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Hypothesis Tests and  
Model Selection

 §
5.1	 INTRODUCTION

The linear regression model is used for three major purposes: estimation and 
prediction, which were the subjects of the previous chapter, and hypothesis testing. In 
this chapter, we examine some applications of hypothesis tests using the linear regression 
model. We begin with the methodological and statistical theory. Some of this theory was 
developed in Chapter 4 (including the idea of a pivotal statistic in Section 4.7.1) and in 
Appendix C.7. In Section 5.2, we will extend the methodology to hypothesis testing based 
on the regression model. After the theory is developed, Sections 5.3 through 5.5 will 
examine some applications in regression modeling. This development will be concerned 
with the implications of restrictions on the parameters of the model, such as whether a 
variable is relevant (i.e., has a nonzero coefficient) or whether the regression model itself 
is supported by the data (i.e., whether the data seem consistent with the hypothesis that 
all of the coefficients are zero). We will primarily be concerned with linear restrictions in 
this discussion. We will turn to nonlinear restrictions in Section 5.5. Section 5.6 considers 
some broader types of hypotheses, such as choosing between two competing models, for 
example, whether a linear or a loglinear model is better suited to the data. In each of 
the cases so far, the testing procedure attempts to resolve a competition between two 
theories for the data; in Sections 5.2 through 5.5 between a narrow model and a broader 
one and in Section 5.6, between two arguably equal models. Section 5.7 illustrates a 
particular specification test, which is essentially a test of a proposition such as the model 
is correct versus the model is inadequate. This test pits the theory of the model against 
some other unstated theory. Finally, Section 5.8 presents some general principles and 
elements of a strategy of model testing and selection.

5.2	 HYPOTHESIS TESTING METHODOLOGY

We begin the analysis with the regression model as a statement of a proposition,

	 y = XB + E.	 (5-1)

To consider a specific application, Examples 4.3 and 4.5 depicted the auction prices of 
paintings,

	 ln Price = b1 + b2 ln Size + b3 Aspect Ratio + e.	 (5-2)

Some questions might be raised about the model in (5-2), fundamentally, about 
the variables. It seems natural that fine art enthusiasts would be concerned about 
aspect ratio, which is an element of the aesthetic quality of a painting. But the idea 
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114	 Part I  ✦   The Linear Regression Model

that size should be an element of the price is counterintuitive, particularly weighed 
against the surprisingly small sizes of some of the world’s most iconic paintings 
such as the Mona Lisa (30″ high and 21″ wide) or Dali’s Persistence of Memory 
(only 9.5″ high and 13″ wide). A skeptic might question the presence of lnSize in the 
equation or, equivalently, the nonzero coefficient, b2. To settle the issue, the relevant 
empirical question is whether the equation specified appears to be consistent with the 
data—that is, the observed sale prices of paintings. In order to proceed, the obvious 
approach for the analyst would be to fit the regression first and then examine the 
estimate of b2. The test, at this point, is whether b2 in the least squares regression 
is zero or not. Recognizing that the least squares slope is a random variable that 
will never be exactly zero even if b2 really is, we would soften the question to be 
whether the sample estimate seems to be close enough to zero for us to conclude 
that its population counterpart is actually zero, that is, that the nonzero value we 
observe is nothing more than noise that is due to sampling variability. Remaining to 
be answered are questions including: How close to zero is close enough to reach this 
conclusion? What metric is to be used? How certain can we be that we have reached 
the right conclusion? (Not absolutely, of course.) How likely is it that our decision 
rule, whatever we choose, will lead us to the wrong conclusion? This section will 
formalize these ideas. After developing the methodology in detail, we will construct 
a number of numerical examples.

5.2.1    RESTRICTIONS AND HYPOTHESES

The approach we will take is to formulate a hypothesis as a restriction on a model. Thus, 
in the classical methodology considered here, the model is a general statement and a 
hypothesis is a proposition that narrows that statement. In the art example in (5-2), 
the narrower statement is (5-2) with the additional statement that b2 = 0—without 
comment on b1 or b3. We define the null hypothesis as the statement that narrows the 
model and the alternative hypothesis as the broader one. In the example, the broader 
model allows the equation to contain both ln Size and Aspect Ratio—it admits the 
possibility that either coefficient might be zero but does not insist upon it. The null 
hypothesis insists that b2 = 0 while it also makes no comment about b1 or b3. The formal 
notation used to frame this hypothesis would be

	 ln Price = b1 + b2 ln Size + b3AspectRatio + e,
	 H0 : b2 = 0,	 (5-3)
	 H1 : b2 ≠ 0.

Note that the null and alternative hypotheses, together, are exclusive and exhaustive. 
There is no third possibility; either one or the other of them is true, not both.

The analysis from this point on will be to measure the null hypothesis against the 
data. The data might persuade the econometrician to reject the null hypothesis. It would 
seem appropriate at that point to accept the alternative. However, in the interest of 
maintaining flexibility in the methodology, that is, an openness to new information, 
the appropriate conclusion here will be either to reject the null hypothesis or not to 
reject it. Not rejecting the null hypothesis is not equivalent to accepting it—though 
the language might suggest so. By accepting the null hypothesis, we would implicitly 
be closing off further investigation. Thus, the traditional, classical methodology leaves 
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open the possibility that further evidence might still change the conclusion. Our testing 
methodology will be constructed so as either to

Reject H0 : �The data appear to be inconsistent with the hypothesis with a reasonable 
degree of certainty.

Do not reject H0 : The data appear to be consistent with the null hypothesis.

5.2.2    NESTED MODELS

The general approach to testing a hypothesis is to formulate a statistical model that 
contains the hypothesis as a restriction on its parameters. A theory is said to have 
testable implications if it implies some testable restrictions on the model. Consider, for 
example, a model of investment, It,

	 ln It = b1 + b2it + b3∆pt + b4 ln Yt + b5t + et,	 (5-4)

which states that investors are sensitive to nominal interest rates, it, the rate of inflation, 
∆pt, (the log of) real output, ln Yt, and other factors that trend upward through time, 
embodied in the time trend, t. An alternative theory states that “investors care about 
real interest rates.” The alternative model is

	 ln It = b1 + b2(it - ∆pt) + b3∆pt + b4 ln Yt + b5t + et.	 (5-5)

Although this new model does embody the theory, the equation still contains both 
nominal interest and inflation. The theory has no testable implication for our model. 
But, consider the stronger hypothesis, “investors care only about real interest rates.” 
The resulting equation,

	 ln It = b1 + b2(it - ∆pt) + b4 ln Yt + b5t + et,	 (5-6)

is now restricted; in the context of (5-4), the implication is that b2 + b3 = 0. The stronger 
statement implies something specific about the parameters in the equation that may or 
may not be supported by the empirical evidence.

The description of testable implications in the preceding paragraph suggests (correctly) 
that testable restrictions will imply that only some of the possible models contained in 
the original specification will be valid; that is, consistent with the theory. In the example 
given earlier, (5-4) specifies a model in which there are five unrestricted parameters 
(b1, b2, b3, b4, b5). But (5-6) shows that only some values are consistent with the theory, 
that is, those for which b3 = -b2. This subset of values is contained within the unrestricted 
set. In this way, the models are said to be nested. Consider a different hypothesis, “investors 
do not care about inflation.” In this case, the smaller set of coefficients is (b1, b2, 0, b4, b5). 
Once again, the restrictions imply a valid parameter space that is “smaller” (has fewer 
dimensions) than the unrestricted one. The general result is that the hypothesis specified 
by the restricted model is contained within the unrestricted model.

Now, consider an alternative pair of models: Model0 : “Investors care only about 
inflation”; Model1 : “Investors care only about the nominal interest rate.” In this case, the 
two parameter vectors are (b1, 0, b3, b4, b5) by Model0 and (b1, b2, 0, b4, b5) by Model1. 
The two specifications are both subsets of the unrestricted model, but neither model is 
obtained as a restriction on the other. They have the same number of parameters; they 
just contain different variables. These two models are nonnested. For the present, we are 
concerned only with nested models. Nonnested models are considered in Section 5.6.

M05_GREE1366_08_SE_C05.indd   115 2/24/17   12:51 PM



116	 Part I  ✦   The Linear Regression Model

5.2.3    TESTING PROCEDURES

In the example in (5-2), intuition suggests a testing approach based on measuring the 
data against the hypothesis. The essential methodology provides a reliable guide to 
testing hypotheses in the setting we are considering in this chapter. Broadly, the analyst 
follows the logic, “What type of data will lead me to reject the hypothesis?” Given the 
way the hypothesis is posed in Section 5.2.1, the question is equivalent to asking what 
sorts of data will support the model. The data that one can observe are divided into a 
rejection region and an acceptance region. The testing procedure will then be reduced to 
a simple up or down examination of the statistical evidence. Once it is determined what 
the rejection region is, if the observed data appear in that region, the null hypothesis is 
rejected. To see how this operates in practice, consider, once again, the hypothesis about 
size in the art price equation. Our test is of the hypothesis that b2 equals zero. We will 
compute the least squares slope. We will decide in advance how far the estimate of b2 
must be from zero to lead to rejection of the null hypothesis. Once the rule is laid out, 
the test, itself, is mechanical. In particular, for this case, b2 is far from zero if b2 7 b2

0+ 
or b2 6 b2

0-. If either case occurs, the hypothesis is rejected. The crucial element is that 
the rule is decided upon in advance.

5.2.4    SIZE, POWER, AND CONSISTENCY OF A TEST

Because the testing procedure is determined in advance and the estimated coefficient(s) 
in the regression are random, there are two ways the Neyman–Pearson method can 
make an error. To put this in a numerical context, the sample regression corresponding 
to (5-2) appears in Table 4.7. The estimate of the coefficient on ln Area is 1.31638 with 
an estimated standard error of 0.09205. Suppose the rule to be used to test is decided 
arbitrarily (at this point—we will formalize it shortly) to be: If b2 is greater than +1.0 
or less than -1.0, then we will reject the hypothesis that the coefficient is zero (and 
conclude that art buyers really do care about the sizes of paintings). So, based on this 
rule, we will, in fact, reject the hypothesis. However, because b2 is a random variable, 
there are the following possible errors:

Type I error: b2 = 0, but we reject the hypothesis that b2 = 0.
The null hypothesis is incorrectly rejected.

Type II error: b2 ≠ 0, but we do not reject the hypothesis that b2 = 0.
The null hypothesis is incorrectly retained.

The probability of a Type I error is called the size of the test. The size of a test is the 
probability that the test will incorrectly reject the null hypothesis. As will emerge later, 
the analyst determines this in advance. One minus the probability of a Type II error is 
called the power of a test. The power of a test is the probability that it will correctly reject 
a false null hypothesis. The power of a test depends on the alternative. It is not under 
the control of the analyst. To consider the example once again, we are going to reject 
the hypothesis if � b2 � 7 1. If b2 is actually 1.5, then based on the results we’ve seen, we 
are quite likely to find a value of b2 that is greater than 1.0. On the other hand, if b2 is 
only 0.3, then it does not seem likely that we will observe a sample value greater than 
1.0. Thus, again, the power of a test depends on the actual parameters that underlie the 
data. The idea of power of a test relates to its ability to find what it is looking for.
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A test procedure is consistent if its power goes to 1.0 as the sample size grows to 
infinity. This quality is easy to see, again, in the context of a single parameter, such as 
the one being considered here. Because least squares is consistent, it follows that as 
the sample size grows, we will be able to learn the exact value of b2, so we will know if 
it is zero or not. Thus, for this example, it is clear that as the sample size grows, we will 
know with certainty if we should reject the hypothesis. For most of our work in this text, 
we can use the following guide: A testing procedure about the parameters in a model 
is consistent if it is based on a consistent estimator of those parameters. Nearly all our 
work in this book is based on consistent estimators. Save for the latter sections of this 
chapter, where our tests will be about the parameters in nested models, our tests will be 
consistent as well.

5.2.5    A METHODOLOGICAL DILEMMA: BAYESIAN VERSUS CLASSICAL TESTING

As we noted earlier, the testing methodology we will employ here is an all-or-nothing 
proposition. We will determine the testing rule(s) in advance, gather the data, and either 
reject or not reject the null hypothesis. There is no middle ground. This presents the 
researcher with two uncomfortable dilemmas. First, the testing outcome, that is, the 
sample data might be uncomfortably close to the boundary of the rejection region. 
Consider our example. If we have decided in advance to reject the null hypothesis if 
b2 7 1.00, and the sample value is 0.9999, it will be difficult to resist the urge to reject the 
null hypothesis anyway, particularly if we entered the analysis with a strongly held belief 
that the null hypothesis is false. That is, intuition notwithstanding, we are unconvinced 
that art buyers really do care about size. Second, the methodology we have laid out here 
has no way of incorporating other studies. To continue our example, if we were the tenth 
team of analysts to study the art market, and the previous nine had decisively rejected 
the hypothesis that b2 = 0, we will find it very difficult not to reject that hypothesis even 
if our evidence suggests, based on our testing procedure, that we should not.

