could use the robust estimator in Section 13.3.1 instead.
For the logit model, when the hypothesis is that all the slopes are zero, the LM statistic is
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 is the proportion of 1s in the sample. An alternative formulation based on the BHHH estimator, which we developed in Section 14.4.6 is also convenient. For any of the models considered (probit, logit, Gumbel, etc.), the first derivative vector can be written as
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where 
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 is the uncentered coefficient of determination in a regression of a column of ones on the first derivatives of the logs of the individual probabilities.

All the statistics listed here are asymptotically equivalent and under the null hypothesis of the restricted model have limiting chi-squared distributions with degrees of freedom equal to the number of restrictions being tested.
Example 17.7  Testing for Structural Break in a Logit Model

The probit model in Example 17.6, based on Riphahn, Wambach, and Million (2003), is
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In the original study, the authors split the sample on the basis of gender, and fit separate models for male and female headed households. We will use the preceding results to test for the appropriateness of the sample splitting. This test of the pooling hypothesis is a counterpart to the Chow test of structural change in the linear model developed in Section 6.6.2. Since we are not using least squares (in a linear model), we use the likelihood based procedures rather than an F test as we did earlier. Estimates of the three models (based on the 1994 wave of the datra) are shown in Table 17.4. The chi-squared statistic for the likelihood ratio test is


LR = -2(-1990.534 – (-1117.587 - 840.246)) = 65.402
The 95 percent critical value for seven degrees of freedom is 14.067. To carry out the Wald test for this hypothesis there are two numerically identical ways to proceed. First, using the estimates for Male and Female samples separately, we can compute a chi-squared statistic to test the hypothesis that the difference of the two coefficients is zero. This would be
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Another way to obtain the same result is to add to the pooled model the original 7 variables now multiplied by the Female dummy variable. We use the augmented X matrix 
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. The model with 14 variables is now estimated, and a test of the pooling hypothesis is done by testing the joint hypothesis that the coefficients on these seven additional variables are zero. The Lagrange multiplier test is carried out by using this augmented model as well. To apply (17-28), the necessary derivatives are in (17-18). For the probit model, the derivative matrix is simply 
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   65.9686
        The pooling hypothesis is rejected by all three procedures.
Table 17.4  Estimated Models for Pooling Hypothesis

	
	Pooled Sample
	Male
	Female

	Variable
	Estimate
	Std.Error
	Estimate
	Std.Error
	Estimate
	Std.Error

	Constant
	1.69384
	0.18199
	
1.51850
	0.23388
	 1.80570
	0.30341 

	Age
	0.00448
	0.00240
	0.00509
	0.00331
	0.00031
	0.00374 

	Education
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	0.01002
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	0.01309
	
0.00842
	0.01645 

	Income 
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	Kids
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	Health Sat.
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	Married
	0.10571
	0.06134
	0.13027
	0.08862
	0.08212
	0.08862

	ln L 
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	Sample Size
	3,377
	1,812
	1,565


















17.3.3   INFERENCE FOR PARTIAL EFFECTS
The predicted probabilities, 
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ˆ

()

FF

b

¢

=

x
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, are nonlinear functions of the parameter estimates. We have three methods of computing asymptotic standard errors for these, the delta method, the method of Krinsky and Robb and bootstrapping.  All three methods can be found in applications in the received literature.  Discussion of the various methods and some related issues appears in Dowd, Greene and Norton (2014).
17.3.3A  The Delta Method

To compute standard errors, we can use the linear approximation approach discussed in Section 4.6 For the predicted probabilities,
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The estimated asymptotic covariance matrix of 
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Combining terms gives

[image: image280.wmf]2

ˆ

ˆ

Est.Asy. Var[],

Ff

¢

=

xVx


which depends on the particular x vector used. This result is also useful when a partial effect is computed for a dummy variable. In that case, the estimated effect is
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where
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For the other partial effects, let 
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The matrix of derivatives (the Jacobian) is
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For the probit model, 
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For the logit model, 
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Collecting terms, we obtain
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As before, the value obtained will depend on the x vector used.  A common application sets x at 
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, the means of the data. 
The average partial effects would be computed as
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The preceding estimator appears to be the mean of a random sample. It would be if it were based on the true 
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. To use the delta method to estimate the asymptotic standard errors for the average partial effects, 
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where
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The estimator of the asymptotic covariance matrix for the APE is simply
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The appropriate covariance matrix is computed by making the same adjustment as in the partial effects—the derivative matrices are averaged over the observations rather than being computed at the means of the data.
17.3.3B  An Adjustment to the Delta Method



















	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	

	
	
	
	




















	
	
	

	
	
	
	
	
	
	
	
	

	
	

	

	
	
	

	

	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	

	


The delta method treats the data as “fixed in repeated samples.” If, instead, the APE were treated as a parameter to be estimated, i.e., a feature of the population from which (yi,xi) are randomly drawn, then the asymptotic variance would account for the variation in xi as well. (Note, for example, (17-13).)  In application then, there are, two sources of variation, the sampling variance of the parameter estimator of β and the sampling variability due to the variation in x.
  An appropriate variance for the APE would be the sum of the two terms.


Assume for the moment that β is known.  Then, the APE is
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Based on the sample of observations on the partial effects, the natural estimator of the variance of each of the K estimated partial effects would be
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The “asymptotic variance” of the partial effects estimator is intended to reflect the variation of the parameter estimator, 
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, whereas the preceding estimator generates the variation from the heterogeneity of the sample data while holding the parameter fixed at 
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. For example, for a logit model, 
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and 
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The delta method would use, instead, the kth diagonal element of
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To account for the variation of the data as well, the variance estimator would be the sum of these two terms.  
The impact of the adjustment is data dependent.  In our experience, it is usually minor.  (It is trivial in the example below.)  We do note, the APEs are sometimes computed for specific configurations of x, or specific values, or specific subsets of observations.  In these cases, the appropriate adjustment, if any, is unclear.
17.3.3C  The Method of Krinsky and Robb


The method of Krinsky and Robb was described in Section 15.3.  For present purposes, we will apply the method as follows.  The MLE’s of the model parameters are 
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 and V.  We will draw a random sample of R draws from the multivariate normal population with this mean and variance.  This is done by first computing the Cholesky decomposition of V = CCʹ where C is a lower triangular matrix.  With this in hand, we draw R standard multivariate normal vectors wr, then 
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(r) = 
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 + Cwr.  With each 
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(r), we compute the partial effects, either APE or PEA, 
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(r). The estimator of the asymptotic variance is the empirical variance of this sample of R
observations, 
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Note that Krinsky and Robb will accommodate the sampling variability of 
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 but not the sample variation in xi considered in the preceding adjustment to the delta method.
17.3.3D   Bootstrapping
Bootstrapping is described in Section 15.4.  It is essentially the same as Krinsky and Robb save that the sample of 
















draws of 
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(r) is obtained by repeatedly sampling n observations from the data with replacement and reestimating the model with each.  In principle, bootstrapping will automatically account for the extra variation due to the data discussed in Section 17.3.2B.
Example 17.8  Standard errors for partial effects
Table 17.5 shows estimates of a simple probit model,
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We report the average partial effects and the partial effects at the means.  These results are based on the 1994 wave of the panel in Example 17.7.  The sample size is 3,377. As noted earlier, the APEs and PEAs differ slightly, but not enough that one would draw a different conclusion about the population from one versus the other.  In computing the standard errors for the APEs, we used the delta method without the adjustment in Section 17.3.2B.  When that adjustment is made, the results are almost identical.  The only change is the standard error for the coefficient on health satisfaction which changes from 0.00361 to 0.00362.
Table 17.5   Comparison of Estimators of Partial Effects

                                  Probit Model          Average Partial Effects   Partial Effects at Means  
                                              Standard     Avg.Partial    Standard    Partial Effect    Standard
Variable           Coefficient      Error             Effect           Error           at Means          Error  
Constant
 1.69384
0.18199




Age
 0.00448
0.00240
 0.00150
0.00080
 0.00161
0.00086
Education
-0.01205
0.01002
-0.00404
0.00336
-0.00433
0.00360
Income
-0.09149
0.11187
-0.03067
0.03749
-0.03290
0.04022
Kids
-0.24557
0.05514
-0.08358
0.01890
-0.08830
0.01982
Health Sat.
-0.18503
0.01201
-0.06202
0.00362
-0.06653
0.00426
Married
 0.10571
0.06134
 0.02086
0.02086
 0.04801
0.02206


Table 17.6 compares the three methods of computing standard errors for average partial effects.  These results in a moderate sized data set, in a typical application, are consistent with the theoretical proposition, that any of the three methods should be useable.  The choice could be based on convenience.
Table 17.6   Comparison of Methods for Computing Standard Errors for Average Partial Effects
                     Avg.Partial      Std.Error           Std.Error          Std.Error

Variable         Effect         Delta Method   Krinsky Robb*    Bootstrap*
Age
 0.00150
     0.00080
         0.00081            0.00080
Education
-0.00404
     0.00336
         0.00336            0.00372
Income
-0.03067
     0.03749
         0.03680            0.04065
Kids
-0.08358
     0.01890
         0.01839            0.02032
Health Sat.
-0.06202
     0.00361
         0.00384            0.00372
Married
 0.02086
     0.02086
         0.01971            0.02248     
*  100 Replications













	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	


EXAMPLE 17.9  Hypothesis Tests About Partial Effects

Table 17.7 presents the maximum likelihood estimates for the probit model
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(The column labeled “Interaction Model” is the estimates of the model in Example 17.14.)  The t ratios listed are used for testing the hypothesis that the coefficient or partial effect is zero.   The similarity of the t statistics for the coefficients and the partial effects is typical.  The interpretation differs, however.  Consider the test of the hypothesis that the coefficient on Kids is zero.  The value of -4.45 leads to rejection of the null bypothesis.  The same hypothesis about the average partial effect produces the same conclusion.  The question is, what should be the conclusion if these tests conflict?  If the t ratio on the APE for Kids were 0.45, then the tests would conflict.  And, since 


APE (Kids)  =  βkids × E[density|x],
the conflict would be fundamental.  We have already rejected the hypothesis that βkids equals zero, so the only way that the APE can equal zero is if the second term is zero.  But, the second term is positive by construction – the density must be positive.  Worse, if the expected density were zero, then all the other APEs would be zero as well.  The natural way out of the dilemma is to base tests about relevance of variables on the structural model, not about the partial effects.  The implication runs in the direction from the structure to the partial effects, not the reverse.  That leaves a question.  Is there a use for the standard errors for the partial effects?  Perhaps not for hypothesis tests, but for developing confidence intervals as in the next example.
Table 17.7  Estimates for Binary Choice Models

                                                  Cross Section Estimation, 1994 Wave


     

                                          Probit Model                                       Average Partial Effects      
                                          Standard            t        (Interaction                        Standard     t 
Variable      Coefficient       Error             Ratio      Model)       Estimate         Error      Ratio      
Constant
 1.69384
0.18199
   9.31    1.98542              -
           -
     -
Age
 0.00448
0.00240
   1.86   -0.00177       0.00150
    0.00080
  -1.86
Education
-0.01205
0.01002
  -1.20   -0.03466     -0.00404
    0.00336
  -1.20
Income
-0.09149
0.11187
  -0.82   -0.09903     -0.03067
    0.03749
  -0.82
Kids
-0.24557
0.05514
  -4.45   -0.24976     -0.08358
    0.01890
  -4.42
Health Sat.
-0.18503
0.01201
-15.40   -0.18527     -0.06202
    0.00362
-17.15
Married
 0.10571
0.06134
   1.72   -0.10598       0.03571
    0.02086
  1.71
Age×Educ.


              0.00055



EXAMPLE 17.10  Confidence Intervals for Partial Effects

Continuing the development of Section 17.3.3, the usual approach could be taken for forming a confidence interval for the APE.  For example, based on the results in Table 17.7, we would estimate the APE for Kids to be -0.08358 ± 1.96 (0.0189) = [-0.12062 ,-0.0465].  As we noted in Example 17.3, the single estimate of the APE might not capture the interesting variation in the partial effect as other variables change.  Figure 17.4 below reproduces the APE for PSI as it varies with GPA in the example of the performance in economics courses.  We have added to Figure 17.3 confidence intervals for the APE of PSI for a set of values of GPA ranging from 2 to 4 to show a confidence region.  
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Figure 17.4  Confidence Region for Average Partial Effect


EXAMPLE 17.11   Inference about Odds Ratios
The results in Table 17.8 are obtained for a logit model for GRADE in Example 17.3.  (The coefficient estimates appear in Table 17.1.)
Table 17.8  Estimated Logit Model



                                         Standard            t            P          95% Confidence Interval
Variable    Coefficient        Error            Ratio    Value            Lower          Upper     
Constant    -13.0213         4.93132          -2.64     0.0083       -22.6866      -3.3561
GPA            2.82611         1.26294           2.24     0.0252         0.35079       5.3014
TUCE         0.09516         0.14155           0.67      0.5014       -0.18228       0.37260
PSI              2.37869        1.06456            2.23     0.0255         0.29218       4.46520
We are interested in the odds ratios for this model, which as we saw in Section 17.2.5, would be computed as exp(
[image: image396.wmf]ˆ
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) for each estimate.  Williams (2015) reports the following post estimation results for this model using Version 11 (and later) of Stata.   (Some detail has been omitted.)
----------------------------------------------------------------------
   grade | Odds Ratio   Std. Err.  z    P>|z|    [95% conf. Interval]

---------+------------------------------------------------------------

     gpa |  16.87972   21.31809   2.24  0.035     1.420194  200.6239
    tuce |  1.098832   .1556859   0.67  0.501     .8333651  1.451502
     psi |  10.79073   11.48743   2.23  0.025     1.339344  86.93802
----------------------------------------------------------------------

This result from a widely used software package provides context to consider what is reported and how to interpret it.  The estimated odds ratios appear in the first column.  To obtain the standard errors, we would use the delta method.  The Jacobian for each coefficient is d[exp(
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)]/d
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 = exp(
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), so the standard error would just be the odds ratio times the original estimated standard error.  Thus, 21.31809 = 16.87972×1.26294.  But, the “z” is not the ratio of the odds ratio to the estimated standard error.  It is the z ratio for the original coefficient.  On the other hand, it would make no sense to test the hypothesis that the odds ratio equals zero, since it must be positive.  Perhaps the meaningful test would be against the value 1.0, but 2.24 is not equal to (16.87972 – 1)/21.31898 either.  The 2.24 and the P value next to it are simply carried over from the original logit model.  The implied test is that the odds ratio equals one – it is implied by the equality of the coefficient to zero.  The confidence interval would typically be computed as we did in the previous example, but again, the values shown are not equal to 16.87972 ± 1.96 (21.31809). They are equal to exp(0.35079) to exp(5.30143) which is the confidence interval from the original coefficient. This is logical – we have estimated a 95% confidence interval for β, so these values provide a 95% interval for the exponent.  In Section 4.8.3, we considered whether this would be the shortest 95% confidence interval for a prediction of y from ln y, which is what we have done here, and discovered that it is not.  On the other hand, it is unclear what utility that is not provided by the coefficient would be provided by the confidence interval for the odds ratio.  Finally, as noted earlier, the odds ratio is useful for the conceptual experiment of changing the variable by one unit.  For the GPA which ranges from 2 to 4 and for PSI which is a dummy variable, these would seem appropriate.  TUCE is a test score that ranges around 30.  A unit change in TUCE might not be as interesting.
17.3.4
INTERACTION EFFECTS

Models with interaction effects, such as
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have attracted considerable attention in recent applications of binary choice models.
 A practical issue concerns the computation of partial effects by standard computer packages. Write the model as
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Estimation of the model parameters is routine. Rote computation of partial effects using (17-11) will produce
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which is what common computer packages will dutifully report. The problem is that 
[image: image403.wmf]2

83

xxx

=

, and 
[image: image404.wmf]8

PE

 in the previous equation is not the partial effect for 
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 will also be misreported by the rote computation. To revert back to our original specification,
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and what is computed as “
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” is meaningless. The practical problem motivating Ai and Norton (2004) was that the computer package does not know that 
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 is 
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, so it computes a partial effect for 
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 as if it could vary “partially” from the other variables. The (now) obvious solution is for the analyst to force the correct computations of the relevant partial effects by whatever software they are using, perhaps by programming the computations themselves.

The practical complication raises a theoretical question that is less clear cut. What is the “interaction effect” in the model? In a linear model based on the preceding, we would have
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which is unambiguous. However, in this nonlinear binary choice model, the correct result is
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Not only is 
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 not the interesting effect, but there is also a complicated additional term. Loosely, we can associate the first term as a “direct” effect—note that it is the naive term 
[image: image416.wmf]8

 

PE

 from earlier. The second part can be attributed to the fact that we are differentiating a nonlinear model—essentially, the second part of the partial effect results from the nonlinearity of the function. The existence of an “interaction effect” in this model is inescapable—notice that the second part is nonzero (generally) even if 
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 does equal zero. Whether this is intended to represent an “interaction” in some economic sense is unclear. In the absence of the product term in the model, probably not. We can see an implication of this in Figure 17.1. At the point where 
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, where the probability equals one half, the probability function is linear. At that point, 
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 will equal zero and the functional form effect will be zero as well. When 
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 departs from zero, the probability becomes nonlinear. (These same effects can be shown for the probit model—at 
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We developed an extensive application of interaction effects in a nonlinear model in Example 7.6. In that application, using the same data for the numerical exercise, we analyzed a nonlinear regression 
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. The results obtained in that study were general, and will apply to the application here, where the nonlinear regression is 
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Example 17.12  Interaction Effect

We added an interaction term, Age 
[image: image426.wmf]´

 Education, to the model in Example 17.9. The model is now
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Estimates of the model parameters appear in Table 17.6.  Estimation of the probit model produces an estimate of 
[image: image428.wmf]8
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 of
 0.00055.  It is not clear what this measures.  From the correctly specified and estimated model (with the explicit interaction term), the estimated partial effect for education is ((xʹβ)(β3 + β8Age) =  -0.00392.

 

 By fitting the model with x8 instead of x2×x3, we obtain the first term as the (erroneous) partial effect of education, -0.01162.  This implies that the second term, ((xʹβ)β8Age, is -0.00392 + 0.01162 = 0.00770.  As noted, the naïve calculation produces a value that has little to do with the desired result.

17.4
MEASURING GOODNESS OF FIT FOR BINARY CHOICE
         MODELS
There have been many fit measures suggested for discrete response models.
 The general intent is to devise a counterpart to the R2 in linear regression.  The R2 for a linear model provides two useful measures.  First, when computed as 1 – eʹe/yʹM0y, it measures the success of the estimator at optimizing (minimizing) the fitting criterion, eʹe.  That is the interpretation of R2 as the proportion of the variation of y that is explained by the model.  Second, when computed as Corr2(y,xʹb), it measures the extent to which the predictions of the model are able to mimic the actual data.  Fit measures for discrete choice models are based on the same two ideas. We will discuss several.
17.4.1 FIT MEASURES BASED ON THE FITTING CRITERION
Most applications of binary choice modeling use a maximum likelihood estimator.  The log likelihood function, itself, is the fitting criterion, so as a starting point for considering the performance of the estimator, ln LMLE = 
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 is computed using the MLEs of the parameters. Following the first motivation for R2, 
the hypothesis that all the slopes in the model are zero is often interesting. The log-likelihood computed with only a constant term will be ln 
[image: image436.wmf]0

L

 = n[P0 ln P0 + P1lnP1] where n is the sample size and Pj is the sample proportion of zeros or ones. (Note that ln L0 is based only on the sample proportions, so it will be the same regardless of the model.)  
McFadden’s (1974) ‘Pseudo R2’ or ‘likelihood ratio index’ is
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This measure has an intuitive appeal in that it is bounded by zero and one and it increases when variables are added to the model.
 If all the slope coefficients (but not the constant term) are zero, then 
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equals zero. Unlike R2, there is no way to make
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 reach one. Moreover, 
the values between zero and one have no natural interpretation. If 
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 is a proper cdf, then even with many regressors the model cannot fit perfectly unless 
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 or 
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. As a practical matter, it does happen.  But, when it does, it indicates a flaw in the model, not a good fit. If the range of one of the independent variables contains a value, say 
x*, such that the sign of (x – x*)
 predicts y perfectly and vice versa, then the model will become a perfect predictor. This result also holds in general if the sign of 
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 gives a perfect predictor for some vector 
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. For example, one might mistakenly include as a regressor a dummy variable that is identical, or nearly so, to the dependent variable. In this case, the maximization procedure will break down precisely because 
[image: image450.wmf]b

¢

x

 is diverging during the iterations. [See McKenzie (1998) for an application and discussion.]

Notwithstanding all of the preceding, this statistic is very commonly reported with empirical results, with references to “fit” and even “proportion of variation explained.”  A “degrees of freedom correction,” 
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 has been suggested, as well as some similar ad hoc “adjustments” such as the “Cox and Snell 
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.We note, however, none of these are fit measure in the familiar sense, and they are not R2 like measures of explained variation.  As a final note, another shortcoming of these measures is that they are based on a particular estimation criterion. There are other estimators for binary choice models, as shown in Example 17.14.
The pseudo R2 will be most useful for comparing one model to another. If the models are nested, then the log likelihood function is the natural choice, as examined in the next section.  For more general cases, researchers often use one of the information criteria, typically the Akaike Information Criterion,
AIC = -2ln L + 2K
or
AIC/n
or Schwartz’s Bayesian Information Criterion,

BIC = -2ln L + K ln n
or
BIC/n.
In general, a lower IC value suggests a “better” model.  In comparing nonnested models, some care is needed in interpreting this result, however.
17.4.2 FIT MEASURES BASED ON PREDICTED VALUES
Fit measures based on the predicted probabilities rather than the log likelihood have also been suggested. For example, Efron (1978) proposed a direct counterpart to R2,
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The ambiguity in this measure comes from treating 
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 as a quantitative residual when the yi is actually only a label of the outcome.  Ben-Akiva and Lerman (1985) and Kay and Little (1986) suggested a fit measure that is keyed to the prediction rule,
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which can be written as a simple weighted average of the mean predicted probabilities of the two outcomes, 
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.  A difficulty in this computation is that in unbalanced samples, the less frequent outcome will usually be predicted very badly by the standard procedure, and this measure does not pick up that point. Cramer (1999) and Tjur (2009) have suggested an alternative measure, the ‘coefficient of discrimination,’ that directly considers this failure,
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This measure heavily penalizes the incorrect predictions, and because each proportion is taken within the subsample, it is not unduly influenced by the large proportionate size of the group of more frequent outcomes.

