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Nonlinear, Semiparametric, and 
Nonparametric  

Regression Models

§
7.1	 INTRODUCTION

Up to this point, our focus has been on the linear regression model,

	 y = x1 b1 + x2  b2 + g + e.	 (7-1)

Chapters 2 through 5 developed the least squares method of estimating the parameters 
and obtained the statistical properties of the estimator that provided the tools 
we used for point and interval estimation, hypothesis testing, and prediction. The 
modifications suggested in Chapter 6 provided a somewhat more general form of the 
linear regression model,

	 y = f1(x)b1 + f2(x)b2 + g + e.	 (7-2)

By the definition we want to use in this chapter, this model is still “linear” because the 
parameters appear in a linear form. Section 7.2 of this chapter will examine the nonlinear 
regression model [which includes (7-1) and (7-2) as special cases],

	 y = h(x1, x2, c, xP; b1, b2, c, bK) + e,	 (7-3)

where the conditional mean function involves P variables and K parameters. This form 
of the model changes the conditional mean function from E[y � x, B] = x′B to 
E[y � x] = h(x, b) for more general functions. This allows a much wider range of 
functional forms than the linear model can accommodate.1 This change in the model 
form will require us to develop an alternative method of estimation, nonlinear least 
squares. We will also examine more closely the interpretation of parameters in nonlinear 
models. In particular, since 0E[y � x]/0x is no longer equal to B, we will want to examine 
how B should be interpreted.

Linear and nonlinear least squares are used to estimate the parameters of the 
conditional mean function, E[y � x]. As we saw in Example 4.3, other relationships 
between y and x, such as the conditional median, might be of interest. Section 7.3 
revisits this idea with an examination of the conditional median function and the 
least absolute deviations estimator. This section will also relax the restriction that 
the model coefficients are always the same in the different parts of the distribution 

1A complete discussion of this subject can be found in Amemiya (1985). Another authoritative treatment is the 
text by Davidson and MacKinnon (1993).
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of y (given x). The LAD estimator estimates the parameters of the conditional 
median, that is, the 50th percentile function. The quantile regression model allows 
the parameters of the regression to change as we analyze different parts of the 
conditional distribution.

The model forms considered thus far are semiparametric in nature and less 
parametric as we move from Section 7.2 to 7.3. The partially linear regression examined in 
Section 7.4 extends (7-1) such that y = f(z) + x′B + e. The endpoint of this progression 
is a model in which the relationship between y and x is not forced to conform to a 
particular parameterized function. Using largely graphical and kernel density methods, 
we consider in Section 7.5 how to analyze a nonparametric regression relationship that 
essentially imposes little more than E[y � x] = h(x).

7.2	 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is

	 yi = h(xi, B) + ei.	 (7-4)

The linear model is obviously a special case. Moreover, some models that appear to be 
nonlinear, such as

y = eb1 x1
b2 x2

b3 ee,

become linear after a transformation, in this case, after taking logarithms. In this chapter, 
we are interested in models for which there are no such transformations.

Example 7.1    CES Production Function
In Example 6.18, we examined a constant elasticity of substitution production function model,

	 ln y = ln g -
n

r
 ln3dK-r + (1 - d)L-r4 + e.� (7-5)

No transformation reduces this equation to one that is linear in the parameters. In Example 
6.5, a linear Taylor series approximation to this function around the point r = 0 is used to 
produce an intrinsically linear equation that can be fit by least squares. The underlying model 
in (7-5) is nonlinear.

This and the next section will extend the assumptions of the linear regression model 
to accommodate nonlinear functional forms such as the one in Example 7.1. We will 
then develop the nonlinear least squares estimator, establish its statistical properties, 
and then consider how to use the estimator for hypothesis testing and analysis of the 
model predictions.

7.2.1    ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model. 
Sufficient for our purposes will be the following, which include the linear model as the 
special case noted earlier. We assume that there is an underlying probability distribution, 
or data-generating process (DGP) for the observable yi and a true parameter vector, b, 
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204	 Part I  ✦   The Linear Regression Model

which is a characteristic of that DGP. The following are the assumptions of the nonlinear 
regression model:

NR1.  Functional form: The conditional mean function for yi given xi is

E[ yi � xi] = h(xi, B), i = 1, c, n,

where h(xi, B) is a continuously differentiable function of B.
NR2. � Identifiability of the model parameters: The parameter vector in the model 

is identified (estimable) if there is no nonzero parameter B0 ≠ B such that 
h(xi, B

0) = h(xi, B) for all xi. In the linear model, this was the full rank assumption, 
but the simple absence of “multicollinearity” among the variables in x is not 
sufficient to produce this condition in the nonlinear regression model. Example 7.2 
illustrates the problem. Full rank will be necessary, but it is not sufficient.

NR3. � Zero conditional mean of the disturbance: It follows from Assumption 1 that 
we may write

yi = h(xi, B) + ei,

where E[ei � h(xi, B)] = 0. This states that the disturbance at observation i 
is uncorrelated with the conditional mean function for all observations in 
the sample. This is not quite the same as assuming that the disturbances and 
the exogenous variables are uncorrelated, which is the familiar assumption, 
however. We will want to assume that x is exogenous in this setting, so added 
to this assumption will be e[e � x] = 0.

NR4. � Homoscedasticity and nonautocorrelation: As in the linear model, we assume 
conditional homoscedasticity,

	 E[ei
2 � h(xj, B), j = 1, c, n] = s2,  a finite constant,	 (7-6)

and nonautocorrelation,

E[eiej � h(xi, B), h(xj, B), j = 1, c, n] = 0  for all j ≠ i.

This assumption parallels the specification of the linear model in Chapter 4. 
As before, we will want to relax these assumptions.

NR5. � Data generating process: The DGP for xi is assumed to be a well-behaved 
population such that first and second moments of the data can be assumed 
to converge to fixed, finite population counterparts. The crucial assumption is 
that the process generating xi is strictly exogenous to that generating ei. The 
data on xi are assumed to be “well behaved.”

NR6. � Underlying probability model: There is a well-defined probability distribution 
generating ei. At this point, we assume only that this process produces a 
sample of uncorrelated, identically (marginally) distributed random variables 
ei with mean zero and variance s2 conditioned on h(xi, b). Thus, at this point, 
our statement of the model is semiparametric. (See Section 12.3.) We will 
not be assuming any particular distribution for ei. The conditional moment 
assumptions in 3 and 4 will be sufficient for the results in this chapter.

Example 7.2    Identification in a Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for 
a consumer allocating a budget among K commodities,

ln V = b0 + a
K

k= 1
bk ln( pk  / M) + a

K

k= 1
 a

K

j= 1
gkj ln( pk  / M) ln( pj  / M),
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where V is indirect utility, pk is the price for the kth commodity, and M is income. Utility, direct 
or indirect, is unobservable, so the utility function is not usable as an empirical model. Roy’s 
identity applied to this logarithmic function produces a budget share equation for the kth 
commodity that is of the form

Sk = -
0 ln V / 0 ln pk

0 ln V / 0 ln M
=

bk + a K
j= 1gkj ln( pj  / M)

bM + a K
j= 1gMj ln( pj  / M)

, k = 1, c, K,

where bM = Σk bk and gMj = Σk gkj. No transformation of the budget share equation produces 
a linear model. This is an intrinsically nonlinear regression model. (It is also one among a 
system of equations, an aspect we will ignore for the present.) Although the share equation is 
stated in terms of observable variables, it remains unusable as an empirical model because of 
an identification problem. If every parameter in the budget share is multiplied by the same 
constant, then the constant appearing in both numerator and denominator cancels out, and 
the same value of the function in the equation remains. The indeterminacy is resolved by 
imposing the normalization bM = 1. Note that this sort of identification problem does not 
arise in the linear model.