This dilemma is built into the classical testing methodology. There is a middle 
ground. The Bayesian methodology that we will discuss in Chapter 16 does not face 
this dilemma because Bayesian analysts never reach a firm conclusion. They merely 
update their priors. Thus, in the first case noted, in which the observed data are close 
to the boundary of the rejection region, the analyst will merely be updating the prior 
with slightly less persuasive evidence than might be hoped for. But the methodology 
is comfortable with this. For the second instance, we have a case in which there is a 
wealth of prior evidence in favor of rejecting H0. It will take a powerful tenth body of 
evidence to overturn the previous nine conclusions. The results of the tenth study (the 
posterior results) will incorporate not only the current evidence, but the wealth of prior 
data as well.

5.3	 THREE APPROACHES TO TESTING HYPOTHESES

We will consider three approaches to testing hypotheses, Wald tests, fit based tests, and 
Lagrange multiplier tests. The hypothesis characterizes the population. If the hypothesis 
is correct, then the sample statistics should mimic that description. To continue our 
earlier example, if the hypothesis that states that a certain coefficient in a regression 
model equals zero is correct, then the least squares estimate of that coefficient should 
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be close to zero, at least within sampling variability. The tests will follow that logic as 
follows:

●● Wald tests: The hypothesis states that B obeys some restriction(s), which we might 
state generally as c(B) = 0. The least squares estimator, b, is a consistent estimator 
of B. If the hypothesis is correct, then c(b) should be close to zero. For the example 
of a single coefficient, if the hypothesis that bk equals zero is correct, then bk should 
be close to zero. The Wald test measures how close c(b) is to zero. The Wald test is 
based on estimation of the unrestricted model—the test measures how close the 
estimated unrestricted model is to the hypothesized restrictions.

●● Fit based tests: We obtain the best possible fit—highest R2 (or smallest sum of 
squared residuals)—by using least squares without imposing the restrictions. 
Imposing the restrictions will degrade the fit of the model to the data. For example, 
when we impose bk = 0 by leaving xk out of the model, we should expect R2 to fall. 
The empirical device to use for testing the hypothesis will be a measure of how much 
R2 falls when we impose the restrictions. This test procedure compares the fit of the 
restricted model to that of the unrestricted model.

●● Lagrange multiplier (LM) tests: The LM test is based on the restricted model. The 
logic of the test is based on the general result that with the restrictions imposed, 
if those restrictions are incorrect, then we will be able to detect that failure in 
a measurable statistic. For the example of a single coefficient, bk, in a multiple 
regression, the LM approach for the test will be based on the residuals from the 
regression that omits xk. If bk actually is not zero, then those residuals, say ei(k), 
which contain bkxik, will be correlated with xk. The test statistic will be based on 
that correlation. The test procedure is based on the estimates of the restricted 
model.

IMPORTANT ASSUMPTIONS
To develop the testing procedures in this section, we will begin by assuming homosce-
dastic, normally distributed disturbances—Assumptions A4 and A6 in Table 4.1. As 
we saw in Chapter 4, with these assumptions, we are able to obtain the exact distribu-
tions of the test statistics. In Section 5.4, we will develop an alternative set of results 
that allows us to proceed without Assumptions A4 and A6. It is useful to keep the 
distinction between the underlying theory of the testing procedures and the practical 
mechanics of inferences based on asymptotic approximations and robust covariance 
matrices. Robust inference is an improvement on the received procedures based on 
large-sample approximations to conventional statistics that allow conclusions to be 
drawn in a broader set of circumstances. For example, the conventional “F statistic” 
examined in Section 5.3.1B derives specifically from Assumptions A4 and A6. 
Cameron and Miller (2015, Sec. VII.A) in their survey of cluster robust inference (see 
Section 4.5.3) examine reconstruction of the F statistic in the broader context of 
nonnormality and clustered sampling.

The general linear hypothesis is a set of J restrictions on the linear regression model,

y = XB + E.
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The restrictions are written

 r11b1 + r12b2 + g + r1KbK = q1
	  r21b1 + r22b2 + g + r2KbK = q2 	 (5-7)

 g
 rJ1b1 + rJ2b2 + g + rJKbK = qJ.

The general case can be written in the matrix form,

	 RB = q.	 (5-8)

Each row of R is the coefficients in one of the restrictions. Typically, R will have only one 
or a few rows and numerous zeros in each row. The hypothesis implied by the restrictions 
is written

 H0 : RB - q = 0, H1 : RB - q ≠ 0.

Some examples would be as follows:

1.	 One of the coefficients is zero, bj = 0,

R = [0 0 g 1 0 g 0]; q = 0.

2.	 Two of the coefficients are equal, bk = bj,

R = [0 0 1 g -1 g 0]; q = 0.

3.	 A set of the coefficients sum to one, b2 + b3 + b4 = 1,

R = [0 1 1 1 0 g]; q = 1.

4.	 A subset of the coefficients are all zero, b1 = 0, b2 = 0, and b3 = 0,

R = C1 0 0 0 g 0
0 1 0 0 g 0
0 0 1 0 g 0

S = [I �  0]; q = C0
0
0
S .

5.	 Several linear restrictions, b2 + b3 = 1, b4 + b6 = 0, and b5 + b6 = 0,

R = C0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

S ; q = C1
0
0
S .

6.	 All the coefficients in the model except the constant term are zero,

R = [0 � IK-1]; q = 0.

The matrix R has K columns to be conformable with B, J rows for a total of  
J restrictions, and full row rank, so J must be less than or equal to K. The rows of 
R must be linearly independent. Although it does not violate the condition, the case 
of J = K must also be ruled out. If the K coefficients satisfy J = K restrictions, then  
R  is square and nonsingular and B = R-1q. There is no estimation or inference 
problem. The restriction RB = q imposes J restrictions on K otherwise free 
parameters. Hence, with the restrictions imposed, there are, in principle, only K - J 
free parameters remaining.
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We will want to extend the methods to nonlinear restrictions. In example 5.6 below, 
the hypothesis takes the form H0 : bj/bk = bl/bm. The general nonlinear hypothesis 
involves a set of J possibly nonlinear restrictions,

	 c(B) = q,	 (5-9)

where c(B) is a set of J nonlinear functions of B. The linear hypothesis is a special case. 
The counterpart to our requirements for the linear case are that, once again, J be strictly 
less than K, and the matrix of derivatives,

	 G(B) = 0c(B)/0B′,	 (5-10)

have full row rank. This means that the restrictions are functionally independent. In 
the linear case, G(B) is the matrix of constants, R, that we saw earlier and functional 
independence is equivalent to linear independence. We will consider nonlinear 
restrictions in detail in Section 5.5. For the present, we will restrict attention to the 
general linear hypothesis.

5.3.1    WALD TESTS BASED ON THE DISTANCE MEASURE

The Wald test is the most commonly used procedure. It is often called a significance test. 
The operating principle of the procedure is to fit the regression without the restrictions, 
and then assess whether the results appear, within sampling variability, to agree with 
the hypothesis.

5.3.1.a    Testing a Hypothesis about a Coefficient

The simplest case is a test of the value of a single coefficient. Consider, once again, the 
art market example in Section 5.2. The null hypothesis is

H0 : b2 = b2
0,

where b2
0 is the hypothesized value of the coefficient, in this case, zero. The Wald distance 

of a coefficient estimate from a hypothesized value is the distance measured in standard 
deviation units. For this case, the distance of bk from bk

0 would be

	 Wk =
bk - bk

02s2Skk
.	 (5-11)

As we saw in (4-45), Wk  (which we called zk before) has a standard normal distribution 
assuming that E[bk] = bk

0. Note that if E[bk] is not equal to bk
0, then Wk still has a normal 

distribution, but the mean is not zero. In particular, if E[bk] is bk
1 which is different from 

bk
0, then

	 E{Wk � E[bk] = bk
1} =

bk
1 - bk

02s2Skk
.	 (5-12)

(For example, if the hypothesis is that bk = bk
0 = 0, and bk does not equal zero, then 

the expected value of Wk = bk/2s2Skk will equal bk
1/2s2Skk, which is not zero.) For 

purposes of using Wk to test the hypothesis, our interpretation is that if bk does equal bk
0, 

then bk will be close to bk
0, with the distance measured in standard error units. Therefore, 

the logic of the test, to this point, will be to conclude that H0 is incorrect—should be 
rejected—if Wk is “large” in absolute value.
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Before we determine a benchmark for large, we note that the Wald measure 
suggested here is not usable because s2 is not known. It is estimated by s2. Once 
again, invoking our results from Chapter 4, if we compute Wk using the sample estimate 
of s2, we obtain

	 tk =
bk - bk

02s2Skk
.	 (5-13)

Assuming that bk does indeed equal bk
0, that is, “under the assumption of the null 

hypothesis,” tk has a t distribution with n - K degrees of freedom. [See (4-47).] We can 
now construct the testing procedure. The test is carried out by determining in advance 
the desired confidence with which we would like to draw the conclusion—the standard 
value is 95%. Based on (5-13), we can say that

prob{- t(1-a/2),[n-K]* 6 tk 6 + t(1-a/2),[n-K]* },

where t*(1-a/2),[n-K] is the appropriate critical value from the t table. By this construction, 
if the null hypothesis is true, then finding a sample value of tk that falls outside this range 
is unlikely. The test procedure states that it is so unlikely that we would conclude that 
it could not happen if the hypothesis were correct, so the hypothesis must be incorrect.

A common test is the hypothesis that a parameter equals zero—equivalently, this is 
a test of the relevance of a variable in the regression. To construct the test statistic, we set 
bk

0 to zero in (5-13) to obtain the standard t ratio, tk = bk/sbk. This statistic is reported in 
the regression results in several of our earlier examples, such as Example 4.10 where the 
regression results for the model in (5-2) appear. This statistic is usually labeled the t ratio 
for the estimator bk. If � bk � /sbk 7 t(1-a/2),[n-K], where t(1-a/2),[n-K] is the 100(1 - a/2) 
% critical value from the t distribution with (n - K) degrees of freedom, then the 
null hypothesis that the coefficient is zero is rejected and the coefficient (actually, the 
associated variable) is said to be statistically significant. The value of 1.96, which would 
apply for the 95% significance level in a large sample, is often used as a benchmark value 
when a table of critical values is not immediately available. The t ratio for the test of the 
hypothesis that a coefficient equals zero is a standard part of the regression output of 
most computer programs.

Another view of the testing procedure is useful. Also based on (4-48) and (5-13), 
we formed a confidence interval for bk as bk { t * sk. We may view this interval as the 
set of plausible values of bk with a confidence level of 100(1-a)%, where we choose a, 
typically 5%. The confidence interval provides a convenient tool for testing a hypothesis 
about bk, because we may simply ask whether the hypothesized value, bk

0, is contained in 
this range of plausible values. The complement of the confidence interval is the rejection 
region for this test.

Example 5.1    Art Appreciation
Regression results for the model in (5-3) based on a sample of 430 sales of Monet 
paintings appear in Table 4.7 in Example 4.9. The estimated coefficient on ln Area is 1.33372 
with an estimated standard error of 0.09205. The distance of the estimated coefficient from 
zero is 1.31638/0.092 - 5 = 14.16. Because this is far larger than the 95% critical value of 
1.96, we reject the hypothesis that b2 equals zero; evidently buyers of Monet paintings do care 
about size. In contrast, the coefficient on Aspect Ratio is -0.09623 with an estimated standard 
error of 0.16706, so the associated t ratio for the test of H0  : b3 = 0 is only -0.61. Given that 
this is well under 1.96, we conclude that art buyers (of Monet paintings) do not care about the 
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aspect ratio of the paintings. As a final consideration, we examine another (equally bemusing) 
hypothesis, whether auction prices are inelastic H0  : b2 … 1 or elastic H1  : b2 7 1 with respect 
to area. This is a one-sided test. Using our guideline for formulating the test, we will reject the 
null hypothesis if the estimated coefficient is sufficiently larger than 1.0. To maintain a test of 
size 0.05, we will then place all of the area for the rejection region to the right of 1.0; the critical 
value from the table is 1.645. The test statistic is (1.31638 - 1)/0.09205 = 3.437 7 1.645. 
Thus, we will reject this null hypothesis as well.