A useful summary of the predictive ability of the model is a 
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 table of the hits and misses of a prediction rule such as
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(In information theory, this is labeled a ‘confusion matrix.’) The usual threshold value is 0.5, on the basis that we should predict a one if the model says a one is more likely than a zero. Consider, for example, the naive predictor
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(17-31)
where P is the simple proportion of ones in the sample. This rule will always predict correctly 100 P percent of the observations, which means that the naive model does not have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible to construct examples in which the second model will generate more correct predictions than the first! Once again, this flaw is not in the model; it is a flaw in the fit measure.
 The important element to bear in mind is that the coefficients of the estimated model are not chosen so as to maximize this (or any other) fit measure, as they are in the linear regression model where b maximizes 
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Another consideration is that 0.5, although the usual choice, may not be a very good value to use for the threshold. If the sample is unbalanced—that is, has many more ones than zeros, or vice versa—then by this prediction rule it might never predict a one (or zero). To consider an example, suppose that in a sample of 10,000 observations, only 1,000 have 
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. We know that the average predicted probability in the sample will be 0.10. As such, it may require an extreme configuration of regressors even to produce a 
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 of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every time to predict when 
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. The obvious adjustment is to reduce
 P*. Of course, this adjustment comes at a cost. If we reduce the threshold 
P* so as to predict 
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 more often, then we will increase the number of correct classifications of observations that do have 
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, but we will also increase the number of times that we incorrectly classify as ones observations that have 
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 In general, any prediction rule of the form in (17-30) will make two types of errors: It will incorrectly classify zeros as ones and ones as zeros. In practice, these errors need not be symmetric in the costs that result. For example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly classifying an applicant as a bad risk is not the same as incorrectly classifying a bad risk as a good one. Changing 
P* will always reduce the probability of one type of error while increasing the probability of the other. There is no correct answer as to the best value to choose. It depends on the setting and on the criterion function upon which the prediction rule depends.
17.4.3   SUMMARY OF FIT MEASURES
The likelihood ratio index and various modifications of it are related to the likelihood ratio statistic for testing the hypothesis that the coefficient vector is zero. Cramer’s measure is oriented more toward the relationship between the fitted probabilities and the actual values. It is usefully tied to the standard prediction rule 
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. Whether these have a close relationship to any type of fit in the familiar sense is uncertain. In some cases, it appears so. But the maximum likelihood estimator, on which many of the fit measures are based, is not chosen so as to maximize a fitting criterion based on prediction of y as it is in the linear regression model (which maximizes 
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).  It is chosen to maximize the joint density of the observed dependent variables. It remains an interesting question for research whether fitting y well or obtaining good parameter estimates is a preferable estimation criterion. Evidently, they need not be the same thing.
Example 17.13  Prediction with a Probit Model

Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and earnings for a large sample of observations of male members of households in Turkey. Among his results, he reports the confusion matrix shown here for a probit model: The estimated model is highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them) are zero based on a chi-squared value of 69 with 16 degrees of freedom.
 The model predicts 491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index is only 0.083. A naive model, which always predicts that 
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 because P < 0.5, 
predicts 487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive of no fit. The maximum likelihood estimator produces several significant influences on the probability but makes only four more correct predictions than the naive predictor.
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D = 1

Total


Actual
D = 0
  471
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D = 1
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  203
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  654
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Example 17.14 Fit Measures for a Logit Model
Table 17.9 presents estimates of a logit model for the specification in Example 17.13.  Results ML1 are the MLEs for the full model.  ML2 is a restricted version from which Age, Education and Health are excluded.  The variables removed are highly significant; the chi squared statistic for the four restrictions is 2(2137.06 – 1991.13) = 291.86.  The critical value for 95% from the chi squared table with four degrees of freedom is 9.49, so the excluded variables significantly contribute to the likelihood for the data.  We consider the fit of the model based on the measures suggested earlier.  The results labeled NLS in Table 17.8 were computed by nonlinear least squares, rather than MLE.  The criterion function is
 SS(bNLS) = Σi (yi – Λ(β׳xi)2.  We are interested in how the fit obtained by this alternative estimator compares to that obtained by the MLE.  Table 17.10 shows the various scalar fit measures.  Note, first, the log likelihood strongly favors ML1.  The nonlinear least squares estimates appear rather different from the MLEs but produce nearly the same log likelihood.  However, the statistically significant coefficients, on Kids, Health and Married, are actually almost the same, which would explain the finding. The information criteria favor ML1 as might be expected.  The predictive influence of the excluded variables in ML2 is clear in the scalar measures, which generally rise from about 0.01 to 0.10.   The Ben Akiva and Lerman measure does not discriminate between the two specifications.  Cramer and the other are essentially the same.  Based on the confusion matrices, the count R2 underscores the difficulty of summarizing the fit of the model to the data.  The two models do essentially equally well, though at predicting different outcomes.  ML1 predicts the zeros much better than ML2, but at the cost of many more erroneous predictions of the observations with y equal to one.  Overall, the results for this model are typical.  The ambiguity of the overall picture suggests the difficulty of constructing a single scalar measure of fit for a binry choice model.  The comparison between ML1 and ML2 provided by the Cramer or the other measures seems appropriate.  However, it is unclear how to interpret the 0.10 value for the fit measures.  It obviously does not reflect a “proportion of explained variation.”  Nor, however, does it (or the pseudo R2) have any connection to the ability of the model to predict the outcome variable – the standard predictor obtains a 67.3% success rate.  But, the naïve predictor, Doctor = 1 will predict correctly 2222/3377 or 65.8% of the cases, so the full model improves the success rate from 65.8% to 67.3%
Table 17.9   Estimated Parameters for Logit Model for Prob(Doctor = 1)
                    (Absolute values of z statistics in parentheses for model ML1)


   Maximum 
     Maximum
        Nonlinear


   Likelihood
     Likelihood
     Least Squares


       ML1
          ML2
             NLS

Constant

 3.18430 (4.00)
 0.85360

 2.98328

Age


-0.00097
 (0.05)     0.00000

 0.00294

Education

-0.05054
 (0.18)
 0.00000

-0.03707

Income


-0.15076
 (0.81)
-0.52235

-0.09437

Kids


-0.41358
 (4.50)
-0.57608

-0.42014

Health


-0.30957
 (14.9)
 0.00000

-0.30032

Married


 0.17415
 (1.71)
 0.37995

 0.17301

Age(Education 

 0.00072
 (0.47)
 0.00000

 0.00028
Table 17.10   Fit Measures For Estimated Logit Models 







   ML1

   ML2

   NLS

Based on the log likelihood

Ln L0


-2169.27

-2169.27

-2169.27
Ln LM  


-1991.13

-2137.06

-1991.41
Chi squared[df]

356.28[7]
 64.41[3]



Pseudo R2  

0.08212

.01484

.0819923

Adjusted Pseudo R2 
0.07889

.01162

.0787654
AIC 


3998.27

4290.13

3998.81
AIC/n


1.18397

1.27040

1.18413
BIC 


4047.26

4339.12

4047.81
BIC/n


1.19848

1.28491
 
1.19864
Based on the predicted outcomes

Cramer R2 

0.09840

0.01867

0.09644
Cox-Snell R2 

0.10013

0.01889

0.09998
Efron R2 

0.09736

0.01827 

0.09750

Ben Akiva – Lerman R2 
0.54992

0.54992

0.54954
Count R2 

0.67338

0.65591

0.67516
Confusion Matrix    
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17.5
SPECIFICATION ANALYSIS

In the linear regression model, we considered two important specification problems: the effect of omitted variables and the effect of heteroscedasticity. In the linear regression model, 
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 is biased. If we ignore heteroscedasticity, then although the least squares estimator is still unbiased and consistent, it is inefficient and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and Griliches (1984) have examined these same issues in the setting of the probit and logit models. In the context of a binary choice model, they find the following:

1.
If 
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where 
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 and 
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 are complicated functions of the unknown parameters. The implication is that even if the omitted variable is uncorrelated with the included one, the coefficient on the included variable will be inconsistent.

2.
If the disturbances in the underlying model,  y =1[(xi(( + () > 0] are heteroscedastic, then the maximum likelihood estimators are inconsistent and the covariance matrix is inappropriate. This is in contrast to the linear regression case, where heteroscedasticity only affects the estimated asympotic variance of the estimator.
In both of these cases (and others), the impact of the specification error on estimates of partial effects and predictions is less clear, but probably of greater interest.

Any of the three methods of hypothesis testing discussed here can be used to analyze these two specification problems. The Lagrange multiplier test has the advantage that it can be carried out using the estimates from the restricted model, which might bring a saving in computational effort for the test for heteroscedasticity.
  
To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null hypothesis, 
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, be a specification of the model, and let 
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 appears in the model as well. It is assumed that the null model is nested in the alternative. The statistic is
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where 
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 is the vector of derivatives of the log-likelihood as specified by 
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 but evaluated at the maximum likelihood estimator of the parameters assuming that 
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 is any of the consistent estimators of the asymptotic variance matrix of the maximum likelihood estimator under 
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, also computed using the maximum likelihood estimators based on 
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. The statistic has a limiting chi-squared distribution with degrees of freedom equal to the number of restrictions.

17.5.1   OMITTED VARIABLES
The hypothesis to be tested is
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so the test is of the null hypothesis that 
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. The Lagrange multiplier test would be carried out as follows:

1.
Estimate the model in 
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 by maximum likelihood. The restricted coefficient vector is 
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2.
Let x be the compound vector, 
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The statistic is then computed according to (17-27) or (17-28). For a logit model, for example, the test is carried out by: (1) Fit the null model by ML. (2); Compute the fitted probabilities using the null model and the “residuals,” ei = yi – Pi,0 arranged in diagonal matrix E; (3) The LM statistic is 1(EX(X(E2X)-1X(E(1. As usual, this can be computed as n  times an uncentered R2, here in the regression of a column of ones on variables eixi.  The likelihood ratio test is equally straightforward. Using the estimates of the two models, the statistic is simply 
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.  The Wald statistic would be based on estimates of the alternative model and is computed as in (17-25).
17.5.2   HETEROSCEDASTICITY




We use the standard formulation analyzed by Harvey (1976)
 (see Section 14.10.3)), 
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 We will obtain results specifically for the probit model; the logit or other models are essentially the same. 
The starting point is an extension of the binary choice model,
y*  =  x(( + (,  y = 1(y* > 0),

   E[(|x,z] = 0,  Var[(|x,z]  =  [exp(z(()]2.
There is an ambiguity in the formulation of the model.  A nonlinear index function, probit model (with no suggestion of heteroscedasticity),
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  y = 1(y** > 0), ( ~ N[0,1],
leads to the identical log likelihood and the identical estimated parameters.  It is not possible to distinguish “heteroscedasticity” from this nonlinearity in the conditional mean function.
 Unlike the linear regression model, in this binary choice context, the data contain no direct (identifying) information about scaling, or variation of the dependent variable.  (Hence, the “observational equivalence” of the two specifications.) The (identical) signs of y* and y** are unaffected by the variance function.  More broadly, the binary choice model creates an ambiguity in the distinction between heteroscedasticity and variation in the mean of the underlying regression.
	

	


The presence of heteroscedasticity requires some care in interpreting the coefficients. For a variable 
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 that could be in x or z or both,
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(17-32)
Only the first (second) term applies if 
[image: image567.wmf]k

w

 appears only in x (z). This implies that the simple coefficient may differ greatly from the effect that is of interest in the estimated model. This effect is clearly visible in the next example.

The log-likelihood is
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(17-33)
To be able to estimate all the parameters, z cannot have a constant term. The derivatives are
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(17-34)
If the model is estimated assuming that 
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, then we can easily test for homoscedasticity. Let gi equal the bracketed function in (17-34), G = diag(gi) and
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computed at the maximum likelihood estimator, assuming that 
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. Then, the LM statistic is
LM  =  i(GW [(W(G)(GW)]-1 W(Gi = nR2
where the regression is of a column of ones on giwi.  Wald and likelihood ratio tests of the hypothesis that γ = 0 are also straightforward based on maximum likelihood estimates of the full model.
Davidson and MacKinnon (1981) carried out a Monte Carlo study to examine the true sizes and power functions of these tests. As might be expected, the test for omitted variables is relatively powerful. The test for heteroscedasticity may pick up some other form of misspecification, however, including perhaps the simple omission of z from the index function, so its power may be problematic. It is perhaps not surprising that the same problem arose earlier in our test for heteroscedasticity in the linear regression model.  The problem in the binary choice context stems partly from the ambiguous interpretation of the role of z in the model discussed earlier.
Example 17.15  Specification Test in a Labor Force Participation Model

Using the data described in Example 17.1, we fit a probit model for labor force participation based on the following specification (see Wooldridge (2010, p. 580)):
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For these data, 
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. The restricted (all slopes equal zero, free constant term) log-likelihood is 
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. The unrestricted log-likelihood for the probit model is -401.3022. The chi-squared statistic is, therefore, 227.142. The critical value from the chi-squared distribution with seven degrees of freedom is 14.07, so the joint hypothesis that the coefficients on Other Income, etc. are all zero is rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on Other Income, etc. are the same whether the individual resides in a city (CITY = 1) or not (CITY = 0), against the alternative that altogether different equation applies for the two groups of women. To test this hypothesis, we would use a counterpart to the Chow test of Section 6.4.1 and Example 6.9. The restricted model in this instance would be based on the pooled data set of all 753 observations. The log-likelihood for the pooled model—which has a constant term and the 7 variables listed above – is 
-401.302. The log-likelihoods for this model based on the 484 observations with CIT = 1 and the 269 observations with CIT = 0 are 
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255.552 and 
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142.727, respectively. The log-likelihood for the unrestricted model with separate coefficient vectors is thus the sum, 
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398.279. The chi-squared statistic for testing the 8 restrictions of the pooled model is twice the difference, 6.046. The 95 percent critical value from the chi-squared distribution with 8 degrees of freedom is 15.51, so at this significance level, the hypothesis that the constant terms and the other coefficients are all the same is not rejected.

Table 17.11 presents estimates of the probit model with a correction for heteroscedasticity of the form 
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  The three tests for homoscedasticity give
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The 95 percent critical value for one restrictions is 3.84 so the three tests are consistent in not rejecting the hypothesis that γ equals zero..
Table 17.11  Estimated Coefficients
	 
	
	       Homoscedastic
      Estimate (Std. Er) 
	        Partial Effect* 
	       Heteroscedastic 
      Estimate (St. Er.) 
	    Partial Effect*

	Constant 
	 
(1
	 0.27008 (0.5086)
	–
	 0.25140  (0.4548)
	–

	Other Inc. 
	 
(2
	- 0.01202 (0.0048)
	 
[image: image583.wmf]-

0.00362 (0.0014) 
	-0.01075  (0.0044)
	 -0.00362 (0.0014) 

	Education
	 
(3
	 0.13090 (0.0253) 
	0.39370 (0.0072)  
	 0.11734  (0.0255) 
	0.03949 (0.0072)

	Exper
	 
(4
	0.12335 (0.0187)
	 0.02558 (0.0022) 
	  0.11190  (0.0197)
	  0.02599 (0.0022)

	Exper2 
	 
(5
	-0.00189 (0.0006)
	
	 -0.00171  (0.0006)
	  

	Age 
Kids < 6
	 
(6
 β7
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0.05285 (0.0085)
-0.86833 (0.1185)
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0.01590  (0.0024)
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0.26115  (0.0131)
	-0.04774  (0.0089)
-0.77151  (0.1356)
	   -0.01607 (0.0024)
-0.25968 (0.0318)

	Kids 6-18   
	 β
8
	   0.03600 (0.0438) 
	 0.01083  (0.0319)
	0.02800  (0.0390)
	0.00943 (0.0130)

	City 
	 
(
	0.00000
	
	-0.17446  (0.1541)
	0.00843 (0.0075)

	ln 
L
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*Average partial effects and estimated standard errors include both mean (
() and variance (
() effects.
17.5.3  DISTRIBUTIONAL ASSUMPTIONS
One concern about the models suggested here is that the choice of the particular distribution is itself vulnerable to a specification error.  E.g., the problem arises if a probit model is analyzed when a logit model would be appropriate. [See, e.g., Ruud (1986).]  It might seem logical to test the hypothesis of the model along with the other specification analyses one might do.  Alternatively, a more robust, less parametric specification might be attractive.  The substantive difference between probit and logit coefficient estimates in the preceding examples (e.g., Example 17.3) is misleading.  The difference masks the underlying scaling of the distributions.  The partial effects generated by the models are typically almost identical.  This is a widely observed result that suggests that concerns about “biases” in the coefficients due to the wrong distribution might be misplaced.  The other element of the analysis is the predicted probabilities.  Once again, the scaling of the coefficients by the different models disguises the typical similarity of the predicted probabilities of the different parametric models.  A broader question concerns the specific distribution compared to a semi- or nonparametric alternative.  Manski’s (1988) maximum score estimator (and Horowitz’s (1992) smoothed version), Klein and Spady’s (1993) semiparametric (kernel function based), and Khan’s (2013) heteroscedastic probit model are a few of the less heavily parameterized specifications that have been proposed for binary choice models.  Frolich (2006) presents a comprehensive survey of nonparametric approaches to binary choice modeling, with an application to Portuguese female labor supply.
The linear probability model is not offered as a “robust” alternative specification for the choice model. Proponents of the linear probability model argue only that the linear regression delivers a reliable approximation to the partial effects of the underlying true probability model.
  The robustness aspect is speculative.  The approximation does appear to mimic the nonlinear results in many cases.  In terms of the relevant computations, partial effects and predicted probabilities, the various candidates seem to behave similarly.  An essential ingredient is often the curvature in the tails that allows predicted probabilities to mimic the features of unbalanced samples.  From this standpoint, the linear model would seem to be the less robust specification.  (See Example 17.5.)  It is precisely this  rigidity of the LPM (as well as the parametric models) that motivates the nonparametric approaches such as the local likelihood logit approach advocated by Frolich (2006).


EXAMPLE 17.16  Distributional Assumptions


Table 17.12 presents estimates of the model in Example 17.36 based on the linear probability model and four alternative specifications.  Only the estimated partial effects are shown in the table.  The probit estimates match the authors’ results.  The correspondence of the various results is consistent with the earlier observations.  Generally, the models produce similar results.  The linear probability model does stand alone for two of the seven results, for the market share and productivity variables.

Table 17.12  Estimated Partial Effects in a Model of Innovation

        

Linear
Probit
Logit
Complementary   Gompertz





       Log Log


Log Sales
 0.05198 
 0.06573         
 0.06766
  0.06457 
  0.06639 
Share
 0.09492     
 0.39812     
 0.43993  
  0.33011        
  0.49826
Imports
 0.45284     
 0.42080     
 0.41101 
  0.43734         
  0.40304
FDI
 1.07787     
 1.05890     
 1.08753 
  0.99556        
  1.12929
Productivity
-0.55012     
-0.86887     
-1.01060 
 -0.85039           -0.87471
Raw Material
-0.09861     
-0.10569     
-0.09635 
 -0.10626
 -0.10615
Investment
 0.07879
 0.07045
 0.06758
  0.07704
  0.06356













17.5.4
   CHOICE-BASED SAMPLING

In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of ones and zeros in the observed sample of the dependent variable is deliberately skewed in favor of one outcome or the other to achieve a more balanced sample than random sampling would produce. The sampling is said to be choice based. In the studies noted, the dependent variable measured the occurrence of loan default, which is a relatively uncommon occurrence. To enrich the sample, observations with 
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 (default) were oversampled. Intuition should suggest (correctly) that the bias in the sample should be transmitted to the parameter estimates, which will be estimated so as to mimic the sample, not the population, which is known to be different. Manski and Lerman (1977) derived the weighted exogenous sampling maximum likelihood (WESML) estimator for this situation. The estimator requires that the true population proportions, 
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 be the sample proportions of ones and zeros. Then the estimator is obtained by maximizing a weighted log-likelihood,
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 takes only two different values. The derivatives and the Hessian are likewise weighted. A final correction is needed after estimation; the appropriate estimator of the asymptotic covariance matrix is the sandwich estimator discussed in Section 17.3.1, 
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 (with weighted B and H), instead of B or H alone. (The weights are not squared in computing B.)  WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which the biased sampling does, the weighting undoes. It is common for the end result to be very large standard errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance the data precisely to avoid this problem.
Example 17.17  Credit Scoring

In Example 7.12, we examined the spending patterns of a sample of 10,499 cardholders for a major credit card vendor. The sample of cardholders is a subsample of 13,444 applicants for the credit card. Applications for credit cards, then (1992) and now are processed by a major nationwide processor, Fair Isaacs, Inc. The algorithm used by the processors is proprietary. However, conventional wisdom holds that a few variables are important in the process, such as Age, Income, OwnRent (whether the applicant owns their home), Self-Employed (whether he or she is self-employed), and how long they have lived at their current address. The number of major and minor derogatory reports (60-day and 30-day delinquencies) are also very influential variables in credit scoring. The probit model we will use to “model the model” is
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In the data set, 78.1 percent of the applicants are cardholders. In the population, at that time, the true proportion was roughly 23.2 percent, so the sample is substantially choice based on this variable. The sample was deliberately skewed in favor of cardholders for purposes of the original study [Greene (1992)]. The weights to be applied for the WESML estimator are 
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. Table 17.13 presents the unweighted and weighted estimates for this application. The change in the estimates produced by the weighting is quite modest, save for the constant term. The results are consistent with the conventional wisdom that Income and OwnRent are two important variables in a credit application and self-employment receives a substantial negative weight. But, as might be expected, the single most significant influence on cardholder status is major derogatory reports. Since lenders are strongly focused on default probability, past evidence of default behavior will be a major consideration.
Table 17.13  Estimated Card Application Equation (
t ratios in parentheses)

	
	Unweighted
	Weighted

	Variable
	Estimate
	Standard Error
	Estimate
	Standard Error

	Constant 
	0.31783
	0.05094
	(6.24)
	
-1.13089
	0.04725 
	(
-23.94) 

	Age 
	0.00184
	0.00154
	(1.20)
	0.00156
	0.00145 
	(1.07) 

	Income 
	0.00095
	0.00025
	(3.86) 
	0.00094
	0.00024 
	(3.92) 

	OwnRent 
	0.18233
	0.03061
	(5.96)
	0.23967
	0.02968 
	(8.08) 

	CurrentAddress
	0.02237
	0.00120
	(18.67)
	0.02106
	0.00109
	(19.40) 

	SelfEmployed
	
-0.43625
	0.05585
	(
-7.81)
	
-0.47650
	0.05851 
	(
-8.14) 

	Major Derogs
	
-0.69912
	0.01920
	(
-36.42)
	
-0.64792
	0.02525 
	(
-25.66) 

	Minor Derogs
	
-0.04126
	0.01865
	(
-2.21)
	
-0.04285
	0.01778 
	(
-2.41) 



17.6
TREATMENT EFFECTS AND ENDOGENOUS VARIABLES IN
          BINARY CHOICE MODELS
Consider the binary choice model with endogenous right hand side variable, T;




y*  =  x(( + T( + (, y = 1(y* > 0), Cov(T,() ≠ 0.
We examine the two leading cases:  (1) T is an endogenous dummy variable that indicates some kind of treatment or program participation such as graduating from high school or college, receiving some kind of job training, purchasing health insurance, etc. [Discussion appears in Angrist (2001) and Angrist and Pischke (2009, 2010).]  and (2) T is an endogenous continuous variable.  Since the model is not linear, conventional instrumental variable estimators such as two stage least squares (2SLS) are not appropriate.  We consider the alternative estimators based on the maximum likelihood estimator.