7.2.2    THE NONLINEAR LEAST SQUARES ESTIMATOR

The nonlinear least squares estimator is defined as the minimizer of the sum of squares,

	 S(B) =
1
2

 a
n

i= 1
ei

2 =
1
2

 a
n

i= 1
[ yi - h(xi, B)]2.	 (7-7)

The first-order conditions for the minimization are

	
0S(B)

0B
= a

n

i= 1
[yi - h(xi, B)] 

0h(xi, B)

0B
= 0.	 (7-8)

In the linear model, the vector of partial derivatives will equal the regressors, xi. In what 
follows, we will identify the derivatives of the conditional mean function with respect to 
the parameters as the “pseudoregressors,” xi

0(B) = xi
0. We find that the nonlinear least 

squares estimator is the solution to

	
0S(B)

0B
= a

n

i= 1
 xi

0ei = 0.	 (7-9)

This is the nonlinear regression counterpart to the least squares normal equations in 
(3-12). Computation requires an iterative solution. (See Example 7.3.) The method is 
presented in Section 7.2.6.

Assumptions NR1 and NR3 imply that E[ei � h(xi, B)] = 0. In the linear model, it 
follows, because of the linearity of the conditional mean, that ei and xi, are uncorrelated. 
However, uncorrelatedness of ei with a particular nonlinear function of xi (the regression 
function) does not necessarily imply uncorrelatedness with xi, itself, nor, for that matter, 
with other nonlinear functions of xi. On the other hand, the results we will obtain for 
the behavior of the estimator in this model are couched not in terms of xi but in terms 
of certain functions of xi (the derivatives of the regression function), so, in point of fact, 
E[e � X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very 
common in the contemporary literature, would greatly complicate this analysis. If it 
can be assumed that ei is strictly uncorrelated with any prior information in the model, 
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206	 Part I  ✦   The Linear Regression Model

including previous disturbances, then a treatment analogous to that for the linear 
model would apply. But the convergence results needed to obtain the asymptotic 
properties of the estimator still have to be strengthened. The dynamic nonlinear 
regression model is beyond the reach of our treatment here. Strict independence of 
ei and xi would be sufficient for uncorrelatedness of ei and every function of xi, but, 
again, in a dynamic model, this assumption might be questionable. Some commentary 
on this aspect of the nonlinear regression model may be found in Davidson and 
MacKinnon (1993, 2004).

If the disturbances in the nonlinear model are normally distributed, then the log of 
the normal density for the ith observation will be

	 ln f ( yi � xi, B, s2) = -(1/2){ln 2p + ln s2 + [ yi - h(xi, B)]2 / s2}.	 (7-10)

For this special case, we have from item D.2 in Theorem 14.2 (on maximum likelihood 
estimation), that the derivatives of the log density with respect to the parameters have 
mean zero. That is,

	 EJ 0 ln f( yi � xi, B, s2)

0B
R = EJ 1

s2 a 0h(xi, B)

0B
beiR = 0,	 (7-11)

so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether 
this can be assumed to hold in other cases is going to be model specific, but under 
reasonable conditions, we would assume so.2

In the context of the linear model, the orthogonality condition E[xiei] = 0 produces 
least squares as a GMM estimator for the model. (See Chapter 13.) The orthogonality 
condition is that the regressors and the disturbance in the model are uncorrelated. 
In this setting, the same condition applies to the first derivatives of the conditional 
mean function. The result in (7-11) produces a moment condition which will define the 
nonlinear least squares estimator as a GMM estimator.

Example 7.3    First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear regression model,

yi = b1 + b2 eb3xi + ei,

by nonlinear least squares [see (7-13)] are

 
0S(b)
0b1

= - a
n

i= 1
 [ yi - b1 - b2 eb3xi ] = 0,

 
0S(b)
0b2

= - a
n

i= 1
 [ yi - b1 - b2 eb3xi ] eb3xi = 0,

 
0S(b)
0b3

= - a
n

i= 1
 [ yi - b1 - b2 eb3xi ] b2xi eb3xi = 0.

These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at 
this point as follows:

2See Ruud (2000, p. 540).
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Thus, nonlinearity is defined in terms of the techniques needed to estimate the parameters, 
not the shape of the regression function. Later we shall broaden our definition to include 
other techniques besides least squares.

7.2.3    LARGE-SAMPLE PROPERTIES OF THE NONLINEAR LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares estimator, 
such as consistency and asymptotic normality. We cannot be sure that nonlinear least 
squares is the most efficient estimator, except in the case of normally distributed 
disturbances. (This conclusion is the same one we drew for the linear model.) But in the 
semiparametric setting of this chapter, we can ask whether this estimator is optimal in 
some sense given the information that we do have; the answer turns out to be yes. Some 
examples that follow will illustrate these points.

It is necessary to make some assumptions about the regressors. The precise 
requirements are discussed in some detail in Judge et al. (1985), Amemiya (1985), 
and Davidson and MacKinnon (2004). In the linear regression model, to obtain our 
asymptotic results, we assume that the sample moment matrix (1/n)X′X converges to a 
positive definite matrix Q. By analogy, we impose the same condition on the derivatives 
of the regression function, which are called the pseudoregressors in the linearized model 
[defined in (7-29)] when they are computed at the true parameter values. Therefore, for 
the nonlinear regression model, the analog to (4-19) is

	 plim 
1
n

 X0′X0 = plim 
1
n

 a
n

i= 1
a 0h(xi, B0)

0B0
b a 0h(xi, B0)

0B0
= b = Q0,	 (7-12)

where Q0 is a positive definite matrix. To establish consistency of b in the linear model, we 
required plim(1/n)X′E = 0. We will use the counterpart to this for the pseudoregressors,

plim 
1
n

 a
n

i= 1
xi

0 ei = 0.

This is the orthogonality condition noted earlier in (4-21). In particular, note that 
orthogonality of the disturbances and the data is not the same condition. Finally, 
asymptotic normality can be established under general conditions if

12n
 a

n

i= 1
xi

0ei = 2n z 0 ¡d
N[0, s2Q0].

With these in hand, the asymptotic properties of the nonlinear least squares estimator are 
essentially those we have already seen for the linear model, except that in this case we place 
the derivatives of the linearized function evaluated at B, X0, in the role of the regressors.3

3See Amemiya (1985).

DEFINITION 7.1  Nonlinear Regression Model
A nonlinear regression model is one for which the first-order conditions for least 
squares estimation of the parameters are nonlinear functions of the parameters.

M07_GREE1366_08_SE_C07.indd   207 2/24/17   11:04 AM



208	 Part I  ✦   The Linear Regression Model

The nonlinear least squares criterion function is

	 S(b) =
1
2

 a
n

i= 1
 [ yi - h(xi, b)]2 =

1
2

 a
n

i= 1
 ei

2,	 (7-13)

where we have inserted what will be the solution value, b. The values of the parameters 
that minimize (one half of) the sum of squared deviations are the nonlinear least squares 
estimators. The first-order conditions for a minimum are

	 g(b) = - a
n

i= 1
 [ yi - h(xi, b)] 

0h(xi, b)

0b
= 0.	 (7-14)

In the linear model of Chapter 3, this produces a set of linear normal equations, (3-12). In 
this more general case, (7-14) is a set of nonlinear equations that do not have an explicit 
solution. Note that s2 is not relevant to the solution. At the solution,

g(b) = -X0′e = 0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

In the linear model, consistency of the least squares estimator could be established 
based on plim(1/n)X′X = Q and plim(1/n)X′E = 0. To follow that approach here, we 
would use the linearized model and take essentially the same result. The loose end in 
that argument would be that the linearized model is not the true model and there 
remains an approximation. For this line of reasoning to be valid, it must also be either 

THEOREM 7.1  Consistency of the Nonlinear Least Squares Estimator
If the following assumptions hold:

a.	The parameter space containing B is compact (has no gaps or nonconcave 
regions).

b.	For any vector B0 in that parameter space, plim (1/n)S(B0) = q(B0), a continu-
ous and differentiable function.

c.	 If q(B0) has a unique minimum at the true parameter vector, B, then, the non-
linear least squares estimator defined by (7-13) and (7-14) is consistent. We will 
sketch the proof, then consider why the theorem and the proof differ as they do 
from the apparently simpler counterpart for the linear model. The proof, not-
withstanding the underlying subtleties of the assumptions, is straightforward. The 
estimator, say, b0, minimizes (1/n)S(B0). If (1/n)S(B0) is minimized for every n, 
then it is minimized by b0 as n increases without bound. We also assumed that 
the minimizer of q(B0) is uniquely B. If the minimum value of plim (1/n)S(B0) 
equals the probability limit of the minimized value of the sum of squares, the 
theorem is proved. This equality is produced by the continuity in assumption b.
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assumed or shown that plim(1/n)X0′D = 0 where di = h(xi, B) minus the Taylor series 
approximation.4

Note that no mention has been made of unbiasedness. The linear least squares 
estimator in the linear regression model is essentially alone in the estimators considered 
in this book. It is generally not possible to establish unbiasedness for any other estimator. 
As we saw earlier, unbiasedness is of fairly limited virtue in any event—we found, for 
example, that the property would not differentiate an estimator based on a sample of 10  
observations from one based on 10,000. Outside the linear case, consistency is the primary 
requirement of an estimator. Once this is established, we consider questions of efficiency 
and, in most cases, whether we can rely on asymptotic normality as a basis for statistical 
inference.