Example 5.2    Earnings Equation
Appendix Table F5.1 contains the 753 observations used in Mroz’s (1987) study of the labor 
supply behavior of married women. Of the 753 individuals in the sample, 428 were participants 
in the formal labor market. For these individuals, we will fit a semilog earnings equation of the 
form suggested in Example 2.2:

ln earnings = b1 + b2age + b3age2 + b4education + b5kids + e,

where earnings is hourly wage times hours worked, education is measured in years of 
schooling, and kids is a binary variable which equals one if there are children under 18 in 
the household. (See the data description in Appendix F for details.) Regression results are 
shown in Table 5.1. There are 428 observations and 5 parameters, so the t statistics have 
(428-5) = 423 degrees of freedom. For 95% significance levels, the standard normal value of 
1.96 is appropriate when the degrees of freedom are this large. By this measure, all variables 
are statistically significant and signs are consistent with expectations. It will be interesting 
to investigate whether the effect of kids is on the wage or hours, or both. We interpret the 
schooling variable to imply that an additional year of schooling is associated with a 6.7% 
increase in earnings. The quadratic age profile suggests that for a given education level and 
family size, earnings rise to a peak at -b2/(2b3) which is about 43 years of age, at which point 
they begin to decline. Some points to note: (1) Our selection of only those individuals who had 
positive hours worked is not an innocent sample selection mechanism. Because individuals 

Sum of squared residuals: 599.4582
R2 based on 428 observations 0.040944
Standard error of the regression: 1.19044

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392

Age2 -0.0023147 0.00098688 -2.345

Education 0.067472 0.025248 2.672
Kids -0.35119 0.14753 -2.380

Estimated Covariance Matrix for b(e−n = times 10−n)

Constant Age Age2 Education Kids

Constant 3.12381
Age -0.13409 0.0070325

Age2 0.0016617 -8.23237e-5 9.73928e-7

Education -0.0092609 5.08549e-5 -4.96761e-7 0.00063729
Kids 0.026749 -0.0026412 3.84102e-5 -5.46193e-5 0.021766

TABLE 5.1  Regression Results for an Earnings Equation

M05_GREE1366_08_SE_C05.indd   122 2/24/17   12:51 PM



	 CHAPTER  5  ✦  Hypothesis Tests and Model Selection 	123

chose whether or not to be in the labor force, it is likely (almost certain) that earnings potential 
was a significant factor, along with some other aspects we will consider in Chapter 19. (2) The 
earnings equation is a mixture of a labor supply equation—hours worked by the individual—
and a labor demand outcome—the wage is, presumably, an accepted offer. As such, it is 
unclear what the precise nature of this equation is. Presumably, it is a hash of the equations 
of an elaborate structural equation system. (See Example 10.1 for discussion.)

5.3.1.b    The F Statistic

We now consider testing a set of J linear restrictions stated in the null hypothesis,

H0 :RB - q = 0,

against the alternative hypothesis,

H1 :RB - q ≠ 0.

Given the least squares estimator b, our interest centers on the discrepancy vector 
Rb - q = m. It is unlikely that m will be exactly 0. The statistical question is whether 
the deviation of m from 0 can be attributed to sampling variability or whether it is 
significant. Because b is normally distributed [see Section 4.3.6] and m is a linear function 
of b, m is also normally distributed. If the null hypothesis is true, then RB - q = 0 and 
m has mean vector

E[m � X] = RE[b � X] - q = RB - q = 0

and covariance matrix

Var[m � X] = Var[Rb - q � X] = R{Var[b � X]}R′ = R[s2(X′X)-1]R′.

We can base a test of H0 on the Wald criterion. Conditioned on X, we find:

 W = m′{Var[m � X]}-1m

	  = (Rb - q)′{R[s2(X′X)-1]R′}-1 (Rb - q)	 (5-14)

 ∼ x2[J].

The statistic W has a chi-squared distribution with J degrees of freedom if the hypothesis 
is correct.1 Intuitively, the larger m is—that is, the worse the failure of least squares to 
satisfy the restrictions—the larger the chi-squared statistic. Therefore, a large chi-squared 
value will weigh against the hypothesis.

The chi-squared statistic in (5-14) is not usable because of the unknown s2. By using 
s2 instead of s2 and dividing the result by J, we obtain a usable F statistic with J and 
n - K degrees of freedom,

	 F =
W
J

 
s2

s2 = (Rb - q)′{R[s2(X′X)-1]R′}-1 (Rb - q)/J.	 (5-15)

The F statistic for testing the general linear hypothesis is simply the feasible Wald 
statistic, divided by J:

	 F[J, n - K � X] =
(Rb - q)′{R[s2(X′X)-1]R′}-1 (Rb - q)

J
.	 (5-16)

1This calculation is an application of the full rank quadratic form of Section B.11.6. Note that although the  
chi-squared distribution is conditioned on X, it is also free of X.
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124	 Part I  ✦   The Linear Regression Model

For testing one linear restriction of the form

H0 : r1b1 + r2b2 + g + rKbK = r′B = q,

(usually, some of the r’s will be zero), the F statistic is

F[1, n - K] =
(Σjrjbj - q)2

Σj Σkrjrk est. cov[bj, bk]
.

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a 
single row with a one in the jth position and zeros elsewhere, R[s2(X′X)-1]R′ is the jth 
diagonal element of the estimated covariance matrix, and Rb - q is (bj - q). The F 
statistic is then

F[1, n - K] =
(bj - q)2

est. Var[bj]
.

Consider an alternative approach. The sample estimate of r′B is

r1b1 + r2b2 + g + rKbK = r′b = qn .

If qn  differs significantly from q, then we conclude that the sample data are not consistent 
with the hypothesis. It is natural to base the test on

	 t =
qn - q

se(qn)
.	 (5-17)

We require an estimate of the standard error of qn . Because qn  is a linear function of b 
and we have an estimate of the covariance matrix of b, s2(X′X)-1, we can estimate the 
variance of qn  with

est. Var[qn � X] = r′[s2 (X′X)-1]r.

The denominator of t is the square root of this quantity. In words, t is the distance in 
standard error units between the hypothesized function of the true coefficients and 
the same function of the estimates of them. If the hypothesis is true, then the estimates 
should reflect that, at least within the range of sampling variability. Thus, if the absolute 
value of the preceding t ratio is larger than the appropriate critical value, then doubt is 
cast on the hypothesis.

There is a useful relationship between the statistics in (5-16) and (5-17). We can write 
the square of the t statistic as

	 t2 =
(qn - q)2

Var(qn - q � X)
=

(r′b - q){r′[s2(X′X)-1]r}-1(r′b - q)

1
.	 (5-18)

It follows, therefore, that for testing a single restriction, the t statistic is the square root 
of the F statistic that would be used to test that hypothesis. (The sign of the t statistic is 
lost, of course.)

Example 5.3    Restricted Investment Equation
Section 5.2.2 suggested a theory about the behavior of investors: They care only about real 
interest rates. If investors were only interested in the real rate of interest, then equal increases 
in interest rates and the rate of inflation would have no independent effect on investment. 
The null hypothesis is

H0  : b2 + b3 = 0.
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Estimates of the parameters of equations (5-4) and (5-6) using 1950I to 2000IV quarterly data 
on real investment, real GDP, an interest rate (the 90-day T-bill rate), and inflation measured 
by the change in the log of the CPI given in Appendix Table F5.2 are presented in Table 5.2. 
(One observation is lost in computing the change in the CPI.)

To form the appropriate test statistic, we require the standard error of qn = b2 + b3, which is

se(qn ) = [0.003192 + 0.002342 + 2(-3.718 * 10-6)]1/2 = 0.002866.

The t ratio for the test is therefore

t =
-0.00860 + 0.00331

0.002866
= -1.846.

Using the 95% critical value from t[20395] = 1.96 (the standard normal value), we conclude 
that the sum of the two coefficients is not significantly different from zero, so the hypothesis 
should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model. 
One convenient way to parameterize a constraint is to set it up in such a way that the standard 
test statistics produced by the regression can be used without further computation to test the 
hypothesis. In the preceding example, we could write the regression model as specified in 
(5-5). Then an equivalent way to test H0 would be to fit the investment equation with both the 
real interest rate and the rate of inflation as regressors and to test our theory by simply testing 
the hypothesis that b3 equals zero, using the standard t statistic that is routinely computed. 
When the regression is computed this way, b3 = -0.00529 and the estimated standard error 
is 0.00287, resulting in a t ratio of -1.844(!). (Exercise: Suppose that the nominal interest rate, 
rather than the rate of inflation, were included as the extra regressor. What do you think the 
coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis,

 b2 + b3 = 0 (investors consider the real interest rate),

 b4 = 1 (the marginal propensity to invest equals 1),

 b5 = 0 (there is no time trend).

Then,

R = C0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

S ; q = C0
1
0
S ; Rb - q = C -0.0053

-0.9302
-0.0057

S .

B1 B2 B3 B4 B5

Model (5-4) -9.135 -0.00860 0.00331 1.930 -0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s = 0.08618, R2 = 0.979753, e′e = 1.47052,
est. cov[b2, b3] = -3.718e-6

Model (5-6) -7.907 -0.00443 0.00443 1.764 -0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

s = 0.8670, R2 = 0.979405, e′e = 1.49578

Table 5.2  �Estimated Investment Equations (Estimated standard errors in parentheses)
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126	 Part I  ✦   The Linear Regression Model

Inserting these values in the formula for the F statistic yields F = 109.84. The 5% critical 
value for F[3, 198] is 2.65. We conclude, therefore, that the data are not consistent with this 
hypothesis. The result gives no indication as to which of the restrictions is most influential in 
the rejection of the hypothesis. If the three restrictions are tested one at a time, the t statistics 
in (5-17) are -1.844, 5.076, and -3.803. Based on the individual test statistics, therefore, we 
would expect both the second and third hypotheses to be rejected.

5.3.2    TESTS BASED ON THE FIT OF THE REGRESSION

A different approach to hypothesis testing focuses on the fit of the regression. Recall 
that the least squares coefficient vector b was chosen to minimize the sum of squared 
deviations, e′e. Because R2 equals 1 - e′e/y′M0y and y′M0y is a constant that does not 
involve b, it follows that if the model contains a constant term, b is chosen to maximize 
R2. One might ask whether choosing some other value for the slopes of the regression 
leads to a significant loss of fit. For example, in the investment equation (5-4), one might 
be interested in whether assuming the hypothesis (that investors care only about real 
interest rates) leads to a substantially worse fit than leaving the model unrestricted. To 
develop the test statistic, we first examine the computation of the least squares estimator 
subject to a set of restrictions. We will then construct a test statistic that is based on 
comparing the R2’s from the two regressions.

5.3.2.a    The Restricted Least Squares Estimator

Suppose that we explicitly impose the restrictions of the general linear hypothesis in the 
regression. The restricted least squares estimator is obtained as the solution to

Minimizeb0
 S(b0) = (y - Xb0)′(y - Xb0) subject to Rb0 = q.

A Lagrangean function for this problem can be written

	 L*(b0, L ) = (y - Xb0)′(y - Xb0) + 2L ′(Rb0 - q).2	 (5-19) 

The solutions b* and L* will satisfy the necessary conditions

 
0L*

0b*

= -2X′(y - Xb*) + 2R′L* = 0,

	  
0L*

0L*

= 2(Rb* - q) = 0.	 (5-20)

Dividing through by 2 and expanding terms produces the partitioned matrix equation

	 JX′X R′
R 0

R Jb*
L*

R = JX′y
q

R .	 (5-21)

Assuming that the partitioned matrix in brackets is nonsingular, the restricted least 
squares estimator is the upper part of the solution

	 Jb*
L*

R = JX′X R′
R 0

R -1

 JX′y
q

R = A-1d.	 (5-22)

2Because l is not restricted, we can formulate the constraints in terms of 2l. The convenience of the scaling 
shows up in (5-20).
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If, in addition, X′X is nonsingular, then explicit solutions for b* and L* may be obtained 
by using the formula for the partitioned inverse (A-74),3

 b* = b - (X′X)-1R′[R(X′X)-1R′]-1(Rb - q)

	  = b - Cm,  	 (5-23)

 l* = [R(X′X)-1R′]-1(Rb - q).

Greene and Seaks (1991) show that the covariance matrix for b* is simply s2 times the 
upper left block of A-1. If X′X is nonsingular, an explicit formulation may be obtained:

	 Var[b* � X] = s2(X′X)-1 - s2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1.	 (5-24)

Thus,

Var[b* � X] = Var[b � X]:a nonnegative definite matrix.

One way to interpret this reduction in variance is as the value of the information 
contained in the restrictions. A useful point to note is that Var[b* � X] is smaller than 
Var[b � X] even if the restrictions are incorrect.

Note that the explicit solution for L* involves the discrepancy vector Rb - q. If the 
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers 
will equal zero and b* will equal b. Of course, this is unlikely. In general, the constrained 
solution, b*, is equal to the unconstrained solution, b, minus a term that accounts for the 
failure of the unrestricted solution to satisfy the constraints.