17.6.1   
ENDOGENOUS TREATMENT EFFECT
A structural model in which a treatment effect will be correlated with the unobservables is,
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The correlation between u and ( induces the endogeneity of T in the equation for y.  We are interested in two “effects,” (1) the causal “treatment” effect of T on Prob(y = 1|x,T) and (2) The partial effects of x and z on Prob(y = 1|x,z,T) in the presence of the endogenous treatment.

This recursive model is a bivariate probit model (Section 17.9.5).  The log likelihood is constructed from the joint probabilities of the observed outcomes. The four possible outcomes and associated probabilities are obtained as the marginal probabilities for T times the conditional probabilities for y|T. Thus, 
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. The product returns the bivariate normal probability. The other three terms in the log-likelihood are derived similarly.  The four terms are 
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The log likelihood is then



ln L((,(,()  =  
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Estimation is discussed in Section 17.9.5.  The model looks like a conventional simultaneous equations model; the difference arises from the nonlinear transformation of (y*,T*) that produces the observed (y,T). One implication is that whereas for identification of a linear model of this form, there would have to be at least one variable in z that is not in x, that is not the case here. The model is identified partly through the nonlinearity of the functional form.  (See the commentary in Example 17.18.)
The treatment effect is derived from the marginal distribution of y,



TE  
=  Prob(y = 1|x,T = 1) – Prob(y = 1|x,T = 0)





=  ((x(( + () - ((x(().
The average treatment effect, ATE, will be estimated by averaging the estimates of TE over the sample observations. The treatment effect on the treated would be based on the conditional probability, Prob(y=1|T=1);
TET  =  
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The average treatment effect on the treated, ATET, is computed by averaging this quantity over the sample observations for which Ti = 1. [See Jones (2007).]

To compute the average partial effects for the exogenous variables, we will require


Prob(y = 1|x,z)  =  
Prob(y=1|x,z,T=1)Prob(T=1|z) + 

Prob(y=1|x,z,T=0)Prob(T=0|z)



   =     
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This is the sum of the first two terms above.  The partial effects for x and z are then
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Expressions for the derivatives appear in Section 17.9.  This is a fairly intricate calculation. It is automated or conveniently computed in contemporary software, however.  We can interpret Prob(y=1|x,z)/x as a direct effect and Prob(y=1|x,z)/z as an indirect effect on y that is transmitted through T.  For variables that appear in both x and z, the total effect is the sum of the two.  The computations are illustrated in Example 17.19 below.
EXAMPLE 17.18  An Incentive Program for Quality Medical Care

Scott, Schurer, Jensen and Sivey (2009) examined an incentive program for Australian general practitioners to provide high quality care in diabetes management.  The specific outcome of interest is ordering HbA1c tests as part of a diabetes consultation.  The treatment of interest is participation in the incentive program.
         A pay-for-performance program, the Practice Incentive Program (PIP) was superimposed on the Australian fee for service system in 1999 to encourage higher quality of care in chronic diseases including diabetes.  Program participation by general practitioners (GPs) was voluntary. The quality of care outcome is whether the HbA1c test is administered.  Analysis is conducted with a unique data set on GP consultations. The authors compare the average proportion of HbA1c tests ordered by GPs that have joined the incentive scheme with the average proportion of tests ordered by GPs that have not joined, while controlling for key sources of unobserved heterogeneity.  A key assumption here is that HbA1c tests are undersupplied in the absence of the PIP scheme and therefore more frequent HbA1c testing is related to higher quality management. The endogenous nature of general practices’ participation in the PIP is addressed by applying a bivariate probit model, using exclusion restrictions to aid identification of the causal parameters. 
     The GP will join the PIP if the utility from joining is positive.  Utility depends on the additional income from joining the PIP, from the diabetes sign-on payment and negatively on the costs of accreditation and establishing the requisite IT systems.  GPs will increase quality of care if the utility of doing so is positive, which partly depends on PIP membership.  The bivariate
probit model used is



Yij* = (1 + (1(Xij + (PIP PIPij + u1ij


PIPij* = (2 + (2(Xij + ((Iij + u2ij​
where 
Yij    = 1(GP j ordered an HbA1c test in recorded consultation i), 
and

PIPij = 1(Practice in which GPj works has joined the PIP program).
The authors calculate the marginal treatment effect of PIP using MEPIP = (PIP ((
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  Regarding the specification, they note “[a]lthough the model is formally identified by its non-linear functional form, as long as the full rank condition of the data matrix is ensured (Heckman, 1978; Wilde, 2000), we introduce exclusion restrictions to aid identification of the causal parameter (PIP (Maddala, 1983); Monfardini and Radice (2008).  The row vector Iij captures the variables in the PIP participation equation (5) but excluded from the outcome equation (4).”
Marginal effects for PIP status are reported (in Table II) for two treatment groups.  For the first group, the estimated effect is roughly 0.2.  In year 1 of the data set, before the PIP was introduced, the average proportion of HbA1c tests conducted was 13%. After the reform was introduced, the average diabetes patient therefore faced a probability of 32% of receiving an HbA1c test during an average encounter in a practice that has joined the PIP.  The result from a univariate probit model that treated PIP as exogenous produced a corresponding value of only 0.028.
EXAMPLE 17.19   Moral Hazard In German Health Care
Riphahn, Wambach and Million (2003) examined health care utilization in a panel data set of German households. The main objective of the study was to consider evidence of moral hazard.  The authors considered the joint determination of hospital and doctor visits in a bivariate count data model. The model assessed whether purchase of Add-on insurance was associated with heavier use of the health care system.  All German households have some form of health insurance.  In our data, roughly 89% have the compulsory “public” form.  Some households, typically higher income, can opt, instead, for private insurance.  The “Add-on” insurance, that is available to those who have the compulsory public insurance, provides coverage for additional benefits, such as certain prevention programs and additional dental coverage.  We will construct a small model to suggest the computations of treatment effects in a recursive bivariate probit model.  The structure for one of the two count variables is


Hospital*  =  β1 + β2 Age + β3 Working + β4 Health + γ Addon  +  ε,
    Addon*  =  α1 + α2 Age + α3 Education + α4 Income + α5 Married + α6 Kids  + α7 Health + u
Hospital is constructed as 1(Hospital Visits > 0) while Add-On = 1(Household has Add-On Insurance).  Estimation is based, once again, on the 1994 wave of the data.

Estimation results are shown in Table 17.14.  We find that the only significant determinant of hospital visitation is Health (measured as self reported Health Satisfaction).  The crucial parameter is γ, the coefficient on Add-On.  The value of 0.04131for APE(Add-On) is the estimated Average Treatment Effect.  We find, as did Riphahn, that the data do not appear to support the hypothesis of moral hazard.  The t ratio on Add-On in the regression is only 0.16, far from significant.  On the other hand, the estimated value, 0.04131, is not tivial.  The mean value of Hospital is 0.091; 9.1% of this sample had at least one hospital visit in 1994.  On average, if the subgroup of Add-On policy holders visited the hospital with 0.04 greater probability, this represents, using 0.091 as the base, an increase of 44% in the rate.  That is actually quite large.  For comparison purposes, the 2SLS estimates of this model are shown in the last column.  (The authors of the application in Example 17.6 used 2SLS for estimation of their recursive bivariate probit model.)  As might be expected, the 2SLS estimates provide a good approximation to the aveage partial effects of the exogenous variables.  However, it produces  an estimate for the causal Add-On effect that is three times as large as the FIML estimate, and has the wrong sign.
Table 17.14  Estimates of Recursive Bivariate Probit Model


                                        Add-On                                           Hospital




   
Variable              Estimate   Std.Error   t Ratio         Estimate     Std. Error     t Ratio
  APE
     2SLS    
Constant
 -3.64543
0.42225
-8.63
-0.56009
0.18342
  -3.05     

     0.24352
Health
 0.00452
0.02552
 0.18 
-0.14258
0.01412  
-10.10      -0.02195    -0.02505
Working



 0.00728
0.07223
   0.10  
  0.00112     0.00121
Add-On



 0.23389
1.43618
   0.16        0.04131    -0.11826
Age
  0.00884
0.00568
 1.56 
 0.00210
0.00292
   0.72        0.00034*   0.00035
Education
  0.07896
0.02030
 3.89
Income
  0.48428
0.23142
 2.09
Married
-0.09885
0.13584
-0.73
Kids
 0.21025
0.13142
 1.60
ρ


                   -0.01363        0.60432       -0.02


Log likelihood function     -1296.40433
Estimation based on N =   3377, K =  13



                   
*  Average Treatment Effect.  Estimated ATET is 0.03861


                    











Constant|   -3.68488***      .37782    -9.75  .0000    -4.42538  -2.94437
     AGE|     .01005*        .00517     1.94  .0522     -.00009    .02019
    EDUC|     .08267***      .01976     4.18  .0000      .04393    .12141
  INCOME|     .50173**       .22295     2.25  .0244      .06477    .93870
 MARRIED|    -.16034         .13030    -1.23  .2185     -.41572    .09504
  HHKIDS|     .25091**       .12483     2.01  .0444      .00624    .49558
        |Index    equation for DOCTOR........................................
Constant|    -.01783         .10187     -.17  .8611     -.21749    .18184
     AGE|     .01383***      .00203     6.80  .0000      .00984    .01782
 WORKING|    -.18741***      .05189    -3.61  .0003     -.28911   -.08571
   ADDON|   -1.84249***      .62908    -2.93  .0034    -3.07547   -.60951
        |Disturbance correlation.............................................
RHO(1,2)|     .74960***      .23596     3.18  .0015      .28713   1.21207























17.6.2  ENDOGENOUS CONTINUOUS VARIABLE
If the endogenous variable in the recursive model is continuous, the structure is
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In the model for labor force participation in Example 17.15, family income



17.6.2A   IV and GMM Estimation


The instrumental variable estimator described in Chapter 8 is based on moments of the data, variances, and covariances. In this binary choice setting, we are not using any form of least squares to estimate the parameters, so the IV method would appear not to apply. Generalized method of moments is a possibility. Starting from
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a natural instrumental variable estimator would be based on the “moment” condition
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(In this formulation, zi* would contain only the variables in zi not also contained in x.) However, 
[image: image655.wmf]*

i

y

 is not observed, 
[image: image656.wmf]i

y

 is.  
The approach that was used in Avery et al. (1983), Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is to assume that the instrumental variables are orthogonal to the “residual,” 
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This form of the moment equation, based on observables, can form the basis of a straightforward two-step GMM estimator. (See Chapter 13 for details.)  

17.6.2B  Partial ML Estimation
Simple probit estimation based on 
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The maximum likelihood estimator is based on the full specification of the model, including the bivariate normality assumption that underlies the endogeneity of T.

 

  







One possibility is to use the partial reduced form obtained by inserting the first equation in the second. This becomes a probit model with probability Prob
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. This will produce a consistent estimator of 
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 as the coefficients on 
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, respectively. (The procedure would estimate a mixture of 
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.) Newey (1987) suggested a “minimum chi-squared” estimator that does estimate all parameters. Linear regression of 
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 which suggests a third possible estimator, based on a two step MLE.  But there is no method of moments estimator of 
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 produced by this procedure, so this estimator is incomplete. 
17.6.2C  FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATION
A more direct, and actually simpler approach is full information maximum likelihood.  
The log-likelihood is built up from the joint density of 
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 Ti which we write as the product of the conditional and the marginal densities,
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To derive the conditional distribution, we use results for the bivariate normal, and write
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(17-36)
Inserting the expression for 
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, and using the normal density for the marginal distribution of 
Ti in the first equation, we obtain the log-likelihood function for the sample,
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Some convenience can be obtained by rewriting the log-likelihood function as
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where 
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.  The delta method can be used to recover the original parameters and appropriate standard errors after estimation.

Partial effects are derived from the first term in (17-37)
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17.6.2D   RESIDUAL INCLUSION AND CONTROL FUNCTIONS
A further simplification of the log likelihood function is obtained by writing
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.  This “residual inclusion” form suggests a two-step approach. The parameters in the linear regression, 
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 can now be computed and inserted into the log-likelihood. Note that the second term in the log-likelihood involves parameters that have already been estimated at the first step, so it can be ignored. The second-step log-likelihood is, then,
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This can be maximized using the methods developed in Section 17.3. The estimator of 
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 can be recovered from 
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 follow, and the delta method can be used to construct standard errors.  Since this is a two-step estimator, the resulting estimator of the asymptotic covariance matrix would be adjusted using the Murphy and Topel (2002) results in Section 14.7. Bootstrapping the entire apparatus (i.e., both steps – see Section 15.4) would be an alternative way to estimate an asymptotic covariance matrix. The original (one-step) log-likelihood is not very complicated, and full information estimation is fairly straightforward. The preceding demonstrates how the alternative two-step method would proceed and suggests how the “residual inclusion” method proceeds. The general approach of residual inclusion for nonlinear models with endogenous variables is explored in detail by Terza, Basu, and Rathouz (2008).
17.6.2E   A CONTROL FUNCTION ESTIMATOR
  In the residual inclusion estimator noted earlier the endogeneity of T in the probit model is mitigated by adding the estimated residual to the equation – in the presence of the residual, T is no longer correlated with (.  We took this approach in estimating a linear model in Section 8.4.2. Blundell and Powell (2004) label the foregoing the control function approach to accommodating the endogeneity. The residual inclusion estimator suggested here was proposed by Rivers and Vuong (1988). As noted, the estimator is fully parametric. They propose an alternative semiparametric approach that retains much of the functional form specification, but works around the specific distributional assumptions. Adapting their model to our earlier notation, their departure point is a general specification that produces, once again, a control function,
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Note that (17-36) satisfies the assumption; however, they reach this point without assuming either joint or marginal normality. The authors propose a three-step, semiparametric approach to estimating the structural parameters. In an application somewhat similar to Example 17.8, they apply the technique to a labor force participation model for British men in which a variable of interest is a dummy variable for education greater than 16 years, the endogenous variable in the participation equation, also of interest, is earned income of the spouse, and an instrumental variable is a welfare benefit entitlement. Their findings are rather more substantial than ours; they find that when the endogeneity of other family income is accommodated in the equation, the education coefficient increases by 40 percent and remains significant, but the coefficient on other income increases by more than tenfold.





























Example 17.20  Labor Supply Model
In Examples 5.2, 17.1 and 17.15, we examined a labor supply model for married women using Mroz’s (1987) data on labor supply. The wife’s labor force participation equation suggested in Example 17.15 is
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The Other (Non-wife’s) income would likely be jointly determined with the LFP decision.  We model this with
Other Income = α1 + α2 Husband’s Age + α3 Husband’s Education + α4 City


  
       + α5 Kids Under 6    + α6 Kids 6 to 18 + u.





As before, we use the Mroz (1987) labor supply data described in Example 5.2. Table 17.15 reports the naïve single-equation and full information maximum likelihood estimates of the parameters of the two equations. The third set of results is the two step estimator detailed in Section 17.6.2D.  Standard errors for the maximum likelihood estimators are based on the derivatives of the log likelihood function.  Standard errors for the two step estimator are computed using 50 bootstrap replications.  (Both steps are computed for the bootstrap replications.)
Comparing the two sets of probit estimates, it appears that the (assumed) endogeneity of the Other Income is not substantially affecting the estimates.  The results are nearly the same.  There are two simple ways to test the hypothesis that 
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 equals zero. The FIML estimator produces an estimated asymptotic standard error with the estimate of 
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, so a Wald test can be carried out. For the preceding results, the Wald statistic would be
 (0.18777/0.13625)2 = 1.3782 = 1.899. The critical value from the chi-squared table for one degree of freedom would be 3.84, so we would not reject the hypothesis of exogeneity. The second approach would use the likelihood ratio test. Under the null hypothesis of exogeneity, the probit model and the regression equation can be estimated independently. The log-likelihood for the full model would be the sum of the two log-likelihoods, which would be 
-401.302 – 2844.103 = -3245.405.  The log likelihood for the combined model is -3244.556

. Twice the difference is 0.849, which is also well under the 3.84 critical value, so on this basis as well, we would not reject the null hypothesis that 
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.  As would now be expected, the three sets of estimates are nearly the same.  The estimate of -0.02761 for the coefficient on Other Income implies that a $1,000 increase reduces the LFP by about .028.  Since the participation rate is about 0.57, the $1,000 increase suggests a reduction in participation of about 4.9%.  The mean value of other income is roughly $20 thousand, so the 5% increase in Other Income is associated with a 5% decrease in LFP, or an elasticity of about one. 

	
	
	
	

	
	

	
	
	
	

	

	
	
	
	
	
	
	

	
	

	
	
	
	

	

	
	
	
	
	
	
	

	
	

	
	
	
	

	

	
	

	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	

	
	

	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	

	

	
	
	
	


	

	

	

	



Table 17.15   Estimated Labor Supply Model

                                     Probit                                        FIML                              2 Step Control Function
Variable                    Estimate  Std. Error        Estimate   Std. Error      APE         Estimate      Std. Error
LFP Equation for Wife
Constant
 0.27008
 0.50859
 0.21277 
 0.51736

 0.21811
0.50719
Education
 0.13090
 0.02525
 0.14571
 0.02689
 0.05693
 0.14816
0.02900
Experience
 0.12335
 0.01872
 0.12299
 0.01851
 0.04805
 0.12521
0.01868
Experience2 
-0.00189
 0.00060
-0.00192
 0.00060
-0.00075
-0.00196
0.00053
Age
-0.05285
 0.00848
-0.04878
 0.00951
-0.01906
-0.04970
0.00914
Kids Under 6
-0.86833
 0.11852
-0.83049
 0.12684
-0.32447
-0.84568
0.13693
Kids 6 – 18
 0.03600
 0.04348  
 0.04781
 0.04214
 0.01868
 0.04855
0.05240
Non-wife Income
-0.01202
 0.00484
-0.02761
 0.01254
-0.01079
-0.02798
0.01500 
Residual





 0.01795
0.01572
Non-Wife Income Equation
Constant


-10.6816
  4.34481

-10.5492
Hus. Age


   0.23009
  0.07089

   0.22818
Hus. Education


   1.35361
  0.12978

   1.34613
City


   3.54202
  0.91338

   3.62319
Kids Under 6


   1.36755
  0.67056

   1.36403
Kids 6-18


   0.67856
  0.36160

   0.67573
σ 


 10.5708
  0.15966

 10.61312
ρ 


   0.18777
  0.13625


ln L
-401.302

          -3244.556

-2844.103
17.6.3    Endogenous Sampling
We have encountered several instances of nonrandom sampling in the binary choice setting. In Example 17.17, we examined an application in credit scoring in which the balance in the sample of responses of the outcome variable, 
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 for acceptance of an application and 
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 for rejection, is different from the known proportions in the population. The sample was skewed in favor of observations with 
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 to enrich the data set. A second type of nonrandom sampling arises in the analysis of nonresponse/attrition in the GSOEP in Example 17.29 below. Here, the observed sample is not random with respect to individuals’ presence in the sample at different waves of the panel. The first of these represents selection specifically on an observable outcome—the observed dependent variable. We construct a model for the second of these that relies on an assumption of selection on a set of certain observables—the variables that enter the probability weights. We will now examine a third form of nonrandom sample selection, based crucially on the unobservables in the two equations of a bivariate probit model.

We return to the banking application of Example 17.17. In that application, we examined a binary choice model,
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From the point of view of the lender, cardholder status is not the interesting outcome in the credit history, default is. The more interesting equation describes 
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. The natural approach, then, would be to construct a binary choice model for the interesting default variable using the historical data for a sample of cardholders. The problem with the approach is that the sample o cardholders is not randomly drawn from the population—applicants are screened with an eye specifically toward whether or not they seem likely to default. In this application, and in general, there are three economic agents, the credit scorer (e.g., Fair Isaacs), the lender, and the borrower. Each of them has latent characteristics in the equations that determine their behavior. It is these latent characteristics that drive, in part, the application/scoring process and, ultimately, the consumer behavior.

A model that can accommodate these features is 
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which contains an observation rule, 
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, and a behavioral outcome, 
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 or 1. The endogeneity of the sampling rule implies that
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From properties of the bivariate normal distribution, the appropriate probability is
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If 
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 is not zero, then in using the simple univariate probit model, we are omitting from our model any variables that are in 
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 but not in 
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, and in any case, the estimator is inconsistent by a factor 
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. To underscore the source of the bias, if 
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 equals zero, the conditional probability returns to the model that would be estimated with the selected sample. Thus, the bias arises because of the correlation of (i.e., the selection on) the unobservables, 
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 and 
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. This model was employed by Wynand and van Praag (1981) in the first application of Heckman’s (1979) sample selection model in a nonlinear setting, to insurance purchases, by Boyes, Hoffman, and Lowe (1989) in a study of bank lending, by Greene (1992) to the credit card application begun in Example 17.17 and continued in Example 17.21, and hundreds of applications since. 

Given that the forms of the probabilities are known, the appropriate log-likelihood function for estimation of 
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 is easily obtained. The log-likelihood must be constructed for the joint or the marginal probabilities, not the conditional ones. For the “selected observations,” that is, (
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, the relevant probability is simply
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For the observations with 
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, the probability that enters the likelihood function is simply 
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. Estimation is then based on a simpler form of the bivariate probit log-likelihood that we examined in Section 17.6.1. Partial effects and postestimation analysis would follow the analysis for the bivariate probit model. The desired partial effects would differ by the application, whether one desires the partial effects from the conditional, joint, or marginal probability would vary. The necessary results are in Section 17.9.3.

Example 17.21  Cardholder Status and Default Behavior

In Example 17.9, we estimated a logit model for cardholder status,
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using a sample of 13,444 applications for a credit card. The complication in that example was that the sample was choice based. In the data set, 78.1 percent of the applicants are cardholders. In the population, at that time, the true proportion was roughly 23.2 percent, so the sample is substantially choice based on this variable. The sample was deliberately skewed in favor of cardholders for purposes of the original study [Greene (1992)]. The weights to be applied for the WESML estimator are 
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 for the observations with 
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 for observations with 
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. Of the 13,444 applicants in the sample, 10,499 were accepted (given the credit cards). The “default rate” in the sample is 996/10,499 or 9.48 percent. This is slightly less than the population rate at the time, 10.3 percent. For purposes of a less complicated numerical example, we will ignore the choice-based sampling nature of the data set for the present. An orthodox treatment of both the selection issue and the choice-based sampling treatment is left for the exercises [and pursued in Greene (1992).]

