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Least Squares Regression

§
3.1	 INTRODUCTION

This chapter examines the computation of the least squares regression model. A useful 
understanding of what is being computed when one uses least squares to compute the 
coefficients of the model can be developed before we turn to the statistical aspects. 
Section 3.2 will detail the computations of least squares regression. We then examine 
two particular aspects of the fitted equation:

●● The crucial feature of the multiple regression model is its ability to provide the 
analyst a device for “holding other things constant.” In an earlier example, we 
considered the “partial effect” of an additional year of education, holding age 
constant in

Earnings = g1 + g2 Education + g3 Age + e.

The theoretical exercise is simple enough. How do we do this in practical terms? 
How does the actual computation of the linear model produce the interpretation of 
partial effects? An essential insight is provided by the notion of partial regression 
coefficients. Sections 3.3 and 3.4 use the Frisch–Waugh theorem to show how 
the regression model controls for (i.e., holds constant) the effects of intervening 
variables.

●● The model is proposed to describe the movement of an explained variable. In broad 
terms, y = m(x) + e. How well does the model do this? How can we measure the 
success? Sections 3.5 and 3.6 examine fit measures for the linear regression.

3.2	 LEAST SQUARES REGRESSION

Consider a simple (the simplest) version of the model in the introduction,

Earnings = a + b Education + e.

The unknown parameters of the stochastic relationship, yi = xi
=B + ei, are the objects of 

estimation. It is necessary to distinguish between unobserved population quantities, such 
as B and ei, and sample estimates of them, denoted b and ei. The population regression 
is E[yi � xi] = xi

=B, whereas our estimate of E[yi � xi] is denoted yni = xi
=b. The disturbance 

associated with the ith data point is ei = yi - xi
=B. For any value of b, we shall estimate 

ei with the residual

ei = yi - xi
=b.
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From the two definitions,

yi = xi
=B + ei = xi

=b + ei.

These results are summarized for a two-variable regression in Figure 3.1.
The population quantity, B, is a vector of unknown parameters of the joint 

probability distribution of (y, x) whose values we hope to estimate with our sample data, 
(yi, xi), i = 1, c, n. This is a problem of statistical inference that is discussed in  
Chapter 4 and much of the rest of the book. It is useful, however, to begin by considering 
the algebraic problem of choosing a vector b so that the fitted line xi

=b is close to the data 
points. The measure of closeness constitutes a fitting criterion. The one used most 
frequently is least squares.1

3.2.1    THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:

	 a
n

i= 1
ei0

2 = a
n

i= 1
 (yi - xi

=b0)
2,	 (3-1)

where b0 denotes a choice for the coefficient vector. In matrix terms, minimizing the sum 
of squares in (3-1) requires us to choose b0 to

	 Minimizeb0
 S(b0) = e0

=e0 = (y - Xb0)′ (y - Xb0).	 (3-2)

1 We have yet to establish that the practical approach of fitting the line as closely as possible to the data by least 
squares leads to estimators with good statistical properties. This makes intuitive sense and is, indeed, the case. We 
shall return to the statistical issues in Chapter 4.

FIGURE 3.1    Population and Sample Regression.
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M03_GREE1366_08_SE_C03.indd   29 2/24/17   11:07 AM



30	 Part I  ✦   The Linear Regression Model

Expanding this gives

	 e0
=e0 = y′y - b0

=X′y - y′Xb0 + b0
=X′Xb0	 (3-3)

or

S(b0) = y′y - 2y′Xb0 + b0
=X′Xb0.

The necessary condition for a minimum is

	
0S(b0)

0b0
= -2X′y + 2X′Xb0 = 0.

2	 (3-4)

Let b be the solution (assuming it exists). Then, after manipulating (3-4), we find that b 
satisfies the least squares normal equations,

	 X′Xb = X′y.	 (3-5)

If the inverse of X′X exists, which follows from the full column rank 
assumption (Assumption A2 in Section 2.3), then the solution is

	 b = (X′X)-1X′y.	 (3-6)

For this solution to minimize the sum of squares, the second derivatives matrix,

02S(b0)

0b0 0b0
= = 2X′X,

must be a positive definite matrix. Let q = c′X′Xc for some arbitrary nonzero vector c.  
(The multiplication by 2 is irrelevant.) Then

q = v′v = a
n

i= 1
vi

2, where v = Xc.

Unless every element of v is zero, q is positive. But if v could be zero, then v would be 
a linear combination of the columns of X that equals 0, which contradicts Assumption 
A2, that X has full column rank. Because c is arbitrary, q is positive for every nonzero 
c, which establishes that 2X′X is positive definite. Therefore, if X has full column rank, 
then the least squares solution b is unique and minimizes the sum of squared residuals.

3.2.2    APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression, we consider an example based on 
the macroeconomic data in Appendix Table F3.1. To estimate an investment equation, 
we first convert the investment series in Table F3.1 to real terms by dividing them by 
the GDP deflator and then scale the series so that they are measured in trillions of 
dollars. The real GDP series is the quantity index reported in the Economic Report of 
the President (2016). The other variables in the regression are a time trend (1, 2, . . . ), 
an interest rate (the prime rate), and the yearly rate of inflation in the Consumer Price 
Index. These produce the data matrices listed in Table 3.1. Consider first a regression of 
real investment on a constant, the time trend, and real GDP, which correspond to x1, x2, 

2 See Appendix A.8 for discussion of calculus results involving matrices and vectors.
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and x3. (For reasons to be discussed in Chapter 21, this is probably not a well-specified 
equation for these macroeconomic variables. It will suffice for a simple numerical 
example, however.) Inserting the specific variables of the example into (3-5), we have

b1n + b2ΣiTi + b3ΣiGi = ΣiYi,
b1ΣiTi + b2ΣiT i

2 + b3ΣiTiGi = ΣiTiYi,
b1ΣiGi + b2ΣiTiGi + b3ΣiGi

2 = ΣiGiYi.

A solution for b1 can be obtained by dividing the first equation by n and rearranging it 
to obtain

 b1 = Y - b2T - b3G

	  = 2.41882 - b2 * 8 - b3 * 99.4133.	 (3-7)

Insert this solution in the second and third equations, and rearrange terms again to yield 
a set of two equations:

b2Σi(Ti - T)2 + b3Σi(Ti - T)(Gi - G) = Σi(Ti - T)(Yi - Y),
b2Σi(Gi - G)(Ti - T) + b3Σi(Gi - G)2 = Σi(Gi - G)(Yi - Y).

This result shows the nature of the solution for the slopes, which can be computed from 
the sums of squares and cross products of the deviations of the variables from their 

Real 
Investment  

(Y)
Constant  

(1)
Trend  
(T)

Real  
GDP  
(G)

Interest  
Rate  
(R)

Inflation  
Rate  
(P)

2.484 1 1 87.1 9.23 3.4
2.311 1 2 88.0 6.91 1.6
2.265 1 3 89.5 4.67 2.4
2.339 1 4 92.0 4.12 1.9
2.556 1 5 95.5 4.34 3.3
2.759 1 6 98.7 6.19 3.4
2.828 1 7 101.4 7.96 2.5

y = 2.717 X = 1 8 103.2 8.05 4.1
2.445 1 9 102.9 5.09 0.1
1.878 1 10 100.0 3.25 2.7
2.076 1 11 102.5 3.25 1.5
2.168 1 12 104.2 3.25 3.0
2.356 1 13 105.6 3.25 1.7
2.482 1 14 109.0 3.25 1.5
2.637 1 15 111.6 3.25 0.8

Notes:
1. �Data from 2000–2014 obtained from Tables B-3, B-10, and B17 from Economic Report of the President: 

https://www.whitehouse.gov/sites/default/files/docs/2015_erp_appendix_b.pdf.
2. �Results are based on the values shown. Slightly different results are obtained if the raw data on 

investment and the GNP deflator in Table F3.1 are input to the computer program and used to compute 
real investment = gross investment/(0.01*gnP deflator) internally.