5.3.2.b    The Loss of Fit from Restricted Least Squares

To develop a test based on the restricted least squares estimator, we consider a single 
coefficient first and then turn to the general case of J linear restrictions. Consider the 
change in the fit of a multiple regression when a variable z is added to a model that 
already contains K - 1 variables, x. We showed in Section 3.5 (Theorem 3.6) (3-29) that 
the effect on the fit would be given by

	 RXz
2 = RX

2 + (1 - RX
2 )ryz*2,	 (5-25)

where RXz
2  is the new R2 after z is added, RX

2  is the original R2, and ryz*  is the partial 
correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at 
the least, does not deteriorate). In deriving the partial correlation coefficient between y 
and z in (3-22) we obtained the convenient result

	 ryz*2 =
tz
2

tz
2 + (n - K)

,	 (5-26)

where tz
2 is the square of the t ratio for testing the hypothesis that the coefficient on z is 

zero in the multiple regression of y on X and z. If we solve (5-25) for ryz*2 and (5-26) for 
tz
2 and then insert the first solution in the second, then we obtain the result

	 tz
2 =

(RXz
2 - RX

2 )/1

(1 - RXz
2 )/(n - K)

.	 (5-27)

3The general solution given for d* may be usable even if X′X is singular. This formulation and a number of 
related results are given in Greene and Seaks (1991).
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128	 Part I  ✦   The Linear Regression Model

We saw at the end of Section 5.4.2 that for a single restriction, such as bz = 0,

F[1, n - K] = t2[n - K],

which gives us our result. That is, in (5-27), we see that the squared t statistic (i.e., 
the F statistic) can be computed using the change in the R2. By interpreting the 
preceding as the result of removing z from the regression, we see that we have proved 
a result for the case of testing whether a single slope is zero. But the preceding result 
is general. The test statistic for a single linear restriction is the square of the t ratio 
in (5-17). By this construction, we see that for a single restriction, F is a measure of 
the loss of fit that results from imposing that restriction. To obtain this result, we will 
proceed to the general case of J linear restrictions, which will include one restriction 
as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the 
unrestricted solution. Let e* equal y - Xb*. Then, using a familiar device,

e* = y - Xb - X(b* - b) = e - X(b* - b).

The new sum of squared deviations is

e*
=e* = e′e + (b* - b)′X′X(b* - b) Ú e′e.

(The middle term in the expression involves X′e, which is zero.) The loss of fit is

	 e*
=e* - e′e = (Rb - q)′[R(X′X)-1R′]-1(Rb - q).	 (5-28)

This expression appears in the numerator of the F statistic in (5-7). Inserting the 
remaining parts, we obtain

	 F[J, n - K] =
(e*

=e* - e′e)/J

e′e/(n - K)
.	 (5-29)

Finally, by dividing both numerator and denominator of F by Σi(yi - y)2, we obtain the 
general result:

	 F[J, n - K] =
(R2 - R*

2)/J

(1 - R2)/(n - K)
.	 (5-30)

This form has some intuitive appeal in that the difference in the fits of the two models 
is directly incorporated in the test statistic. As an example of this approach, consider the 
joint test that all the slopes in the model are zero. This is the overall F ratio that will be 
discussed in Section 5.3.2C, where R*

2 = 0.
For imposing a set of exclusion restrictions such as bk = 0 for one or more coefficients, 

the obvious approach is simply to omit the variables from the regression and base the 
test on the sums of squared residuals for the restricted and unrestricted regressions. 
The F statistic for testing the hypothesis that a subset, say B2, of the coefficients are all 
zero is constructed using R = (0:I), q = 0, and J = K2 = the number of elements in 
B2. The matrix R(X′X)-1R′ is the K2 * K2 lower right block of the full inverse matrix. 
Using our earlier results for partitioned inverses and the results of Section 3.3, we have 
R(X′X)-1R′ = (X2

=M1X2)
-1 and Rb - q = b2. Inserting these in (5-28) gives the loss 

of fit that results when we drop a subset of the variables from the regression:

e*
=e* - e′e = b2

=X2
=M1X2b2.
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The procedure for computing the appropriate F statistic amounts simply to comparing 
the sums of squared deviations from the short and long regressions, which we saw 
earlier.

5.3.2.c    Testing the significance of the regression

A question that is usually of interest is whether the regression equation as a whole is 
significant. This test is a joint test of the hypotheses that all the coefficients except the 
constant term are zero. If all the slopes are zero, then the coefficient of determination, 
R2, is zero as well, so we can base a test of this hypothesis on the value of R2. The central 
result needed to carry out the test is given in (5-30). This is the special case with R*

2 = 0, 
so the F statistic, which is usually reported with multiple regression results is

F[K - 1, n - K] =
R2/(K - 1)

(1 - R2)/(n - K)
.

If the hypothesis that B2 = 0 (the part of B not including the constant) is true and the 
disturbances are normally distributed, then this statistic has an F distribution with K – 1 
and n – K degrees of freedom. Large values of F give evidence against the validity of 
the hypothesis. Note that a large F is induced by a large value of R2. The logic of the test 
is that the F statistic is a measure of the loss of fit (namely, all of R2) that results when 
we impose the restriction that all the slopes are zero. If F is large, then the hypothesis 
is rejected.

Example 5.4F    Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation in 
Example 5.2 are all zero is

F[4, 423] =
0.040995/(5 - 1)

(1 - 0.040995)/(428 - 5)
= 4.521,

which is larger than the 95% critical value of 2.39. We conclude that the data are inconsistent 
with the hypothesis that all the slopes in the earnings equation are zero. We might have 
expected the preceding result, given the substantial t ratios presented earlier. But this case 
need not always be true. Examples can be constructed in which the individual coefficients are 
statistically significant, while jointly they are not. This case can be regarded as pathological, 
but the opposite one, in which none of the coefficients is significantly different from zero 
while R2 is highly significant, is relatively common. The problem is that the interaction among 
the variables may serve to obscure their individual contribution to the fit of the regression, 
whereas their joint effect may still be significant.

5.3.2.d    Solving out the restrictions and a caution about R2

In principle, one can usually solve out the restrictions imposed by a linear hypothesis. 
Algebraically, we would begin by partitioning R into two groups of columns, one with 
J and one with K - J, so that the first set are linearly independent. (There are many 
ways to do so; any one will do for the present.) Then, with B likewise partitioned and its 
elements reordered in whatever way is needed, we may write

RB = R1B1 + R2B2 = q.

If the J columns of R1 are linearly independent, then

B1 = R1
-1[q - R2B2].
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This suggests that one might estimate the restricted model directly using a transformed 
equation, rather than use the rather cumbersome restricted estimator shown in (5-23). 
A simple example illustrates. Consider imposing constant returns to scale on a two input 
production function,

ln y = b1 + b2 ln x1 + b3 ln x2 + e.

The hypothesis of linear homogeneity is b2 + b3 = 1 or b3 = 1 - b2. Simply building 
the restriction into the model produces

ln y = b1 + b2 ln x1 + (1 - b2) ln x2 + e

or

ln y = ln x2 + b1 + b2(ln x1 - ln x2) + e.

One can obtain the restricted least squares estimates by linear regression of (ln y - ln x2) 
on a constant and (ln x1 - ln x2). However, the test statistic for the hypothesis cannot be 
computed using the familiar result in (5-30), because the denominators in the two R2’s  
are different. The statistic in (5-30) could even be negative. The appropriate approach 
would be to use the equivalent, but appropriate computation based on the sum of squared 
residuals in (5-29). The general result from this example is that one must be careful in 
using (5-30) that the dependent variable in the two regressions must be the same.

5.3.3    LAGRANGE MULTIPLIER TESTS

The vector of Lagrange multipliers in the solution for b* and L* in (5-23) is 
[R(X′X)-1R′]-1(Rb - q), that is, a multiple of the least squares discrepancy vector. 
In principle, a test of the hypothesis that L* equals zero should be equivalent to a test 
of the null hypothesis; L* differs from zero because the restrictions do not hold in the 
data—that is, because Rb is not equal to q. A Wald test of the hypothesis that L* = 0 is 
derived in Section 14.9.1. The chi-squared statistic is computed as

WLM = (Rb - q)′ [R{s2(X′X)-1}R′]-1(Rb - q).

A feasible version of the statistic is obtained by using s2 (based on the restricted 
regression) in place of the unknown s2. The large-sample distribution of this Wald 
statistic would be chi-squared with J degrees of freedom. There is a remarkably simple 
way to carry out this test. The chi-squared statistic, in this case with J degrees of 
freedom, can be computed as nR2 in the regression of e* = y - Xb* (the residuals in 
the constrained regression) on the full set of independent variables as they would appear 
in the unconstrained regression. For example, for testing the restriction B2 = 0 in the 
model y = X1B1 + X2B2 + E, we would (1) regress y on X1 alone and compute residuals 
e*, then (2) compute WLM by regressing e* on (X1, X2) and computing nR2.

Example 5.5    Production Functions
The data in Appendix Table F5.3 have been used in several studies of production functions.4 
Least squares regression of log output (value added) on a constant and the logs of labor and 
capital produce the estimates of a Cobb–Douglas production function shown in Table 5.3. 

4The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed by 
Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner, Lovell, and 
Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only the remaining 27.
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We will construct several hypothesis tests based on these results. A generalization of the 
Cobb–Douglas model is the translog model,5 which is

ln Y = b1 + b2 ln L + b3 ln K + b4(
1
2 ln2 L) + b5(

1
2 ln2K) + b6 ln L ln K + e.

As we shall analyze further in Chapter 10, this model differs from the Cobb–Douglas model 
in that it relaxes the Cobb–Douglas’s assumption of a unitary elasticity of substitution. The 
Cobb–Douglas model is obtained by the restriction b4 = b5 = b6 = 0. The results for the 
two regressions are given in Table 5.3. The F statistic for the hypothesis of a Cobb–Douglas 
model is

F[3, 21] =
(0.85163 - 0.67993)/3

0.67993/21
= 1.768.

The critical value from the F table is 3.07, so we would not reject the hypothesis that a Cobb–
Douglas model is appropriate.

5Berndt and Christensen (1973). See Example 2.4 and Section 10.3.2 for discussion.

Translog Cobb–Douglas

Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18837
R-squared 0.95486 0.94346
Model F [K – 1, n – K] 74.326 200.239
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27

Variable Coefficient Std.Error t Ratio Coefficient Std.Error t Ratio

Constant 0.94420 2.911 0.324 1.171 0.3268 3.582
ln L 3.61364 1.548 2.334 0.6030 0.1260 4.787
ln K -1.89311 1.016 -1.863 0.3757 0.0853 4.402
1
2 ln2 L -0.96405 0.7074 -1.363
1
2 ln2 K 0.08529 0.2926 0.291

ln L * ln K 0.31239 0.4389 0.712

Estimated Covariance Matrix for Translog (Cobb–Douglas) Coefficient Estimates

Constant ln L ln K 1
2 ln2 L 1

2 ln2 K ln L ln K

Constant 8.472
(0.1068)

ln L -2.388 2.397
(-0.01984) (0.01586)

ln K -0.3313 -1.231 1.033
(0.001189) (-0.00961) (0.00728)

1
2 ln2 L -0.08760 -0.6658 0.5231 0.5004
1
2 ln2 K -0.2332 0.03477 0.02637 0.1467 0.08562

ln L ln K 0.3635 0.1831 -0.2255 -0.2880 -0.1160 0.1927

Table 5.3  Estimated Production Function
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The hypothesis of constant returns to scale is often tested in studies of production. 
This hypothesis is equivalent to a restriction that the two coefficients of the Cobb–Douglas 
production function sum to 1. For the preceding data,

F[1, 24] =
(0.6030 + 0.3757 - 1)2

0.01586 + 0.00728 - 2(0.00961)
= 0.1157,

which is substantially less than the 95% critical value of 4.26. We would not reject the 
hypothesis; the data are consistent with the hypothesis of constant returns to scale. The 
equivalent test for the translog model would be b2 + b3 = 1 and b4 + b5 + 2b6 = 0. The F 
statistic with 2 and 21 degrees of freedom is 1.8991, which is less than the critical value of 
3.47. Once again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of 
a hypothesis directly on the regression and estimate a restricted model.6 For example, to 
impose the constraint b2 = 1 on the Cobb–Douglas model, we would write

ln Y = b1 + 1.0 ln L + b3 ln K + e,

or
ln Y - ln L = b1 + b3 ln K + e.

Thus, the restricted model is estimated by regressing ln Y - ln L on a constant and ln K. Some 
care is needed if this regression is to be used to compute an F statistic. If the F statistic is 
computed using the sum of squared residuals [see (5-29)], then no problem will arise. If (5-30) is 
used instead, however, then it may be necessary to account for the restricted regression having 
a different dependent variable from the unrestricted one. In the preceding regression, the 
dependent variable in the unrestricted regression is ln Y, whereas in the restricted regression, 
it is ln Y - ln L. The R2 from the restricted regression is only 0.26979, which would imply an F 
statistic of 285.96, whereas the correct value is 9.935. If we compute the appropriate R*

2 using 
the correct denominator, however, then its value is 0.92006 and the correct F value results.

Note that the coefficient on ln K is negative in the translog model. We might conclude that 
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion 
would be incorrect, however. In the translog model, the capital elasticity of output is

0 ln Y
0 ln K

= b3 + b5 ln K + b6 ln L.

If we insert the coefficient estimates and the mean values for ln K and ln L (not the logs of the 
means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in line 
with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb–Douglas 
model. The estimated standard error for this linear combination of the least squares estimates 
is computed as the square root of

Est. Var[b3 + b5 ln K + b6ln L] = w′(Est. Var[b])w,

where
w = (0, 0, 1, 0, ln K, ln L)′

and b is the full 6 * 1 least squares coefficient vector. This value is 0.1122, which is reasonably 
close to the earlier estimate of 0.0853.