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish 
without a distributional assumption. There is an indirect approach that is one possibility. 
The assumption of the orthogonality of the pseudoregressors and the true disturbances 
implies that the nonlinear least squares estimator is a GMM estimator in this context. 
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weighting 
matrix is the one that we used, which is to say that in the class of GMM estimators for 
this model, nonlinear least squares uses the optimal weighting matrix. As such, it is 
asymptotically efficient in the class of GMM estimators.

The requirement that the matrix in (7-12) converges to a positive definite matrix 
implies that the columns of the regressor matrix X0 must be linearly independent. This 
identification condition is analogous to the requirement that the independent variables 
in the linear model be linearly independent. Nonlinear regression models usually involve 
several independent variables, and at first blush, it might seem sufficient to examine the 
data directly if one is concerned with multicollinearity. However, this situation is not the 
case. Example 7.4 gives an application.

4An argument to this effect appears in Mittelhammer et al. (2000, pp. 190–191).

THEOREM 7.2 � Asymptotic Normality of the Nonlinear Least Squares 
Estimator

If the pseudoregressors defined in (7-12) are “well behaved,” then

b ∼
a

NJB, 
s2

n
 (Q0)-1 R ,

where

Q0 = plim 
1
n

 X0′X0.

The sample estimator of the asymptotic covariance matrix is

	 Est.Asy.Var[b] = sn 2(X0′X0)-1.� (7-15)
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210	 Part I  ✦   The Linear Regression Model

A consistent estimator of s2 is based on the residuals,

	 sn 2 =
1
n

 a
n

i= 1
 [yi - h(xi, b)]2.	 (7-16)

A degrees of freedom correction, 1/(n - K), where K is the number of elements in  B, is 
not strictly necessary here, because all results are asymptotic in any event. Davidson and 
MacKinnon (2004) argue that, on average, (7-16) will underestimate s2, and one should 
use the degrees of freedom correction. Most software in current use for this model does, 
but analysts will want to verify this is the case for the program they are using. With this in 
mind, the estimator of the asymptotic covariance matrix for the nonlinear least squares 
estimator is given in (7-15).

Once the nonlinear least squares estimates are in hand, inference and hypothesis 
tests can proceed in the same fashion as prescribed in Chapter 5. A minor problem can 
arise in evaluating the fit of the regression in that the familiar measure,

	 R2 = 1 - a n
i= 1ei

2

a n
i= 1(yi - y)2

,	 (7-17)

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful 
descriptive measure. An intuitively appealing measure of the fit of the model to the data 
will be the squared correlation between the fitted and actual values, h(xi,b) and yi. This 
will differ from R2, partly because the mean prediction will not equal the mean of the 
observed values.

7.2.4    ROBUST COVARIANCE MATRIX ESTIMATION

Theorem 7.2 relies on assumption NR4, homoscedasticity and nonautocorrelation. We 
considered two generalizations in the linear case, heteroscedasticity and autocorrelation 
due to clustering in the sample. The counterparts for the nonlinear case would be based 
on the linearized model,

 yi = xi
0′B + [h(xi, B) - xi

0′B] + ei

 = xi
0′B + ui.

The counterpart to (4-37) that accommodates unspecified heteroscedasticity would 
then be

Est.Asy.Var[b] = (X0′ X0)-1 c a n
i= 1xi

0 xi
0′(yi - h(xi, b))2 d (X0′X0)-1.

Likewise, to allow for clustering, the computation would be analogous to (4-41) and 
(4-42),

Est.Asy.Var[b] =
C

C - 1
 (X0′ X0)-1 c aC

c = 1 e aNc

i= 1xi
0 ei f e aNc

i= 1xi
0 ei f

=

d (X0′X0)-1.

Note that the residuals are computed as ei = yi - h(xi, b) using the conditional mean 
function, not the linearized regression.
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7.2.5    HYPOTHESIS TESTING AND PARAMETRIC RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly 
simple linear restrictions. The tests can be carried out using the familiar formulas discussed 
in Chapter 5 and the asymptotic covariance matrix presented earlier. For more involved 
hypotheses and for nonlinear restrictions, the procedures are a bit less clear-cut. Two 
principal testing procedures were discussed in Section 5.4: the Wald test, which relies 
on the consistency and asymptotic normality of the estimator, and the F test, which 
is appropriate in finite (all) samples, that relies on normally distributed disturbances. 
In the nonlinear case, we rely on large-sample results, so the Wald statistic will be the 
primary inference tool. An analog to the F statistic based on the fit of the regression 
will also be developed later. Finally, Lagrange multiplier tests for the general case can 
be constructed.

The hypothesis to be tested is

	 H0 : c(B) = q,	 (7-18)

where c(B) is a column vector of J continuous functions of the elements of B. 
These restrictions may be linear or nonlinear. It is necessary, however, that they be 
overidentifying restrictions. In formal terms, if the original parameter vector has K free 
elements, then the hypothesis c(B) - q must impose at least one functional relationship 
on the parameters. If there is more than one restriction, then they must be functionally 
independent. These two conditions imply that the J *  K Jacobian,

	 R(B) = 0c(B)/0B′,	 (7-19)

must have full row rank and that J, the number of restrictions, must be strictly less than 
K. This situation is analogous to the linear model, in which R(B) would be the matrix of 
coefficients in the restrictions. (See, as well, Section 5.5, where the methods examined 
here are applied to the linear model.)

Let b be the unrestricted, nonlinear least squares estimator, and let b* be the 
estimator obtained when the constraints of the hypothesis are imposed.5 Which test 
statistic one uses depends on how difficult the computations are. Unlike the linear 
model, the various testing procedures vary in complexity. For instance, in our example, 
the Lagrange multiplier statistic is by far the simplest to compute. Of the methods we 
will consider, only this test does not require us to compute a nonlinear regression.

The nonlinear analog to the familiar F statistic based on the fit of the regression (i.e., 
the sum of squared residuals) would be

	 F[J, n - K] =
[S(b*) - S(b)]/J

S(b)/(n - K)
.	 (7-20)

This equation has the appearance of our earlier F ratio in (5-29). In the nonlinear setting, 
however, neither the numerator nor the denominator has exactly the necessary chi-
squared distribution, so the F distribution is only approximate. Note that this F statistic 
requires that both the restricted and unrestricted models be estimated.

5This computational problem may be extremely difficult in its own right, especially if the constraints are nonlinear. 
We assume that the estimates have been obtained by whatever means are necessary.
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212	 Part I  ✦   The Linear Regression Model

The Wald test is based on the distance between c(b) and q. If the unrestricted 
estimates fail to satisfy the restrictions, then doubt is cast on the validity of the restrictions. 
The statistic is

 W = [c(b) - q]′{Est.Asy.Var[c(b) - q]}-1[c(b) - q]

 = [c(b) - q]′{R(b)Vn R′(b)}-1[c(b) - q], � (7-21)

where

Vn = Est.Asy.Var[b],

and R(b) is evaluated at b, the estimate of B. Under the null hypothesis, this statistic 
has a limiting chi-squared distribution with J degrees of freedom. If the restrictions are 
correct, the Wald statistic and J times the F statistic are asymptotically equivalent. The 
Wald statistic can be based on the estimated covariance matrix obtained earlier using 
the unrestricted estimates, which may provide a large savings in computing effort if the 
restrictions are nonlinear. It should be noted that the small-sample behavior of W can be 
erratic, and the more conservative F statistic may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well. 
Because it is a pure significance test that does not involve the alternative hypothesis, the 
Wald statistic is not invariant to how the hypothesis is framed. In cases in which there 
is more than one equivalent way to specify c(B) = q, W can give different answers 
depending on which is chosen.