We have formulated the cardholder equation so that it probably resembles the policy of credit scorers, both then and now. A major derogatory report results when a credit account that is being monitored by the credit reporting agency is more than 60 days late in payment. A minor derogatory report is generated when an account is 30 days delinquent. Derogatory reports are a major contributor to credit decisions. Contemporary credit processors such as Fair Isaacs place extremely heavy weight on the “credit score,” a single variable that summarizes the credit history and credit-carrying capacity of an individual. We did not have access to credit scores at the time of this study. The selection equation was given earlier. The default equation is a behavioral model. There is no obvious standard for this part of the model. We have used three variables, Dependents, the number of dependents in the household, Income, and Exp_Income which equals the ratio of the average credit card expenditure in the 12 months after the credit card was issued to average monthly income. Default status is measured for the first 12 months after the credit card was issued.

Table 17.16  Estimated Joint Cardholder and Default Probability Models

	
	Endogenous Sample Model
	Uncorrelated Equations

	Variable/Equation
	Estimate
	Standard Error (t)
	Estimate
	Standard Error

	Cardholder Equation

	Constant 
	   0.30516
	0.04781 
	       (6.38) 
	    0.31783
	0.04790 
	    (6.63) 

	Age 
	   0.00226 
	0.00145 
	       (1.56)
	    0.00184 
	0.00146 
	    (1.26) 

	Current Address 
	   0.00091 
	0.00024 
	       (3.80)
	    0.00095 
	0.00024 
	    (3.94) 

	OwnRent 
	   0.18758 
	0.03030 
	       (6.19)
	    0.18233 
	0.03048 
	    (5.98) 

	Income 
	   0.02231 
	0.00093 
	     (23.87) 
	    0.02237 
	0.00093 
	   (23.95) 

	SelfEmployed 
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	Major Derogatory 
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	0.01871 
	 (
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37.20)
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0.69912 
	0.01839 
	(
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38.01) 

	Minor Derogatory 
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	0.01825 
	   (
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2.58)
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	  (
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	Default Equation

	Constant
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0.96043 
	0.04728 
	 (
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20.32)
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0.81528 
	0.04104 
	(
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19.86) 

	Dependents
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0.04995 
	0.01415 
	       (3.53) 
	    0.04993 
	0.01442 
	      (3.46) 

	Income
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0.01642 
	0.00122 
	 (
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13.41)
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0.01837 
	0.00119 
	(
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15.41) 

	Expend/Income
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0.16918 
	0.14474 
	   (
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1.17)
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0.14172 
	0.14913 
	(
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	Correlation
	    0.41947 
	0.11762 
	       (3.57)
	    0.00000 
	  
	  

	Log Likelihood
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8,660.90650
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Estimation results are presented in Table 17.16. These are broadly consistent with the earlier results—the model with no correlation from Example 17.9 are repeated in Table 17.16. There are two tests we can employ for endogeneity of the selection. The estimate of 
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 is 0.41947 with a standard error of 0.11762. The 
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 ratio for the test that 
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 equals zero is 3.57, by which we can reject the hypothesis. Alternatively, the likelihood ratio statistic based on the values in Table 17.16 is 
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. This is larger than the critical value of 3.84, so the hypothesis of zero correlation is rejected. The results are as might be expected, with one counterintuitive result, that a larger credit burden, expenditure to income ratio, appears to be associated with lower default probabilities, though not significantly so.




































	
	
	

	
	
	
	
	

	
	
	
	
	

	
	


	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	

	
	


	
	

	
	

	

	
	


	
	

	
	

	

	
	







	
	
	

	
	
	
	
	

	
	
	
	
	

	
	


	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	

	
	


	
	

	
	

	

	
	


	
	

	
	

	

	
	


































































	

	



















































	
	
	
	
	
	

	
	

	

	
	

	

	
	

	
	

	
	


	
	

	

	
	

	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	

	

	

	


	
	

	
	
	

	

	
	

	
	
	
	

	

	
	

	


	
	
	
	





17.7
panel data MODELS
Qualitative response models have been a growth industry in econometrics. The recent literature, particularly in the area of panel data analysis, has produced a number of new techniques. The availability of large, high-quality panel data sets on microeconomic behavior has supported an interest in extending the models of Chapter 11 to binary (and other discrete choice) models. In this section, we will survey a few results from this rapidly growing literature.

The structural model for a possibly unbalanced panel of data would be
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	(17-38)








Most of the interesting cases to be analyzed will start from our familiar common effects model,
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where, as before (see Sections 11.4 and 11.5), 
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 is the unobserved, individual specific heterogeneity.  Once again, we distinguish between “random” and “fixed” effects models by the relationship between 
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. The assumption of strict exogeneity, that 
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 Xi, produces the random effects model. Note that this places a restriction on the distribution of the heterogeneity.  
If that distribution is unrestricted, so that 
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 may be correlated, then we have the fixed effects model. As before, the distinction does not relate to any intrinsic characteristic of the effect itself.

As we shall see shortly, this modeling framework is fraught with difficulties and unconventional estimation problems. Among them are the following: Estimation of the random effects model requires very strong assumptions about the heterogeneity; the fixed effects model relaxes these assumptions, but the natural estimator in this case encounters an incidental parameters problem that renders the maximum likelihood estimator inconsistent even when the model is correctly specified.
17.7.1
The Pooled Estimator

To begin, it is useful to consider the pooled estimator that results if we simply ignore the heterogeneity, 
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 in (17-39) and fit the model as if the cross-section specification of Section 17.2.2 applies.
 
If the fixed effects model is appropriate, then results for omitted variables, including the Yatchew and Griliches (1984) result, apply. The pooled MLE that ignores fixed effects will be inconsistent—possibly wildly so. (Note that since the estimator is ML, not least squares, converting the data to deviations from group means is not a solution—converting the binary dependent variable to deviations will produce a new variable with unknown properties.)

The random effects case is simpler. From (17-39), the marginal probability implied by the model is
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The implication is that based on the marginal distributions, we can consistently estimate 
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 (but not 
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 or 
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 separately) by pooled MLE. [This result is explored at length in Wooldridge (2010).] This would be a “pseudo MLE” since the log-likelihood function is not the true log-likelihood for the full set of observed data, but it is the correct product of the marginal distributions for 
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 in a linear random effects model by pooled ordinary least squares.) The implication, which is absent in the linear case is that ignoring the random effects in a pooled model produces an attenuated (inconsistent—downward biased) estimate of 
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 which is between zero and one. The implication for the partial effects is less clear. In the model specification, the partial effect is
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which is not computable. The useful result would be
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Wooldridge (2010) shows that the end result, assuming normality of both 
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. Thus far, surprisingly, it would seem that simply pooling the data and using the simple MLE “works.” The estimated standard errors will be incorrect, so a correction such as the cluster estimator shown in Section 14.8.2 would be appropriate. Three considerations suggest that one might want to proceed to the full MLE in spite of these results: (1) The pooled estimator will be inefficient compared to the full MLE; (2) the pooled estimator does not produce an estimator of 
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 that might be of interest in its own right; (3) the FIML estimator is available in contemporary software and is no more difficult to estimate than the pooled estimator. Note that the pooled estimator is not justified (over the FIML approach) on robustness considerations because the same normality and random effects assumptions that are needed to obtain the FIML estimator will be needed to obtain the preceding results for the pooled estimator.

17.7.2   Random Effects
A specification that has the same structure as the random effects model of Section 11.5 has been implemented by Butler and Moffitt (1982). We will sketch the derivation to suggest how random effects can be handled in discrete and limited dependent variable models such as this one. Full details on estimation and inference may be found in Butler and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the Butler and Moffitt model.

The random effects model specifies
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and X indicates all the exogenous data in the sample, 
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The new free parameter is 
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Recall that in the cross-section case, the marginal probability associated with an observation is
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This simplifies to 
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 for the logit model. In the fully general case with an unrestricted covariance matrix, the contribution of group i to the likelihood would be the joint probability for all 
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(17-40)
The integration of the joint density, as it stands, is impractical in most cases. The special nature of the random effects model allows a simplification, however. We can obtain the joint density of the 
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The advantage of this form is that conditioned on 
[image: image1042.wmf]i

u

, the 
[image: image1043.wmf]’s

it

e

 are independent, so

[image: image1044.wmf]12

1

(,,,)(|)().

i

i

T

iiiTitiii

t

ffufudu

+¥

-¥

=

¼=

Õ

ò

eeee


Inserting this result in (17-40) produces
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This may not look like much simplification, but in fact, it is. Because the ranges of integration are independent, we may change the order of integration:
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Conditioned on the common 
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, the 
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 are independent, so the term in square brackets is just the product of the individual probabilities. We can write this as
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Now, consider the individual densities in the product. Conditioned on 
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, these are the now-familiar probabilities for the individual observations, computed now at 
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. This produces a general form for random effects for the binary choice model. Collecting all the terms, we have reduced it to


[image: image1052.wmf]1

1

(,,|)Prob(|)().

i

i

T

iiiTitititiii

t

LPyyYyufudu

+¥

-¥

=

éù

¢

=¼==+

êú

ëû

Õ

ò

Xx

b


(17-42)
It remains to specify the distributions, but the important result thus far is that the entire computation requires only one-dimensional integration. The inner probabilities may be any of the models we have considered so far, such as probit, logit, Gumbel, and so on. The intricate part that remains is how to do the outer integration. Butler and Moffitt’s method quadrature method assuming that 
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 is normally distributed is detailed in Section 14.14.4.
A number of authors have found the Butler and Moffitt formulation to be a satisfactory compromise between a fully unrestricted model and the cross-sectional variant that ignores the correlation altogether. An application that includes both group and time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal behavior. The Butler and Moffitt approach has been criticized for the restriction of equal correlation across periods. But it does have a compelling virtue that the model can be efficiently estimated even with fairly large 
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 using conventional computational methods. [See Greene (2007b).]

A remaining problem with the Butler and Moffitt specification is its assumption of normality. In general, other distributions are problematic because of the difficulty of finding either a closed form for the integral or a satisfactory method of approximating the integral. An alternative approach that allows some flexibility is the method of maximum simulated likelihood (MSL), which was discussed in Section 15.6. The transformed likelihood we derived in (17-42) is an expectation:
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This expectation can be approximated by simulation rather than quadrature. First, let 
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 now denote the scale parameter in the distribution of 
[image: image1057.wmf]i

u

. This would be 
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 for a normal distribution, for example, or some other scaling for the logistic or uniform distribution. Then, write the term in the likelihood function as
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Note that ui is free of any unknown parameters. For example, for normally distributed u, by this transformation, 
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 is σu and now, u ~ N[0,1]. The function is smooth, continuous, and continuously differentiable. If this expectation is finite, then the conditions of the law of large numbers should apply, which would mean that for a sample of observations 
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This suggests, based on the results in Chapter 15, an alternative method of maximizing the log-likelihood for the random effects model. A sample of person-specific draws from the population 
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 can be generated with a random number generator. For the Butler and Moffitt model with normally distributed 
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, the simulated log-likelihood function is
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This function is maximized with respect 
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 and 
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. Note that in the preceding, as in the quadrature approximated log-likelihood, the model can be based on a probit, logit, or any other functional form desired.

For testing the hypothesis of the restricted, pooled model, a Lagrange multiplier approach that does not require estimation of the full random effects model will be attractive.  Greene and McKenzie (2015) derived an LM test specifically for the random effects model.  Let λit equal the derivative with respect to the constant term under H0, defined in (17-20) and let 
τit = – (qitxitʹβ)λit – λit2.  Then, 
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Finally, giʹ is the ith row of the n×(K+1) matrix G.  The LM statistic is LM = iʹG (GʹG)-1Gʹi = nR2 in the regression of a column of ones on gi. The first K elements of iʹG equal zero as they are the score of the log likelihood under H0.  Therefore, the LM statistic is the square of the (K+1) element of iʹG times the last diagonal element of the matrix (GʹG)-1.  Wooldridge (2010) proposes an omnibus test of the null of the pooled model against the more general model that contains lagged values of xit and/or yit.  The two steps of the test are: (1) Pooled probit estimation of the null model; (2) Pooled probit estimation of the augmented model Prob(yit = 1) = Φ(xitʹβ + γui,t-1) based on observations t = 2,…,Ti where uit = (yit - xitʹβ).  The test is a simple Wald, LM or LR test of the hypothesis that γ equals zero.
We have examined two approaches to estimation of a probit model with random effects. GMM estimation is a third possibility. Avery, Hansen, and Hotz (1983), Bertschek and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer some comparison with the quadrature and simulation-based estimators considered here. (Our application in Example 17.36 will use the Bertschek and Lechner data.)
17.7.3
Fixed Effects
The fixed effects model is
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where 
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 is a dummy variable that takes the value one for individual i and zero otherwise. For convenience, we have redefined 
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 to be the nonconstant variables in the model. The parameters to be estimated are the K elements of 
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 and the n individual constant terms. Before we consider the several virtues and shortcomings of this model, we consider the practical aspects of estimation of what are possibly a huge number of parameters, 
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where 
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 is the probability of the observed outcome, for example, 
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. What follows can be extended to any index function model, but for the present, we will confine our attention to symmetric distributions such as the normal and logistic, so that the probability can be conveniently written as Prob
[image: image1080.wmf](|)[()]

itititi

t

ti

i

YyPq

b

¢

+

==

x

x

a

. It will be convenient to let 
[image: image1081.wmf]i

iti

t

z

b

¢

+

=

x

a

 so Prob
[image: image1082.wmf]Prob(|)()

ititititit

YyPqz

==

x

.

In our previous application of this model, in the linear regression case, we found that estimation of the parameters was simplified by a transformation of the data to deviations from group means which eliminated the person specific constants from the estimator. (See Section 11.4.1.) Save for the special case discussed later, that will not be possible here, so that if one desires to estimate the parameters of this model, it will be necessary actually to compute the possibly huge number of constant terms at the same time. This has been widely viewed as a practical obstacle to estimation of this model because of the need to invert a potentially large second derivatives matrix, but this is a misconception. [See, for example, Maddala (1987), p. 317.] The method for estimation of nonlinear fixed effects models such as the probit and logit models is detailed in Section 14.9.6.d.

The problems with the fixed effects estimator are statistical, not practical. The estimator relies on 
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 observations. But, in this setting, not only is 
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 fixed, it is likely to be quite small. As such, the estimators of the constant terms are not consistent (not because they converge to something other than what they are trying to estimate, but because they do not converge at all). The estimator of 
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 is a function of the estimators of 
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, which means that the MLE of 
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 is not consistent either. This is the incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).]
 How serious this bias is remains a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) results for a binary logit model [with additional results in Abrevaya (1997)] and Heckman and MaCurdy’s (1980) results for the probit model. Hsiao found that for 
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 is 100 percent, which is extremely pessimistic. Heckman and MaCurdy found in a Monte Carlo study that in samples of 
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, the bias appeared to be on the order of 10 percent, which is substantive, but certainly less severe than Hsiao’s results suggest. No other theoretical results have been shown for other models, although in very few cases, it can be shown that there is no incidental parameters problem. (The Poisson model mentioned in Section 14.9.6.d is one of these special cases.) The available mix of theoretical results and Monte Carlo evidence suggests that for binary choice estimation of static models, 
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  The issue is much less clear for dynamic models – there is little small T wisdom, though the large T result appears to apply as well.
 The fixed effects approach does have some appeal in that it does not require an assumption of orthogonality of the independent variables and the heterogeneity. An ongoing pursuit in the literature is concerned with the severity of the tradeoff of this virtue against the incidental parameters problem. Some commentary on this issue appears in Arellano (2001). Results of our own investigation appear in Section 15.5.2 and Greene (2004).

17.7.3A
A Conditional Fixed Effects Estimator

Why does the incidental parameters problem arise here and not in the linear regression model?
 Recall that estimation in the regression model was based on the deviations from group means, not the original data as it is here. The result we exploited there was that although 
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. Sufficient statistics are available for a few distributions that we will examine, but not for the probit model. They are available for the logit model, as we now examine.

A fixed effects binary logit model is
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The unconditional likelihood for the nT independent observations is
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Chamberlain (1980) [following Rasch (1960) and Andersen (1970)] observed that the conditional likelihood function,
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is free of the incidental parameters, 
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. The joint likelihood for each set of 
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 observations conditioned on the number of ones in the set is
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The function in the denominator is summed over the set of all 
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Consider the example of 
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For each pair of observations, we have these possibilities:
1.
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 When we take logs, these terms (and these observations) will drop out. But suppose that 
[image: image1121.wmf]1

0

i

y

=

 and 
[image: image1122.wmf]2

1

i

y

=

. Then
3.

[image: image1123.wmf]Prob(0,1sum1)Prob(0,1)

Prob(0,1|sum1).

Prob(sum1)Prob(0,1)Prob(1,0)

and

=

===

=+


Therefore, for this pair of observations, the conditional probability is
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By conditioning on the sum of the two observations, we have removed the heterogeneity. Therefore, we can construct the conditional likelihood function as the product of these terms for the pairs of observations for which the two observations are (0, 1). Pairs of observations with one and zero are included analogously. The product of the terms such as the preceding, for those observation sets for which the sum is not zero or 
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, constitutes the conditional likelihood. Maximization of the resulting function is straightforward and may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is indeed heterogeneity. With homogeneity 
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, there is no unusual problem, and the model can be estimated, as usual, as a logit model. It is not possible to test the hypothesis using the likelihood ratio test, however, because the two likelihoods are not comparable. (The conditional likelihood is based on a restricted data set.) None of the usual tests of restrictions can be used because the individual effects are never actually estimated.
 Hausman’s (1978) specification test is a natural one to use here, however. Under the null hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood estimator (CMLE) and the usual maximum likelihood estimator are consistent, but Chamberlain’s is inefficient. (It fails to use the information that 
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, and it may not use all the data.) Under the alternative hypothesis, the unconditional maximum likelihood estimator is inconsistent,
 whereas Chamberlain’s estimator is consistent and efficient. The Hausman test can be based on the chi-squared statistic
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(17-47)
The estimated covariance matrices are those computed for the two maximum likelihood estimators. For the unconditional maximum likelihood estimator, the row and column corresponding to the constant term are dropped. A large value will cast doubt on the hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible that the covariance matrix for the maximum likelihood estimator will be larger than that for the conditional maximum likelihood estimator. If so, then the difference matrix in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore zero.

Example 17.22  Binary Choice Models for Panel Data

In Example 17.6, we fit a pooled binary Iogit model 
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 using the German health care utilization data examined in appendix Table F7.1. The model is
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No account of the panel nature of the data set was taken in that exercise. The sample contains a total of 27,326 observations on 7,293 families with 
[image: image1131.wmf]i
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 ranging from one to seven. Table 17.17 lists estimates of parameter estimates and estimated standard errors for probit and Iogit random and fixed effects models. There is a surprising amount of variation across the estimators. The coefficients are in bold to facilitate reading the table. It is generally difficult to compare across the estimators. The three estimators would be expected to produce very different estimates in any of the three specifications—recall, for example, the pooled estimator is inconsistent in either the fixed or random effects cases. The Iogit results include two fixed effects estimators. The line marked “U” is the unconditional (inconsistent) estimator. The one marked “C” is Chamberlain’s consistent estimator. Note for all three fixed effects estimators, it is necessary to drop from the sample any groups that have 
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 equal to zero or one for every period. There were 3,046 such groups, which is about 42 percent of the sample. We also computed the probit random effects model in two ways, first by using the Butler and Moffitt method, then by using maximum simulated likelihood estimation. In this case, the estimators are very similar, as might be expected. The estimated correlation coefficient, 
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. For the probit model, 
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. The MSL estimator computes 
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, from which we obtained 
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. The estimated partial effects for the models are shown in Table 17.18. The average of the fixed effects constant terms is used to obtain a constant term for the unconditional fixed effects case.  No estimator is available for the conditional fixed effects case. Once again there is a considerable amount of variation across the different estimators. On average, the fixed effects models tend to produce much larger values than the pooled or random effects models.
Table 17.17  Estimated Parameters for Panel Data Binary Choice Models  
	
	
	Variable

	Model
	Estimate
	        ln L
	  Constant
	        Age
	     Income
	        Kids
	Education
	Married

	Logit 
	
β
	 
	0.25112 
	 0.02071 
	
[image: image1139.wmf]-

 0.18630 
	
[image: image1140.wmf]-

 0.22947 
	
[image: image1141.wmf]-

 0.04557 
	 0.08530

	Pooled 
	St. Err. 
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17673.09 
	0.09114 
	0.00129 
	 0.07509
	 0.02954 
	 0.00565 
	 0.03328

	
	Rob.SEe 
	 
	0.12827 
	0.00174 
	 0.09160 
	0.03831 
	 0.00808 
	0.04531

	Logit R.E. 
	
β
	
[image: image1144.wmf]-

16277.04 
	
0.06447 
	 0.03416 
	0.00237
	
[image: image1146.wmf]-

 0.26127 
	
[image: image1147.wmf]-

 0.05786 
	0.02707

	
ρ = 0.41503
	St. Err. 
	 
	0.16391 
	0.00225 
	0.11299 
	0.04589 
	 0.01071 
	0.05328

	Logit 
	
β
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9452.55
	 
	 0.10469 
	
[image: image1151.wmf]-

 0.05712 
	
[image: image1152.wmf]-

 0.08828 
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 0.11673 
	
[image: image1154.wmf]-

 0.05761

	F.E.(U)a 
	St. Err. 
	 
	 
	0.00726 
	 0.17844 
	 0.07447 
	 0.06880 
	 0.10619

	Logit 
	
β
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6299.02
	 
	 0.08471 
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 0.04732 
	
[image: image1158.wmf]-

 0.07767 
	
[image: image1159.wmf]-

 0.09084 
	
[image: image1160.wmf]-

 0.05229

	F.E.(C)b 
	St. Err. 
	 
	 
	0.00650 
	0.15891 
	0.06228
	0.05668 
	0.09304

	Probit 
	
β
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17670.93 
	 0.15501 
	 0.01283 
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 0.11666 
	
[image: image1164.wmf]-

 0.14118 
	
[image: image1165.wmf]-

 0.02811 
	  0.05226

	Pooled 
	St. Err. 
	 
	 0.05652 
	0.00079 
	 0.04635 
	 0.01822 
	 0.00350 
	 0.02046

	
	Rob.SEe 
	 
	 0.07959 
	0.00107 
	 0.05647 
	 0.02361 
	 0.00501 
	 0.02790

	Probit:REc 
	
β
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16273.96 
	 0.03410 
	 0.02014 
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 0.00267 
	
[image: image1169.wmf]-

 0.15377 
	
[image: image1170.wmf]-

 0.03371 
	 0.01629

	
ρ=0.44788f
	St. Err. 
	 
	 0.09635 
	0.00132 
	 0.06670 
	 0.02704 
	 0.00629 
	 0.03135

	Probit:REd 
	
β
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16274.06 
	 0.03447 
	 0.02013 
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 0.00261 
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 0.15359 
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 0.03379 
	 0.01749

	
ρ=0.44768
	St. Err. 
	 
	 0.06337 
	0.00090 
	 0.05212 
	 0.02030 
	 0.00394 
	 0.02280

	Probit 
	
β
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9453.47
	 
	 0.06249 
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 0.03155 
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 0.04818 
	
[image: image1182.wmf]-

 0.07222 
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 0.03298

	F.E.(U) 
	St. Err. 
	 