Earlier, we used an F test to test the hypothesis that the coefficients on the three second 
order terms in the translog model were equal to zero, producing the Cobb–Douglas model. 
To use a Lagrange multiplier test, we use the restricted coefficient vector

b* = [1.1710,0.6030,0.3757,0.0,0.0,0.0]′

6This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 7.
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to compute the residuals in the full regression,

e* = ln Y - b1* - b2* ln L - b3* ln K - b4* ln
2L/2 - b5* ln

2 K/2 - b6* ln L ln K.

The R2 in the regression of e* on X is 0.20162, so the chi-squared is 27(0.20162) = 5.444. 
The critical value from the chi-squared table with 3 degrees of freedom is 7.815, so the null 
hypothesis is not rejected. Note that the F statistic computed earlier was 1.768. Our large-
sample approximation to this would be 5.444/3 = 1.814.

5.4	 LARGE-SAMPLE TESTS AND ROBUST INFERENCE

The finite sample distributions of the test statistics, t in (5-13) and F in (5-16), follow 
from the normality assumption for E. Without the normality assumption, the exact 
distributions of these statistics depend on the data and the parameters and are not 
F, t, and chi-squared. The large-sample results we considered in Section 4.4 suggest 
that although the usual t and F statistics are still usable, in the more general case 
without the special assumption of normality, they are viewed as approximations 
whose quality improves as the sample size increases. By using the results of Section 
D.3 (on asymptotic distributions) and some large-sample results for the least squares 
estimator, we can construct a set of usable inference procedures based on already 
familiar computations.

Assuming the data are well behaved, the asymptotic distribution of the least squares 
coefficient estimator, b, is given by

	 b ∼
a

N cB, 
s2

n
 Q-1 d where Q = plim aX′X

n
b .	 (5-31)

The interpretation is that, absent normality of E , as the sample size, n, grows, the 
normal distribution becomes an increasingly better approximation to the true, though 
at this point unknown, distribution of b. As n increases, the distribution of 2n(b - B) 
converges exactly to a normal distribution, which is how we obtained the preceding 
finite-sample approximation. This result is based on the central limit theorem and does 
not require normally distributed disturbances. The second result we will need concerns 
the estimator of s2:

plim s2 = s2,  where s2 = e′e/(n - K).

With these in place, we can obtain some large-sample results for our test statistics that 
suggest how to proceed in a finite sample without an assumption of the distribution of 
the disturbances.

The sample statistic for testing the hypothesis that one of the coefficients, bk, equals 
a particular value, bk

0, is

tk =
2n(bk - bk

0)2s2(X′X/n)kk
-1

.

(Note that two occurrences of 2n cancel to produce our familiar result.) Under the 
null hypothesis, with normally distributed disturbances, tk is exactly distributed as t with 
n - K degrees of freedom. (See Theorem 4.6 and the beginning of this section.) The 
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exact distribution of this statistic is unknown, however, if E  is not normally distributed. 
From the preceding results, we find that the denominator of tk converges to 2s2Qkk

-1. 
Hence, if tk has a limiting distribution, then it is the same as that of the statistic that has 
this latter quantity in the denominator. (See point 3 of Theorem D.16.) That is, the large-
sample distribution of tk is the same as that of

tk =
2n(bk - bk

0)2s2Qkk
-1

.

But tk = (bk - E[bk])/(asy. Var[bk])1/2 from the asymptotic normal distribution 
(under the hypothesis bk = bk

0), so it follows that tk has a standard normal asymptotic 
distribution, and this result is the large-sample distribution of our t statistic. Thus, as a 
large-sample approximation, we will use the standard normal distribution to approximate 
the true distribution of the test statistic tk and use the critical values from the standard 
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For 
moderately sized samples, it provides only a suggestion that the t distribution may be 
a reasonable approximation. The appropriate critical values only converge to those 
from the standard normal, and generally from above, although we cannot be sure of 
this. In the interest of conservatism—that is, in controlling the probability of a Type I 
error—one should generally use the critical value from the t distribution even in 
the absence of normality. Consider, for example, using the standard normal critical 
value of 1.96 for a two-tailed test of a hypothesis based on 25 degrees of freedom. 
The nominal size of this test is 0.05. The actual size of the test, however, is the true, 
but unknown, probability that � tk � 7 1.96, which is 0.0612 if the t[25] distribution 
is correct, and some other value if the disturbances are not normally distributed. 
The end result is that the standard t test retains a large-sample validity. Little can be 
said about the true size of a test based on the t distribution unless one makes some 
other equally narrow assumption about E , but the t distribution is generally used as 
a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J linear 
restrictions. Step 1 will be to show that with normally distributed disturbances, JF 
converges to a chi-squared variable as the sample size increases. We will then show that 
this result is actually independent of the normality of the disturbances; it relies on the 
central limit theorem. Finally, we consider, as before, the appropriate critical values to 
use for this test statistic, which only has large-sample validity.

The F statistic for testing the validity of J linear restrictions, RB - q = 0, is given 
in (5-16). With normally distributed disturbances and under the null hypothesis, the 
exact distribution of this statistic is F[J, n - K]. To see how F behaves more generally, 
divide the numerator and denominator in (5-16) by s2 and rearrange the fraction 
slightly, so

	 F =
(Rb - q)′{R[s2(X′X)-1]R′}-1(Rb - q)

J(s2/s2)
.	 (5-32)

Because plim s2 = s2, and plim (X′X/n) = Q, the denominator of F converges to 
J and the bracketed term in the numerator will behave the same as (s2/n)RQ-1R′.   
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(See Theorem D16.3.) Hence, regardless of what this distribution is, if F has a limiting 
distribution, then it is the same as the limiting distribution of

 W* =
1
J

(Rb - q)′[R(s2/n)Q-1R′]-1(Rb - q)

	  =
1
J

 (Rb - q)′{asy. Var[Rb - q]}-1(Rb - q).	 (5-33)

This expression is (1/J) times a Wald statistic, based on the asymptotic distribution. The 
large-sample distribution of W* will be that of (1/J) times a chi-squared with J degrees 
of freedom. It follows that with normally distributed disturbances, JF converges to a 
chi-squared variate with J degrees of freedom. The proof is instructive.7

7See White (2001, p. 76).

THEOREM 5.1  Limiting Distribution of the Wald Statistic
If 2n(b - B) ¡d

N[0, �] and if H0: RB - q = 0 is true, then

W = (Rb - q)′{R�R′}-1(Rb - q) = JF ¡d
x2[J].

Proof: Because R is a matrix of constants and RB = q,

	 2nR(b - B) = 2n(Rb - q) ¡d
N[0, R�R′].� (1)

For convenience, write this equation as

	 z ¡d
N[0, P].� (2)

In Section A.6.11, we define the inverse square root of a positive definite matrix P as 
another matrix, say T, such that T2 = P-1, and denote T as P-1/2. Then, by the same 
reasoning as in (1) and (2),

	 if z ¡d
N[0, P], then P-1/2z ¡d

N[0, P-1/2PP-1/2] = N[0, I].� (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a random 
variable. The sum of squares of uncorrelated (i.e., independent) standard normal vari-
ables is distributed as chi-squared. Thus, the limiting distribution of

	 (P-1/2z)′(P-1/2z) = z′P-1z ¡d
x2(J).� (4)

Reassembling the parts from before, we have shown that the limiting distribution of

	 n(Rb - q)′[R�R′]-1(Rb - q)� (5)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the results 
of Section B.11.6. Finally, if �n  is an appropriate estimator of �, such as s2(X′X/n) 
assuming Assumption A4 or the estimators in (4-37) or (4-42), with

	 plim �n = �,� (6)

then the statistic obtained by replacing � by �n  in (5) has the same limiting 
chi-squared distribution.

M05_GREE1366_08_SE_C05.indd   135 2/24/17   12:51 PM



136	 Part I  ✦   The Linear Regression Model

The result in (5-33) is more general than it might appear. It is based generically on 
Asy.Var[b]. We can extend the Wald statistic to use our more robust estimators of   
Asy.Var[b], for examples, the heteroscedasticity robust estimator shown in Section 4.5.2 
and the cluster robust estimator in Section 4.5.3 (and other variants such as a time-series 
correction to be developed in Section 20.5.2).

The appropriate critical values for the F test of the restrictions RB - q = 0 
converge from above to 1/J times those for a chi-squared test based on the Wald 
statistic. For example, for testing J = 5 restrictions, the critical value from the chi-
squared table for 95% significance is 11.07. The critical values from the F table are 
3.33 = 16.65/5 for n - K = 10, 2.60 = 13.00/5 for n - K = 25, 2.40 = 12.00/5 for 
n - K = 50, 2.31 = 11.55/5 for n - K = 100, and 2.214 = 11.07/5 for large n - K. 
Thus, with normally distributed disturbances, as n gets large, the F test can be carried 
out by referring JF to the critical values from the chi-squared table.

The crucial result for our purposes here is that the distribution of the Wald statistic 
is built up from the asymptotic distribution of b, which is normal even without normally 
distributed disturbances. The implication is that the Wald statistic based on a robust asymptotic 
covariance matrix for b is an appropriate large-sample test statistic. (For linear restrictions, if 
the disturbances are homoscedastic, then the chi-squared statistic may be computed simply 
as JF.) This implication relies on the central limit theorem, not on normally distributed 
disturbances. The critical values from the F table remains a conservative approach that 
becomes more accurate as the sample size increases. For example, we see Cameron and Miller 
(2015) recommend basing hypothesis testing on the F distribution even after adjusting the 
asymptotic covariance matrix for b for cluster sampling with a moderate number of clusters.

5.5	 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model. 
When we analyze nonlinear functions of the parameters and nonlinear regression 
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function 
of the regression coefficients:

H0: c(B) = q.

We shall look first at the case of a single restriction. The more general case, in which 
c(B) = q is a set of restrictions, is a simple extension. The counterpart to the test statistic 
we used earlier would be

z =
c(Bn) - q

estimated standard error
,

or its square, which in the preceding were distributed as t[n - K] and F[1, n - K], 
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an 
estimate of the sampling variance of c(Bn) - q, however, involves the variance of a 
nonlinear function of Bn .

The results we need for this computation are presented in Sections 4.4.4, B.10.3, and 
D.3.1. A linear Taylor series approximation to c(Bn) around the true parameter vector B is

	 c(Bn) ≈ c(B) + a 0c(B)

0B
b
=

(Bn - B).	 (5-34)
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We must rely on consistency rather than unbiasedness here, because, in general, the 
expected value of a nonlinear function is not equal to the function of the expected 
value. If plim Bn = B, then we are justified in using c(Bn) as an estimate of c(B). (The 
relevant result is the Slutsky theorem.) Assuming that our use of this approximation 
is appropriate, the variance of the nonlinear function is approximately equal to the 
variance of the right-hand side, which is, then,

	 Var[c(Bn)] ≈ a 0c(B)

0B
b
=

asy.Var[Bn]a 0c(B)

0B
b .	 (5-35)

The derivatives in the expression for the variance are functions of the unknown 
parameters. Because these are being estimated, we use our sample estimates in 
computing the derivatives and the estimator of the asymptotic variance of b. Finally, we 
rely on Theorem D.22 in Section D.3.1 and use the standard normal distribution instead 
of the t distribution for the test statistic. Using g(Bn) to estimate g(B) = 0c(B)/0B, we 
can now test a hypothesis in the same fashion we did earlier.

Example 5.6    A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to 
consume can be written in the form

ln Ct = a + b ln Yt + g ln Ct - 1 + et,

which is a distributed lag model. In this model, the short-run marginal propensity to consume 
(MPC) (elasticity, given the variables are in logs) is b, and the long-run MPC is d = b/(1 - g). 
Consider testing the hypothesis that d = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the 
years 1950 to 2000 are given in Appendix Table F5.2. The estimated equation based on these 
data is

ln Ct = 0.003142 + 0.07495 ln Yt + 0.9246 ln Ct - 1 + et, R2 = 0.999712,  s = 0.00874.

(0.01055)   (0.02873)   (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est. Asy. Cov[b,c] = 
-0.0008207. The estimate of the long-run MPC is d = b/(1 - c) = 0.07495/(1 - 0.9246) =
0.99402. To compute the estimated variance of d, we will require gb = 0d/0b = 1/(1 - c) =
13.2626 and gc = 0d/0c = b/(1 - c)2 = 13.1834. The estimated asymptotic variance of d is

 Est. Asy. Var[d] = gb
2 Est. Asy. Var[b] + gc

2 Est. Asy. Var[c] + 2gbgc Est. Asy. Cov[b, c]

 = 13.26262 * 0.028732 + 13.18342 * 0.028592

 + 2(13.2626)(13.1834)(-0.0008207) = 0.0002585.