TABLE 3.1    Data Matrices
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32	 Part I  ✦   The Linear Regression Model

means. Letting lowercase letters indicate variables measured as deviations from the 
sample means, we find that the normal equations are

b2Σit i
2 + b3Σitigi = Σitiyi,

b2Σigiti + b3Σigi
2 = Σigiyi,

and the least squares solutions for b2 and b3 are

b2 =
ΣitiyiΣi gi

2 - ΣigiyiΣiti gi

Σit i
2Σigi

2 - (Σigiti)
2  =

-1.6351(792.857) - 4.22255(451.9)

280(792.857) - (451.9)2  = -0.180169,

b3 =
ΣigiyiΣit i

2 - ΣitiyiΣitigi

Σit i
2Σigi

2 - (Σigiti)
2  =

4.22255(280) - (-1.6351)(451.9)

280(792.857) - (451.9)2  = 0.1080157.

� (3-8)

With these solutions in hand, b1 can now be computed using (3-7); b1 = -6.8780284.
Suppose that we just regressed investment on the constant and GDP, omitting the 

time trend. At least some of the correlation between real investment and real GDP 
that we observe in the data will be explainable because both variables have an obvious 
time trend. (The trend in investment clearly has two parts, before and after the crash of 
2007–2008.) Consider how this shows up in the regression computation. Denoting by 
“byx” the slope in the simple, bivariate regression of variable y on a constant and the 
variable x, we find that the slope in this reduced regression would be

	 bYG =
Σigiyi

Σigi
2 = 0.00533.	 (3-9)

By manipulating the earlier expression for b3 and using the definition of the sample 
correlation between G and T, rGT

2 = (Σigiti)
2/(Σigi

2Σit i
2), we obtain

	bYG�T =
bYG

1 - rGT
2 -

bYTbTG

1 - rGT
2 = bYG - ¢bYTbTG - rGT

2 bYG

1 - rGT
2 ≤ = 0.1080157.	 (3-10)

(The notation “bYG�T” used on the left-hand side is interpreted to mean the slope in the 
regression of Y on G and a constant “in the presence of T.”) The slope in the multiple 
regression differs from that in the simple regression by a factor of 20, by including a 
correction that accounts for the influence of the additional variable T on both Y and G. 
For a striking example of this effect, in the simple regression of real investment on a time 
trend, bYT = -1.6351/280 = -0.00584. But, in the multiple regression, after we account 
for the influence of GNP on real investment, the slope on the time trend is -0.180169. 
The general result for a three-variable regression in which x1 is a constant term is

	 bY 2�3 =
bY 2 - bY 3b32

1 - r23
2 .	 (3-11)

It is clear from this expression that the magnitudes of by 2�3 and by 2 can be quite different. 
They need not even have the same sign. The result just seen is worth emphasizing; the 
coefficient on a variable in the simple regression [e.g., Y on (1,G)] will generally not be 
the same as the one on that variable in the multiple regression [e.g., 7Y on (1,T,G)] if 
the new variable and the old one are correlated. But, note that bYG in (3-9) will be the 
same as b3 = bYG�T in (3-8) if Σitigi = 0, that is, if T and G are not correlated.
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In practice, you will never actually compute a multiple regression by hand or with 
a calculator. For a regression with more than three variables, the tools of matrix algebra 
are indispensable (as is a computer). Consider, for example, an enlarged model of 
investment that includes—in addition to the constant, time trend, and GDP—an interest 
rate and the rate of inflation. Least squares requires the simultaneous solution of five 
normal equations. Letting X and y denote the full data matrices shown previously, the 
normal equations in (3-5) areE   15.000   120.00   1491.2   76.05   33.90

 120.000  1240.0  12381.5  522.06  244.10
1491.2 12381.5 149038 7453.03 3332.83
  76.06   522.06   7453.03  446.323  186.656
  33.90   244.10   3332.83  186.656   93.33

U Eb1

b2

b3

b4

b5

U = E   36.28230
 288.624
3611.17
 188.176
  82.7731

U .

The solution is

b = (X′X)-1X′y = (-6.25441, -0.161342, 0.0994684, 0.0196656, -0.0107206)′.

3.2.3    ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION

The normal equations are

	 X′Xb - X′y = -X′(y - Xb) = -X′e = 0.	 (3-12)

Hence, for every column xk of X, xk
= e = 0. If the first column of X is a column of 1s, 

which we denote i, then there are three implications.

1.	 The least squares residuals sum to zero. This implication follows from 
x1
=e = i′e = Σiei = 0.

2.	 The regression hyperplane passes through the point of means of the data. The first 
normal equation implies that y = x′b. This follows from Σiei = Σi (yi - xi

 =b) = 0 
by dividing by n.

3.	 The mean of the fitted values from the regression equals the mean of the actual values. 
This implication follows from point 2 because the fitted values are xi

=b.

It is important to note that none of these results need hold if the regression does 
not contain a constant term.

3.2.4    PROJECTION

The vector of least squares residuals is

	 e = y - Xb.	 (3-13)

Inserting the result in (3-6) for b gives

	 e = y - X(X′X)-1X′y = (I - X(X′X)-1X′)y = My.	 (3-14)

The n *  n matrix M defined in (3-14) is fundamental in regression analysis. You can 
easily show that M is both symmetric (M = M′) and idempotent (M = M2). In view of 
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals 
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34	 Part I  ✦   The Linear Regression Model

in the regression of y on X when it premultiplies any vector y. It will be convenient later 
to refer to this matrix as a “residual maker.” Matrices of this form will appear repeatedly 
in our development to follow.

It follows from the definition that

	 MX = 0,	 (3-15)

because if a column of X is regressed on X, a perfect fit will result and the residuals will 
be zero.

Result (3-13) implies that y = Xb + e, which is the sample analog to Assumption 
A1, (2-3). (See Figure 3.1 as well.) The least squares results partition y into two parts, the 
fitted values yn = Xb and the residuals, e = My. [See Section A.3.7, especially (A-54).] 
Because MX = 0, these two parts are orthogonal. Now, given (3-13),

	 yn = y - e = Iy - My = (I - M)y = X(X′X)-1X′y = Py.	 (3-16)

The matrix P is a projection matrix. It is the matrix formed from X such that when a 
vector y is premultiplied by P, the result is the fitted values in the least squares regression 
of y on X. This is also the projection of the vector y into the column space of X. (See 
Sections A3.5 and A3.7.) By multiplying it out, you will find that, like M, P is symmetric 
and idempotent. Given the earlier results, it also follows that M and P are orthogonal;

PM = MP = 0.