The Lagrange multiplier test is based on the decrease in the sum of squared residuals 
that would result if the restrictions in the restricted model were released. For the 
nonlinear regression model, the test has a particularly appealing form.6 Let e* be the 
vector of residuals yi - h(xi, b*) computed using the restricted estimates. Recall that we 
defined X0 as an n *  K matrix of derivatives computed at a particular parameter vector 
in (7-29). Let X*

0 be this matrix computed at the restricted estimates. Then the Lagrange 
multiplier statistic for the nonlinear regression model is

	 LM =
e*
=  X*

0 [X*
0=

X*
0]-1X*

0′e*

e*
=e* / n

.	 (7-22)

Under H0, this statistic has a limiting chi-squared distribution with J degrees of freedom. 
What is especially appealing about this approach is that it requires only the restricted 
estimates. This method may provide some savings in computing effort if, as in our 
example, the restrictions result in a linear model. Note, also, that the Lagrange multiplier 
statistic is n times the uncentered R2 in the regression of e* on X*

0. Many Lagrange 
multiplier statistics are computed in this fashion.

7.2.6    APPLICATIONS

This section will present two applications of estimation and inference for nonlinear 
regression models. Example 7.4 illustrates a nonlinear consumption function  that 
extends Examples 1.2 and 2.1. The model provides a simple demonstration of estimation 
and hypothesis testing for a nonlinear model. Example 7.5 analyzes the Box–Cox 
transformation. This specification is used to provide a more general functional form 

6This test is derived in Judge et al. (1985). Discussion appears in Mittelhammer et al. (2000).
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than the linear regression—it has the linear and loglinear models as special cases. Finally, 
Example 7.6 in the next section is a lengthy examination of an exponential regression 
model. In this application, we will explore some of the implications of nonlinear modeling, 
specifically “interaction effects.” We examined interaction effects in Section 6.5.2 in a 
model of the form

y = b1 + b2x + b3z + b4xz + e.

In this case, the interaction effect is 02E[ y � x, z] / 0x0z = b4. There is no interaction effect 
if b4 equals zero. Example 7.6 considers the (perhaps unintended) implication of the 
nonlinear model that when E[y � x, z] = h(x, z, B), there is an interaction effect even if 
the model is

h(x, z, B) = h(b1 + b2x + b3z).

Example  7.4    Analysis of a Nonlinear Consumption Function
The linear model analyzed at the beginning of Chapter 2 is a restricted version of the more 
general function

C = a + bYg + e,

in which g equals 1. With this restriction, the model is linear. If g is free to vary, however, 
then this version becomes a nonlinear regression. Quarterly data on consumption, real 
disposable income, and several other variables for the U.S. economy for 1950 to 2000 are 
listed in Appendix Table F5.2. The restricted linear and unrestricted nonlinear least squares 
regression results are shown in Table 7.1. The procedures outlined earlier are used to obtain 
the asymptotic standard errors and an estimate of s2. (To make this comparable to s2 in the 
linear model, the value includes the degrees of freedom correction.)

In the preceding example, there is no question of collinearity in the data matrix X = [i, y]; 
the variation in Y is obvious on inspection. But, at the final parameter estimates, the R2 in 
the regression is 0.998834 and the correlation between the two pseudoregressors x2

0 = Yg 
and x3

0 = bYg ln Y  is 0.999752. The condition number for the normalized matrix of sums of 
squares and cross products is 208.306. (The condition number is computed by computing 
the square root of the ratio of the largest to smallest characteristic root of D-1X0

 ′X0D-1 where 
x1

0 = 1 and D is the diagonal matrix containing the square roots of xk
0′xk

0 on the diagonal.) 
Recall that 20 was the benchmark for a problematic data set. By the standards discussed in 

Linear Model Nonlinear Model

Parameter Estimate Standard Error Estimate Standard Error

a -80.3547 14.3059 458.7990 22.5014
b 0.9217 0.003872 0.10085 0.01091
g 1.0000 – 1.24483 0.01205
e′e 1,536,321.881 504,403.1725
s 87.20983 50.0946

R2 0.996448 0.998834

Est.Var[b] – 0.000119037
Est.Var[c] – 0.00014532
Est.Cov[b,c] – -0.000131491

TABLE 7.1  Estimated Consumption Functions
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Sections 4.7.1 and A.6.6, the collinearity problem in this data set is severe. In fact, it appears 
not to be a problem at all.

For hypothesis testing and confidence intervals, the familiar procedures can be used, 
with the proviso that all results are only asymptotic. As such, for testing a restriction, the 
chi-squared statistic rather than the F ratio is likely to be more appropriate. For example, for 
testing the hypothesis that g is different from 1, an asymptotic t test, based on the standard 
normal distribution, is carried out, using

z =
1.24483 - 1

0.01205
= 20.3178.

This result is larger than the critical value of 1.96 for the 5% significance level, and we thus 
reject the linear model in favor of the nonlinear regression. The three procedures for testing 
hypotheses produce the same conclusion.

 F[1,204 - 3] =
(1,536,321.881 - 504,403.17)/1

504,403.17/(204 - 3)
= 411.29,

 W =
(1.24483 - 1)2

0.012052 = 412.805,

 LM =
996,103.9

(1,536,321.881/204)
= 132.267.

For the Lagrange multiplier statistic, the elements in xi
 * are xi

 * = [1, Yg, bYg ln Y ]. To 
compute this at the restricted estimates, we use the ordinary least squares estimates for a 
and b and 1 for g so that xi

 * = [1, Y, bY ln Y ]. The residuals are the least squares residuals 
computed from the linear regression.

Example  7.5    The Box–Cox Transformation
The Box–Cox transformation is used as a device for generalizing the linear model.7 The 
transformation is

x(l) = (xl - 1)/l.

Special cases of interest are l = 1, which produces a linear transformation, x(1) = x - 1, and 
l = 0. When l equals zero, the transformation is, by L’Hôpital’s rule,

lim
lS0

 
xl - 1

l
= lim

lS0
 
d(xl - 1) / dl

1
= lim

lS0
xl * ln x = ln x.

The regression analysis can be done conditionally on l. For a given value of l, the model,

	 y = a + a
K

k= 2
bk xk  

(l) + e,� (7-23)

is a linear regression that can be estimated by least squares. However, if l in (7-23) is taken 
to be an unknown parameter, then the regression becomes nonlinear in the parameters.

In principle, each regressor could be transformed by a different value of l, but, in most 
applications, this level of generality becomes excessively cumbersome, and l is assumed to 
be the same for all the variables in the model.8 To be defined for all values of l, x must be 
strictly positive. In most applications, some of the regressors—for example, a dummy 

7Box and Cox (1964); Zarembka (1974).

variable—will not be transformed. For such a variable, say vk, vk
(l) = vk, and the relevant 

derivatives in (7-24) will be zero. It is also possible to transform y, say, by y (u). Transformation 
of the dependent variable, however, amounts to a specification of the whole model, not just 
the functional form of the conditional mean. For example, u = 1 implies a linear equation while 
u = 0 implies a logarithmic equation.

Nonlinear least squares is straightforward. In most instances, we can expect to find the 
least squares value of l between -2 and 2. Typically, then, l is estimated by scanning this 
range for the value that minimizes the sum of squares. Once the optimal value of l is located, 
the least squares estimates, the mean squared residual, and this value of l constitute the 
nonlinear least squares estimates of the parameters. The optimal value of ln is an estimate of 
an unknown parameter. The least squares standard errors will always underestimate the 
correct asymptotic standard errors if ln is treated as if it were a known constant.9 To get the 
appropriate values, we need the pseudoregressors,

 
0h(.)
0a

= 1,

 
0h(.)
0bk

= xk
(l),

 
0h(.)
0l

= a
K

k= 1
bk 

0xk
(l)

0l
= a

K

k= 1
bk c 1

l
 1xk

l ln xk - xk
(l)2 d .�

(7-24)

We can now use (7-15) and (7-16) to estimate the asymptotic covariance matrix of the 
parameter estimates. Note that ln xk appears in 0h(.) / 0l. If xk = 0, then this matrix cannot be 
computed.