The square root is 0.016078. To test the hypothesis that the long-run MPC is greater than or 
equal to 1, we would use

z =
0.99403 - 1

0.016078
= -0.37131.

Because we are using a large-sample approximation, we refer to a standard normal table 
instead of the t distribution. The hypothesis that g = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear 
restriction instead; if d = 1, then b = 1 - g, or b + g = 1. The estimate is 
q = b + c - 1 = -0.00045. The estimated standard error of this linear function is 
[0.028732 + 0.028592 - 2(0.0008207)]1/2 = 0.00118. The t ratio for this test is -0.38135, 
which is almost the same as before. Because the sample used here is fairly large, this is 
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to be expected. However, there is nothing in the computations that ensures this outcome. 
In a smaller sample, we might have obtained a different answer. For example, using only 
the last 11 years of the data, the t statistics for the two hypotheses are 7.652 and 5.681. 
The Wald test is not invariant to how the hypothesis is formulated. In a borderline case, we 
could have reached a different conclusion. This lack of invariance does not occur with the 
likelihood ratio or Lagrange multiplier tests discussed in Chapter 14. On the other hand, both 
of these tests require an assumption of normality, whereas the Wald statistic does not. This 
illustrates one of the trade-offs between a more detailed specification and the power of the 
test procedures that are implied.

The generalization to more than one function of the parameters proceeds along 
similar lines. Let c(Bn) be a set of J functions of the estimated parameter vector and let 
the J * K matrix of derivatives of c(Bn) be

	 Gn =
0c(Bn)

0Bn ′
.	 (5-36)

The estimate of the asymptotic covariance matrix of these functions is

	 est. asy. Var[cn] = Gn {est. asy. Var[Bn ]}Gn ′.	 (5-37)

The jth row of Gn  is the K derivatives of cj(Bn) with respect to the K elements of Bn . 
For example, the covariance matrix for estimates of the short- and long-run marginal 
propensities to consume would be obtained using

G = J0 1 0
0 1/(1 - g) b/(1 - g)2 R .

The statistic for testing the J hypotheses c(B) = q is

	 W = (cn - q)′{est. asy. Var[cn]}-1(cn - q).	 (5-38)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the 
number of restrictions. Note that for a single restriction, this value is the square of the 
statistic in (5-33).

5.6	 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most 
powerful for the types of hypotheses we have considered.8 Although use of these 
procedures is clearly desirable, the requirement that we express the hypotheses in the 
form of restrictions on the model y = XB + E,

H0: RB = q

versus

H1: RB ≠ q,

can be limiting. Two common exceptions are the general problem of determining which 
of two possible sets of regressors is more appropriate and whether a linear or loglinear 

8See, for example, Stuart and Ord (1989, Chapter 27).
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model is more appropriate for a given analysis. For the present, we are interested in 
comparing two competing linear models:

	 H0: y = XB + E 0	 (5-39a)

and

	 H1: y = ZG + E 1.	 (5-39b)

The classical procedures we have considered thus far provide no means of forming 
a preference for one model or the other. The general problem of testing nonnested 
hypotheses such as these has attracted an impressive amount of attention in the 
theoretical literature and has appeared in a wide variety of empirical applications.9

5.6.1    TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing, as discussed in the preceding chapters 
and model selection as considered here, will turn on the asymmetry between the null 
and alternative hypotheses that is a part of the classical testing procedure.10 Because, 
by construction, the classical procedures seek evidence in the sample to refute the 
null hypothesis, how one frames the null can be crucial to the outcome. Fortunately, 
the Neyman–Pearson methodology provides a prescription; the null is usually cast as 
the narrowest model in the set under consideration. On the other hand, the classical 
procedures never reach a sharp conclusion. Unless the significance level of the testing 
procedure is made so high as to exclude all alternatives, there will always remain the 
possibility of a Type I error. As such, the null hypothesis is never rejected with certainty, 
but only with a prespecified degree of confidence. Model selection tests, in contrast, 
give the competing hypotheses equal standing. There is no natural null hypothesis. 
However, the end of the process is a firm decision—in testing (5-39a, b), one of the 
models will be rejected and the other will be retained; the analysis will then proceed 
in the framework of that one model and not the other. Indeed, it cannot proceed until 
one of the models is discarded. It is common, for example, in this new setting for the 
analyst first to test with one model cast as the null, then with the other. Unfortunately, 
given the way the tests are constructed, it can happen that both or neither model is 
rejected; in either case, further analysis is clearly warranted. As we shall see, the science 
is a bit inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was 
done in the framework of sample likelihoods and maximum likelihood procedures. 
Recent developments have been structured around a common pillar labeled the 
encompassing principle.11 Essentially, the principle directs attention to the question of 
whether a maintained model can explain the features of its competitors, that is, whether 
the maintained model encompasses the alternative. Yet a third approach is based on 
forming a comprehensive model that contains both competitors as special cases. When 

9Surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995), and Pesaran 
and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and Monfort focus on 
the underlying theory.
10See Granger and Pesaran (2000) for discussion.
11See Mizon and Richard (1986).
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possible, the test between models can be based, essentially, on classical (-like) testing 
procedures. We will examine tests that exemplify all three approaches.

5.6.2    AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features 
of another is tested. Model 0 encompasses Model 1 if the features of Model 1 can be 
explained by Model 0, but the reverse is not true.12 Because H0 cannot be written as a 
restriction on H1, none of the procedures we have considered thus far is appropriate. 
One possibility is an artificial nesting of the two models. Let X be the set of variables 
in X that are not in Z, define Z likewise with respect to X, and let W be the variables 
that the models have in common. Then H0 and H1 could be combined in a supermodel:

y = X B + Z G + W D + E.

In principle, H1 is rejected if it is found that G = 0 by a conventional F test, whereas H0 
is rejected if it is found that B = 0. There are two problems with this approach. First, D 
remains a mixture of parts of B and G, and it is not established by the F test that either 
of these parts is zero. Hence, this test does not really distinguish between H0 and H1; 
it distinguishes between H1 and a hybrid model. Second, this compound model may 
have an extremely large number of regressors. In a time-series setting, the problem of 
collinearity may be severe.

Consider an alternative approach. If H0 is correct, then y will, apart from the 
random disturbance E, be fully explained by X. Suppose we then attempt to estimate 
G by regression of y on Z. Whatever set of parameters is estimated by this regression, 
say, c, if H0 is correct, then we should estimate exactly the same coefficient vector if 
we were to regress XB on Z, because E0 is random noise under H0. Because B must be 
estimated, suppose that we use Xb instead and compute c0. A test of the proposition that 
Model 0 encompasses Model 1 would be a test of the hypothesis that E[c - c0] = 0. It 
is straightforward to show that the test can be carried out by using a standard F test to 
test the hypothesis that G1 = 0 in the augmented regression,

y = XB + Z1G1 + E 1,

where Z1 is the variables in Z that are not in X.13 (Of course, a line of manipulation 
reveals that Z and Z1 are the same, so the tests are also.)

5.6.3    COMPREHENSIVE APPROACH—THE J TEST

The J test proposed by Davidson and MacKinnon (1981) can be shown to be an 
application of the encompassing principle to the linear regression model.14 Their 
suggested alternative to the preceding compound model is

y = (1 - l)XB + l(ZG) + E.

In this model, a test of l = 0 would be a test against H1. The problem is that l cannot 
be separately estimated in this model; it would amount to a redundant scaling of the 

12See Aneuryn-Evans and Deaton (1980), Deaton (1982), Dastoor (1983), Gourieroux et al. (1983, 1995), and, 
especially, Mizon and Richard (1986).
13See Davidson and MacKinnon (2004, pp. 671–672).
14See Pesaran and Weeks (2001).
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regression coefficients. Davidson and MacKinnon’s (1984) J test consists of estimating 
G by a least squares regression of y on Z followed by a least squares regression of y on 
X and ZGn , the fitted values in the first regression. A valid test, at least asymptotically, of 
H1 is to test H0: l = 0. If H0 is true, then plim ln = 0. Asymptotically, the ratio ln/se(ln) 
(i.e., the usual t ratio) is distributed as standard normal and may be referred to the 
standard table to carry out the test. Unfortunately, in testing H0 versus H1 and vice 
versa, all four possibilities (reject both, neither, or either one of the two hypotheses) 
could occur. This issue, however, is a finite sample problem. Davidson and MacKinnon 
show that as n S ∞ , if H1 is true, then the probability that ln will differ significantly from 
0 approaches 1.

Example 5.7    J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

H0: Ct = b1 + b2Yt + b3Yt - 1 + e0t,

and

H1: Ct = g1 + g2Yt + g3Ct - 1 + e1t.

The first model states that consumption responds to changes in income over two periods, 
whereas the second states that the effects of changes in income on consumption persist 
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable 
income are given in Appendix Table F5.2. Here we apply the J test to these data and the two 
proposed specifications. First, the two models are estimated separately (using observations 
1950II through 2000IV). The least squares regression of C on a constant, Y, lagged Y, and 
the fitted values from the second model produces an estimate of l of 1.0145 with a t ratio 
of 62.861. Thus, H0 should be rejected in favor of H1. But reversing the roles of H0 and H1, 
we obtain an estimate of l of -10.677 with a t ratio of -7.188. Thus, H1 is rejected as well.15

5.7	 A SPECIFICATION TEST

The tests considered so far have evaluated nested models. The presumption is that one of 
the two models is correct. In Section 5.6, we broadened the range of models considered 
to allow two nonnested models. It is not assumed that either model is necessarily the 
true data-generating process; the test attempts to ascertain which of two competing 
models is closer to the truth. Specification tests fall between these two approaches. The 
idea of a specification test is to consider a particular null model and alternatives that 
are not explicitly given in the form of restrictions on the regression equation. A useful 
way to consider some specification tests is as if the core model, y = XB + E, is the 
null hypothesis and the alternative is a possibly unstated generalization of that model. 
Ramsey’s (1969) RESET test is one such test which seeks to uncover nonlinearities in 
the functional form. One (admittedly ambiguous) way to frame the analysis is

 H0: y = XB + E , H1: y = XB + higher@order powers of xk and other terms + E.

A straightforward approach would be to add squares, cubes, and cross-products of the 
regressors to the equation and test down to H0 as a restriction on the larger model. 
Two complications are that this approach might be too specific about the form of the 

15For related discussion of this possibility, see McAleer, Fisher, and Volker (1982).
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alternative hypothesis and, second, with a large number of variables in X, it could 
become unwieldy. Ramsey’s proposed solution is to add powers of xi

=B to the regression 
using the least squares predictions—typically, one would add the square and, perhaps the 
cube. This would require a two-step estimation procedure, because in order to add (xi

=b)2 
and (xi

=b)3, one needs the coefficients. The suggestion, then, is to fit the null model first, 
using least squares. Then, for the second step, the squares (and cubes) of the predicted 
values from this first-step regression are added to the equation and it is refit with the 
additional variables. A (large-sample) Wald test is then used to test the hypothesis of 
the null model.

As a general strategy, this sort of specification is designed to detect failures of the 
assumptions of the null model. The obvious virtue of such a test is that it provides much 
greater generality than a simple test of restrictions such as whether a coefficient is zero. 
But that generality comes at considerable cost:

1.	 The test is nonconstructive. It gives no indication what the researcher should do next 
if the null model is rejected. This is a general feature of specification tests. Rejection 
of the null model does not imply any particular alternative.

2.	 Because the alternative hypothesis is unstated, it is unclear what the power of this 
test is against any specific alternative.

3.	 For this specific test (perhaps not for some other specification tests we will 
examine later), because xi

=b uses the same b for every observation, the observations 
are correlated, while they are assumed to be uncorrelated in the original model. 
Because of the two-step nature of the estimator, it is not clear what is the 
appropriate covariance matrix to use for the Wald test. Two other complications 
emerge for this test. First, it is unclear what the coefficients converge to, assuming 
they converge to anything. Second, the variance of the difference between xi

=b 
and xi

=B is a function of x, so the second-step regression might be heteroscedastic. 
The implication is that neither the size nor the power of this test is necessarily 
what might be expected.

Example 5.8    Size of a RESET Test
To investigate the true size of the RESET test in a particular application, we carried out a 
Monte Carlo experiment. The results in Table 4.7 give the following estimates of Equation (5-2):

ln Price = -8.34237 + 1.31638 ln Area - 0.09623 Aspect Ratio + e, where sd(e) = 1.10435.