As might be expected from (3-15),

PX = X.

As a consequence of (3-14) and (3-16), we can see that least squares partitions the vector 
y into two orthogonal parts,

y = Py + My = projection + residual.

The result is illustrated in Figure 3.2 for the two-variable case. The gray-shaded plane is 
the column space of X. The projection and residual are the orthogonal dashed rays. We 
can also see the Pythagorean theorem at work in the sums of squares,

 y′y = y′P′Py + y′M′My

 = yn ′yn + e′e.

The sample linear projection of y on x, Proj(y � x), is an extremely useful device in 
empirical research. Linear least squares regression is often the starting point for model 
development. We will find in developing the regression model that if the population 
conditional mean function in Assumption A1, E[y � x], is linear in x, then E[y � x] is also 

DEFINITION 3.1:  Residual Maker
Let the n *  K full column rank matrix, X be composed of columns (x1,x2, c,xK), 
and let y be an n *  1 column vector. The matrix, M = I - X(X′X)-1X′ is a 
“residual maker” in that when M premultiplies a vector, y, the result, My, is the 
column vector of residuals in the least squares regression of y on X.
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the population counterpart to the projection of y on x. We will be able to show that 
Proj(y � x) estimates x′ 5E[xx′]6-1E[xy], which appears implicitly in (3-16), is also 
E[y � x]. If the conditional mean function is not linear in x, then the projection of y on x 
will still estimate a useful descriptor of the joint distribution of y and x.

3.3	 PARTITIONED REGRESSION AND PARTIAL REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on 
only one or a subset of the full set of variables—the remaining variables are often 
viewed as “controls.” Consider the earnings equation discussed in the Introduction. 
Although we are primarily interested in the effect of education on earnings, age is, of 
necessity, included in the model. The question we consider here is what computations 
are involved in obtaining, in isolation, the coefficients of a subset of the variables in a 
multiple regression (e.g., the coefficient of education in the aforementioned regression).

Suppose that the regression involves two sets of variables, X1 and X2. Thus,

y = XB + E = X1B1 + X2B2 + E.

What is the algebraic solution for b2? The normal equations are

	
(1)
(2)
 JX1

=X1 X1
=X2

X2
=X1 X2

=X2
R  Jb1

b2
R = JX1

=y
X2

=y
R .	 (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). 
Alternatively, (1) and (2) in (3-17) can be manipulated directly to solve for b2. We first 
solve (1) for b1 :

	
X=

1X1b1 + X=
1X2b2 = X=

1y,
b1 = (X=

1X1)
-1X=

1y - (X=
1X1)

-1X=
1X2b2 = (X=

1X1)
-1X=

1(y - X2b2).
	 (3-18)

FIGURE 3.2    Projection of y into the Column Space of X.

y

ŷ

x1

x2

e
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36	 Part I  ✦   The Linear Regression Model

This solution states that b1 is the set of coefficients in the regression of y on X1, minus 
a correction vector. We digress briefly to examine an important result embedded  
in (3-18). Suppose that X1

=X2 = 0. Then, b1 = (X1
=X1)

-1X1
=  y, which is simply the 

coefficient vector in the regression of y on X1. The general result is given in the following 
theorem.

If the two sets of variables X1 and X2 are not orthogonal, then the solutions for b1 
and b2 found by (3-17) and (3-18) are more involved than just the simple regressions in 
Theorem 3.1. The more general solution is suggested by the following theorem:

To prove Theorem 3.2, begin from equation (2) in (3-17), which is

X2
=X1b1 + X2

=X2b2 = X2
=y.

Now, insert the result for b1 that appears in (3-18) into this result. This produces

X2
=X1(X1

=X1)
-1X1

=y - X2
=X1(X1

=X1)
-1X1

=X2b2 + X2
=X2b2 = X2

=y.

After collecting terms, the solution is

 b2 = [X2
=(I - X1(X1

=X1)
-1X1

=)X2]
-1[X2

=(I - X1(X1
=X1)

-1X1
=)y]

	  = (X2
=M1X2)

-1(X2
=M1y).	 (3-19)

THEOREM 3.1  Orthogonal Partitioned Regression
In the linear least squares multiple regression of y on two sets of variables X1 and 
X2, if the two sets of variables are orthogonal, then the separate coefficient vectors 
can be obtained by separate regressions of y on X1 alone and y on X2 alone.
Proof: The assumption of the theorem is that X1

=X2 = 0 in the normal equations 
in (3-17). Inserting this assumption into (3-18) produces the immediate solution 
for b1 = (X1

=X1)
-1X1

=y and likewise for b2.

THEOREM 3.2  Frisch–Waugh (1933)–Lovell (1963) Theorem3

In the linear least squares regression of vector y on two sets of variables, X1 and 
X2, the subvector b2 is the set of coefficients obtained when the residuals from a 
regression of y on X1 alone are regressed on the set of residuals obtained when each 
column of X2 is regressed on X1.

3 The theorem, such as it was, appeared in the first volume of Econometrica, in the introduction to the paper: 
“The partial trend regression method can never, indeed, achieve anything which the individual trend method 
cannot, because the two methods lead by definition to identically the same results.” Thus, Frisch and Waugh 
were concerned with the (lack of) difference between a regression of a variable y on a time trend variable, t, 
and another variable, x, compared to the regression of a detrended y on a detrended x, where detrending meant 
computing the residuals of the respective variable on a constant and the time trend, t. A concise statement of the 
theorem and its matrix formulation were added later by Lovell (1963).
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The M1 matrix appearing in the parentheses inside each set of parentheses is the 
“residual maker” defined in (3-14) and Definition 3.1, in this case defined for a 
regression on the columns of X1. Thus, M1X2 is a matrix of residuals; each column of 
M1X2 is a vector of residuals in the regression of the corresponding column of X2 on 
the variables in X1. By exploiting the fact that M1, like M, is symmetric and idempotent, 
we can rewrite (3-19) as

	 b2 = (X2
*=X2

*)-1X2
*=y*,	 (3-20)

where X2
* = M1X2 and y* = M1y. This result is fundamental in regression analysis.

This process is commonly called partialing out or netting out the effect of X1. For 
this reason, the coefficients in a multiple regression are often called the partial regression 
coefficients. The application of Theorem 3.2 to the computation of a single coefficient 
as suggested at the beginning of this section is detailed in the following: Consider the 
regression of y on a set of variables X and an additional variable z. Denote the coefficients 
b and c, respectively.

In terms of Example 2.2, we could obtain the coefficient on education in the multiple 
regression by first regressing earnings and education on age (or age and age squared) 
and then using the residuals from these regressions in a simple regression. In the classic 
application of this latter observation, Frisch and Waugh (1933) noted that in a time-series 
setting, the same results were obtained whether a regression was fitted with a time-trend 
variable or the data were first “detrended” by netting out the effect of time, as noted 
earlier, and using just the detrended data in a simple regression.