The coefficients in a nonlinear model are not equal to the slopes (or the elasticities) with 
respect to the variables. For the Box–Cox model ln Y = a + bX (l) + P,

0 E [ln y � x]
0 ln x

= x 
0E [ln y � x]

0x
= bxl = h.

A standard error for this estimator can be obtained using the delta method. The derivatives 
are 0h/0b = xl = h/b and 0h/0l = h ln x. Collecting terms, we obtain

Asy.Var[hn ] = (h/b)25Asy.Var[bn] + (b ln x)2 Asy.Var[ln] + (2b ln x) Asy.Cov[bn, ln]6 .

7.2.7    LOGLINEAR MODELS

Loglinear models play a prominent role in statistics. Many derive from a density function 
of the form f( y � x) = p[ y �a0 + x′B, u], where a0 is a constant term and u is an additional 
parameter such that

E[y � x] = g(u) exp(a0 + x′B).

(Hence the name loglinear models). Examples include the Weibull, gamma, lognormal, 
and exponential models for continuous variables and the Poisson and negative binomial 
models for counts. We can write E[ y � x] as exp[ln g(u) + a0 + x′B], and then absorb 
lng(u) in the constant term in ln E[ y � x] = a + x′B. The lognormal distribution (see 
Section B.4.4) is often used to model incomes. For the lognormal random variable,

8See, for example, Seaks and Layson (1983). 9See Fomby, Hill, and Johnson (1984, pp. 426–431).
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variable—will not be transformed. For such a variable, say vk, vk
(l) = vk, and the relevant 

derivatives in (7-24) will be zero. It is also possible to transform y, say, by y (u). Transformation 
of the dependent variable, however, amounts to a specification of the whole model, not just 
the functional form of the conditional mean. For example, u = 1 implies a linear equation while 
u = 0 implies a logarithmic equation.

Nonlinear least squares is straightforward. In most instances, we can expect to find the 
least squares value of l between -2 and 2. Typically, then, l is estimated by scanning this 
range for the value that minimizes the sum of squares. Once the optimal value of l is located, 
the least squares estimates, the mean squared residual, and this value of l constitute the 
nonlinear least squares estimates of the parameters. The optimal value of ln is an estimate of 
an unknown parameter. The least squares standard errors will always underestimate the 
correct asymptotic standard errors if ln is treated as if it were a known constant.9 To get the 
appropriate values, we need the pseudoregressors,

 
0h(.)
0a

= 1,

 
0h(.)
0bk

= xk
(l),

 
0h(.)
0l

= a
K

k= 1
bk 

0xk
(l)

0l
= a

K

k= 1
bk c 1

l
 1xk

l ln xk - xk
(l)2 d .�

(7-24)

We can now use (7-15) and (7-16) to estimate the asymptotic covariance matrix of the 
parameter estimates. Note that ln xk appears in 0h(.) / 0l. If xk = 0, then this matrix cannot be 
computed.

The coefficients in a nonlinear model are not equal to the slopes (or the elasticities) with 
respect to the variables. For the Box–Cox model ln Y = a + bX (l) + P,

0 E [ln y � x]
0 ln x

= x 
0E [ln y � x]

0x
= bxl = h.

A standard error for this estimator can be obtained using the delta method. The derivatives 
are 0h/0b = xl = h/b and 0h/0l = h ln x. Collecting terms, we obtain

Asy.Var[hn ] = (h/b)25Asy.Var[bn] + (b ln x)2 Asy.Var[ln] + (2b ln x) Asy.Cov[bn, ln]6 .

7.2.7    LOGLINEAR MODELS

Loglinear models play a prominent role in statistics. Many derive from a density function 
of the form f( y � x) = p[ y �a0 + x′B, u], where a0 is a constant term and u is an additional 
parameter such that

E[y � x] = g(u) exp(a0 + x′B).

(Hence the name loglinear models). Examples include the Weibull, gamma, lognormal, 
and exponential models for continuous variables and the Poisson and negative binomial 
models for counts. We can write E[ y � x] as exp[ln g(u) + a0 + x′B], and then absorb 
lng(u) in the constant term in ln E[ y � x] = a + x′B. The lognormal distribution (see 
Section B.4.4) is often used to model incomes. For the lognormal random variable,

8See, for example, Seaks and Layson (1983). 9See Fomby, Hill, and Johnson (1984, pp. 426–431).
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p[y �a0 + x′B, u] =
exp[-1

2 (ln y - a0 - x′B)2/u2]

uy22p
, y 7 0,

E[y � x] = exp(a0 + x′B + u2/2) = exp(a + x′B).

The exponential regression model is also consistent with a gamma distribution. The 
density of a gamma distributed random variable is

p[y �a0 + x′B, u] =
lu exp(-ly)yu-1

Γ(u)
, y 7 0, u 7 0, l = exp(-a0 - x′b),

E[y � x] = u/l = u exp(a0 + x′B) = exp(ln u + a0 + x′B) = exp(a + x′B).

The parameter u determines the shape of the distribution. When u 7 2, the gamma 
density has the shape of a chi-squared variable (which is a special case). Finally, the 
Weibull model has a similar form,

p[y �a0 + x′B, u] = ulu exp[-(ly)u]yu-1, y Ú 0, u 7 0, l = exp(-a0 - x′B),

E[y � x] = Γ(1 + 1/u) exp(a0 + x′B) = exp[ln Γ(1 + 1/u) +a0 + x′B] = exp (a + x′B).

In all cases, the maximum likelihood estimator is the most efficient estimator of the 
parameters.  (Maximum likelihood estimation of the parameters of this model is 
considered in Chapter 14.) However, nonlinear least squares estimation of the model

E[y � x] = exp(a + x′B) + e

has a virtue in that the nonlinear least squares estimator will be consistent even if the 
distributional assumption is incorrect—it is robust to this type of misspecification since 
it does not make explicit use of a distributional assumption. However, since the model 
is nonlinear, the coefficients do not give the magnitudes of the interesting effects in the 
equation. In particular, for this model,

 0E[y � x]/0xk = exp(a + x′B) * 0(a + x′B)/0xk

 = bkexp(a + x′B).

The implication is that the analyst must be careful in interpreting the estimation results, 
as interest usually focuses on partial effects, not coefficients.

Example 7.6    Interaction Effects in a Loglinear Model for Income
In Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data Estimation, 
Riphahn, Wambach, and Million (2003) were interested in counts of physician visits and 
hospital visits and in the impact that the presence of private insurance had on the utilization 
counts of interest, that is, whether the data contain evidence of moral hazard. The sample 
used is an unbalanced panel of 7,293 households, the German Socioeconomic Panel (GSOEP) 
data set.10 Among the variables reported in the panel are household income, with numerous 

10The data are published on the Journal of Applied Econometrics data archive Web site, at http://qed.econ 
.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/. The variables in the data file are listed in Appendix Table F7.1. 
The number of observations in each year varies from one to seven with a total number of 27,326 observations. We 
will use these data in several examples here and later in the book.
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FIGURE 7.1    Histogram and Kernel Density Estimate for Income.
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other sociodemographic variables such as age, gender, and education. For this example, we 
will model the distribution of income using the 1988 wave of the data set, a cross section with 
4,483 observations. Two of the individuals in this sample reported zero income, which is 
incompatible with the underlying models suggested in the development below. Deleting these 
two observations leaves a sample of 4,481 observations. Figure 7.1 displays a histogram and 
a kernel density estimator for the household income variable for these observations. Table 7.2 
provides descriptive statistics for the exogenous variables used in this application.

We will fit an exponential regression model to the income variable, with

 Income = exp( b1 + b2 Age + b3 Age2 + b4 Education + b5 Female

 + b6 Female * Education + b7 Age * Education) + e.

As we have constructed the model, the derivative result, 0E[y � x]/0xk = bkexp(a + x′B), must 
be modified because the variables appear either in a quadratic term or as a product with 
some other variable. Moreover, for the dummy variable, Female, we would want to compute 
the partial effect using

∆E[ y � x] /∆Female = E[ y � x, Female = 1] - E[ y � x, Female = 0].