We take the estimated right-hand side to be our population. We generated 5,000 samples 
of 430 (the original sample size), by reusing the regression coefficients and generating a 
new sample of disturbances for each replication. Thus, with each replication, r, we have a 
new sample of observations on ln Priceir where the regression part is as above reused and a 
new set of disturbances is generated each time. With each sample, we computed the least 
squares coefficient, then the predictions. We then recomputed the least squares regression 
while adding the square and cube of the prediction to the regression. Finally, with each sample, 
we computed the chi-squared statistic, and rejected the null model if the chi-squared statistic 
is larger than 5.99, the 95th percentile of the chi-squared distribution with two degrees of 
freedom. The nominal size of this test is 0.05. Thus, in samples of 100, 500, 1,000, and 5,000, 
we should reject the null model 5, 25, 50, and 250 times. In our experiment, the computed 
chi-squared exceeded 5.99 8, 31, 65, and 259 times, respectively, which suggests that at least 
with sufficient replications, the test performs as might be expected. We then investigated the 
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power of the test by adding 0.1 times the square of ln Area to the predictions. It is not possible 
to deduce the exact power of the RESET test to detect this failure of the null model. In our 
experiment, with 1,000 replications, the null hypothesis is rejected 321 times. We conclude that 
the procedure does appear to have the power to detect this failure of the model assumptions.

5.8	 MODEL BUILDING—A GENERAL TO SIMPLE STRATEGY

There has been a shift in the general approach to model building. With an eye toward 
maintaining simplicity, model builders would generally begin with a small specification 
and gradually build up the model ultimately of interest by adding variables. But, based 
on the preceding results, we can surmise that just about any criterion that would be 
used to decide whether to add a variable to a current specification would be tainted by 
the biases caused by the incomplete specification at the early steps. Omitting variables 
from the equation seems generally to be the worse of the two errors. Thus, the simple-
to-general approach to model building has little to recommend it. Researchers are more 
comfortable beginning their specification searches with large elaborate models involving 
many variables and perhaps long and complex lag structures. The attractive strategy is 
then to adopt a general-to-simple, downward reduction of the model to the preferred 
specification. Of course, this must be tempered by two related considerations. In the 
kitchen sink regression, which contains every variable that might conceivably be relevant, 
the adoption of a fixed probability for the Type I error, say, 5%, ensures that in a big 
enough model, some variables will appear to be significant, even if by accident. Second, 
the problems of pretest estimation and stepwise model building also pose some risk of 
ultimately misspecifying the model. To cite one unfortunately common example, the 
statistics involved often produce unexplainable lag structures in dynamic models with 
many lags of the dependent or independent variables.

5.8.1    MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on 
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of 
squared residuals, such as R2 and the Cox (1961) test, are useful when interest centers 
on the within-sample fit or within-sample prediction of the dependent variable. When 
the model building is directed toward forecasting, within-sample measures are not 
necessarily optimal. As we have seen, R2 cannot fall when variables are added to a 
model, so there is a built-in tendency to overfit the model. This criterion may point us 
away from the best forecasting model, because adding variables to a model may increase 
the variance of the forecast error despite the improved fit to the data. With this thought 
in mind, the adjusted R2,

	 R 2 = 1 -
n - 1
n - K

 (1 - R2) = 1 -
n - 1
n - K

 £ e′e

a n
i= 1(yi - y)2 ≥,	 (5-40)

has been suggested as a fit measure that appropriately penalizes the loss of degrees of 
freedom that result from adding variables to the model. Note that R 2 may fall when 
a variable is added to a model if the sum of squares does not fall fast enough. (The 
applicable result appears in Theorem 3.7; R 2 does not rise when a variable is added to 
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a model unless the t ratio associated with that variable exceeds one in absolute value.) 
The adjusted R2 has been found to be a preferable fit measure for assessing the fit of 
forecasting models.16

The adjusted R2 penalizes the loss of degrees of freedom that occurs when a model 
is expanded. There is, however, some question about whether the penalty is sufficiently 
large to ensure that the criterion will necessarily lead the analyst to the correct model 
(assuming that it is among the ones considered) as the sample size increases. Two 
alternative fit measures that have been suggested are the Akaike Information Criterion,

	 aic (K) = sy
2(1 - R2)e2K/n	 (5-41)

and the Schwarz or Bayesian Information Criterion,

	 Bic (K) = sy
2(1 - R2)nK/n.	 (5-42)

(There is no degrees of freedom correction in sy
2.) Both measures improve (decline) as R2 

increases (decreases), but, everything else constant, degrade as the model size increases. 
Like R 2, these measures place a premium on achieving a given fit with a smaller number 
of parameters per observation, K/n. Logs are usually more convenient; the measures 
reported by most software are

	 aic (K) = ln a e′e
n

b +
2K
n

	 (5-43)

	 Bic (K) = ln a e′e
n

b +
K ln n

n
.	 (5-44)

Each prediction criterion has its virtues, and neither has an obvious advantage over 
the other.17 The Schwarz criterion, with its heavier penalty for degrees of freedom lost, 
will lean toward a simpler model. All else given, simplicity does have some appeal.

5.8.2    MODEL SELECTION

The preceding has laid out a number of choices for model selection, but, at the same 
time, has posed some uncomfortable propositions. The pretest estimation aspects of 
specification search are based on the model builder’s knowledge of the truth and the 
consequences of failing to use that knowledge. While the cautions about blind search 
for statistical significance are well taken, it does seem optimistic to assume that the 
correct model is likely to be known with hard certainty at the outset of the analysis. The 
bias documented in (4-9) is well worth the modeler’s attention. But, in practical terms, 
knowing anything about the magnitude presumes that we know what variables are in X2, 
which need not be the case. While we can agree that the model builder will omit income 
from a demand equation at his peril, we could also have some sympathy for the analyst 
faced with finding the right specification for his forecasting model among dozens of 
choices. The tests for nonnested models would seem to free the modeler from having to 
claim that the specified set of models contain the truth. But, a moment’s thought should 
suggest that the cost of this is the possibly deflated power of these procedures to point 

16See Diebold (2007), who argues that the simple R2 has a downward bias as a measure of the out-of-sample,  
one-step-ahead prediction error variance.
17See Diebold (2007).
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toward that truth. The J test may provide a sharp choice between two alternatives, but it 
neglects the third possibility that both models are wrong. Vuong’s test (see Section 14.6.6) 
does but, of course, it suffers from the fairly large inconclusive region, which is a symptom 
of its relatively low power against many alternatives. The upshot of all of this is that there 
remains much to be accomplished in the area of model selection. Recent commentary 
has provided suggestions from two perspectives, classical and Bayesian.

5.8.3    CLASSICAL MODEL SELECTION

Hansen (2005) lists four shortcomings of the methodology we have considered here:

1.	 Parametric vision
2.	 Assuming a true data-generating process
3.	 Evaluation based on fit
4.	 Ignoring model uncertainty

All four of these aspects have framed the analysis of the preceding sections. Hansen’s 
view is that the analysis considered here is too narrow and stands in the way of progress 
in model discovery.

All the model selection procedures considered here are based on the likelihood 
function, which requires a specific distributional assumption. Hansen argues for a focus, 
instead, on semiparametric structures. For regression analysis, this points toward generalized 
method of moments estimators. Casualties of this reorientation will be distributionally 
based test statistics such as the Cox and Vuong statistics, and even the AIC and BIC 
measures, which are transformations of the likelihood function. However, alternatives 
have been proposed.18 The second criticism is one we have addressed. The assumed true 
model can be a straightjacket. Rather (he argues), we should view our specifications as 
approximations to the underlying true data-generating process—this greatly widens the 
specification search, to one for a model which provides the best approximation. Of course, 
that now forces the question of what is best. So far, we have focused on the likelihood 
function, which in the classical regression can be viewed as an increasing function of R2. 
The author argues for a more focused information criterion (FIC) that examines directly 
the parameters of interest, rather than the fit of the model to the data. Each of these 
suggestions seeks to improve the process of model selection based on familiar criteria, 
such as test statistics based on fit measures and on characteristics of the model.

A (perhaps the) crucial issue remaining is uncertainty about the model itself. The 
search for the correct model is likely to have the same kinds of impacts on statistical 
inference as the search for a specification given the form of the model (see Sections 4.3.2 
and 4.3.3). Unfortunately, incorporation of this kind of uncertainty in statistical inference 
procedures remains an unsolved problem. Hansen suggests one potential route would be 
the Bayesian model averaging methods discussed next although he does express some 
skepticism about Bayesian methods in general.

5.8.4    BAYESIAN MODEL AVERAGING

If we have doubts as to which of two models is appropriate, then we might well be 
convinced to concede that possibly neither one is really the truth. We have painted 
ourselves into a corner with our left or right approach to testing. The Bayesian approach 

18For example, by Hong, Preston, and Shum (2000).
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to this question would treat it as a problem of comparing the two hypotheses rather 
than testing for the validity of one over the other. We enter our sampling experiment 
with a set of prior probabilities about the relative merits of the two hypotheses, which is 
summarized in a prior odds ratio, P01 = prob[H0]/prob[H1]. After gathering our data, 
we construct the Bayes factor, which summarizes the weight of the sample evidence 
in favor of one model or the other. After the data have been analyzed, we have our 
posterior odds ratio, P01 � data = Bayes factor * P01. The upshot is that ex post, neither 
model is discarded; we have merely revised our assessment of the comparative likelihood 
of the two in the face of the sample data. Of course, this still leaves the specification 
question open. Faced with a choice among models, how can we best use the information 
we have? Recent work on Bayesian model averaging has suggested an answer.19

An application by Wright (2003) provides an interesting illustration. Recent advances 
such as Bayesian VARs have improved the forecasting performance of econometric 
models. Stock and Watson (2001, 2004) report that striking improvements in predictive 
performance of international inflation can be obtained by averaging a large number of 
forecasts from different models and sources. The result is remarkably consistent across 
subperiods and countries. Two ideas are suggested by this outcome. First, the idea of 
blending different models is very much in the spirit of Hansen’s fourth point. Second, 
note that the focus of the improvement is not on the fit of the model (point 3), but its 
predictive ability. Stock and Watson suggested that simple equal-weighted averaging, 
while one could not readily explain why, seems to bring large improvements. Wright 
proposed Bayesian model averaging as a means of making the choice of the weights for 
the average more systematic and of gaining even greater predictive performance.

Leamer (1978) appears to be the first to propose Bayesian model averaging as 
a means of combining models. The idea has been studied more recently by Min and 
Zellner (1993) for output growth forecasting, Doppelhofer et al. (2000) for cross-country 
growth regressions, Koop and Potter (2004) for macroeconomic forecasts, and others. 
Assume that there are M models to be considered, indexed by m = 1, c, M. For 
simplicity, we will write the mth model in a simple form, fm(y � Z, Um) where f(.) is the 
density, y and Z are the data, and Um is the parameter vector for model m. Assume, as 
well, that model m* is the true model, unknown to the analyst. The analyst has priors pm 
over the probabilities that model m is the correct model, so pm is the prior probability 
that m = m*. The posterior probabilities for the models are

	 Πm = prob(m = m* � y, Z) =
P(y, Z � m)pm

aM
r = 1P(y, Z � r)pr

,	 (5-45)

where P(y, Z � m) is the marginal likelihood for the mth model,

	 P(y, Z � m) = Lum

P(y, Z �Um, m)P(Um)d Um,	 (5-46)

while P(y, Z �Um, m) is the conditional (on Um) likelihood for the mth model and P(Um)  
is the analyst’s prior over the parameters of the mth model. This provides an alternative 
set of weights to the Πm = 1/M suggested by Stock and Watson. Let Unm denote the 
Bayesian estimate (posterior mean) of the parameters of model m. (See Chapter 16.) 

19See Hoeting et al. (1999).
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Each model provides an appropriate posterior forecast density, f *(y � Z, Unm, m). The 
Bayesian model averaged forecast density would then be

	 f * = a
M

m= 1
f *(y � Z, Unm, m)Πm.	 (5-47)

A point forecast would be a similarly weighted average of the forecasts from the 
individual models.

Example 5.9    Bayesian Averaging of Classical Estimates
Many researchers have expressed skepticism of Bayesian methods because of the apparent 
arbitrariness of the specifications of prior densities over unknown parameters. In the 
Bayesian model averaging setting, the analyst requires prior densities over not only the model 
probabilities, pm, but also the model specific parameters, um. In their application, Doppelhofer, 
Miller, and Sala-i-Martin (2000) were interested in the appropriate set of regressors to include 
in a long-term macroeconomic (income) growth equation. With 32 candidates, M for their 
application was 232 (minus one if the zero regressors model is ignored), or roughly four 
billion. Forming this many priors would be optimistic in the extreme. The authors proposed 
a novel method of weighting a large subset (roughly 21 million) of the 2M possible (classical) 
least squares regressions. The weights are formed using a Bayesian procedure; however, 
the estimates that are weighted are the classical least squares estimates. While this saves 
considerable computational effort, it still requires the computation of millions of least squares 
coefficient vectors.20 The end result is a model with 12 independent variables.

5.9	 SUMMARY AND CONCLUSIONS

This chapter has focused on the third use of the linear regression model, hypothesis 
testing. The central result for testing hypotheses is the F statistic. The F ratio can be 
produced in two equivalent ways: first, by measuring the extent to which the unrestricted 
least squares estimate differs from what a hypothesis would predict, and second, by 
measuring the loss of fit that results from assuming that a hypothesis is correct. We then 
extended the F statistic to more general settings by examining its large-sample properties, 
which allow us to discard the assumption of normally distributed disturbances and by 
extending it to nonlinear restrictions.