	 
	0.00432 
	 0.10749 
	 0.04457 
	 0.04074 
	 0.06364


 aUnconditional fixed effects estimator

bConditional fixed effects estimator


cButler and Moffitt estimator

dMaximum simulated likelihood estimator
eRobust, “cluster” corrected standard error
f Probit LM statistic =1011.43
Table 17.18  Estimated Partial Effects for Panel Data Binary Choice Models

	Model
	Age
	Income
	Kids
	Education
	Married

	Logit, Pa 
	0.00472 
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0.04238 
	
[image: image1185.wmf]-

0.05272 
	
[image: image1186.wmf]-

0.01037 
	 0.01951

	Logit: RE,Qb 
	0.00705 
	0.00049 
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0.05461
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0.01193 
	 0.00560

	Logit: F,Uc 
	0.02570 
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0.01402 
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0.02167 
	
[image: image1191.wmf]-

0.02865 
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0.01404

	Logit: F,Cd 
	     --- 
	
         ---
	---

	  
---
	  ---


	Probit, Pa 
	0.00475 
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0.04315 
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0.05267 
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0.01040 
	 0.01942

	Probit RE.Qb 
	0.00550 
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0.00073 
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0.04226 
	
[image: image1202.wmf]-

0.00920 
	 0.00445

	Probit:RE,Se 
	0.00694 
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0.00090 
	
[image: image1204.wmf]-

0.05362 
	
[image: image1205.wmf]-

0.01166 
	 0.00605

	Probit: F,Uc 
	0.01312 
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0.00662 
	
[image: image1207.wmf]-

0.01012 
	
[image: image1208.wmf]-

0.01516 
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0.00688


aPooled estimator
bButler and Moffitt estimator

cUnconditional fixed effects estimator

dConditional fixed effects estimator

eMaximum simulated likelihood estimator
Example 17.23  Fixed Effects Logit Model: Magazine Prices Revisited

The fixed effects model does have some appeal, but the incidental parameters problem is a significant shortcoming of the unconditional probit and logit estimators. The conditional MLE for the fixed effects logit model is a fairly common approach. A widely cited application of the model is Cecchetti’s (1986) analysis of changes in newsstand prices of magazines. Cecchetti’s model was
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where the variables in 
[image: image1211.wmf]it

x

 are (1) time since last price change, (2) inflation since last change, (3) previous fixed price change, (4) current inflation, (5) industry sales growth, and (6) sales volatility. The fixed effect in the model is indexed “
[image: image1212.wmf]j

” rather than “
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” as it is defined as a three-year interval for magazine 
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. Thus, a magazine that had been on the newstands for nine years would have three constants, not just one. In addition to estimating several specifications of the price change model, Cecchetti used the Hausman test in (17-47) to test for the existence of the common effects. Some of Cecchetti’s results appear in Table 17.10.

Willis (2006) argued that Cecchetti’s estimates were inconsistent and the Hausman test is invalid because right-hand-side variables (1), (2), and (6) are all functions of lagged dependent variables. This state dependence invalidates the use of the sum of the observations for the group as a sufficient statistic in the Chamberlain estimator and the Hausman tests. He proposes, instead, a method suggested by Heckman and Singer (1984b) to incorporate the unobserved heterogeneity in the unconditional likelihood function. The Heckman and Singer model can be formulated as a latent class model (see Sections 14.15.7 in which the classes are defined by different constant terms—the remaining parameters in the model are constrained to be equal across classes. Willis fit the Heckman and Singer model with two classes to a restricted version of Cecchetti’s model using variables (1), (2), and (5). The results in Table 17.10 show some of the results from Willis’s Table I. (Willis reports that he could not reproduce Cecchetti’s results—the ones in Cecchetti’s second column would be the counterparts—because of some missing values. In fact, Willis’s estimates are quite far from Cecchetti’s results (from his Table 2), so it will be difficult to compare them. Both are reported here.)

Table 17.19  Models for Magazine Price Changes (standard errors in parentheses)

	
	
	Unconditional
	Conditional
	Conditional
	Heckman

	
	Pooled
	FE
	FE Cecchetti
	FE Willis
	and Singer

	
β1
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1.10 (0.03) 
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0.07 (0.03) 
	1.12 (3.66) 
	1.02 (0.28) 
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0.09 (0.04)

	
β2
	6.93 (1.12) 
	 8.83 (1.25) 
	11.57 (1.68) 
	19.20 (7.51) 
	 8.23 (1.53)

	
β5
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0.36 (0.98) 
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1.14 (1.06) 
	5.85 (1.76) 
	7.60 (3.46) 
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0.13 (1.14)

	Constant 1 
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1.90 (0.14) 
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1.94 (0.20)

	Constant 2 
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29.15 (1.1e11)
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82.91
	
[image: image1231.wmf]-

83.72
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499.65

	Sample size
	1026
	1026
	
	543
	1026


The two “mass points” reported by Willis are shown in Table 17.19. He reports that these two values (
-1.94 and -29.15
) correspond to class probabilities of 0.88 and 0.12, though it is difficult to make the translation based on the reported values. He does note that the change in the log-likelihood in going from one mass point (pooled logit model) to two is marginal, only from -500.45
 to -499.65
. There is another anomaly in the results that is consistent with this finding. The reported standard error for the second “mass point” is 
[image: image1237.wmf]11

1.110

´

, or essentially 
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. The finding is consistent with overfitting the latent class model. The results suggest that the better model is a one-class (pooled) model.
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17.7.3B
Mundlak’s Approach, Variable Addition, and Bias Reduction
Thus far, both the fixed effects (FE) and the random effects (RE) specifications present problems for modeling binary choice with panel data. The MLE of the FE model is inconsistent even when the model is properly specified—this is the incidental parameters problem. (And, like the linear model, the FE probit and logit models do not allow time-invariant regressors.) The random effects specification requires a strong, often unreasonable, assumption that the effects and the regressors are uncorrelated. Of the two, the FE model is the more appealing, though with modern longitudinal data sets with many demographics, the problem of time-invariant variables would seem to be compelling. This would seem to recommend the conditional estimator in Section 17.4.4, save for yet another complication. With no estimates of the constant terms, neither probabilities nor partial effects can be computed with the results. We are left making inferences about ratios of coefficients. Two approaches have been suggested for finding a middle ground: Mundlak’s (1978) approach that involves projecting the effects on the group means of the time-varying variables and recent developments such as Fernandez-Val’s (2009) approach that involves correcting the bias in the FE MLE.

The Mundlak (1978) [and Chamberlain (1984) and Wooldridge, e.g., (2010)] approach augments (17-44) as follows:
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where we have used 
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 generically for the group means of the time varying variables in 
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. The reduced form of the model is
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(Wooldridge and Chamberlain also suggest using all years of 
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 rather than the group means. This raises a problem in unbalanced panels, however. We will ignore this possibility.) The projection of 
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 on 
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 produces a random effects formulation. As in the linear model (see Sections 11.5.6 and 11.5.7), it also suggests a means of testing for fixed vs. random effects. Since 
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 produces the pure random effects model, a joint Wald test of the null hypothesis that 
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 equals zero can be used.


	
	
	
	
	
	
	

	
	
	
	

	

	

	

	
	
	
	
	
	
	

	
	
	
	

	

	

	


	
	
	
	
	
	
	

	
	
	

	

	

	
	

	
	
	
	
	
	
	


Example 17.24  Panel Data Random Effects Estimators
Example 17.22 presents several panel data estimators for the probit and logit models. Pooled, random effects, and fixed effects estimates are given for the probit model
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We continue that analysis here by considering Mundlak’s approach to the common effects model. Table 17.20 presents the random effects model from earlier, and the augmented estimator that contains the group means of the variables, all of which are time varying. The addition of the group means to the regression brings large changes to the estimates of the parameters, which might suggest the appropriateness of the fixed effects model. A formal test is carried by computing a Wald statistic for the null hypothesis that the last five coefficients in the augmented model equal zero. The chi-squared statistic equals 113.35 with five degrees of freedom. The critical value from the chi-squared table for 95 percent significance is 11.07, so the hypothesis that δ
  equals zero, that is, the hypothesis of the random effects model (restrictions), is rejected. The two log likelihoods are -16,273.96
 for the REM and -16,222/04
 for the augmented REM. The LR statistic would be twice the difference, or 103.4. This produces the same conclusion. The FEM appears to be the preferred model.

	
	
	
	
	
	
	

	
	
	
	

	

	

	

	
	
	
	
	
	
	

	
	
	
	

	

	

	


	
	
	
	
	
	
	

	
	
	

	

	

	
	

	
	
	
	
	
	
	


Table 17.20  Estimated Random Effects Models


     Basic Random Effects

                         Mundlak Formulation




        

   Std.


              Std.
  


Std.

        Estimate
   Error

   Estimate
Error

     Mean
Error

Constant
          0.03410
(0.09635)
    0.37496
(0.10501)

Age
          0.02014
(0.00132)
    0.05032
(0.00357)
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0.03656
(0.00384)
Income
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0.00267
(0.06770)
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0.02863
(0.09325)
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0.35365
(0.13991)
Kids
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0.15377
(0.02704)
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0.04195
(0.03752)
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0.22516
(0.05499)
Education     
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0.03371
(0.00629)
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0.05450
(0.03307)
    0.02391
(0.03374)
Married
          0.01629
(0.03135)
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0.02661
(0.05180)
    0.14689
(0.06606)
A series of recent studies has sought to maintain the fixed effects specification while correcting the bias due to the incidental parameters problem. There are two broad approaches. Hahn and Kuersteiner (2004), Hahn and Newey (2005), and Fernandez-Val (2009) have developed an approximate, “large 
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 that produces a direct correction to the estimator, itself. Fernandez-Val (2009) develops corrections for the estimated constant terms as well. Arellano and Hahn (2006, 2007) propose a modification of the log-likelihood function with, in turn, different first-order estimation equations, that produces an approximately unbiased estimator of 
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. In a similar fashion to the second of these approaches, Carro (2007) modifies the first-order conditions (estimating equations) from the original log-likelihood function, once again to produce an approximately unbiased estimator of 
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. (In general, given the overall approach of using a large 
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 approximation, the payoff to these estimators is to reduce the bias of the FE,MLE from 
[image: image1288.wmf]O(1/)

T

 to 
[image: image1289.wmf]2

O(1/)

T

, which is a considerable reduction.) These estimators are not yet in widespread use. The received evidence suggests that in the simple case we are considering here, the incidental parameters problem is a secondary concern when 
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 reaches say 10 or so. For some modern public use data sets, such as the BHPS or GSOEP which are well beyond their 15th wave, the incidental parameters problem may not be too severe. However, most of the studies mentioned above are concerned with dynamic models (see Section 17.7.4), where the problem is possibly more severe than in the static case. Research in this area is ongoing.
17.7.4  DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model that explicitly allows for lagged effects would be
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Lagged effects, or persistence, in a binary choice setting can arise from three sources, serial correlation in 
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, the heterogeneity, 
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, or true state dependence through the term 
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. Chiappori (1998) [and see Arellano (2001)] suggests an application to the French automobile insurance market in which the incentives built into the pricing system are such that having an accident in one period should lower the probability of having one in the next (state dependence), but some drivers remain more likely to have accidents than others in every period, which would reflect the heterogeneity instead. State dependence is likely to be particularly important in the typical panel which has only a few observations for each individual. Heckman (1981a) examined this issue at length. Among his findings were that the somewhat muted small sample bias in fixed effects models with 
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 was made much worse when there was state dependence. A related problem is that with a relatively short panel, the initial conditions, 
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, have a crucial impact on the entire path of outcomes. Modeling dynamic effects and initial conditions in binary choice models is more complex than in the linear model, and by comparison there are relatively fewer firm results in the applied literature.

The correlation between 
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 and 
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 in the dynamic binary choice model makes 
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 endogenous. Thus, the estimators we have examined so far will not be consistent. Two familiar alternative approaches that have appeared in recent applications are due to Heckman (1981) and Wooldridge (2005), both of which build on the random effects specification. Heckman’s approach provides a separate equation for the initial condition,
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where 
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 is a set of “instruments” observed at the first period that are not contained in 
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. The conditional log-likelihood is
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We now adopt the random effects approach and further assume that 
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 is normally distributed with mean zero and variance 
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. The random effects log-likelihood function can be maximized with respect to 
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 using either the Butler and Moffitt quadrature method or the maximum simulated likelihood method described in Section 17.4.2. Stewart and Arulampalam (2007) suggest a useful shortcut for formulating the Heckman model. Let 
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. Then, the two parts may be combined in
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In this form, the model can be viewed as a random parameters (random constant term) model in which there is heteroscedasticity in the random part of the constant term.

Wooldridge’s approach builds on the Mundlak device of the previous section. Starting from the same point, he suggests a model for the random effect conditioned on the initial value. Thus,
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Assembling the parts, Wooldridge’s model is a bit simpler than Heckman’s;
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The source of the instruments zi is unclear.  Wooldridge (2005) simplifies the model a bit by using, instead, a Mundlak approach, using the group means of the time varying variables as z.  The resulting random effects formulation is
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Much of the contemporary literature has focused on methods of avoiding the strong parametric assumptions of the probit and logit models. Manski (1987) and Honore and Kyriazidou (2000) show that Manski’s (1986) maximum score estimator can be applied to the differences of unequal pairs of observations in a two-period panel with fixed effects. However, the limitations of the maximum score estimator have motivated research on other approaches. An extension of lagged effects to a parametric model is Chamberlain (1985), Jones and Landwehr (1988), and Magnac (1997), who added state dependence to Chamberlain’s fixed effects logit estimator. Unfortunately, once the identification issues are settled, the model is only operational if there are no other exogenous variables in it, which limits its usefulness for practical application. Lewbel (2000) has extended his fixed effects estimator to dynamic models as well.

Dong and Lewbel (2010) have extended Lewbel’s “special regressor” method to dynamic binary choice models and have devised an estimator based on an IV linear regression. Honore and Kyriazidou (2000) have combined the logic of the conditional logit model and Manski’s maximum score estimator. They specify
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The analysis assumes a single regressor and focuses on the case of 
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, which rules out direct time effects as well as, for practical purposes, any continuous variable. The restriction to a single regressor limits the generality of the technique as well. The need for observations with equal values of 
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 is a considerable restriction, and the authors propose a kernel density estimator for the difference, 
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, instead which does relax that restriction a bit. The end result is an estimator that converges (they conjecture) but to a nonnormal distribution and at a rate slower than 
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Semiparametric estimators for dynamic models at this point in the development are still primarily of theoretical interest. Models that extend the parametric formulations to include state dependence have a much longer history, including Heckman (1978, 1981a, 1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993), and Beck et al. (2001) to name a few.
 In general, even without heterogeneity, dynamic models ultimately involve modeling the joint outcome 
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, which necessitates some treatment involving multivariate integration. Example 17.14 describes an application. Stewart (2006) provides another.
Example 17.25  A Dynamic Model for Labor Force Participation and Disability

Gannon (2005) modeled the relationship between labor force participation and disability in Ireland with a panel data set, The Living in Ireland Survey 1995-2000.  The sample begins in 1995 with 7,254 individuals, but with attrition, reduces to 3,670 in 2000.  The dynamic probit model is
yit* = b0 + b1yi,t-1 + b2Dit + b3Di,t-1 + b4zit + αi + εit,  yit = 1(yit* > 0)
where yit is the labor force participation indicator and Dit is an indicator of disability.  The related covariates are gathered in zit.  The lagged value of Dit helps to distinguish longer term disabilities from those recently acquired.  Unobserved time invariant individual effects are captured by the common effect, αi.  The lagged dependent variable helps to distinguish between the impact of the individual effect and the inertia of past participation.  Variables in zit include age, residence region, education, marital status, children and unearned income.

The starting point of the analysis is a pooled probit model without the common effect (with standard errors corrected for the clustering at the individual level).  The pooled model leaves two interesting questions: (1) Do the control variables adequately account for the unobserved characteristics? (2) Does past disability affect participation directly as in the model, or through some different channel that affects past participation?  The author adopts Wooldridge’s (2005) (Mundlak) form of the random effects model we examined in Section 17.7.3B and Example 17.24 to deal with the unobserved heterogeneity and the initial conditions problem.  Thus, the initial value of yit and the group means of time varying variables are added to the random effects model;
yit* = b1yi,t-1 + b2Dit + b3Di,t-1 + b4zit + α0 + α1yi0 + α2ʹ
[image: image1320.wmf]i
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 + ai  + εit,  yit = 1(yit* > 0).

The resulting model is now estimated using the Butler and Moffitt method for random effects.
Example 17.26  An Intertemporal Labor Force Participation Equation

Hyslop (1999) presents a model of the labor force participation of married women. The focus of the study is the high degree of persistence in the participation decision. Data used in the study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of 1,812 continuously married couples were studied. Exogenous variables that appeared in the model were measures of permanent and transitory income and fertility captured in yearly counts of the number of children from 0–2, 3–5, and 6–17 years old. Hyslop’s formulation, in general terms, is
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The presence of the autocorrelation and state dependence in the model invalidate the simple maximum likelihood procedures we examined earlier. The appropriate likelihood function is constructed by formulating the probabilities as
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This still involves a 
[image: image1324.wmf]7
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 order normal integration, which is approximated in the study using a simulator similar to the GHK simulator discussed in 15.6.2.b. Among Hyslop’s results are a comparison of the model fit by the simulator for the multivariate normal probabilities with the same model fit using the maximum simulated likelihood technique described in Section 15.6.
17.7.5
A SEMIPARAMETRIC MODEL FOR INDIVIDUAL
      HETEROGENEITY
The panel data analysis considered thus far has focused on modeling heterogeneity with the fixed and random effects specifications. Both assume that the heterogeneity is continuously distributed among individuals. The random effects model is fully parametric, requiring a full specification of the likelihood for estimation. The fixed effects model is essentially semiparametric. It requires no specific distributional assumption, however, it does require that the realizations of the latent heterogeneity be treated as parameters, either estimated in the unconditional fixed effects estimator or conditioned out of the likelihood function when possible. As noted in Example 17.23, Heckman and Singer’s (1984b) model provides a less stringent model specification based on a discrete distribution of the latent heterogeneity. A straightforward method of implementing their model is to cast it as a latent class model in which the classes are distinguished by different constant terms and the associated probabilities. The class probabilities are treated as parameters to be estimated with the model parameters.

Example 17. 27  Semiparametric Models of Heterogeneity

We have extended the random effects and fixed effects logit models in Example 17.22 by fitting the Heckman and Singer (1984b) model. Table 17.21 shows the specification search and the results under different specifications. The first column of results shows the estimated fixed effects model from Example 17.22. The conditional estimates are shown in parentheses. Of the 7,293 groups in the sample, 3,056 are not used in estimation of the fixed effects models because the sum of 
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 is either 0 or 
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 for the group. The mean and standard deviation of the estimated underlying heterogeneity distribution are computed using the estimates of 
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 for the remaining 4,237 groups. The remaining five columns in the table show the results for different numbers of latent classes in the Heckman and Singer model. The listed constant terms are the “mass points” of the underlying distributions. The associated class probabilities are shown in parentheses under them. The mean and standard deviation are derived from the 2- to 5-point discrete distributions shown. It is noteworthy that the mean of the distribution is relatively stable, but the standard deviation rises monotonically. The search for the best model would be based on the AIC. As noted in Section 14.15.5, using a likelihood ratio test in this context is dubious, as the number of degrees of freedom is ambiguous. Based on the AIC, the four-class model is the preferred specification.
Table 17.21  Estimated Heterogeneity Models

	 
	
	Number of Classes

	
	Fixed Effect
	1
	2
	3
	4
	5

	
β1
	0.10475 
	0.02071 
	0.03033 
	0.03368 
	0.03408
	0.03416

	
	(0.08476)
	
	
	
	
	

	
β2
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0.06097 
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0.18592 
	0.02555 
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0.00580 
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0.00635 
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0.01363

	
	(
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0.05038)
	
	
	
	
	

	
β3
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0.08841 
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0.22947 
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0.24708 
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0.26590
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0.26626

	
	(
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0.07776)
	
	
	
	
	

	
β4
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0.11671 
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0.04559 
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0.05092 
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0.05802 
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0.05975
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0.05918

	
	(
[image: image1351.wmf]-

0.09082)
	
	
	
	
	

	
β5
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0.05732 
	0.08529 
	0.04297 
	0.03794 
	0.02923 
	0.03070

	
	(
[image: image1354.wmf]-

0.52072)
	
	
	
	
	

	
α1
	
[image: image1356.wmf]-

2.62334 
	0.25111 
	0.91764 
	1.71669 
	1.94536 
	2.76670

	
	 
	(1.00000) 
	(0.62681) 
	(0.34838) 
	(0.29309) 
	(0.11633)

	
α2
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1.47800
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2.23491 
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1.76371 
	1.18323

	
	 
	 
	 (0.37319) 
	(0.18412) 
	(0.21714) 
	(0.26468) 

	
α3
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0.28133 
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0.03674 
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1.96750 

	
	 
	 
	 
	(0.46749) 
	(0.46341) 
	(0.19573)

	
α4
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4.03970 
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0.25588

	
	 
	 
	 
	 
	(0.02636) 
	(0.40930)

	
α5
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6.48191

	
	 
	 
	 
	 
	 
	(0.01396)

	Mean 
	
[image: image1370.wmf]-

2.62334 
	0.00000 
	0.02361 
	0.05506 
	0.06369 
	0.05471

	Std. Dev. 
	3.13415 
	0.00000 
	1.15866 
	1.40723 
	1.48707 
	1.62143

	ln L 
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9458.638 
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	(
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6299.02)
	
	
	
	
	

	
AIC/N
	1.00349 
	1.29394 
	1.19748 
	1.19217 
	1.19213 
	1.19226


17.7.6
MODELING PARAMETER HETEROGENEITY

In Section 11.10, we examined specifications that extend the underlying heterogeneity to all the parameters of the model. We have considered two approaches. The random parameters, or mixed models discussed in Chapter 15 allow parameters to be distributed continuously across individuals. The latent class model in Section 14.15 specifies a discrete distribution instead. (The Heckman and Singer model in the previous section applies this method to the constant term.) Most of the focus to this point, save for Example 14.17, has been on linear models.

The random effects model can be cast as a model with a random constant term;
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where 
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. This is simply a reinterpretation of the model we just analyzed. We might, however, now extend this formulation to the full parameter vector. The resulting structure is
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 and 
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 is a nonnegative definite diagonal matrix—some of its diagonal elements could be zero for nonrandom parameters. The method of estimation is maximum simulated likelihood. The simulated log-likelihood is now
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The simulation now involves R draws from the multivariate distribution of u. Because the draws are uncorrelated—
[image: image1385.wmf]Γ

 is diagonal—this is essentially the same estimation problem as the random effects model considered previously. This model is estimated in Example 17.28. Example 17.28 also presents a similar model that assumes that the distribution of 
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 is discrete rather than continuous.