Variable Mean Std.Dev. Minimum Maximum

Income   0.344896   0.164054 0.0050   2
Age 43.4452 11.2879 25 64
Educ 11.4167   2.36615 7 18
Female   0.484267 0.499808 0   1

TABLE 7.2  Descriptive Statistics for Variables Used in Nonlinear Regression
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Another consideration is how to compute the partial effects, as sample averages or at the 
means of the variables. For example, 0E [ y � x] / 0 Age = E[ y � x] * ( b2 + 2b3 Age + b7 Educ). 
We will estimate the average partial effects by averaging these values over the sample 
observations. Table 7.3 presents the nonlinear least squares regression results. Superficially, 
the pattern of signs and significance might be expected—with the exception of the dummy 
variable for female.

The average value of Age in the sample is 43.4452 and the average value of Education 
is 11.4167. The partial effect of a year of education is estimated to be 0.015736 if it is 
computed by computing the partial effect for each individual and averaging the results. 
The partial effect is difficult to interpret without information about the scale of the income 
variable. Since the average income in the data is about 0.35, these partial effects suggest 
that an additional year of education is associated with a change in expected income of about 
4.5% (i.e., 0.015736/0.35).

The rough calculation of partial effects with respect to Age does not reveal the model 
implications about the relationship between age and expected income. Note, for example, 
that the coefficient on Age is positive while the coefficient on Age2 is negative. This implies 
(neglecting the interaction term at the end), that the Age—Income relationship implied by 
the model is parabolic. The partial effect is positive at some low values and negative at 
higher values. To explore this, we have computed the expected Income using the model 
separately for men and women, both with assumed college education (Educ = 16) and for 
the range of ages in the sample, 25 to 64. Figure 7.2 shows the result of this calculation. 
The upper curve is for men (Female = 0) and the lower one is for women. The parabolic 
shape is as expected; what the figure reveals is the relatively strong effect—ceteris paribus, 
incomes are predicted to rise by about 80% between ages 25 and 48. The figure reveals a 
second implication of the estimated model that would not be obvious from the regression 
results. The coefficient on the dummy variable for Female is positive, highly significant, and, 
in isolation, by far the largest effect in the model. This might lead the analyst to conclude 
that on average, expected incomes in these data are higher for women than men. But 
Figure 7.2 shows precisely the opposite. The difference is accounted for by the interaction 
term, Female *  Education. The negative sign on the latter coefficient is suggestive. But 
the total effect would remain ambiguous without the sort of secondary analysis suggested 
by the figure.

Nonlinear Least Squares Linear Least Squares

Variable Estimate Std. Error t Ratio Estimate Projection

Constant -2.58070 0.17455 14.78 -0.13050 0.10746
Age 0.06020 0.00615 9.79 0.01791 0.00066

Age2 -0.00084 0.00006082 -13.83 -0.00027

Education -0.00616 0.01095 -0.56 -0.00281 0.01860
Female 0.17497 0.05986 2.92 0.07955 0.00075
Female * Educ -0.01476 0.00493 -2.99 -0.00685
Age * Educ 0.00134 0.00024 5.59 0.00055
e′e 106.09825 106.24323
s 0.15387 0.15410

R2 0.12005 0.11880

TABLE 7.3  Estimated Regression Equations
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Figure 7.2    Expected Incomes vs. Age for Men and Women with EDUC = 16.
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Finally, in addition to the quadratic term in age, the model contains an interaction term, 
Age *  Education. The coefficient is positive and highly significant. But, it is not obvious how 
this should be interpreted. In a linear model,

 Income = b1 + b2 Age + b3 Age2 + b4 Education + b5 Female

 + b6 Female * Education + b7 Age * Education + e,

we would find that b7 = 02E[Income � x]/0 Age 0Education. That is, the “interaction effect” 
is the change in the partial effect of Age associated with a change in Education (or vice 
versa). Of course, if b7 equals zero, that is, if there is no product term in the model, then 
there is no interaction effect—the second derivative equals zero. However, this simple 
interpretation usually does not apply in nonlinear models (i.e., in any nonlinear model). 
Consider our exponential regression, and suppose that in fact, b7 is indeed zero. For 
convenience, let m(x) equal the conditional mean function. Then, the partial effect with 
respect to Age is

0m(x)/0 Age = m(x) * (b2 + 2b3 Age),

and

	 02m(x) /0 Age0 Educ = m(x) * ( b2 + 2b3 Age) ( b4 + b6 Female),� (7-25)

which is nonzero even if there is no interaction term in the model. The interaction effect in 
the model that includes the product term, b7Age *  Education, is

02E[ y � x]/0 Age0 Educ = m(x) * [b7 + ( b2 + 2b3 Age + b7 Educ) ( b4 + b6 Female + b7 Age)].
� (7-26)
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At least some of what is being called the interaction effect in this model is attributable entirely to 
the fact the model is nonlinear. To isolate the “functional form effect” from the true “interaction 
effect,” we might subtract (7-25) from (7-26) and then reassemble the components:

02m(x) / 0 Age 0 Educ = m(x)[( b2 + 2b3 Age)( b4 + b6 Female)]
+ m(x) b7[1 + Age( b2 + 2b3 Age) + Educ( b4 + b6 Female) + Educ * Age( b7)].

� (7-27)

It is clear that the coefficient on the product term bears essentially no relationship to the 
quantity of interest (assuming it is the change in the partial effects that is of interest). On the 
other hand, the second term is nonzero if and only if b7 is nonzero. One might, therefore, 
identify the second part with the “interaction effect” in the model. Whether a behavioral 
interpretation could be attached to this is questionable, however. Moreover, that would leave 
unexplained the functional form effect. The point of this exercise is to suggest that one should 
proceed with some caution in interpreting interaction effects in nonlinear models. This sort 
of analysis has a focal point in the literature in Ai and Norton (2004). A number of comments 
and extensions of the result are to be found, including Greene (2010b).

Section 4.4.5 considered the linear projection as a feature of the joint distribution of y 
and x. It was noted that, assuming the conditional mean function in the joint distribution is 
E[y � x] = m(x), then the slopes of linear projection, g = [E{xx′}]-1E[xy], might resemble the 
slopes of m(x), D = 0m(x)/0x at least for some x. In a loglinear, single-index function model such 
as the one analyzed here, this would relate to the linear least squares regression of y on x.  
Table 7.4 reports two sets of least squares regression coefficients. The ones on the right 
show the regression of Income on all of the first- and second-order terms that appear in the 
conditional mean. This would not be the projection of y on x. At best it might be seen as an 
approximation to m(x). The rightmost coefficients report the projection. Both results suggest 
superficially that nonlinear least squares and least squares are computing completely different 
relationships. To uncover the similarity (if there is one), it is useful to consider the partial effects 
rather than the coefficients. Table 7.4 reports the results of the computations. The average 
partial effects for the nonlinear regression are obtained by computing the derivatives for each 
observation and averaging the results. For the linear approximation, the derivatives are linear 
functions of the variables, so the average partial effects are simply computed at the means of 
the variables. Finally, the coefficients of the linear projection are immediate estimates of the 
partial effects. We find, for example, the partial effect of education in the nonlinear model is 
0.01574. Although the linear least squares coefficients are very different, if the partial effect 
for education is computed for the linear approximation the result of 0.01789 is reasonably 
close, and results from the fact that in the center of the data, the exponential function is 
passably linear. The linear projection is less effective at reproducing the partial effects. The 
comparison for the other variables is mixed. The conclusion from Example 4.4 is unchanged. 
The substantive comparison here would be between the slopes of the nonlinear regression 
and the slopes of the linear projection. They resemble each other, but not as closely as one 
might hope.