This is the last of five chapters that we have devoted specifically to the methodology 
surrounding the most heavily used tool in econometrics, the classical linear regression 
model. We began in Chapter 2 with a statement of the regression model. Chapter 3 
then described computation of the parameters by least squares—a purely algebraic 
exercise. Chapter 4 reinterpreted least squares as an estimator of an unknown 
parameter vector and described the finite sample and large-sample characteristics 
of the sampling distribution of the estimator. Chapter 5 was devoted to building and 
sharpening the regression model, with statistical results for testing hypotheses about 
the underlying population. In this chapter, we have examined some broad issues 
related to model specification and selection of a model among a set of competing 
alternatives. The concepts considered here are tied very closely to one of the pillars 
of the paradigm of econometrics; underlying the model is a theoretical construction,  

20See Sala-i-Martin (1997).
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a set of true behavioral relationships that constitute the model. It is only on this notion 
that the concepts of bias and biased estimation and model selection make any sense—
“bias” as a concept can only be described with respect to some underlying model 
against which an estimator can be said to be biased. That is, there must be a yardstick. 
This concept is a central result in the analysis of specification, where we considered the 
implications of underfitting (omitting variables) and overfitting (including superfluous 
variables) the model. We concluded this chapter (and our discussion of the classical 
linear regression model) with an examination of procedures that are used to choose 
among competing model specifications.

Key Terms and Concepts

•	Acceptance region
•	Adjusted R2

•	Akaike Information 
Criterion

•	Alternative hypothesis
•	Bayesian model averaging
•	Bayesian Information 

Criterion
•	Biased estimator
•	Comprehensive model
•	Consistent
•	Distributed lag
•	Discrepancy vector
•	Encompassing principle
•	Exclusion restrictions
•	Functionally independent
•	General nonlinear 

hypothesis

•	General-to-simple strategy
•	Superfluous variables
•	J test
•	Lack of invariance
•	Lagrange multiplier tests
•	Linear restrictions
•	Model selection
•	Nested
•	Nested models
•	Nominal size
•	Nonlinear restrictions
•	Nonnested
•	Nonnested models
•	Nonnormality
•	Null hypothesis
•	One-sided test

•	Parameter space
•	Power of a test
•	Prediction criterion
•	Rejection region
•	Restricted least squares
•	Schwarz criterion
•	Simple-to-general
•	Size of the test
•	Specification test
•	Stepwise model building
•	t ratio
•	Testable implications
•	Wald criterion
•	Wald distance
•	Wald statistic
•	Wald test

Exercises

1.	 A multiple regression of y on a constant x1 and x2 produces the following results: 
yn = 4 + 0.4x1 + 0.9x2, R

2 = 8/60, e′e = 520, n = 29,

X′X = C29 0 0
0 50 10
0 10 80

S .

Test the hypothesis that the two slopes sum to 1.
2.	 Using the results in Exercise 1, test the hypothesis that the slope on x1 is 0 by 

running the restricted regression and comparing the two sums of squared deviations.
3.	 The regression model to be analyzed is y = X1B1 + X2B2 + E , where X1 and X2 

have K1 and K2 columns, respectively. The restriction is B2 = 0.
a.	 Using (5-23), prove that the restricted estimator is simply [b1*, 0], where b1* is 

the least squares coefficient vector in the regression of y on X1.
b.	 Prove that if the restriction is B2 = B2

0 for a nonzero B2
0, then the restricted 

estimator of B1 is b1* = (X1
=X1)

-1X1
=(y - X2B2

0).

M05_GREE1366_08_SE_C05.indd   148 2/24/17   12:51 PM



	 CHAPTER  5  ✦  Hypothesis Tests and Model Selection 	149

4.	 The expression for the restricted coefficient vector in (5-23) may be written in the 
form b* = [I - CR]b + w, where w does not involve b. What is C? Show that the 
covariance matrix of the restricted least squares estimator is

s2(X′X)-1 - s2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1

and that this matrix may be written as

Var[b � X]{[Var(b � X)]-1 - R′[Var(Rb) � X]-1R} Var[b � X].

5.	 Prove the result that the restricted least squares estimator never has a larger 
covariance matrix than the unrestricted least squares estimator.

6.	 Prove the result that the R2 associated with a restricted least squares estimator 
is never larger than that associated with the unrestricted least squares estimator. 
Conclude that imposing restrictions never improves the fit of the regression.

7.	 An alternative way to test the hypothesis RB - q = 0 is to use a Wald test of the 
hypothesis that L* = 0, where L* is defined in (5-23). Prove that

x2 = L*
= {est. Var[L*]}

-1L* = (n - K) c e*
=e*

e′e
- 1 d .

�Note that the fraction in brackets is the ratio of two estimators of s2. By virtue 
of (5-28) and the preceding discussion, we know that this ratio is greater than 1. 
Finally, prove that this test statistic is equivalent to JF, where J is the number 
of restrictions being tested and F is the conventional F statistic given in (5-16). 
Formally, the Lagrange multiplier test requires that the variance estimator be based 
on the restricted sum of squares, not the unrestricted. Then, the test statistic would 
be lM = nJ/[(n - K)/F + J].21

8.	 Use the test statistic defined in Exercise 7 to test the hypothesis in Exercise 1.
9.	 Prove that under the hypothesis that RB = q, the estimator

s*
2 =

(y - Xb*)′(y - Xb*)

n - K + J
,

where J is the number of restrictions, is unbiased for s2.
10.	 Show that in the multiple regression of y on a constant, x1 and x2 while imposing the 

restriction b1 + b2 = 1 leads to the regression of y - x1 on a constant and x2 - x1.
11.	 Suppose the true regression model is given by (4-7). The result in (4-9) shows that 

if pX.z is nonzero and g is nonzero, then regression of y on X alone produces a 
biased and inconsistent estimator of B. Suppose the objective is to forecast y, not 
to estimate the parameters. Consider regression of y on X alone to estimate B with 
b (which is biased). Is the forecast of y computed using Xb also biased? Assume 
that E[z � X] is a linear function of X. Discuss your findings generally. What are the 
implications for prediction when variables are omitted from a regression?

12.	 The log likelihood function for the linear regression model with normally 
distributed disturbances is shown in (14-39) in Section 14.9.1. Show that at the 
maximum likelihood estimators of b for B and e′e/n for s2, the log likelihood is an 
increasing function of R2 for the model.

21See Godfrey (1988).
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13.	 Show that the model of the alternative hypothesis in Example 5.7 can be written

H1: Ct = u1 + u2Yt + u3Yt - 1 + a
∞

s = 2
us + 2Yt - s + eit + a

∞

s = 1
lset - s.

�As such, it does appear that H0 is a restriction on H1. However, because there are 
an infinite number of constraints, this does not reduce the test to a standard test of 
restrictions. It does suggest the connections between the two formulations.

Applications

1.	 The application in Chapter 3 used 15 of the 17,919 observations in Koop and Tobias’s 
(2004) study of the relationship between wages and education, ability, and family 
characteristics. (See Appendix Table F3.2.) We will use the full data set for this 
exercise. The data may be downloaded from the Journal of Applied Econometrics 
data archive at http://www.econ.queensu.ca/jae/12004-v19.7/koop-tobias/. The data 
file is in two parts. The first file contains the panel of 17,919 observations on variables:

Column 1; Person id (ranging from 1 to 2,178), 
Column 2; Education, 
Column 3; Log of hourly wage, 
Column 4; Potential experience, 
Column 5; Time trend.

�Columns 2 through 5 contain time varying variables. The second part of the data set 
contains time invariant variables for the 2,178 households. These are

Column 1; Ability, 
Column 2; Mother’s education, 
Column 3; Father’s education, 
Column 4; Dummy variable for residence in a broken home, 
Column 5; Number of siblings.

To create the data set for this exercise, it is necessary to merge these two data 
files. The ith observation in the second file will be replicated Ti times for the set 
of Ti observations in the first file. The person id variable indicates which rows 
must contain the data from the second file. (How this preparation is carried out 
will vary from one computer package to another.) (Note: We are not attempting 
to replicate Koop and Tobias’s results here—we are only employing their 
interesting data set.) Let X1 = [constant, education, experience, ability] and let 
X2 = [mother’s education, father’s education, broken home, number of siblings].
a.	 Compute the full regression of ln wage on X1 and X2 and report all results.
b.	 Use an F test to test the hypothesis that all coefficients except the constant term 

are zero.
c.	 Use an F statistic to test the joint hypothesis that the coefficients on the four 

household variables in X2 are zero.
d.	 Use a Wald test to carry out the test in part c.
e.	 Use a Lagrange multiplier test to carry out the test in part c.
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2.	 The generalized Cobb–Douglas cost function  examined in Application 2 in 
Chapter 4 is a special case of the translog cost function,

 ln C = a + b ln Q + dk ln Pk + dl ln Pl + df ln Pf

 + fkk[1
2(ln Pk)2] + fll[

1
2(ln Pl)

2] + fff[
1
2 (ln Pf)

2]

 + fkl[ln Pk][ln Pl] + fkf[ln Pk][ln Pf] + flf[ln Pl][ln Pf]

 + g[1
2 (ln Q)2]

 + uQk[ln Q][ln Pk] + uQl[ln Q][ln Pl] + uQf[ln Q][ln Pf] + e.

The theoretical requirement of linear homogeneity in the factor prices imposes the 
following restrictions:

dk + dl + df = 1, fkk + fkl + fkf = 0, fkl + fll + flf = 0,
fkf + flf + fff = 0, uQK + uQl + uQf = 0.

Note that although the underlying theory requires it, the model can be estimated 
(by least squares) without imposing the linear homogeneity restrictions. [Thus, one 
could test the underlying theory by testing the validity of these restrictions. See 
Christensen, Jorgenson, and Lau (1975).] We will repeat this exercise in part b.

A number of additional restrictions were explored in Christensen and Greene’s 
(1976) study. The hypothesis of homotheticity of the production structure would 
add the additional restrictions

uQk = 0, uQl = 0, uQf = 0.

Homogeneity of the production structure adds the restriction g = 0. The hypothesis 
that all elasticities of substitution in the production structure are equal to -1 is 
imposed by the six restrictions fij = 0 for all i and j.

We will use the data from the earlier application to test these restrictions. For 
the purposes of this exercise, denote by b1, c, b15 the 15 parameters in the cost 
function above in the order that they appear in the model, starting in the first line 
and moving left to right and downward.
a.	 Write out the R matrix and q vector in (5-8) that are needed to impose the 

restriction of linear homogeneity in prices.
b.	 Test the theory of production using all 158 observations. Use an F test to test 

the restrictions of linear homogeneity. Note, you can use the general form of the 
F statistic in (5-16) to carry out the test. Christensen and Greene enforced the 
linear homogeneity restrictions by building them into the model. You can do this 
by dividing cost and the prices of capital and labor by the price of fuel. Terms 
with f subscripts fall out of the model, leaving an equation with 10 parameters. 
Compare the sums of squares for the two models to carry out the test. Of course, 
the test may be carried out either way and will produce the same result.

c.	 Test the hypothesis homotheticity of the production structure under the 
assumption of linear homogeneity in prices.

d.	 Test the hypothesis of the generalized Cobb–Douglas cost function in Chapter 4 
against the more general translog model suggested here, once again (and 
henceforth) assuming linear homogeneity in the prices.
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e.	 The simple Cobb–Douglas function appears in the first line of the model above. 
Test the hypothesis of the Cobb–Douglas model against the alternative of the 
full translog model.

f.	 Test the hypothesis of the generalized Cobb–Douglas model against the 
homothetic translog model.

g.	 Which of the several functional forms suggested here do you conclude is the 
most appropriate for these data?

3.	 The gasoline consumption model suggested in part d of Application 1 in Chapter 4 
may be written as

ln(G/Pop) = a + bP ln Pg + bI ln (Income/Pop) + gnc ln Pnc + guc ln Puc

  + gpt ln Ppt + t year + dd ln Pd + dn ln Pn + ds ln Ps + e.

a.	 Carry out a test of the hypothesis that none of the three aggregate price indices 
are significant determinants of the demand for gasoline.

b.	 Consider the hypothesis that the microelasticities are a constant proportion 
of the elasticity with respect to their corresponding aggregate. Thus, for some 
positive u (presumably between 0 and 1), gnc = udd, guc = udd, gpt = uds. The 
first two imply the simple linear restriction gnc = guc. By taking ratios, the first 
(or second) and third imply the nonlinear restriction

gnc

gpt
=

dd

ds
  or  gncds - gptdd = 0.

Describe in detail how you would test the validity of the restriction.
c.	 Using the gasoline market data in Table F2.2, test the two restrictions suggested 

here, separately and jointly.
4.	 The J test in Example 5.7 is carried out using more than 50 years of data. It is 

optimistic to hope that the underlying structure of the economy did not change 
in 50 years. Does the result of the test carried out in Example 5.7 persist if it is 
based on data only from 1980 to 2000? Repeat the computation with this subset 
of the data.
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