Consider the case in which X1 is i, a constant term that is a column of 1s in the first 
column of X,  and X2 is a set of variables. The solution for b2 in this case will then be the 
slopes in a regression that contains a constant term. Using Theorem 3.2 the vector of 
residuals for any variable, x, in X2 will be

 x* = x - i(i′i)-1i′x
 = x - i(1/n)i′x
 = x - ix

	  = M0x.� (3-21)

(See Section A.5.4 where we have developed this result purely algebraically.) For this 
case, then, the residuals are deviations from the sample mean. Therefore, each column of 
M1X2 is the original variable, now in the form of deviations from the mean. This general 
result is summarized in the following corollary.

COROLLARY 3.2.1  Individual Regression Coefficients
The coefficient on z in a multiple regression of y on W = [X, z] is computed as 
c = (z′MXz)-1(z′MXy) = (z*

=z*)
-1 z*

=y* where z* and y* are the residual vectors 
from least squares regressions of z and y on X; z* = MXz and y* = MXy where 
MX is defined in (3-14).
Proof: This is an application of Theorem 3.2 in which X1 is X and X2 is z.
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38	 Part I  ✦   The Linear Regression Model

[We used this result in (3-8).] Having obtained the coefficients on X2, how can we 
recover the coefficients on X1 (the constant term)? One way is to repeat the exercise 
while reversing the roles of X1 and X2. But there is an easier way. We have already solved 
for b2. Therefore, we can use (3-18) in a solution for b1. If X1 is just a column of 1s, then 
the first of these produces the familiar result

b1 = y - x2b2 - g - xKbK

[which is used in (3-7)].
Theorem 3.2 and Corollaries 3.2.1 and 3.2.2 produce a useful interpretation of the 

partitioned regression when the model contains a constant term. According to Theorem 
3.1, if the columns of X are orthogonal, that is, Xk

= xm = 0 for columns k and m, then the 
separate regression coefficients in the regression of y on X when X = [x1, x2, c, xK] 
are simply xk

= y/xk
= xk. When the regression contains a constant term, we can compute the 

multiple regression coefficients by regression of y in mean deviation form on the columns 
of X, also in deviations from their means. In this instance, the orthogonality of the 
columns means that the sample covariances (and correlations) of the variables are zero. 
The result is another theorem:

3.4	 PARTIAL REGRESSION AND PARTIAL CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be 
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue 
the earlier example, a regression equation relating earnings to age and education enables 
us to do the experiment of comparing the earnings of two individuals of the same age 
with different education levels, even if the sample contains no such pair of individuals. 
It is this characteristic of the regression that is implied by the term partial regression 
coefficients. The way we obtain this result, as we have seen, is first to regress income and 
education on age and then to compute the residuals from this regression. By construction, 
age will not have any power in explaining variation in these residuals. Therefore, any 

THEOREM 3.3  Orthogonal Regression
If the multiple regression of y on X contains a constant term and the variables in 
the regression are uncorrelated, then the multiple regression slopes are the same as 
the slopes in the individual simple regressions of y on a constant and each variable 
in turn.
Proof: The result follows from Theorems 3.1 and 3.2.

COROLLARY 3.2.2  Regression with a Constant Term
The slopes in a multiple regression that contains a constant term can be obtained 
by transforming the data to deviations from their means and then regressing the 
variable y in deviation form on the explanatory variables, also in deviation form.
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correlation between income and education after this “purging” is independent of (or 
after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To 
continue our example, to what extent can we assert that this correlation reflects a direct 
relationship rather than that both income and education tend, on average, to rise as 
individuals become older? To find out, we would use a partial correlation coefficient, 
which is computed along the same lines as the partial regression coefficient. In the 
context of our example, the partial correlation coefficient between income and education, 
controlling for the effect of age, is obtained as follows:

1.	 y* = the residuals in a regression of income on a constant and age.
2.	 z* = the residuals in a regression of education on a constant and age.
3.	 The partial correlation ryz*  is the simple correlation between y* and z*.

This calculation might seem to require a large amount of computation. Using 
Corollary 3.2.1, the two residual vectors in points 1 and 2 are y* = My and z* = Mz 
where M = I-X(X′X)-1X′ is the residual maker defined in (3-14). We will assume that 
there is a constant term in X so that the vectors of residuals y* and z* have zero sample 
means. Then, the square of the partial correlation coefficient is

ryz*2 =
(z

*
=y

*
)2

(z
*
=z

*
)(y

*
=y

*
)
.

There is a convenient shortcut. Once the multiple regression is computed, the t ratio in 
(5-13) for testing the hypothesis that the coefficient equals zero (e.g., the last column of 
Table 4.6) can be used to compute

	 ryz*2 =
tz
2

tz
2 + degrees of freedom

,	 (3-22)

where the degrees of freedom is equal to n-(K + 1); K+1 is the number of variables 
in the regression plus the constant term. The proof of this less than perfectly intuitive 
result will be useful to illustrate some results on partitioned regression. We will rely on 
two useful theorems from least squares algebra. The first isolates a particular diagonal 
element of the inverse of a moment matrix such as (X′X)-1.

THEOREM 3.4  Diagonal Elements of the Inverse of a Moment Matrix
Let W denote the partitioned matrix [X, z]—that is, the K columns of X plus 
an additional column labeled z. The last diagonal element of (W′W)-1 is 
(z′MXz)-1 = (z*

=z*)
-1 where z* = MX z and MX = I-X(X′X)-1X=.

Proof: This is an application of the partitioned inverse formula in (A-74) where 
A11 = X′X, A12 = X′z, A21 = z′X and A22 = z′z. Note that this theorem gener-
alizes the development in Section A.2.8, where X contains only a constant term, i.

We can use Theorem 3.4 to establish the result in (3-22). Let c and u denote the 
coefficient on z and the vector of residuals in the multiple regression of y on W = [X, z], 
respectively. Then, by definition, the squared t ratio that appears in (3-22) is
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tz
2 =

c2J u′u
n - (K + 1)

R (W′W)K + 1, K + 1
-1

,

where (W′W)K + 1, K + 1
-1  is the (K + 1) (last) diagonal element of (W′W)-1. [The bracketed 

term appears in (4-17).] The theorem states that this element of the matrix equals 
(z*

=z*)
-1. From Corollary 3.2.1, we also have that c2 = [(z*

=y*)/(z*
=z*)]2. For convenience, 

let DF = n - (K + 1). Then, tz
2 =

(z*
=y*/z*

=z*)
2

(u′u/DF)(z*
=z*)

- 1 =
(z*

=y*)
2DF

(u′u)(z′*z*)
- 1. It follows that 

the result in (3-22) is equivalent to

tz
2

tz
2 + DF

=

(z*
=y*)

2DF

(u′u)(z*
=z*)

(z*
=y*)

2DF

(u′u)(z*
=z*)

+ DF

=

(z*
=y*)

2

(u′u)(z*
=z*)

(z*
=y*)

2

(u′u)(z*
=z*)

+ 1

=
(z*

=y*)
2

(z*
=y*)

2 + (u′u)(z*
=z*)

.

Divide numerator and denominator by (z*
=z*)(y*

=y*) to obtain

tz
2

tz
2 + DF

=
(z*

=y*)
2/((z*

=z*)(y*
=y*))

(z*
=y*)

2/((z*
=z*)(y*

=y*)) + ((u′u)(z*
=z*))/((z*

=z*)(y*
=y*))

=
ryz*2

ryz*2 + (u′u)/(y*
=y*)

.