Variable Nonlinear Regression Linear Approximation Linear Projection

Age 0.00095 0.00091 0.00066
Educ 0.01574 0.01789 0.01860
Female 0.00084 0.00135 0.00075

TABLE 7.4  Estimated Partial Effects
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Example 7.7  �  Generalized Linear Models for the Distribution of Healthcare 
Costs

Jones, Lomas, and Rice (2014, 2015) examined the distribution of healthcare costs in the 
UK. Two aspects of the analysis were different from our examinations to this point. First, 
while nearly all of the development we have considered so far involves regression, that is, the 
conditional mean (or median) of the distribution of the dependent variable, their interest was 
in other parts of the distribution, specifically conditional and unconditional tail probabilities for 
relatively outlying parts of the distribution. Second, the variable under study is nonnegative, 
highly asymmetric (skewness 13.03), and leptokurtic (kurtosis 363.13- the distribution has a 
thick right tail). Some values from the estimated survival function (Jones et al., 2015, Table 1) 
are S(£500) = 0.8296, S(£1,000) = 0.5589, S(£5,000) = 0.1383, and S(£10,000) = 0.0409. 
The skewness and kurtosis values would compare to 0.0 and 3.0, respectively, for the normal 
distribution. The survival function values for the normal distribution with this mean and 
standard deviation would be 0.6608, 0.6242, 0.3193, and 0.0732, respectively. The model is 
constructed with these features of the data in mind. Several methods of fitting the distribution 
were examined, including a set of nine parametric models. Several of these were special 
cases of the generalized beta of the second kind. The functional forms are generalized linear 
models constructed from a family of distributions, such as the normal or exponential, and a 
link function, g(x′B) such that link(g(x′B)) = x′B. Thus, if the link function is “ln” (log link), then 
g(x′B) = exp(x′B). Among the nine special cases examined are

•	 Gamma family, log link:

f(cost � x) =
[g(x′B)]-P

Γ(P)
 exp[-cost/g(x′B)]costP-1,

g(x′B) = exp(x′B); E[cost � x] = Pg(x′B).

•	 Lognormal family, identity link:

f(cost � x) =
1

scost22p
 exp c -

(ln cost - g(x′B))2

2s2 d ,

g(x′B) = x′B; E[cost � x] = exp3g(x′B) + 1
2 s24 .

•	 Finite mixture of two gammas, inverse square root link:

f(cost � x) = a 2
j= 1aj 

[g(x′Bj)]-Pj

Γ(Pj)
 exp[-cost/g(x′Bj)]costPj-1, 0 … aj … 1, a 2

j= 1aj = 1,

g(x′B) = 1/(x′B)2; E[cost � x] = a1P1g(x′B1) + a2P2g(x′B2).

(The models have been reparameterized here to simplify them and show their similarities.) In each 
case, there is a conditional mean function. However, the quantity of interest in the study is not 
the regression function; it is the survival function, S(cost � x,k) = Prob(cost Ú k � x). The measure 
of a model’s performance is its ability to estimate the sample survival rate for values of k; the one 
of particular interest is the largest, k = 10,000. The main interest is the marginal rate, 
Ex[S(cost � x,k)] = 1xS(cost � x,k)f(x)dx. This is estimated by estimating B and the ancillary 
parameters of the specific model, then estimating S(cost � k) with (1/n)Σ i= 1

n S(costi � xi,k  :  Bn ) The 
covariates include a set of morbidity characteristics and an interacted cubic function of age and 
sex. Several semiparametric and nonparametric methods are examined along with the parametric 
regression–based models. Figure 7.3 shows the bias and variability of the three parametric 
estimators and two of the proposed semiparametric methods.11 Overall, none of the 14 methods 
examined emerges as best overall by a set of fitting criteria that includes bias and variability.

11Derived from the results in Figure 4 in Jones et al. (2015).
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7.2.8    COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR

Minimizing the sum of squared residuals for a nonlinear regression is a standard problem 
in nonlinear optimization that can be solved by a number of methods. (See Section E.3.) 
The method of Gauss–Newton is often used. This algorithm (and most of the sampling 
theory results for the asymptotic properties of the estimator) is based on a linear Taylor 
series approximation to the nonlinear regression function. The iterative estimator is 
computed by transforming the optimization to a series of linear least squares regressions.

The nonlinear regression model is y = h(x, B) + e. (To save some notation, we have 
dropped the observation subscript.) The procedure is based on a linear Taylor series 
approximation to h(x, B) at a particular value for the parameter vector, B0,

	 h(x, B) ≈ h(x, B0) + a
K

k = 1
 
0h(x, B0)

0bk
0  (bk - bk

0).	 (7-28)

This form of the equation is called the linearized regression model. By collecting terms, 
we obtain

	 h(x, b) ≈ Jh(x, B0) - a
K

k = 1
bk

0a 0h(x, B0)

0bk
0 b R + a

K

k = 1
bka

0h(x, B0)

0bk
0 b .� (7-29)

Let xk
0 equal the kth partial derivative,12 0h(x, B0)/0bk

0. For a given value of B0, xk
0 is a 

function only of the data, not of the unknown parameters. We now have

h(x, B) ≈ Jh0 - a
K

k = 1
xk

0 bk
0 R + a

K

k = 1
xk

0bk,

which may be written

h(x, B) ≈ h0 - x0′B0 + x0′B,

12You should verify that for the linear regression model, these derivatives are the independent variables.

Figure 7.3    Performance of Several Estimators of S(cost � k).
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which implies that

y ≈ h0 - x0′B0 + x0′B + e.

By placing the known terms on the left-hand side of the equation, we obtain a linear 
equation,

	 y0 = y - h0 + x0′B0 = x0′B + e0.	 (7-30)

Note that e0 contains both the true disturbance, e, and the error in the first-order Taylor 
series approximation to the true regression, shown in (7-29). That is,

	 e0 = e + Jh(x, B) - ah0 - a
K

k = 1
xk

0bk
0 + a

K

k = 1
xk

0bkb R .	 (7-31)

Because all the errors are accounted for, (7-30) is an equality, not an approximation. With a 
value of B0 in hand, we could compute y0 and x0 and then estimate the parameters of (7-30) 
by linear least squares. Whether this estimator is consistent or not remains to be seen.

Example 7.8    Linearized Regression
For the model in Example 7.3, the regressors in the linearized equation would be

 x1
0 =

0h(.)

0b1
0 = 1,

 x2
0 =

0h(.)

0b2
0 = eb0

3 x,

 x3
0 =

0h(.)

0b3
0 = b2

0xeb0
3x.

With a set of values of the parameters B0,

y0 = y - h(x, b1
0, b2

0, b3
0 ) + b1

0 x1
0 + b2

0 x2
0 + b3

0 x3
0

can be linearly regressed on the three pseudoregressors to estimate b1, b2, and b3.

The linearized regression model shown in (7-30) can be estimated by linear least 
squares. Once a parameter vector is obtained, it can play the role of a new B0, and the 
computation can be done again. The iteration can continue until the difference between 
successive parameter vectors is small enough to assume convergence. One of the main 
virtues of this method is that at the last iteration the estimate of (Q0)-1 will, apart from 
the scale factor sn 2/n, provide the correct estimate of the asymptotic covariance matrix 
for the parameter estimator.

This iterative solution to the minimization problem is

 bt + 1 = Jan
i= 1

xi
0xi

0′R -1Jan
i= 1

xi
0 (yi - hi

0 + xi
0′bt) R

 = bt + Jan
i= 1

xi
0xi

0′R -1Jan
i= 1

xi
0 (yi - hi

0) R
 = bt + (X0′X0)-1X0′e0

 = bt + �t, �

(7-32)
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where all terms on the right-hand side are evaluated at bt and e0 is the vector of 
nonlinear least squares residuals. This algorithm has some intuitive appeal as well. For 
each iteration, we update the previous parameter estimates by regressing the nonlinear 
least squares residuals on the derivatives of the regression functions. The process will 
have converged (i.e., the update will be 0) when X0′e0 is close enough to 0. This derivative 
has a direct counterpart in the normal equations for the linear model, X′e = 0.

As usual, when using a digital computer, we will not achieve exact convergence with 
X0′e0 exactly equal to zero. A useful, scale-free counterpart to the convergence criterion 
discussed in Section E.3.6 is d = e0′X0(X0′X0)-1X0′e0. [See (7-22).] We note, finally, that 
iteration of the linearized regression, although a very effective algorithm for many 
problems, does not always work. As does Newton’s method, this algorithm sometimes 
“jumps off” to a wildly errant second iterate, after which it may be impossible to compute 
the residuals for the next iteration. The choice of starting values for the iterations can 
be crucial. There is art as well as science in the computation of nonlinear least squares 
estimates.13 In the absence of information about starting values, a workable strategy is 
to try the Gauss–Newton iteration first. If it fails, go back to the initial starting values 
and try one of the more general algorithms, such as BFGS, treating minimization of the 
sum of squares as an otherwise ordinary optimization problem.

Example 7.9    Nonlinear Least Squares
Example 7.4 considered analysis of a nonlinear consumption function,

C = a + bYg + e.