Example 17.28  Parameter Heterogeneity in a Binary Choice Model

We have extended the logit model for doctor visits from Example 17.14 to allow the parameters to vary randomly across individuals. The random parameters logit model is
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where the two models for the parameter variation we have employed are:
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Table 17.22  Estimated Heterogeneous Parameter Models
	 
	Pooled
	Random Parameters
	Latent Class

	Variable 
	 Estimate: 
β
	 Estimate: 
β
	 Estimate: 
σ
	 Estimate: 
β
	 Estimate: 
β
	 Estimate: 
β

	Constant 
	 0.25111 
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0.03496 
	 0.81651 
	 0.96605 
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0.18579 
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1.52595 

	
	(0.09114) 
	 (0.07553) 
	(0.01654) 
	 (0.43757) 
	(0.23907) 
	(0.43498) 

	Age 
	0.02071 
	 0.02631 
	0.02533 
	0.04906 
	0.03225 
	0.01998 

	
	(0.00129)
	(0.00110)
	(0.00042)
	(0.00695) 
	(0.00315)
	(0.00626) 

	Income 
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0.00436
	 0.10737 
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0.27917 
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0.06863 
	0.45487 

	
	(0.07506)
	 (0.06245) 
	 (0.03828)
	 (0.37149) 
	(0.16748) 
	(0.31153) 

	Kids 
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0.17461 
	 0.55520 
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0.28385 
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0.28336 
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0.11708 

	
	(0.02954) 
	 (0.02452) 
	(0.02387) 
	 (0.14279) 
	(0.06640) 
	(0.12363) 

	Education 
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0.04051 
	0.03792 
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0.02530
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0.05734 
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0.09385 

	
	(0.00565) 
	(0.00475)
	(0.00134) 
	(0.02777) 
	(0.01247) 
	(0.02797) 

	Married 
	0.08529 
	 0.01462 
	0.07070 
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0.10875
	0.02533 
	0.23571 

	
	(0.03329) 
	 (0.027417) 
	(0.01736) 
	 (0.17228) 
	(0.07593) 
	(0.14369) 

	Class 
	1.00000 
	 1.00000
	 0.34833 
	0.46181 
	0.18986 

	Prob. 
	 (0.00000) 
	 (0.00000)
	(0.03850) 
	(0.02806) 
	(0.02234) 

	ln L 
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We have chosen a three-class latent class model for the illustration. In an application, one might undertake a systematic search, such as in Example 17.14 to find a preferred specification. Table 17.22 presents the fixed parameter (pooled) logit model and the two random parameters versions. (There are infinite variations on these specifications that one might explore—see Chapter 15 for discussion—we have shown only the simplest to illustrate the models.
)

Figure 17.5 shows the implied distribution for the coefficient on age. For the continuous distribution, we have simply plotted the normal density. For the discrete distribution, we first obtained the mean (0.0358) and standard deviation (0.0107). Notice that the distribution is tighter than the estimated continuous normal (mean, 0.026, standard deviation, 0.0253). To suggest the variation of the parameter (purely for purpose of the display, because the distribution is discrete), we placed the mass of the center interval, 0.461. between the midpoints of the intervals between the center mass point and the two extremes. With a width of 0.0145 the density is 
[image: image1416.wmf]0.461/ 0.014531.8
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. We used the same interval widths for the outer segments. This range of variation covers about five standard deviations of the distribution.
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Figure 17.5   Distribution of AGE Coefficient 
17.7.7
Nonresponse, Attrition, and Inverse Probability Weighting
Missing observations is a common problem in the analysis of panel data. Nicoletti and Peracchi (2005) suggest several reasons that, for example, panels become unbalanced:
(
Demographic events such as death;
(
Movement out of the scope of the survey, such as institutionalization or emigration;
(
Refusal to respond at subsequent waves;
(
Absence of the person at the address;
(
Other types of noncontact.

The GSOEP that we (from Riphahn, Wambach, and Million (2003)) have used in many examples in this text is one such data set. Jones, Koolman, and Rice (2006) (JKR) list several other applications, including the British Household Panel Survey (BHPS), the European Community Household Panel (ECHP), and the Panel Study of Income Dynamics (PSID).

If observations are missing completely at random (MCAR, see Section 4.7.4) then the problem of nonresponse can be ignored, though for estimation of dynamic models, either the analysis will have to be restricted to observations with uninterrupted sequences of observations, or some very strong assumptions and interpolation methods will have to be employed to fill the gaps. (See Section 4.7.4 for discussion of the terminology and issues in handling missing data.) The problem for estimation arises when observations are missing for reasons that are related to the outcome variable of interest. Nonresponse bias and a related problem, attrition bias (individuals leave permanently during the study) result when conventional estimators, such as least squares or the probit maximum likelihood estimator being used here, are applied to samples in which observations are present or absent from the sample for reasons related to the outcome variable. It is a form of sample selection bias, that we will examine further in Chapter 19.

Verbeek and Nijman (1992) have suggested a test for endogeneity of the sample response pattern. (We will adopt JKR’s notation and terminology for this.) Let 
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 denote the outcome of interest and x denote the relevant set of covariates. Let 
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 denote the pattern of response. If nonresponse is (completely) random, then 
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. This suggests a variable addition test (neglecting other panel data effects); a pooled model that contains 
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 in addition to x can provide the means for a simple test of endogeneity. JKR (and Verbeek and Nijman) suggest using the number of waves at which the individual is present as the measure of 
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. Thus, adding 
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 to the pooled model, we can use a simple 
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 test for the hypothesis.

Devising an estimator given that (non)response is nonignorable requires a more detailed understanding of the process generating the response pattern. The crucial issue is whether the sample selection is based “on unobservables” or “on observables.” Selection on unobservables results when, after conditioning on the relevant variables, x and other information, z, the sampling mechanism is still nonrandom with respect to the disturbances in the models. Selection on unobservables is at the heart of the sample selectivity methodology pioneered by Heckman (1979) that we will study in Chapter 19. (Some applications of the role of unobservables in biased estimation are discussed in Chapter 8, where we examine sources of endogeneity in regression models.) If selection is on observables and then conditioned on an appropriate specification involving the observable information, (x,z), a consistent estimator of the model parameters will be available by “purging” the estimator of the endogeneity of the sampling mechanism.

JKR adopt an inverse probability weighted (IPW) estimator devised by Robins, Rotnitsky and Zhao (1995), Fitzgerald, Gottshalk, and Moffitt (1998), Moffitt, Fitzgerald and Gottshalk (1999), and Wooldridge (2002). The estimator is based on the general MCAR assumption that 
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. That is, the observable covariates convey all the information that determines the response pattern—the probability of nonresponse does not vary systematically with the outcome variable once the exogenous information is accounted for. Implementing this idea in an estimator would require that x and z be observable when 
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, that is, the exogenous data be available for the nonresponders. This will typically not be the case; in an unbalanced panel, the entire observation is missing. Wooldridge (2002) proposed a somewhat stronger assumption that makes estimation feasible: 
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 is a set of covariates available at wave 1 (entry to the study). To compute Wooldridge’s IPW estimator, we will begin with the sample of all individuals who are present at wave 1 of the study. (In our Example 17.17, based on the GSOEP data, not all individuals are present at the first wave.) At wave 1, 
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 contains information on observables that are not included in the outcome equation and that predict the response pattern at subsequent waves, including the response variable at the first wave. At wave 1, then, 
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 for the remaining waves to obtain predicted probabilities of response, 
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Inference based on the weighted log-likelihood function can proceed as in Section 17.3. A remaining detail concerns whether the use of the predicted probabilities in the weighted log-likelihood function makes it necessary to correct the standard errors for two-step estimation. The case here is not an application of the two-step estimators we considered in Section 14.7, since the first step is not used to produce an estimated parameter vector in the second. Wooldridge (2002) shows that the standard errors computed without the adjustment are “conservative” in that they are larger than they would be with the adjustment.

Example 17.29  Nonresponse in the GSOEP Sample

Of the 7,293 individuals in the GSOEP data that we have used in several earlier examples, 3,874 were present at wave 1 (1984) of the sample. The pattern of the number of waves present by these 3,874 is shown in Figure 17.6. The waves are 1984–1988, 1991, and 1994. A dynamic model would be based on the 1,600 of those present at wave 1 who were also present for the next four waves. There is a substantial amount of nonresponse in these data. Not all individuals exit the sample with the first nonresponse, however, so the resulting panel remains unbalanced. The impression suggested by Figure 17.4 could be a bit misleading—the nonresponse pattern is quite different from simple attrition. For example, of the 3,874 individuals who responded at wave 1, 364 did not respond at wave 2 but returned to the sample at wave 3.

To employ the Verbeek and Nijman test, we used the entire sample of 27,326 household years of data. The pooled probit model for DocVis 
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 produced the results at the left in Table 17.14. A 
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 (Wald) test of the hypothesis that the coefficient on number of waves present is zero is strongly rejected, so we proceed to the inverse probability weighted estimator. For computing the inverse probability weights, we used the following specification:
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This first-year data vector is used as the observed explanatory variables in probit models for waves 2–7 for the 3,874 individuals who were present at wave 1. There are 3,874 observations for each of these probit models, since all were observed at wave 1. Fitted probabilities for 
[image: image1439.wmf]it

R

 are computed for waves 2–7, while 
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. The sample means of these probabilities which equals the proportion of the 3,874 who responded at each wave are 1.000, 0.730, 0.672, 0.626, 0.682, 0.568, and 0.386, respectively. Table 17.14 presents the estimated models for several specifications In each case, it appears that the weighting brings some moderate changes in the parameters and, uniformly, reductions in the standard errors.
Table 17.23  Inverse Probability Weighted Estimators
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Figure 17.6   Number of Waves Responded for Those Present at Wave 1

17.9
SPATIAL BINARY CHOICE MODELS
Section 11.7 presented a model of spatial interaction among sample observations.  In an application, Bell and Bockstael (2000) constructed a spatial hedonic regression model of house prices that were influenced by attributes and by neighborhood effects.  We considered two frameworks for the regression model: spatial autoregression (SAR),
yi = xiʹβ + ρ
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wijyj + εi,  or, for all n observations, y =  Xβ + ρWy  +  ε;
and spatial autocorrelation (SAC),
yi = xiʹβ + εi where εi = ρ
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Both cases produce a generalized regression model with full n×n covariance matrix when y is a continuous random variable.  The model frameworks turn on the crucial spatial correlation parameter, ρ, and the specification of the contiguity matrix, W, which defines the form of the spatial correlation.  In Bell and Bockstael’s application, in the sample of 1,000 home sales, the elements of W (in one of several specifications) are

Wij = 
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(The rows of W are standardized.) Conditioned on the value of ρ, this produces a generalized regression model that is estimated by GMM or maximum likelihood.
       We are interested in extending the idea of spatial interaction to a binary outcome.
  Some received examples are:
• Garrett, Wagner and Wheelock (2005) examined banks’ choices of branch banking;
• McMillen (1992) examined factors associated with high (or low) crime rates in
   neighborhoods of Columbus, Ohio;
• Pinske and Slade (2006) examined operation decisions (open/closed) for a panel of
   copper mines;
• Flores-Lagunes and Schnier (2012) extended Heckman’s (1979) two-step estimator to
   include spatial effects in both the selection (probit) and regression steps. They apply the method to a sample of 320 observations on trawl fishing in which only 207 are fully reported (selected).  
• Klier and McMillen (2008) analyzed county-wide data on auto supply plant location decisions in the U.S. Midwest.  An industry that serviced the auto manufacturing centered around Detroit was earlier oriented West-East from Chicago to New York.  During the mid-20th century, entry took place along an axis running from South to North (along with an historic internal migration in the U.S. that accompanied the decline of the coal industry).  Klier and McMillen examined data on counties and whether an auto supplier located in the county, a binary outcome.
The model framework is a binary choice model,
yi* =  xiʹβ + εi, yi = 1(yi* > 0).

The distribution for most applications will be the normal or logistic leading to a probit or logit model.  A model of spatial autoregression would be

yi*  =  xiʹβ + ρ
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Based on a random utility interpretation, it would be difficult to motivate spatial interaction based on the latent utilities.
  The spatial autoregression model based on the observed outcomes instead would be
yi*  =  xiʹβ  +  ρ
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This might seem more reasonable, however, this model is incoherent – it is not possible to insure that Prob(yi = 1|xi) lies between zero and one.  A spatial error model used in several applications is
yi*  =  xiʹβ  + εi; εi = ρ
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wijεj + ui, ui ~ N[0,1],   yi  = 1(yi* > 0).
Pinske and Slade (1998, 2006) and McMillen (1992) use this framework to construct a GMM estimator based on the generalized residuals, λi defined in (17-20).  Solving for the reduced form, 
ε  =  (I – ρW)-1u.
The full covariance matrix for the n observations would be 
Var[ε]  =  σu2[(I – ρW)ʹ(I – ρW)]-1  =  σu2D(ρ).
(Note that σu2 = 1.) Then,

yi* = xiʹβ + 
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The marginal probability is
Prob(yi = 1|xi)  =  Prob(xiʹβ + 
[image: image1479.wmf]1

n

j

=

S

Dij(ρ) uj > 0) 
     = 
[image: image1480.wmf](

)

*

2

1

,

()]

i

i

n

jij

FF

=

æö

¢

éù

¢

=r

ç÷

êú

ç÷

ëû

S

èø

x

xD

[D

bb

r

.
This corresponds to the heteroscedastic probit model in Section 17.5.2.  (The difference here is that the observations are all correlated.)  We have seen two GMM approaches to estimation.  Consistent with Bertschuk and Lechner’s (1998) approach based on simple regression residuals, the GMM estimator would use E{zi × [yi – Φ(xi*(D,ρ)ʹβ)]} = 0, where zi is the set of instrumental variables.  McMillen (1992) and Pinske and Slade (2006) use the generalized residuals, here λi*(D,ρ), defined in (17-20), instead;
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Pinske and Slade (2006) used a probit model while Klier and McMillen proposed a logit model.  The estimation method is largely the same in both cases.
The preceding estimators use an approximation based on the marginal probability to form a feasible GMM estimator.  Case (1992) suggests that if the contiguity pattern were compressed so that the data set consists of a finite number of neighborhoods, each with a small enough number of members, then the model could he handled directly by maximum likelihood.  It would resemble a panel probit model in this case.  Klier and McMillen used this approach to simplify their estimation procedure.  Wang, Iglesias and Wooldridge (2013) proposed a similar approach to an unrestricted model based on the principle of a partial likelihood.  By using a spatial moving average for ε, they show how to use pairs of observations to formulate a bivariate heteroscedastic probit model that identifies the spatial parameters.
Example 17.30  A Spatial Logit Model for Auto Supplier Locations
Klier and McMillen (2008) specified a binary logit model with spatial error correlation to model whether a county experienced a new auto supply location in 1991-2003.  The data consist of 3107 county observations.  The weighting matrix is initially specified as 1/ni where ni = the number of counties that are contiguous to county i – share a common border.  To speed up computation, the weighting matrix is further reduced so that counties are only contiguous if they are in the same census region.  This produces a block diagonal W that greatly simplifies the estimation.  Figure 17.7 [Figure 2 from Klier and McMillen (2008)] shows the U.S. counties that experienced entry of new auto suppliers.  The east-west oriented line shows the existing focus of the industry.  The north-south line (roughly oriented with historical U.S. Route 23) shows the focus of new plants in the years studied.  Results for the spatial correlation model are compared to a pooled logit model.  The estimated spatial autocorrelation coefficient, ρ, is moderately large (0.425 with a standard error of 0.180), however, the results are similar for the two specifications. For example, one of the central results, the coefficient on Proportion Manufacturing Employment is 6.877 (1.039) in the pooled model and 5.307 (1.224) in the spatial model. The magnitudes of the coefficients are difficult to interpret and partial effects were not computed.
  The signs are generally consistent with expectations.
[image: image1482.png]



Figure 17.7  Counties with New Plants




17.9   THE BIVARIATE PROBIT MODEL
In Chapter 10, we analyzed a number of different multiple-equation extensions of the linear and generalized regression model. A natural extension of the probit model would be to allow more than one equation, with correlated disturbances, in the same form as the seemingly unrelated regressions model. The general specification for a two-equation model would be 
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	(17-48)


This bivariate probit model is interesting in its own right for modeling the joint determination of two variables, such as doctor and hospital visits in the next example. It also provides the framework for modeling in two common applications. In many cases, a treatment effect, or endogenous influence, takes place in a binary choice context. The bivariate probit model provides a specification for analyzing a case in which a probit model contains an endogenous binary variable in one of the equations. In Section 17.6.1 (Examples 17.18 and 17.19), we  extended (17-48) to
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	(17-49)


This model extends the case in Section 17.6.2, where  T*
 rather than T
, appears on the right-hand side of the second equation. In Example 17.35, 
T denotes whether a liberal arts college supports a women’s studies program on the campus while y is a binary indicator of whether the economics department provides a gender economics course. A second common application, in which the first equation is an endogenous sampling rule, is another variant of the bivariate probit model:
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In Example 17.21, we studied an application in which 
[image: image1490.wmf]S

 is the result of a credit card application (or any sort of loan application) while 
[image: image1491.wmf]2
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 is a binary indicator for whether the individual defaults on the credit account (loan).  This is a form of endogenous sampling (in this instance, sampling on unobservables) that has some commonality with the attrition problem that we encountered in Section 17.7.7.
In Section 17.10, we will extend (17-48) to more than two equations. This will allow direct treatment of multiple binary outcomes. It will also allow a more general panel data model for 
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 periods than is provided by the random effects specification.

17.9.1   MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is
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which we denote 
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To construct the log-likelihood, let 
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Note the notational convention. The subscript 2 is used to indicate the bivariate normal distribution in the density 
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 and cdf 
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The probabilities that enter the likelihood function are
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which accounts for all the necessary sign changes needed to compute probabilities for y’s equal to zero and one. Thus,
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The derivatives of the log-likelihood then reduce to
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where
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and the subscripts 1 and 2 in 
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 is defined in (17-20). (This result will reappear in the LM statistic shown later.)

The maximum likelihood estimates are obtained by simultaneously setting the three derivatives to zero. The second derivatives are relatively straightforward but tedious. Some simplifications are useful. Let
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By multiplying it out, you can show that
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(17-53)
where 
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 accordingly.) The complexity of the second derivatives for this model makes it an excellent candidate for the Berndt et al. estimator of the variance matrix of the maximum likelihood estimator.

Example 17.31  Tetrachoric Correlation

Returning once again to the health care application of Example 17.6 and several others, we now consider a second binary variable,
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Our previous analyses have focused on
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A simple bivariate frequency count for these two variables is

	 
	Hospital

	Doctor 
	0
	1
	Total

	0 
	9,715 
	420 
	10,135

	1
	15,216 
	1,975 
	17,191

	Total 
	24,931 
	2,395 
	27,326


Looking at the very large value in the lower-left cell, one might surmise that these two binary variables (and the underlying phenomena that they represent) are negatively correlated. The usual Pearson, product moment correlation would be inappropriate as a measure of this correlation since it is used for continuous variables. Consider, instead, a bivariate probit “model,”
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where 
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 have a bivariate normal distribution with means 
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, variances 
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 and correlation 
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. This is the model in (17-48) without independent variables. In this representation, the tetrachoric correlation, which is a correlation measure for a pair of binary variables, is precisely the 
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 in this model—it is the correlation that would be measured between the underlying continuous variables if they could be observed. This suggests an interpretation of the correlation coefficient in a bivariate probit model—as the conditional tetrachoric correlation. It also suggests a method of easily estimating the tetrachoric correlation coefficient using a program that is built into nearly all commercial software packages.

Applied to the hospital/doctor data defined earlier, we obtained an estimate of 
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 of 0.31106, with an estimated asymptotic standard error of 0.01357. Apparently, our earlier intuition was incorrect.
17.9.2
TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence of correlation in this model. Under the null hypothesis that 
[image: image1547.wmf]r

 equals zero, the model consists of independent probit equations, which can be estimated separately. Moreover, in the multivariate model, all the bivariate (or multivariate) densities and probabilities factor into the products of the marginals if the correlations are zero, which makes construction of the test statistic a simple matter of manipulating the results of the independent probits. The Lagrange multiplier statistic for testing 
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 in a bivariate probit model is
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As usual, the advantage of the LM statistic is that it obviates computing the bivariate probit model. But the full unrestricted model is now fairly common in commercial software, so that advantage is minor. The likelihood ratio or Wald test can be used with equal ease. To carry out the likelihood ratio test, we note first that if 
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 equals zero, then the bivariate probit model becomes two independent univariate probits models. The log-likelihood in that case would simply be the sum of the two separate log-likelihoods. The test statistic would be
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This would converge to a chi-squared variable with one degree of freedom. The Wald test is carried out by referring
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to the chi-squared distribution with one degree of freedom. For 95 percent significance, the critical value is 3.84 (or one can refer the positive square root to the standard normal critical value of 1.96). Example 17.32 demonstrates.

17.9.3
PARTIAL EFFECTS

There are several “partial effects” one might want to evaluate in a bivariate probit model.
 A natural first step would be the derivatives of Prob
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Note, however, the bivariate probability, albeit possibly of interest in its own right, is not a conditional mean function. As such, the preceding does not correspond to a regression coefficient or a slope of a conditional expectation.

For convenience in evaluating the conditional mean and its partial effects, we will define a vector 
[image: image1559.wmf]12

È

=

xxx

 and let 
[image: image1560.wmf]111

bg

¢¢

=

xx

. Thus, 
[image: image1561.wmf]1

g

 contains all the nonzero elements of 
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 and possibly some zeros in the positions of variables in x that appear only in the other equation; 
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 is defined likewise. The bivariate probability is
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Signs are changed appropriately if the probability of the zero outcome is desired in either case. (See 17-48.) The partial effects of changes in x on this probability are given by
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where 
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 are defined in (17-52). The familiar univariate cases will arise if 
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, and effects specific to one equation or the other will be produced by zeros in the corresponding position in one or the other parameter vector. There are also some conditional mean functions to consider. The unconditional mean functions are given by the univariate probabilities:
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so the analysis of (17-11) and (17-12) applies. One pair of conditional mean functions that might be of interest are
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and similarly for 
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Finally, one might construct the nonlinear conditional mean function
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The derivatives of this function are the same as those presented earlier, with sign changes in several places if 
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Example 17.32  Bivariate Probit Model for Health Care Utilization

We have extended the bivariate probit model of the previous example by specifying a set of independent variables,
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We have specified that the same exogenous variables appear in both equations. (There is no requirement that different variables appear in the equations, nor that a variable be excluded from each equation.) The correct analogy here is to the seemingly unrelated regressions model, not to the linear simultaneous equations model. Unlike the SUR model of Chapter 10, it is not the case here that having the same variables in the two equations implies that the model can be fit equation by equation, one equation at a time. That result only applies to the estimation of sets of linear regression equations.