� (3-23)

We will now use a second theorem to manipulate u′u and complete the derivation. 
The result we need is given in Theorem 3.5.

Returning to the derivation, then, e′e = y*
=y* and c2(z*

=z*) = (z*
=y*)

2/(z*
=z*). Therefore,

u′u
y*
=y*

=
y*
=y* - (z*

=y*)
2/z*

=z*

y*
=y*

= 1 - ryz*2.

Inserting this in the denominator of (3-23) produces the result we sought.

THEOREM 3.5  Change in the Sum of Squares When a Variable Is Added to 
a Regression
If e′e is the sum of squared residuals when y is regressed on X and u′u is the sum 
of squared residuals when y is regressed on X and z, then

	 u′u = e′e - c2 (z*
=z*) … e′e,� (3-24)

where c is the coefficient on z in the long regression of y on [X, z] and z* = Mz is 
the vector of residuals when z is regressed on X.
Proof: In the long regression of y on X and z, the vector of residuals is 
u = y - Xd - zc. Note that unless X′z = 0, d will not equal b = (X′X)-1X′y. 
(See Section 4.3.2.) Moreover, unless c = 0, u will not equal e = y - Xb. From 
Corollary 3.2.1, c = (z*

=z*)
-1(z*

=y*). From (3-18), we also have that the coefficients 
on X in this long regression are

d = (X′X)-1X′(y - zc) = b - (X′X)-1X′zc.
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Example 3.1    Partial Correlations
For the data in the application in Section 3.2.2, the simple correlations between investment 
and the regressors, rYk, and the partial correlations, rYk* , between investment and the four 
regressors (given the other variables) are listed in Table 3.2. As is clear from the table, there is 
no necessary relation between the simple and partial correlation coefficients. One thing worth 
noting is that the signs of the partial correlations are the same as those of the coefficients, 
but not necessarily the same as the signs of the raw correlations. Note the difference in the 
coefficient on Inflation.

3.5	 GOODNESS OF FIT AND THE ANALYSIS OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the fit 
of the regression line to the data. However, as can easily be verified, the sum of squared 
residuals can be scaled arbitrarily just by multiplying all the values of y by the desired 
scale factor. Because the fitted values of the regression are based on the values of x, we 
might ask instead whether variation in x is a good predictor of variation in y. Figure 3.3 
shows three possible cases for a simple linear regression model, y = b1 + b2x + e. The 
measure of fit described here embodies both the fitting criterion and the covariation 
of y and x.

Variation of the dependent variable is defined in terms of deviations from its mean, 
(yi - y). The total variation in y is the sum of squared deviations:

sst = a
n

i= 1
(yi - y)2.

In terms of the regression equation, we may write the full set of observations as

y = Xb + e = yn + e.

Inserting this expression for d in that for u gives

u = y - Xb + X(X′X)-1X′zc - zc = e - MXzc = e - z*c.

Then,
u′u = e′e + c2 (z*

=z*) - 2c(z*
=e).

But, e = Mxy = y* and z*
=e = z*

=y* = c(z*
=z*). Inserting this result in u′u imme-

diately above gives the result in the theorem.

Variable Coefficient t Ratio
Simple  

Correlation
Partial  

Correlation

Trend –0.16134 –3.42 –0.09965 –0.73423
RealGDP 0.09947 4.12 0.15293 0.79325
Interest 0.01967 0.58 0.55006 0.18040
Inflation –0.01072 –0.27 0.19332 –0.08507

TABLE 3.2    Correlations of Investment with Other Variables (DF =  10)
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For an individual observation, we have

yi = yni + ei = xi
=b + ei.

If the regression contains a constant term, then the residuals will sum to zero and the 
mean of the predicted values of yi will equal the mean of the actual values. Subtracting 
y from both sides and using this result and result 2 in Section 3.2.3 gives

yi - y = yni - y + ei = (xi - x)=b + ei.

Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the 
regression would appear to fit well if the deviations of y from its mean are more largely 
accounted for by deviations of x from its mean than by the residuals. Since both terms in 
this decomposition sum to zero, to quantify this fit, we use the sums of squares instead. 
For the full set of observations, we have

M0y = M0Xb + M0e,

where M0 is the n *  n idempotent matrix that transforms observations into deviations 
from sample means. [See (3-21)and Section A.2.8; M0 is a residual maker for X = i.] 
The column of M0X corresponding to the constant term is zero, and, since the residuals 

FIGURE 3.3    Sample Data.
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already have mean zero, M0e = e. Then, since e′M0X = e′X = 0, the total sum of 
squares is

y′M0y = b′X′M0Xb + e′e.

Write this as total sum of squares = regression sum of squares + error sum of squares, 
or

	 sst = ssr + sse.	 (3-25)

(Note that this is the same partitioning that appears at the end of Section 3.2.4.)
We can now obtain a measure of how well the regression line fits the data by using 

the

	coefficient of determination: 
ssr
sst

=
b′X′M0Xb

y′M0y
= 1 -

e′e
y′M0y

= 1 -
Σi= 1

n ei
2

Σi= 1
n (yi - y)2

.

� (3-26)

The coefficient of determination is denoted R2. As we have shown, it must be between 
0 and 1, and it measures the proportion of the total variation in y that is accounted for 
by variation in the regressors. It equals zero if the regression is a horizontal line, that 
is, if all the elements of b except the constant term are zero. In this case, the predicted 
values of y are always y, so deviations of x from its mean do not translate into different 
predictions for y. As such, x has no explanatory power. The other extreme, R2 = 1, 
occurs if the values of x and y all lie in the same hyperplane (on a straight line for a 
two-variable regression) so that the residuals are all zero. If all the values of yi lie on a 
vertical line, then R2 has no meaning and cannot be computed.

FIGURE 3.4    Decomposition of yi.
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ŷi

yi - ȳ
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Regression analysis is often used for forecasting. In this case, we are interested in 
how well the regression model predicts movements in the dependent variable. With this 
in mind, an equivalent way to compute R2 is also useful. First, the sum of squares for 
the predicted values is

Σi= 1
n  (yni - yn)2 = yn ′M0yn = b′X′M0Xb,

but yn = Xb, y = yn + e, M0e = e, and X′e = 0, so yn ′M0yn = yn ′M0y = Σi= 1
n  (yni - yn) 

(yi - y). Multiply R2 = yn ′M0yn/y′M0y = yn ′M0y/y′M0y by 1 = yn ′M0y/yn ′M0yn to obtain

	 R2 =
[Σi(yi - y)(yni - yn)]2

[Σi(yi - y)2][Σi(yni - yn)2]
,	 (3-27)

which is the squared correlation between the observed values of y and the predictions 
produced by the estimated regression equation.

Example 3.2    Fit of a Consumption Function
The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is 
C and x is X, we have y = 273.2727, x = 323.2727, Syy = 12,618.182, Sxx = 12,300.182,  
and Sxy = 8,423.182, so SST = 12,618.182, b = 8,423.182/12,300.182 = 0.6848014,
SSR = b2Sxx = 5,768.2068, and SSE = SST - SSR = 6,849.975. Then R2 = b2Sxx =
0.457135. As can be seen in Figure 2.1, this is a moderate fit, although it is not particularly 
good for aggregate time-series data. On the other hand, it is clear that not accounting for the 
anomalous wartime data has degraded the fit of the model. This value is the R2 for the model 
indicated by the solid line in the figure. By simply omitting the years 1942–1945 from the 
sample and doing these computations with the remaining seven observations—the dashed 
line—we obtain an R2 of 0.93379. Alternatively, by creating a variable WAR which equals 1 
in the years 1942–1945 and zero otherwise and including this in the model, which produces 
the model shown by the two dashed lines, the R2 rises to 0.94450.

We can summarize the calculation of R2 in an analysis of variance table, which might 
appear as shown in Table 3.3.

Example 3.3    Analysis of Variance for the Investment Equation
The analysis of variance table for the investment equation of Section 3.2.2 is given in  
Table 3.4.

3.5.1    THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R2 in analyzing goodness of fit. The first 
concerns the number of degrees of freedom used up in estimating the parameters. 

Source Sum of Squares Degrees of Freedom Mean Square

Regression b′X′y - ny2 K - 1 (assuming a constant term)

Residual e′e n - K (including the constant term) s2

Total y′y - ny2 n - 1 sy
2

R2 1 - e′e/(y′y - ny2)

TABLE 3.3  Analysis of Variance Table
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[See (3-22) and Table 3.3.] R2 will never decrease when another variable is added to a 
regression equation. Equation (3-24) provides a convenient means for us to establish 
this result. Once again, we are comparing a regression of y on X with sum of squared 
residuals e′e to a regression of y on X and an additional variable z, which produces sum 
of squared residuals u′u. Recall the vectors of residuals z* = Mz and y* = My = e, 
which implies that e′e = (y*

=y*). Let c be the coefficient on z in the longer regression. 
Then c = (z*

=z*)
-1(z*

=y*), and inserting this in (3-24) produces

	 u′u = e′e -
(z*

=y*)
2

(z*
=z*)

= e′e(1 - ryz*2),	 (3-28)

where ryz*  is the partial correlation between y and z, controlling for X. Now divide 
through both sides of the equality by y′M0y. From (3-26), u′u/y′M0y is (1 - RXz

2 ) for 
the regression on X and z and e′e/y′M0y is (1 - RX

2 ). Rearranging the result produces 
the following:

Thus, the R2 in the longer regression cannot be smaller. It is tempting to exploit this 
result by just adding variables to the model; R2 will continue to rise to its limit of 1.4 The 
adjusted R2 (for degrees of freedom), which incorporates a penalty for these results, is 
computed as follows:

	 R2 = 1 -
e′e/(n - K)

y′M0y/(n - 1)
.	 (3-30)

For computational purposes, the connection between R2 and R2 is

R2 = 1 -
n - 1
n - K

 (1 - R2).

THEOREM 3.6  Change in R2 When a Variable Is Added to a Regression
Let RXz

2  be the coefficient of determination in the regression of y on X and an addi-
tional variable z, let RX

2  be the same for the regression of y on X alone, and let ryz*  
be the partial correlation between y and z, controlling for X. Then

	 RXz
2 = RX

2 + (1 - RX
2 ) ryz*2.� (3-29)

4 This result comes at a cost, however. The parameter estimates become progressively less precise as we do so. We 
will pursue this result in Chapter 4.

Source Sum of Squares Degrees of Freedom Mean Square

Regression 0.75621   4
Residual 0.20368 10 0.02037
Total 0.95989 14 0.06856

R2 0.78781

TABLE 3.4    Analysis of Variance for the Investment Equation
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The adjusted R2 may decline when a variable is added to the set of independent variables. 
Indeed, R2 could even be negative. To consider an admittedly extreme case, suppose that 
x and y have a sample correlation of zero. Then the adjusted R2 will equal -1/(n - 2). 
Whether R2 rises or falls when a variable is added to the model depends on whether the 
contribution of the new variable to the fit of the regression more than offsets the 
correction for the loss of an additional degree of freedom. The general result (the proof 
of which is left as an exercise) is as follows.

We have shown that R2 will never fall when a variable is added to the regression. 
We now consider this result more generally. The change in the residual sum of squares 
when a set of variables X2 is added to the regression is

e=
1e1 - e=

1,2e1,2 = b=
2X

=
2M1X2b2,

where e1 is the residuals when y is regressed on X1 alone and e1,2 indicates regression 
on both X1 and X2. The coefficient vector b2 is the coefficients on X2 in the multiple 
regression of y on X1 and X2. [See (3-19) and (3-20) for definitions of b2 and M1.] 
Therefore,

R1,2
2 = 1 -

e=
1e1 - b=

2X
=
2M1X2b2

y′M0y
= R1

2 +
b=

2X
=
2M1X2b2

y′M0y
,

which is greater than R1
2 unless b2 equals zero. (M1X2 could not be zero unless X2 is a 

linear function of X1, in which case the regression on X1 and X2 could not be computed.) 
This equation can be manipulated a bit further to obtain

R1,2
2 = R1

2 +
y′M1y

y′M0y
 
b=

2X
=
2M1X2b2

y′M1y
.

But y′M1y = e=
1e1, so the first term in the product is 1 - R1

2. The second is the multiple 
correlation in the regression of M1y on M1X2, or the partial correlation (after the effect 
of X1 is removed) in the regression of y on X2. Collecting terms, we have

	 R1,2
2 = R1

2 + (1 - R1
2)ry2.1*2 .	 (3-31)

[This is the multivariate counterpart to (3-29).]
It is possible to push R2 as high as desired (up to one) just by adding regressors to 

the model. This possibility motivates the use of the adjusted R2 in (3-30), instead of R2 
as a method of choosing among alternative models. Since R2 incorporates a penalty for 
reducing the degrees of freedom while still revealing an improvement in fit, one 
possibility is to choose the specification that maximizes R2. It has been suggested that 

THEOREM 3.7  Change in R2 When a Variable Is Added to a Regression
In a multiple regression, R2 will fall (rise) when the variable x is deleted from the 
regression if the square of the t ratio associated with this variable is greater (less) 
than 1.
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the adjusted R2 does not penalize the loss of degrees of freedom heavily enough.5 Some 
alternatives that have been proposed for comparing models (which we index by j) are a 
modification of the adjusted R squared, that minimizes Amemiya’s (1985) prediction 
criterion,

PCj =
ej
=ej

n - Kj
 a1 +

Kj

n
b = sj

2a1 +
Kj

n
b ,

Rj
2 = 1 -

n + Kj

n - Kj
 (1 - Rj

2).

Two other fitting criteria are the Akaike and Bayesian information criteria discussed in 
Section 5.10.1,

 AICj = lna
e=

jej

n
b +

2K
n

,

 BICj = lna
e=

jej

n
b +

K ln n
n

.