Table 17.24  Estimated Bivariate Probit Modela
	
	Doctor
	Hospital

	
	Model Estimates
	Partial Effects
	Model Estimates

	Variable
	Univariate
	Bivariate
	Direct
	Indirect
	Total
	Univariate
	Bivariate

	Constant 
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	(0.05815) 
	(0.05814) 
	 
	 
	 
	(0.08320) 
	(0.07957)

	Female 
	0.3559 
	0.3551 
	0.09650 
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0.00724 
	0.08926 
	0.1023 
	0.1050

	
	(0.01602) 
	(0.01604) 
	(0.00500) 
	(0.00152) 
	(0.00513) 
	(0.02195) 
	(0.02174)

	Age 
	0.01189 
	 0.01188 
	0.00323 
	0.00032 
	0.00291 
	0.00461 
	 0.00461

	
	(0.00080)
	 (0.00080) 
	(0.00023) 
	(0.00007) 
	(0.00024) 
	(0.00108) 
	(0.00106)

	Income 
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	(0.04655) 
	(0.04628) 
	(0.01260) 
	(0.00411) 
	0.01254) 
	(0.06329) 
	(0.05946)

	Kids 
	
[image: image1586.wmf]-

0.1521 
	
[image: image1587.wmf]-

0.1523 
	
[image: image1588.wmf]-

0.04140 
	0.00105 
	
[image: image1589.wmf]-

0.04036 
	
[image: image1590.wmf]-

0.01714 
	
[image: image1591.wmf]-

0.01517

	
	(0.01833) 
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	(0.00505) 
	(0.00177) 
	(0.00517) 
	(0.02562) 
	(0.02570)

	Education 
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	(0.00358) 
	(0.00358) 
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	(0.00035) 
	(0.00100) 
	(0.00522) 
	(0.00511)

	Married 
	0.07352 
	0.07351 
	0.01998 
	0.00330 
	0.02328 
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a Estimated correlation coefficient 
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 0.2981 (0.0139).
Table 17.24 contains the estimates of the parameters of the univariate and bivariate probit models. The tests of the null hypothesis of zero correlation strongly reject the hypothesis that 
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 equals zero. The 
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 statistic for 
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 based on the full model is 
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, which is much larger than the critical value of 1.96. For the likelihood ratio test, we compute
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Once again, the hypothesis is rejected. (The Wald statistic is 
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21.446459.957.
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) The LM statistic is 383.953. The coefficient estimates agree with expectations. The income coefficient is statistically significant in the doctor equation, but not in the hospital equation, suggesting, perhaps, that physican visits are at least to some extent discretionary while hospital visits occur on an emergency basis that would be much less tied to income. The table also contains the decomposition of the partial effects for 
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. In the table in Example 17.31, this would correspond to the raw proportion 
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17.9.4
A Panel Data Model for Bivariate Binary Response
Extending multiple equation models to accommodate unobserved common effects in panel data settings is straightforward in theory, but complicated in practice. For the bivariate probit case, for example, the natural extension of (17-48) would be
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The complication will be in how to treat 
[image: image1617.wmf]12
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. A fixed effects treatment will require estimation of two full sets of dummy variable coefficients, will likely encounter the incidental parameters problem in double measure, and will be complicated in practical terms. As in all earlier cases, the fixed effects case also preempts any specification involving time-invariant variables. It is also unclear in a fixed effects model, how any correlation between 
[image: image1618.wmf]1

a

 and 
[image: image1619.wmf]2

a

 would be handled. It should be noted that strictly from a consistency standpoint, these considerations are moot. The two equations can be estimated separately, only with some loss of efficiency. The analogous situation would be the seemingly unrelated regressions model in Chapter 10. A random effects treatment (perhaps accommodated with Mundlak’s approach of adding the group means to the equations as in Section 17.7.3B) offers greater promise. If 
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then the unconditional log likelihood for the bivariate probit model,
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can be maximized using simulation or quadrature as we have done in previous applications. A possible variation on this specification would specify that the same common effect enter both equations. In that instance, the integration would only be over a single dimension. In this case, there would only be a single new parameter to estimate, 
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, the variance of the common random effect while 
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 would equal one. A refinement on this form of the model would allow the scaling to be different in the two equations by placing 
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 in the second. This would introduce the additional scaling parameter, but 
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 would still equal one. This is the formulation of a common random effect used in Heckman’s formulation of the dynamic panel probit model in the Section 17.7.4.

Example 17.33  Bivariate Random Effects Model for Doctor and Hospital Visits

We will extend the pooled bivariate probit model presented in Example 17.32 by allowing a general random effects formulation, with free correlation between the time-varying components 
[image: image1628.wmf]12

(

,

)

ee
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. We used simulation to fit the model. Table 17.25 presents the pooled and random effects estimates. The log-likelihood functions for the pooled and random effects models are 
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. The 95 percent critical value is 7.81, so the pooling hypothesis would be rejected. The change in the correlation coefficient from 0.2981 to 0.1501 suggests that we have decomposed the disturbance in the model into a time-varying part and a time-invariant part. The latter seems to be the smaller of the two. Although the time-invariant elements are more highly correlated, their variances are only 
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Table 17.25  Estimated Random Effects Bivariate Probit Model

	
	Doctor
	Hospital

	
	Pooled
	Random Effects
	Pooled
	Random Effects

	Constant 
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	(0.05814) 
	 (0.09650) 
	(0.07957) 
	 (0.10853) 

	Female 
	0.3551 
	0.4548 
	0.1050 
	0.1280 

	
	(0.01604) 
	(0.02857) 
	(0.02174) 
	(0.02954) 

	Age 
	0.01188 
	0.01983 
	0.00461 
	0.00496 

	
	(0.00080) 
	(0.00130) 
	(0.001058) 
	(0.00139) 

	Income 
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	(0.04628) 
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	(0.05946) 
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	(0.01825) 
	(0.02692) 
	(0.02570) 
	(0.03211) 

	Education 
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	(0.00358) 
	(0.00612) 
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	Married 
	0.07351 
	0.02876 
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	(0.02063) 
	(0.03167) 
	(0.02777) 
	(0.03547) 

	
[image: image1653.wmf]12

Corr(,

)

ee


	0.2981
	0.1501
	0.2981
	0.1501 

	
[image: image1654.wmf]12

Corr(,

)

uu

 
	0.0000
	0.5382
	0.0000
	0.5382 

	Std. Dev. u
	 0.0000
	0.2233
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	Std. Dev. 
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17.9.5   A Recursive Bivariate Probit Model
Section 17.6.2 examines a case in which there is an endogenous continuous variable in a binary choice (probit) model. The model is


[image: image1795.wmf]**

2

,

,(0) ,

0

,~,.

0

1

TT

yy

T

Ty

T

y

y

T

yTyy

N

+

¢

=

¢

==>

éù

æö

æö

æö

++

êú

ç÷

ç÷

ç÷

êú

èø

èø

èø

ëû

x

x1

xx

e

ge

e

srs

e

rs

b

b



	
	
	

	
	
	
	
	

	
	

	

	

	


	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	

	

	
	

	
	
	
	
	

	
	

	

	

	

	
	
	
	
	

	
	

	

	

	


	
	
	
	
	

	
	
	
	

	


	
	
	
	
	

	

	
	
	
	

	

	
	
	
	

	
	
	
	
	

	

	
	
	
	





The application examined there involved a labor force participation model that was conditioned on an endogenous variable, the non-wife part of family income. In many cases, the endogenous variable in the equation is also binary. In the application we will examine below, the presence of a gender economics course in the economics curriculum at liberal arts colleges is conditioned on whether or not there is a women’s studies program on the campus. The model in this case becomes
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This model is qualitatively different from the bivariate probit model in (17-48); the first dependent variable, 
T, appears on the right-hand side of the second equation.
 This model is a recursive, simultaneous-equations model. Surprisingly, the endogenous nature of one of the variables on the right-hand side of the second equation does not need special consideration in formulating the log-likelihood. [The model appears in Maddala (1983, p. 123).] We can establish this fact with the following (admittedly trivial) argument: The term that enters the log-likelihood is 
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, whereas the conditional probability is 
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. The product returns the bivariate normal probability we had earlier. The other three terms in the log-likelihood are derived similarly, which produces:
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These terms are exactly those of (17-48) that we obtain just by carrying 
T in the second equation with no special attention to its endogenous nature. We can ignore the simultaneity in this model and we cannot in the linear regression model because, in this instance, we are maximizing the full log-likelihood, whereas in the linear regression case, we are manipulating certain sample moments that do not converge to the necessary population parameters in the presence of simultaneity.  The log likelihood for this model is
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where qy,i = (2yi – 1) and qT,i = 2(Ti – 1).
  
Example 17.34   The Impact of Catholic School Attendance on High 
                            School Performance
Evans and Schwab (1995) considered the effect of Catholic school attendance on two success measures, graduation from high school and entrance to college.  Their model is
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The binary variables are C = 1(Attended Catholic School) and G = 1(Graduated from high school).  In a second specification of the model, G = 1(Entered a four year college after graduation).  Covariates included race, gender, family income, parents’ education, family structure, religiosity, and a tenth grade test score.  The parameters of the model are all identified (estimable) whether or not there are variables in the G equation that are not in the C equation (i.e., whether or not there are exclusion restrictions) by dint of the nonlinearity of the structure.  However, mindful of the dubiousness of a model that is identified only by the nonlinearity, the authors included R = 1(Student is Catholic) in the equation, to “aid identification.”  That would seem important here, as of more than 30 variables in the equations, only two, the test score and a “% Catholic in County of Residence” were not also dummy variables.  (Income was categorized.)
Example 17.35  Gender Economics Courses at Liberal Arts Colleges

Burnett (1997) proposed the following bivariate probit model for the presence of a gender economics course in the curriculum of a liberal arts college:
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The dependent variables in the model are

G = presence of a gender economics course

W = presence of a women’s studies program on the campus.

The independent variables in the model are

z1 = constant term,

z2 = academic reputation of the college, coded 1 (best), 
[image: image1826.wmf]2,
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 to 141,

z3 = size of the full-time economics faculty, a count,

z4 = percentage of the economics faculty that are women, proportion (0 to 1),

z5 = religious affiliation of the college, 0 = no, 1 = yes,

z6 = percentage of the college faculty that are women, proportion (0 to 1),

z7 – z10
 = regional dummy variables, South, Midwest, Northeast, West.

The regressor vectors are
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Maximum likelihood estimates of the parameters of Burnett’s model were computed by Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools offer gender economics, 58 have women’s studies programs, and 29 have both. (See Appendix Table F17.1.) The estimated parameters are given in Table 17.26. Both bivariate probit and single-equation estimates are given. The estimate of 
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 is only 0.1359, with a standard error of 1.2359. The Wald statistic for the test of the hypothesis that 
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 equals zero is 
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. For a single restriction, the critical value from the chi-squared table is 3.84, so the hypothesis cannot be rejected. The likelihood ratio statistic for the same hypothesis is 
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, which leads to the same conclusion. The Lagrange multiplier statistic is 0.003807, which is consistent. This result might seem counterintuitive, given the setting. Surely “gender economics” and “women’s studies” are highly correlated, but this finding does not contradict that proposition. The correlation coefficient measures the correlation between the disturbances in the equations, the omitted factors. That is, 
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 measures (roughly) the correlation between the outcomes after the influence of the included factors is accounted for. Thus, the value 0.1359 measures the effect after the influence of women’s studies is already accounted for. As discussed in the next paragraph, the proposition turns out to be right. The single most important determinant (at least within this model) of whether a gender economics course will be offered is indeed whether the college offers a women’s studies program.

Table 17.26  Estimates of a Recursive Simultaneous Bivariate Probit Model 
                         (estimated standard errors in parentheses)

	
	Single Equation
	Bivariate Probit

	Variable
	Coefficient
	Standard Err.
	Coefficient
	Standard Err.

	 Gender Economics Equation

	Constant 
	 
[image: image1834.wmf]-

1.4176
	(0.8768)
	
[image: image1835.wmf]-

1.1911
	(2.2155)

	AcRep 
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0.0114 
	(0.0036) 
	
[image: image1837.wmf]-

0.0123
	(0.0079)

	WomStud 
	1.1095
	(0.4699)
	0.8835
	(2.2603)

	EconFac 
	0.0673 
	(0.0569)
	0.0677 
	(0.0695)

	PctWEcon 
	2.5391
	(0.8997)
	2.5636
	(1.0144)

	Relig 
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0.3482
	(0.4212)
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0.3741
	(0.5264)

	 Women’s Studies Equation

	AcRep 
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0.0196 
	(0.0042) 
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0.0194 
	(0.0057)

	PctWFac 
	1.9429
	(0.9001)
	1.8914
	(0.8714)

	Relig 
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0.4494
	(0.3072)
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0.4584
	(0.3403)

	South 
	1.3597
	(0.5948)
	1.3471
	(0.6897)

	West 
	2.3386
	(0.6449)
	2.3376
	(0.8611)

	North 
	1.8867
	(0.5927)
	1.9009
	(0.8495)

	Midwest 
	1.8248
	(0.6595)
	1.8070
	(0.8952)
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	0.0000
	(0.0000)
	0.1359
	(1.2539)

	   ln 
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85.6458 
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The partial effects in this model are fairly involved, and as before, we can consider several different types. Consider, for example, 
[image: image1848.wmf]2
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, academic reputation. There is a direct effect produced by its presence in the gender economics course equation. But there is also an indirect effect. Academic reputation enters the women’s studies equation and, therefore, influences the probability that 
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 equals one. Because 
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 appears in the gender economics course equation, this effect is transmitted back to 
G. The total effect of academic reputation and, likewise, religious affiliation is the sum of these two parts. Consider first the gender economics variable,
 G. The conditional probability is
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Derivatives can be computed using our earlier results. We are also interested in the effect of religious affiliation. Because this variable is binary, simply differentiating the conditional mean function may not produce an accurate result. Instead, we would compute the probability with this variable set to one and then zero, and take the difference. Finally, what is the effect of the presence of a women’s studies program on the probability that the college will offer a gender economics course? To compute this effect, we would first compute the average treatment effect (see Section 17.6.1) by averaging





TE = Φ(xGʹβG + γ) – Φ(xGʹβG)
Over the full sample of schools.  The average treatment effect for the schools that actually do have a women’s studies program would be

TET  =  
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and averaging over the schools that have a women’s studies program (W = 1).
  

Table 17.27  Partial Effects in Gender Economics Model
	
	      Direct
	Indirect
	Total
	(Type of Variable, Mean)

	AcRep 
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0.0017 
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0.0005 
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0.0022 
	 (Continuous,  119.242)

	PctWEcon 
	 
 0.3602 
	 
	 
0.3602 
	 (Continuous,  0.24787)

	EconFac 
	 
0.0095 
	 
	 
0.0095 
	 (Continuous,  6.74242)

	Relig 
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0.0716a 
	 (Binary,          0.57576)

	PctWFac
	
	0.0508
	0.0508
	 (Continuous,  0.35772)

	
	
	
	

	

	

	
	
	

	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	
	
	
	


   a Direct and indirect effects for binary variables are the same.



Table 17.27 presents the estimates of the partial effects and some descriptive statistics for the data. 

Numerically, the strongest effect appears to be exerted by the representation of women on the faculty; its coefficient of 
0.3602 is by far the largest. However, this variable cannot change by a full unit because it is a proportion. An increase of 1 percent in the presence of women on the economics faculty raises the probability by only 0.0036
, which is comparable in scale to the effect of academic reputation. The effect of women on the faculty is likewise fairly small, only 0.000508 per 1 percent change. As might have been expected, the single most important influence is the presence of a women’s studies program.  The estimated average treatment effect is 0.1452 (0.3891). The average treatment effect on the schools that have women’s studies programs (ATET) is 0.2293 (0.5165). Of course, the raw data would have anticipated this result. Of the 31 schools that offer a gender economics course, 29 also have a women’s studies program and only two do not. Note finally that the effect of religious affiliation (whatever it is) is mostly direct.




























17.10   A MULTIVARIATE PROBIT MODEL
In principle, a multivariate probit model would simply extend (17-48) to more than two outcome variables just by adding equations. The resulting equation system, again analogous to the seemingly unrelated regressions model, would be
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The joint probabilities of the observed events, 
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 that form the basis for the log-likelihood function are the 
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-variate normal probabilities,
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The practical obstacle to this extension is the evaluation of the 
[image: image1888.wmf]M

-variate normal integrals and their derivatives.  Simulation-based integration using the GHK simulator or simulated likelihood methods (see Chapter 15) allow for estimation of relatively large models. We consider an application in Example 17.36.

The multivariate probit model in another form presents a useful extension of the random effects probit model for panel data (Section 17.7.2). If the parameter vectors in all equations are constrained to be equal, we obtain what Bertschek and Lechner (1998) call the “panel probit model,”
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The Butler and Moffitt (1982) approach for this model (see Section 17.4.2) has proved useful in many applications. But, their underlying assumption that 
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 is a substantive restriction. By treating this structure as a multivariate probit model with the restriction that the coefficient vector be the same in every period, one can obtain a model with free correlations across periods.
 Hyslop (1999), Bertschek and Lechner (1998), Greene (2004 and Example 17.26), and Cappellari and Jenkins (2006) are applications.

Example 17.36  A Multivariate Probit Model for Product Innovations

Bertschek and Lechner applied the panel probit model to an analysis of the product innovation activity of 1,270 German firms observed in five years, 1984–1988, in response to imports and foreign direct investment. [See Bertschek (1995).] The probit model to be estimated is based on the latent regression
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where
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The coefficients on import share 
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 and FDI share 
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 were of particular interest. The objectives of the study were the empirical investigation of innovation and the methodological development of an estimator that could obviate computing the five-variate normal probabilities necessary for a full maximum likelihood estimation of the model.

Table 17.28 presents the single-equation, pooled probit model estimates.
 Given the structure of the model, the parameter vector could be estimated consistently with any single period’s data. Hence, pooling the observations, which produces a mixture of the estimators, will also be consistent. Given the panel data nature of the data set, however, the conventional standard errors from the pooled estimator are dubious. Because the marginal distribution will produce a consistent estimator of the parameter vector, this is a case in which the cluster estimator (see Section 14.8.2) provides an appropriate asymptotic covariance matrix. Note that the standard errors in column SE(4) of the table are considerably higher than the uncorrected ones in columns 1–3.
 The pooled estimator is consistent, so the further development of the estimator is a matter of (1) obtaining a more efficient estimator of 
[image: image1903.wmf]b

 and (2) computing estimates of the cross-period correlation coefficients. The FIML estimates of the model can be computed using the GHK simulator.  The FIML estimates and the random effects model using the Butler and Moffit (1982) quadrature method are reported in Table 17.29. The correlations reported are based on the FIML estimates. Also noteworthy in Table 17.29 is the divergence of the random effects estimates from the FIML estimates. The log-likelihood function is -3,535.55
 for the random effects model and -3,522.85
 for the unrestricted model. The chi-squared statistic for the nine restrictions of the equicorrelation model is 25.4. The critical value from the chi-squared table for nine degrees of freedom is 16.9 for 95 percent and 21.7 for 99 percent significance, so the hypothesis of the random effects model would be rejected in favor of the more general “panel probit” model.
Table 17.28 Estimated Pooled Probit Model

	
	
	Estimated Standard Errors
	Partial Effects

	Variable
	Estimatea
	SE(1)b
	SE(2)c
	SE(3)d
	SE(4)e
	Partial
	Std. Err.
	t ratio

	Constant 
	
[image: image1906.wmf]-

1.960 
	0.239 
	0.377 
	0.230 
	0.373 
	–
	––
	–

	ln Sales 
	 0.177 
	0.0250 
	0.0375 
	0.0222 
	0.0358 
	 0.0683f 
	0.0138 
	 4.96

	Rel Size 
	 1.072 
	0.206 
	0.306 
	0.142 
	0.269 
	 0.413f 
	0.103 
	 4.01

	Imports 
	 1.134 
	0.153 
	0.246 
	0.151 
	0.243 
	 0.437f 
	0.0938 
	 4.66

	FDI 
	 2.853 
	0.467 
	0.679 
	0.402 
	0.642 
	 1.099f 
	0.247 
	 4.44

	Prod. 
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2.341 
	1.114 
	1.300 
	0.715 
	1.115 
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0.902f 
	0.429 
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2.10

	Raw Mtl 
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0.279 
	0.0966 
	0.133 
	0.0807 
	0.126 
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0.110g 
	0.0503 
	
[image: image1912.wmf]-

2.18

	Inv Good 
	0.188 
	0.0404 
	0.0630 
	0.0392 
	0.0628 
	 0.0723g 
	0.0241 
	 3.00


aRecomputed. Only two digits were reported in the earlier paper.

bObtained from results in Bertschek and Lechner, Table 9.

cBased on the Avery et al. (1983) GMM estimator.

dSquare roots of the diagonals of the negative inverse of the Hessian

eBased on the cluster estimator.

fCoefficient scaled by the density evaluated at the sample means

gComputed as the difference in the fitted probability with the dummy variable equal to one, then zero.

Table 17.29  Estimated Constrained Multivariate Probit Model (estimated standard errors in parentheses)

	
	Full Maximum Likelihood
	
	Random Effects

	Coefficients
	Using GHK Simulator
	
	(=0.578 (0.0189) 


	Constant 
	
[image: image1914.wmf]-

1.797**  (0.341) 
	
	
[image: image1915.wmf]-

2.839  (0.534)

	ln Sales 
	 0.154**  (0.0334)
	
	0.245  (0.0523)

	Relative size 
	  0.953**  (0.160) 
	
	 1.522  (0.259)

	Imports 
	 1.155**  (0.228) 
	
	 1.779  (0.360)

	FDI 
	 2.426**  (0.573) 
	
	 3.652  (0.870)

	Productivity 
	
[image: image1916.wmf]-

1.578       (1.216) 
	
	
[image: image1917.wmf]-

2.307  (1.911)

	Raw material 
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0.292**  (0.130) 
	
	
[image: image1919.wmf]-

0.477  (0.202)

	Investment goods 
	 0.224**  (0.0605)
	
	0.331  (0.0952)

	log-likelihood 
	
[image: image1920.wmf]-

3,522.85
	
	
[image: image1921.wmf]-

3,535.55

	Estimated Correlations
	
	

	1984, 1985 
	0.460**  (0.0301)
	

	1984, 1986 
	0.599**  (0.0323) 
	

	1985, 1986 
	0.643**  (0.0308)
	

	1984, 1987 
	0.540**  (0.0308)
	

	1985, 1987 
	0.546**  (0.0348)
	

	1986, 1987 
	0.610**  (0.0322)
	

	1984, 1988 
	0.483**  (0.0364)
	

	1985, 1988 
	0.446**  (0.0380)
	

	1986, 1988 
	0.524**  (0.0355)
	

	1987, 1988 
	0.605**  (0.0325)
	


*Indicates significant at 95 percent level,

** Indicates significant at 99 percent level based on a two-tailed test.





17.11  SUMMARY AND CONCLUSIONS

This chapter has surveyed a large range of techniques for modeling binary choice variables. The model for choice between two alternatives provides the framework for a large proportion of the analysis of microeconomic data. Thus, we have given a very large amount of space to this model in its own right. In addition, many issues in model specification and estimation that appear in more elaborate settings, such as those we will examine in the next chapter, can be formulated as extensions of the binary choice model of this chapter. Binary choice modeling provides a convenient point to study endogeneity in a nonlinear model, issues of nonresponse in panel data sets, and general problems of estimation and inference with longitudinal data. The binary probit model in particular has provided the laboratory case for theoretical econometricians such as those who have developed methods of bias reduction for the fixed effects estimator in dynamic nonlinear models.