3.5.2     R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R2 concerns the constant term in the model. The proof that 
0 … R2 … 1 requires X to contain a column of 1s. If not, then (1) M0e ≠ e and (2) 
e′M0X ≠ 0, and the term 2e′M0Xb in y′M0y = (M0Xb + M0e)= (M0Xb + M0e) in the 
expansion preceding (3-25) will not drop out. Consequently, when we compute

R2 = 1 -
Σi= 1

n ei
2

Σi= 1
n (yi - y)2,

the result is unpredictable. It will never be higher and can be far lower than the same 
figure computed for the regression with a constant term included. It can even be negative. 
Computer packages differ in their computation of R2. An alternative computation,

R2 =
Σi= 1

n (yni - yn)2

Σi= 1
n (yi - y)2,

is equally problematic. Again, this calculation will differ from the one obtained with the 
constant term included; this time, R2 may be larger than 1. Some computer packages 
bypass these difficulties by reporting a third “R2,” the squared sample correlation 
between the actual values of y and the fitted values from the regression. If the regression 
contains a constant term, then all three computations give the same answer. Even if not, 
this last one will always produce a value between zero and one. But it is not a proportion 
of variation explained. On the other hand, for the purpose of comparing models, this 
squared correlation might well be a useful descriptive device. It is important for users 
of computer packages to be aware of how the reported R2 is computed.

5 See, for example, Amemiya (1985, pp. 50–51).
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3.5.3    COMPARING MODELS

The value of R2 of 0.94450 that we obtained for the consumption function in Example 
3.2 seems high in an absolute sense. Is it? Unfortunately, there is no absolute basis for 
comparison. In fact, in using aggregate time-series data, coefficients of determination 
this high are routine. In terms of the values one normally encounters in cross sections, an 
R2 of 0.5 is relatively high. Coefficients of determination in cross sections of individual 
data as high as 0.2 are sometimes noteworthy. The point of this discussion is that whether 
a regression line provides a good fit to a body of data depends on the setting.

Little can be said about the relative quality of fits of regression lines in different 
contexts or in different data sets even if they are supposedly generated by the same 
data-generating mechanism. One must be careful, however, even in a single context, to 
be sure to use the same basis for comparison for competing models. Usually, this concern 
is about how the dependent variable is computed. For example, a perennial question 
concerns whether a linear or loglinear model fits the data better. Unfortunately, the 
question cannot be answered with a direct comparison. An R2 for the linear regression 
model is different from an R2 for the loglinear model. Variation in y is different from 
variation in ln y. The latter R2 will typically be larger, but this does not imply that the 
loglinear model is a better fit in some absolute sense.

It is worth emphasizing that R2 is a measure of linear association between x and y. 
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi = a + bxi + gxi
2 + ei.

The relationship between y and x in this model is nonlinear, and a linear regression of 
y on x would find no fit.

3.6	 LINEARLY TRANSFORMED REGRESSION

As a final application of the tools developed in this chapter, we examine a purely 
algebraic result that is very useful for understanding the computation of linear regression 
models. In the regression of y on X, suppose the columns of X are linearly transformed. 
Common applications would include changes in the units of measurement, say by 
changing units of currency, hours to minutes, or distances in miles to kilometers. Example 
3.4 suggests a slightly more involved case. This is a useful practical, algebraic result. For 
example, it simplifies the analysis in the first application suggested, changing the units 
of measurement. If an independent variable is scaled by a constant, p, the regression 
coefficient will be scaled by 1/p. There is no need to recompute the regression.

Example 3.4    Art Appreciation
Theory 1 of the determination of the auction prices of Monet paintings holds that the price is 
determined by the dimensions (width, W, and height, H) of the painting,

 ln Price = b1(1) + b2 ln W + b3 ln H + e

 = b1x1 + b2x2 + b3x3 + e.

Theory 2 claims, instead, that art buyers are interested specifically in surface area and aspect 
ratio,

 ln Price = g1(1) + g2 ln (WH) + g3 ln (W/H) + e

 = g1z1 + g2z2 + g3z3 + u.
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THEOREM 3.8  Transformed Variables
In the linear regression of y on Z = XP where P is a nonsingular matrix that 
transforms the columns of X, the coefficients will equal P-1b where b is the vector 
of coefficients in the linear regression of y on X, and the R2 will be identical.
Proof: The coefficients are

 d = (Z′Z)-1Z′y = [(XP)=(XP)]-1(XP)=y = (P′X′XP)-1P′X′y
 = P-1(X′X)-1P′-1P′X′y = P-1b.

The vector of residuals is u = y - Z(P-1b) = y - XPP-1b = y - Xb = e.  
Since the residuals are identical, the numerator of 1 - R2 is the same, and the 
denominator is unchanged. This establishes the result.

It is evident that z1 = x1, z2 = x2 + x3, and z3 = x2 - x3. In matrix terms, Z = XP where

P = C1 0 0
0 1 1
0 1 -1

S , P-1 = C1 0 0
0 1�2 1�2
0 1�2 -1�2

S .

The effect of a transformation on the linear regression of y on X compared to that of y on Z 
is given by Theorem 3.8. Thus, b1 = g1, b2 = 1/2(g2 + g3), b3 = 1/2(g2 - g3).

Key Terms and Concepts

•	Adjusted R2

•	Analysis of variance
•	Bivariate regression
•	Coefficient of 

determination
•	Degrees of freedom
•	Disturbance

•	Fitting criterion
•	Frisch–Waugh theorem
•	Goodness of fit
•	Least squares
•	Least squares normal 

equations
•	Moment matrix

•	Multiple correlation
•	Multiple regression
•	Netting out
•	Normal equations
•	Orthogonal regression
•	Partial correlation 

coefficient

3.7	 SUMMARY AND CONCLUSIONS

This chapter has described the exercise of fitting a line (hyperplane) to a set of points 
using the method of least squares. We considered the primary problem first, using a data 
set of n observations on K variables. We then examined several aspects of the solution, 
including the nature of the projection and residual maker matrices and several useful 
algebraic results relating to the computation of the residuals and their sum of squares. 
We also examined the difference between gross or simple regression and correlation 
and multiple regression by defining partial regression coefficients and partial correlation 
coefficients. The Frisch–Waugh–Lovell Theorem (3.2) is a fundamentally useful tool in 
regression analysis that enables us to obtain the expression for a subvector of a vector 
of regression coefficients. We examined several aspects of the partitioned regression, 
including how the fit of the regression model changes when variables are added to it or 
removed from it. Finally, we took a closer look at the conventional measure of how well 
the fitted regression line predicts or “fits” the data.
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Exercises

1.	 The two-variable regression. For the regression model y = a + bx + e,
a.	 Show that the least squares normal equations imply Σiei = 0 and Σixiei = 0.
b.	 Show that the solution for the constant term is a = y - bx.
c.	 Show that the solution for b is b = 3 a n

i= 1(xi - x)(yi - y)4 /3 a n
i= 1(xi - x)24 .

d.	 Prove that these two values uniquely minimize the sum of squares by showing 
that the diagonal elements of the second derivatives matrix of the sum of squares 
with respect to the parameters are both positive and that the determinant is 
4n3(a n

i= 1xi
2) - nx24 = 4n3 a n

i= 1(xi - x)24 , which is positive unless all values 
of x are the same.

2.	 Change in the sum of squares. Suppose that b is the least squares coefficient vector 
in the regression of y on X and that c is any other K*1 vector. Prove that the 
difference in the two sums of squared residuals is

(y - Xc)=(y - Xc) - (y - Xb)=(y - Xb) = (c - b)=X′X(c - b).

Prove that this difference is positive.
3.	 Partial Frisch and Waugh. In the least squares regression of y on a constant and X, 

to compute the regression coefficients on X, we can first transform y to deviations 
from the mean y and, likewise, transform each column of X to deviations from the 
respective column mean; second, regress the transformed y on the transformed X 
without a constant. Do we get the same result if we only transform y? What if we 
only transform X?