We began the analysis with the fundamental parametric probit and logit models for binary choice. Estimation and inference issues such as the computation of appropriate covariance matrices for estimators and partial effects are considered here. We then examined familiar issues in modeling, including goodness of fit and specification issues such as the distributional assumption, heteroscedasticity and missing variables. As in other modeling settings, endogeneity of some right-hand variables presents a substantial complication in the estimation and use of nonlinear models such as the probit model. We examined models with endogenous right-hand-side variables, and in two applications, problems of endogenous sampling. The analysis of binary choice with panel data provides a setting to examine a large range of issues that reappear in other applications. We reconsidered the familiar pooled, fixed and random effects estimator estimators, and found that much of the wisdom obtained in the linear case does not carry over to the nonlinear case. The incidental parameters problem, in particular, motivates a considerable amount of effort to reconstruct the estimators of binary choice models. Finally, we considered some multivariate extensions of the probit model. As before, the models are useful in their own right. Once again, they also provide a convenient setting in which to examine broader issues, such as more detailed models of endogeneity nonrandom sampling, and computation requiring simulation.

Chapter 18 will continue the analysis of discrete choice models with three frameworks: unordered multinomial choice, ordered choice, and models for count data. Most of the estimation and specification issues we have examined in this chapter will reappear in these settings.

Key Terms and Concepts
( Attributes

( Attrition bias
( Average partial effect

( Binary choice model
( Bivariate probit

( Butler and Moffitt method
( Characteristics

( Choice-based sampling
( Chow test

( Complementary log log model
( Conditional likelihood function

( Control function
( Event count

( Fixed effects model
( Generalized residual

( Goodness of fit measure
( Gumbel model

( Heterogeneity
( Heteroscedasticity

( Incidental parameters problem
( Index function model

( Initial conditions
( Interaction effect

( Inverse probability weighted (IPW)
( Lagrange multiplier test

( Latent regression
( Likelihood equations

( Likelihood ratio test
( Linear probability model
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( Marginal effects
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( Maximum simulated likelihood (MSL)

( Method of scoring
( Microeconometrics
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( Multinomial choice

( Multivariate probit model
( Nonresponse bias

( Ordered choice model
( Persistence

( Probit
( Quadrature

( Qualitative response (QR)
( Quasi-maximum likelihood estimator (QMLE)

( Random effects model
( Random parameters logit model

( Random utility model
( Recursive model

( Robust covariance estimation
( Sample selection bias

( Selection on unobservables
( State dependence

( Tetrachoric correlation
( Unbalanced sample
Exercises
1.
A binomial probability model is to be based on the following index function model:
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The only regressor, d, is a dummy variable. The data consist of 100 observations that have the following:
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Obtain the maximum likelihood estimators of 
[image: image1927.wmf]a

 and 
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, and estimate the asymptotic standard errors of your estimates. Test the hypothesis that 
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 equals zero by using a Wald test (asymptotic 
[image: image1930.wmf]t

 test) and a likelihood ratio test. Use the probit model and then repeat, using the logit model. Do your results change? ( Hint: Formulate the log-likelihood in terms of 
[image: image1931.wmf]a

 and 
[image: image1932.wmf].)
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2.
Suppose that a linear probability model is to be fit to a set of observations on a dependent variable y that takes values zero and one, and a single regressor x that varies continuously across observations. Obtain the exact expressions for the least squares slope in the regression in terms of the mean(s) and variance of x, and interpret the result.

3.
Given the data set
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estimate a probit model and test the hypothesis that x is not influential in determining the probability that y equals one.

4.
Construct the Lagrange multiplier statistic for testing the hypothesis that all the slopes (but not the constant term) equal zero in the binomial logit model. Prove that the Lagrange multiplier statistic is 
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 in the regression of 
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, where 
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 is the sample proportion of 1s.

5.
The following hypothetical data give the participation rates in a particular type of recycling program and the number of trucks purchased for collection by 10 towns in a small mid-Atlantic state:

	 Town 
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Trucks 
	 160 
	 250 
	170 
	365 
	210 
	206 
	203 
	305 
	270 
	340

	Participation% 
	11 
	74 
	8 
	87 
	62 
	83 
	48 
	84 
	71 
	79


The town of Eleven is contemplating initiating a recycling program but wishes to achieve a 95 percent rate of participation. Using a probit model for your analysis,
a.
How many trucks would the town expect to have to purchase to achieve its goal? ( Hint: You can form the log-likelihood by replacing 
[image: image1938.wmf]i
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 with the participation rate (for example, 0.11 for observation 1) and 
[image: image1939.wmf](1)
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 with (1-the rate), in (17-16).

b.
If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget of $6.5 million? (That is, should they expect to reach the goal?)

c.
According to your model, what is the marginal value of the 301st truck in terms of the increase in the percentage participation?
6.
A data set consists of 
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 observations on 
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 and 
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. For the first 
[image: image1943.wmf]1

n

 observations, 
[image: image1944.wmf]1

=

y

 and 
[image: image1945.wmf]1

=

x

. For the next 
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. For the last 
[image: image1949.wmf]3

n

 observations, 
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. Prove that neither (17-18) nor (17-20) has a solution.

7.
Prove (17-26).

8.
In the panel data models estimated in Section 17.4, neither the logit nor the probit model provides a framework for applying a Hausman test to determine whether fixed or random effects is preferred. Explain. ( Hint: Unlike our application in the linear model, the incidental parameters problem persists here.)
Applications

1.
Appendix Table F17.2 provides Fair’s (1978) Redbook survey on extramarital affairs. The data are described in Application 1 at the end of Chapter 18 and in Appendix F. The variables in the data set are as follows:
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and three other variables that are not used. The sample contains a survey of 6,366 married women, conducted by Redbook magazine. For this exercise, we will analyze, first, the binary variable
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The regressors of interest are 
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 to 
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; however, not necessarily all of them belong in your model. Use these data to build a binary choice model for A. Report all computed results for the model. Compute the partial effects for the variables you choose. Compare the results you obtain for a probit model to those for a logit model. Are there any substantial differences in the results for the two models?























� See Greene and Hensher (2010, Chapter 4) for an historical perspective on this approach to model specification.


� In the binary choice case, it is possible arbitrarily to assign two numerical values to the outcomes, typically 0 and 1, and “linearly regress” this constructed variable on the covariates.  We will examine this strategy at some length with an eye to what information it reveals.  The strategy would make little sense in the multinomial choice cases.  Since the count data case is, in fact, a quantitative regression setting, the comparison of a linear regression approach to the intrinsically nonlinear regression approach is worth a close look.


� There are dozens of book length surveys of discrete choice models. Two others that are heavily oriented to application of these methods are Train (20039) and Hensher, Rose, and Greene (20015).


� A number of other studies have also used variants of this basic formulation. Some important examples are Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in Example 17.6 13 is another application. The now standard approach, in which “participation” equals one if wage offer � EMBED Equation.DSMT4  ��� minus reservation wage � EMBED Equation.DSMT4  ��� is positive underlies Heckman (1979) and, is also used in Fernandez and Rodriguez-Poo (1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior that give rise to binary choice models. Di Maria et al’s (2010) study of the light bulb puzzle in Example 17.4 is another example of an elaborate structural random utility model that produces a binary outcome.  This application is also closely related to Rubin’s (1974, 1978) potential outcomes model discussed in Section 8.5.


� In some treatments [e.g., Horowitz (1990) and Lewbel (2000)] it is more convenient to normalize one of the elements of (  to equal 1 and leave ( free to vary.  In the end, only ( /( is estimated, so this is inconsequential.


� Unless there is some compelling reason, binomial binary probability choice models should not be estimated without constant terms.


� The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear probability model is applied by Caudill (1988), Heckman, and MaCurdy (1985), and Heckman and Snyder (1997). An exchange on the usefulness of the approach is Angrist (2001) and Moffitt (2001). See Angrist and Pischke (200910) for some applications.


� The term “probit” derives from “probability unit,” in turn from the use of inverse normal probability units in bioassay.  See Finney (1971) and Greene and Hensher (2010).


� See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984), and Greene Stata (20012014).


� Of course, it is not even marginally more difficult or complicated if it merely entails changing an instruction to the software one is using.


� Use of linear regression with binary dependent variables to estimate treatment effects in randomized trials is discussed in Department of Health and Human Services, Office of Adolescent Health, Evaluation Technical Assistance Brief #6, December 2014; http://www.hhs.gov/ash/oah-initiatives/assets/lpm-tabrief.pdf (Visited June, 2016).


� One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values of � EMBED Equation.DSMT4  ���, not to the observed sample of values of the dependent variable.


� The authors used a principal component for the three measures in one specification of the model, but the preferred specification used the three environmental variables separately.


� There is a deeper peculiarity about this formulation. In the regression models we have examined up to this point, the disturbance, ε, is assumed to embody the independent variation of influences (other variables) that are generated outside the model.  Since the disturbance in this model arises only tautologically through the need to have y on the LHS of the equation equal y on the RHS, there is no room in the linear probability “model” for left out variables to explain some of the variation in Yy.  For a given x, ε cannot vary independently of x. Although the least squares residuals, ei, are algebraically orthogonal to xi, it is difficult to construct a statistical understanding of independence or uncorrelatedness of εi and xi.That is the consequence of specifying a regression model appropriate for a continuous variable to model a discrete outcome.  This is in contrast to the disturbance in the random utility models in Examples 17.1 and 17.2.   


� Aldrich and Nelson (1984) analyze the properties of the model at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear probability model is applied by Caudill (1988), Heckman, and MaCurdy (1985), and Heckman and Snyder (1997). An exchange on the usefulness of the approach is Angrist (2001) and Moffitt (2001). See Angrist and Pischke (2010) for some applications.


� This result appears in the 2002 (NBER) version of the paper, but not in the published 2003 version.


� If the distribution is symmetric, as the normal and logistic are, then � EMBED Equation.DSMT4  ���. There is a further simplification. Let � EMBED Equation.DSMT4  ���. Then � EMBED Equation.DSMT4  ���.


� The same result holds for the linear probability model. Although regularly observed in practice, the result has not been proven for the probit model.


� This sort of construction arises in many models. The first derivative of the log-likelihood with respect to the constant term produces the generalized residual in many settings. See, for example, Chesher, Lancaster, and Irish (1985) and the equivalent result for the tobit model in Section 19.3.2.2


� See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).


� See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 19.


� One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values of � EMBED Equation.DSMT4  ���, not to the observed sample of values of the dependent variable.


� The two sources of variation are the disturbances (the random part of the random utility model) and the variation of the observed sample of xi.  This does raise a question as to the meaning of the standard errors, robust or otherwise, computed for the linear probability model.


� See Wooldridge (2010, p. 467) and (2011, pp. 184-186) for formal development of this result.


�  See, for example, Contoyannis et al. (2004, p. 498), who report that they computed the “sample standard deviation of the partial effects.” 





� See, for example, Ai and Norton (2004) and Greene (2010).


� The practical issue is now widely understood. Modern computer packages are able to understand model specifications stated in structural form.  For our example, rather than compute x8, the user would literally specifically the instruction to the software as x1,x2,x3,x4,x5,x6,x7,x2*x3 (not computing x8) and the computation of partial effects would be done accordingly.


� See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975), Efron (1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995).  See, as well, Long and Freese (2006, Sec. 3.5) for a catalog of fit measures for discrete dependent variable models.


� The log likelihood for a binary choice model must be negative as it is a sum of logs of probabilities.  The model with fewer variables is a restricted version of the larger model so it must have a smaller log likelihood. Thus, the log likelihood function increases when variables are added to the model, and the LRI must be between zero and one.  For models with continuous variables, the log likelihood can be positive, so these appealing results are not assured.  


� See McFadden (1984) and Amemiya (1985). If this condition holds, then gradient methods will find that � EMBED Equation.DSMT4  ���.


� See Amemiya (1981).


� The technique of discriminant analysis is used to build a procedure around this consideration. In this setting, we consider not only the number of correct and incorrect classifications, but also the cost of each type of misclassification.


� This view actually understates slightly the significance of his model, because the preceding predictions are based on a bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model applies, however.


� It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the zeros. It hits only 10 percent of the ones in the sample.


� The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium on the subject of specification tests in discrete choice models is Blundell (1987).


� See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin (1981), Hausman and Wise (1978), Horowitz (1993) and Khan (2013).


� See Khan (2013) for extensive discussion of this observational equivalence.  Manski (1988) notes this as well.


� As a consequence, there is no general “heteroscedasticity robust” covariance matrix for the estimator, and no general test against heteroscedasticity of unknown form.


� Khan (2013) develops an estimator for the partial effects in this model.  One of the several applications involves a variance function that shares variables with the index function in the mean.  This set of considerations also raises a question as to the interpretation of the now ubiquitous computation of “heteroscedasticity robust” covariance matrices for binary choice models.


� Wooldridge (2010, pp. 602-603) develops the identification issue in terms of the Average Structural Function [Blundell and Powell (2004)]; ASF(x) = Ez[Φ(exp(-zʹγ)xʹβ)]. Under this interpretation, the partial effect is ∂ASF(x)/∂x = Ez[((exp(-zʹγ)xʹβ)β]. The Average Structural Function treats z and x differently (even if they share variables). This computes the function for a fixed x, averaging over the sample values of z. The empirical estimator would be


� EMBED Equation.DSMT4  ���. The author suggests “the uncomfortable conclusion is that we have no convincing way of choosing” between (17-342) and this alternative result. Recent applications generally report (17-342), notwithstanding this alternative interpretation.  One advantage of interpretation (17-342) is that it explicitly examines the effect of variation in z on the response probability, particularly in the typical case in which z and x have variables in common.


� Other income is computed as family income minus the wife’s hours times the wife’s reported wage, divided by 1,000.  This produces several small negative values.  In the interest of comparability to the received application, we have left these values intact.


� Chung and Goldberger (1984), Stoker (1986, 1992), and Powell (1994) (among others) consider general cases in which β can be consistently estimated “up to scale” using ordinary least squares.  For example, Stoker (1986) shows that if x is multivariate normally distributed, then the LPM would provide a consistent estimator of the slopes of the probability function under very general specifications.


� The calculation of MEPIP treats PIP as if it were continuous and differentiates the probability. This approximates ((� EMBED Equation.DSMT4  ��� + (PIP) - ((� EMBED Equation.DSMT4  ���) as suggested earlier.  The authors note: “An alternative is to calculate the difference in the probabilities of an HbA1c test in a consultation in which the practice participates in the PIP, and a practice that does not. Our method assumes the treatment indicator to be continuous to be able to use the delta method. We compared the two methods and the magnitude of the marginal effect is the same.”  (There is, in fact, no obstacle to using the delta method for the difference in the probabilities.  See (17-29).)  The authors computed the TE at the means of the data rather than averaging the TE values over the observations.





� One would proceed in precisely this fashion if the central specification were a linear probability model (LPM) to begin with. See, for example, Eisenberg and Rowe (2006) or Angrist (2001) for an application and some analysis of this case.


� This is precisely the platform that underlies the GLIM/GEE treatment of binary choice models in, for example, the widely used programs SAS and Stata.


� Recent applications of this estimator have referred to it as “instrumental variable probit” estimation.  The estimator is a full information maximum likelihood estimator.


� WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which the biased sampling does, the weighting undoes. It is common for the end result to be very large standard errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance the data precisely to avoid this problem.


� This result does not imply that it is useful to report 2.5 times the linear probability estimates with the probit estimates for comparability. The linear probability estimates are already in the form of marginal effects, whereas the probit coefficients must be scaled downward. If the sample proportion happens to be close to 0.5, then the right scale factor will be roughly � EMBED Equation.DSMT4  ���. But the density falls rapidly as � EMBED Equation.DSMT4  ��� moves away from 0.5.


� See Ruud (1986) and Gourieroux et al. (1987).


� The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium on the subject of specification tests in discrete choice models is Blundell (1987).


� See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin (1981), Hausman and Wise (1978), and Horowitz (1993).


� A “limited information” approach based on the GMM estimation method has been suggested by Avery, Hansen, and Hotz (1983). With recent advances in simulation-based computation of multinormal integrals (see Section 15.6.2.b), some work on such a panel data estimator has appeared in the literature. See, for example, Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994) [see also, Liang and Zeger (1986) and Stata (2006)] seems to be another possibility. However, in all these cases, it must be remembered that the procedure specifies estimation of a correlation matrix for a � EMBED Equation.DSMT4  ��� vector of unobserved variables based on a dependent variable that takes only two values. We should not be too optimistic about this if � EMBED Equation.DSMT4  ��� is even moderately large.


� We could begin the analysis by establishing the assumptions within which we can estimate the parameters of interest (β) by treating the panel as a long cross section.  The point of the exercise, however, is that those assumptions are unlikely to be met in any realistic application.  


� See Wooldridge (19992010) for discussion of this strict exogeneity assumption.


� Fernandez-Val (2009) reports using that method to fit a probit model for 500,000 groups.


� E.g., Hahn and Newey (…2002), Fernandez-Val (2009), Greene (2004), Katz (…2001), Han (2002) and others.


� The incidental parameters problem does show up in ML estimation of the FE linear model, where Neyman and Scott (1948) discovered it, in estimation of � EMBED Equation.DSMT4  ���. The MLE of � EMBED Equation.DSMT4  ��� is � EMBED Equation.DSMT4  ���, which converges to � EMBED Equation.DSMT4  ���.


� The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or Baltagi (2005, p. 235). In fact, using a recursion suggested by Krailo and Pike (1984), the computation even with � EMBED Equation.DSMT4  ��� up to 100 is routine.


� In the probit model when we encounter this situation, the individual constant term cannot be estimated and the group is removed from the sample. The same effect is at work here.


� This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in the next section. Because the fixed effects are not estimated, it is not possible to compute probabilities or marginal effects with these estimated coefficients, and it is a bit ambiguous what one can do with the results of the computations. The brute force estimator that actually computes the individual effects might be preferable.


� Hsiao (2003) derives the result explicitly for some particular cases.


� A survey of some of these results is given by Hsiao (2003). Most of Hsiao (2003) is devoted to the linear regression model. A number of studies specifically focused on discrete choice models and panel data have appeared recently, including Beck, Epstein, Jackman, and O’Halloran (2001), Arellano (2001) and Greene (2001). Vella and Verbeek (1998) provide an application to the joint determination of wages and union membership. Other important references are Aguirregabiria and Mira (2010), Carro (2007), and Fernandez–Val (2009). Stewart (2006) and Arulampalam and Stewart (2007) provide several results for practitioners.


� Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they observe a large sample of countries (147) observed over a fairly large number of years, 40. As such, they are able to formulate their models in a way that makes the asymptotics with respect to T appropriate. They can analyze the data essentially in a time-series framework. Sepanski (2000) is another application that combines state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).


� We have arrived (once again) at a point where the question of replicability arises. Nonreplicability is an ongoing challenge in empirical work in economics. (See, for exampleinstance, Example 17.142.) The problem is particularly acute in analyses that involve simulation such as Monte Carlo studies and random parameter models. In the interest of replicability, we note that the random parameter estimates in Table 17.14 22 were computed with NLOGIT [Econometric Software (2007)] and are based on 50 Halton draws. We used the first six sequences (prime numbers 2, 3, 5, 7, 11, 13) and discarded the first 10 draws in each sequence.


� Smirnov (2010) provides a survey of applications of spatial models to nonlinear regression settings.


� But, Klier and McMillen (2008, p. 462) note “The assumption that the latent variable depends on spatially lagged values of the latent variable may be disputable in some settings. In our example, we are assuming that the propensity to locate a new supplier plant in a county depends on the propensity to locate plants in nearby counties, and it does not depend simply on whether new plants have located nearby.  The assumption is reasonable inthis contest because of the forward-looking nature of plant location decisions.” 


� Wooldridge (2010) and Wang, Iglesias and Wooldridge (2013) recommend analyzing “Average Structural Functions” for the heteroscedastic probit (logit) model considered here.  Since the weighting matrix, W, does not involve any exogenous variables, the derivatives of the ASFs will be identical to the average partial effects.  (See fn. 40 in Section 17.5.2.)


� See Section B.9.


� To avoid further ambiguity, and for convenience, the observation subscript will be omitted from � EMBED Equation.DSMT4  ��� and from � EMBED Equation.DSMT4  ���.


� This is derived in Kiefer (1982).


� See Greene (1996b) and Christofides et al. (1997, 2000).


� Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint (recursive) effect of � EMBED Equation.DSMT4  ��� status on� EMBED Equation.DSMT4  ���, smoking behavior. The estimator they used was two-stage least squares and GMM.


� Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint (recursive) effect of � EMBED Equation.DSMT4  ��� status on� EMBED Equation.DSMT4  ���, smoking behavior. The estimator they used was two-stage least squares and GMM.  Evans and Schwab (1995), examined below, fit their model by MLE and by 2SLS “for comparison.”


� If one were armed with only a univariate probit estimator, it might be tempting to mimic 2SLS to estimate this model using a two step procedure: (1) Estimate βT by a probit regression of T on xT then (2) Estimate (βy,γ) by probit regression of y on [xy,Φ(xTʹ� EMBED Equation.DSMT4  ���)].  This would be an example of a “forbidden regression.” (See Wooldridge (2010, pp. 267, 594).) The first step “works,” but the second does not produce consistent estimators of the parameters of interest.  The estimating equation at the second is improper – the conditional probability is conditioned on T, not on the probability that T equals one. The temptation should be easy to resist; the “recursive bivariate probit model” is a built in procedure in contemporary software.





� Studies that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and especially Börsch-Supan and Hajivassiliou (1993), Geweke (1989), and Keane (1994). A symposium in the November 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in specification and estimation of models based on simulation of probabilities. Applications that employ simulation techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for example, Hyslop (1999) (Example 17.1426), which applies the technique to a panel data application with � EMBED Equation.DSMT4  ���. Example 17.23 develops a five-variate application. 


� By assuming the coefficient vectors are the same in all periods, we actually obviate the normalization that the diagonal elements of R are all equal to one as well. The restriction identifies � EMBED Equation.DSMT4  ��� relative variances � EMBED Equation.DSMT4  ���. This aspect is examined in Greene (2004).


� We are grateful to the authors of this study who have generously loaned us their data for our continued analysis. The data are proprietary and cannot be made publicly available, unlike the other data sets used in our examples.


� The full computation required about one hour of computing time. Computation of the single-equation (pooled) estimators required only about 1/100 of the time reported by the authors for the same models, which suggests that the evolution of computing technology may play a significant role in advancing the FIML estimators.
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