4.	 Residual makers. What is the result of the matrix product M1M where M1 is defined 
in (3-19) and M is defined in (3-14)?

5.	 Adding an observation. A data set consists of n observations contained in Xn and 
yn. The least squares estimator based on these n observations is bn = (X=

nXn)-1X=
nyn. 

Another observation, xs and ys, becomes available. Prove that the least squares 
estimator computed using this additional observation is

bn,s = bn +
1

1 + x=
s(X=

nXn)-1xs
 (X=

nXn)-1 xs (ys - x=
sbn).

Note that the last term is es, the residual from the prediction of ys using the 
coefficients based on Xn and yn. Conclude that the new data change the results of 
least squares only if the new observation on y cannot be perfectly predicted using 
the information already in hand.

6.	 Deleting an observation. A common strategy for handling a case in which an 
observation is missing data for one or more variables is to fill those missing 
variables with 0s and add a variable to the model that takes the value 1 for that one 
observation and 0 for all other observations. Show that this strategy is equivalent 
to discarding the observation as regards the computation of b but it does have an 

•	Partial regression 
coefficient

•	Partialing out
•	Partitioned regression

•	Prediction criterion
•	Population quantity
•	Population regression
•	Projection

•	Projection matrix
•	Residual
•	Residual maker
•	Total variation
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effect on R2. Consider the special case in which X contains only a constant and one 
variable. Show that replacing missing values of x with the mean of the complete 
observations has the same effect as adding the new variable.

7.	 Demand system estimation. Let Y denote total expenditure on consumer durables, 
nondurables, and services and Ed, En, and Es are the expenditures on the three 
categories. As defined, Y = Ed + En + Es. Now, consider the expenditure system

 Ed = ad + bdY + gddPd + gdnPn + gdsPs + ed,

 En = an + bnY + gndPd + gnnPn + gnsPs + en,

 Es = as + bsY + gsdPd + gsnPn + gssPs + es.

Prove that if all equations are estimated by ordinary least squares, then the sum 
of the expenditure coefficients will be 1 and the four other column sums in the 
preceding model will be zero.

8.	 Change in adjusted R2. Prove that the adjusted R2 in (3-30) rises (falls) when 
variable xk is deleted from the regression if the square of the t ratio on xk in the 
multiple regression is less (greater) than 1.

9.	 Regression without a constant. Suppose that you estimate a multiple regression first 
with, then without, a constant. Whether the R2 is higher in the second case than 
the first will depend in part on how it is computed. Using the (relatively) standard 
method R2 = 1 - (e′e/y′M0y), which regression will have a higher R2?

10.	 Three variables, N, D, and Y, all have zero means and unit variances. A fourth 
variable is C = N + D. In the regression of C on Y, the slope is 0.8. In the regression 
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the 
sum of squared residuals in the regression of C on D? There are 21 observations 
and all moments are computed using 1/(n - 1) as the divisor.

11.	 Using the matrices of sums of squares and cross products immediately preceding 
Section 3.2.3, compute the coefficients in the multiple regression of real investment 
on a constant, GNP, and the interest rate. Compute R2.

12.	 In the December 1969 American Economic Review (pp. 886–896), Nathaniel Leff 
reports the following least squares regression results for a cross section study of the 
effect of age composition on savings in 74 countries in 1964:

ln S/Y = 7.3439 + 0.1596 ln Y/N + 0.0254 ln G - 1.3520 ln D1 - 0.3990 ln D2,
ln S/N = 2.7851 + 1.1486 ln Y/N + 0.0265 ln G - 1.3438 ln D1 - 0.3966 ln D2,

where S/Y = domestic savings ratio, S/N = per capita savings, Y/N = per capita
income, D1 = percentage of the population under 15, D2 = percentage of the 
population over 64, and G = growth rate of per capita income. Are these results 
correct? Explain.6

13.	 Is it possible to partition R2?  The idea of “hierarchical partitioning” is to decompose 
R2 into the contributions made by each variable in the multiple regression. That is, 
if x1, c, xK are entered into a regression one at a time, then ck is the incremental 
contribution of xk such that given the order entered, Σkck = R2 and the incremental 

6 See Goldberger (1973) and Leff (1973) for discussion.
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contribution of xk is then ck/R2. Of course, based on (3-31), we know that this is not 
a useful calculation.
a.	 Argue based on (3-31) why it is not useful.
b.	 Show using (3-31) that the computation is sensible if (and only if) all variables 

are orthogonal.
c.	 For the investment example in Section 3.2.2, compute the incremental 

contribution of T if it is entered first in the regression. Now compute the 
incremental contribution of T if it is entered last.

Application

The data listed in Table 3.5 are extracted from Koop and Tobias’s (2004) study of the 
relationship between wages and education, ability, and family characteristics. (See 
Appendix Table F3.2.) Their data set is a panel of 2,178 individuals with a total of 17,919 
observations. Shown in the table are the first year and the time-invariant variables for 
the first 15 individuals in the sample. The variables are defined in the article.

Let X1 equal a constant, education, experience, and ability (the individual’s own 
characteristics). Let X2 contain the mother’s education, the father’s education, and the 
number of siblings (the household characteristics). Let y be the log of the hourly wage.

a.	 Compute the least squares regression coefficients in the regression of y on X1. 
Report the coefficients.

b.	 Compute the least squares regression coefficients in the regression of y on X1 and 
X2. Report the coefficients.

Person Education ln Wage Experience Ability
Mother’s 

Education
Father’s 

Education Siblings

1 13 1.82 1 1.00 12 12 1
2 15 2.14 4 1.50 12 12 1
3 10 1.56 1 -0.36 12 12 1
4 12 1.85 1 0.26 12 10 4
5 15 2.41 2 0.30 12 12 1
6 15 1.83 2 0.44 12 16 2
7 15 1.78 3 0.91 12 12 1
8 13 2.12 4 0.51 12 15 2
9 13 1.95 2 0.86 12 12 2

10 11 2.19 5 0.26 12 12 2
11 12 2.44 1 1.82 16 17 2
12 13 2.41 4 -1.30 13 12 5
13 12 2.07 3 -0.63 12 12 4
14 12 2.20 6 -0.36 10 12 2
15 12 2.12 3 0.28 10 12 3

TABLE 3.5    Subsample from Koop and Tobias Data
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c.	 Regress each of the three variables in X2 on all the variables in X1 and compute the 
residuals from each regression. Arrange these new variables in the 15 * 3 matrix 
X2*. What are the sample means of these three variables? Explain the finding.

d.	 Using (3-26), compute the R2 for the regression of y on X1 and X2. Repeat the 
computation for the case in which the constant term is omitted from X1. What 
happens to R2?

e.	 Compute the adjusted R2 for the full regression including the constant term. 
Interpret your result.

f.	 Referring to the result in part c, regress y on X1 and X2*. How do your results 
compare to the results of the regression of y on X1 and X2? The comparison you 
are making is between the least squares coefficients when y is regressed on X1 
and M1X2 and when y is regressed on X1 and X2. Derive the result theoretically.  
(Your numerical results should match the theory, of course.)
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