The linearized regression model is

C - (a0 + b0Yg0) + (a01 + b0Yg0 + g0b0Yg0 ln Y) = a + b(Yg0) + g( b0Yg0 ln Y) + e0.

Combining terms, we find that the nonlinear least squares procedure reduces to iterated 
regression of

C0 = C + g0b0Yg0 ln Y

on

x0 = c 0h(.)
0a

 
0h(.)
0b

 
0h(.)
0g

d
=

= C 1
Yg0

b0Yg0
lnY

S .

Finding the starting values for a nonlinear procedure can be difficult. Simply trying a 
convenient set of values can be unproductive. Unfortunately, there are no good rules for 
starting values, except that they should be as close to the final values as possible (not 
particularly helpful). When it is possible, an initial consistent estimator of B will be a good 
starting value. In many cases, however, the only consistent estimator available is the one 
we are trying to compute by least squares. For better or worse, trial and error is the most 
frequently used procedure. For the present model, a natural set of values can be obtained 
because a simple linear model is a special case. Thus, we can start a and b at the linear 
least squares values that would result in the special case of g = 1 and use 1 for the starting 
value for g. The iterations are begun at the least squares estimates for a and b and 1 for g.

13See McCullough and Vinod (1999).
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The solution is reached in eight iterations, after which any further iteration is merely fine 
tuning the hidden digits (i.e., those that the analyst would not be reporting to their reader; 
“gradient” is the scale-free convergence measure, d, noted earlier). Note that the coefficient 
vector takes a very errant step after the first iteration—the sum of squares becomes huge—
but the iterations settle down after that and converge routinely.

Begin NLSQ iterations. Linearized regression.

 Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930
 Iteration = 2; Sum of squares = 0.184780956E + 12; Gradient = 0.184780452E + 12 (*1012)
 Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7
 Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342
 Iteration = 5; Sum of squares = 504403.969; Gradient = 0.752189847
 Iteration = 6; Sum of squares = 504403.216; Gradient = 0.526642396E@04
 Iteration = 7; Sum of squares = 504403.216; Gradient = 0.511324981E@07
 Iteration = 8; Sum of squares = 504403.216; Gradient = 0.606793426E@10

7.3	 MEDIAN AND QUANTILE REGRESSION

We maintain the essential assumptions of the linear regression model,

y = x′B + e,

where E[e � x] = 0 and E[y � x] = x′B. If e � x is normally distributed, so that the 
distribution of e � x is also symmetric, then the median, med[e � x], is also zero and 
med[y � x] = x′B. Under these assumptions, least squares remains a natural choice for 
estimation of B. But, as we explored in Example 4.3, least absolute deviations (LAD) is 
a possible alternative that might even be preferable in a small sample. Suppose, however, 
that we depart from the second assumption directly. That is, the statement of the model is

med[y � x] = x′B.

This result suggests a motivation for LAD in its own right, rather than as a robust (to 
outliers) alternative to least squares.14 The conditional median of yi � xi might be an 
interesting function. More generally, other quantiles of the distribution of yi � xi might 
also be of interest. For example, we might be interested in examining the various 
quantiles of the distribution of income or spending. Quantile regression (rather than 
least squares) is used for this purpose. The (linear) quantile regression model can be 
defined as

	 Q[y � x, q] = x′Bq such that prob [y … x′Bq � x] = q, 0 6 q 6 1.	 (7-33)

The median regression would be defined for q = 1
2. Other focal points are the lower and 

upper quartiles, q = 1
4 and q = 3

4, respectively. We will develop the median regression 
in detail in Section 7.3.1, once again largely as an alternative estimator in the linear 
regression setting.

The quantile regression model is a richer specification than the linear model that 
we have studied thus far because the coefficients in (7-33) are indexed by q. The model 

14In Example 4.3, we considered the possibility that in small samples with possibly thick-tailed disturbance 
distributions, the LAD estimator might have a smaller variance than least squares.
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is semiparametric—it requires a much less detailed specification of the distribution of 
y � x. In the simplest linear model with fixed coefficient vector, B, the quantiles of y � x 
would be defined by variation of the constant term. The implication of the model is 
shown in Figure 7.4. For a fixed b and conditioned on x, the value of aq + bx such that 
prob(y 6 aq + bx) is shown for q = 0.15, 0.5, and 0.9 in Figure 7.4. There is a value of 
aq for each quantile. In Section 7.3.2, we will examine the more general specification of 
the quantile regression model in which the entire coefficient vector plays the role of aq 
in Figure 7.4.

7.3.1    LEAST ABSOLUTE DEVIATIONS ESTIMATION

Least squares can be distorted by outlying observations. Recent applications in 
microeconomics and financial economics involving thick-tailed disturbance distributions, 
for example, are particularly likely to be affected by precisely these sorts of observations. 
(Of course, in those applications in finance involving hundreds of thousands of 
observations, which are becoming commonplace, this discussion is moot.) These 
applications have led to the proposal of “robust” estimators that are unaffected by 
outlying observations.15 In this section, we will examine one of these, the least absolute 
deviations, or LAD estimator.

That least squares gives such large weight to large deviations from the regression 
causes the results to be particularly sensitive to small numbers of atypical data points 

15For some applications, see Taylor (1974), Amemiya (1985, pp. 70–80), Andrews (1974), Koenker and Bassett 
(1978), Li and Racine (2007), Henderson and Parmeter (2015), and a survey written at a very accessible level by 
Birkes and Dodge (1993). A somewhat more rigorous treatment is given by Hardle (1990).

Figure 7.4    Quantile Regression Model.
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when the sample size is small or moderate. The least absolute deviations (LAD) 
estimator has been suggested as an alternative that remedies (at least to some degree) 
the problem. The LAD estimator is the solution to the optimization problem,

minb0a
n

i= 1
� yi - xi

=b0 � .

The LAD estimator’s history predates least squares (which itself was proposed over 
200 years ago). It has seen little use in econometrics, primarily for the same reason that 
Gauss’s method (LS) supplanted LAD at its origination; LS is vastly easier to compute. 
Moreover, in a more modern vein, its statistical properties are more firmly established 
than LAD’s and samples are usually large enough that the small sample advantage of 
LAD is not needed.

The LAD estimator is a special case of the quantile regression,

prob[yi … xi
=Bq] = q.

The LAD estimator estimates the median regression. That is, it is the solution to the 
quantile regression when q = 0.5. Koenker and Bassett (1978, 1982), Koenker and 
Hallock (2001), Huber (1967), and Rogers (1993) have analyzed this regression.16 Their 
results suggest an estimator for the asymptotic covariance matrix of the quantile 
regression estimator,

Est.Asy.Var[bq] = (X′X)-1X′DX(X′X)-1,

where D is a diagonal matrix containing weights,

di = c q

f(0)
d

2

 if yi - xi
= B is positive and c 1 - q

f(0)
d

2

 otherwise,

and f(0) is the true density of the disturbances evaluated at 0.17 [It remains to obtain 
an estimate of f(0).] There is a useful symmetry in this result. Suppose that the true 
density were normal with variance s2. Then the preceding would reduce to 
s2(p/2)(X′X)-1, which is the result we used in Example 4.5. For more general cases, 
some other empirical estimate of f(0) is going to be required. Nonparametric methods 
of density estimation are available.18 But for the small sample situations in which 
techniques such as this are most desirable (our application below involves 25 
observations), nonparametric kernel density estimation of a single ordinate is 
optimistic; these are, after all, asymptotic results. But asymptotically, as suggested by 
Example 4.3, the results begin overwhelmingly to favor least squares. For better or 

16Powell (1984) has extended the LAD estimator to produce a robust estimator for the case in which data on the 
dependent variable are censored, that is, when negative values of yi are recorded as zero. See Melenberg and van 
Soest (1996) for an application. For some related results on other semiparametric approaches to regression, see 
Butler et al. (1990) and McDonald and White (1993).
17Koenker suggests that for independent and identically distributed observations, one should replace di with the 
constant a = q(1 - q)/[f(F -1(q))]2 = [.50/f(0)]2 for the median (LAD) estimator. This reduces the expression to 
the true asymptotic covariance matrix, a(X′X)-1. The one given is a sample estimator which will behave the same 
in large samples. (Personal communication with the author.)
18See Section 12.4 and, for example, Johnston and DiNardo (1997, pp. 370–375).

M07_GREE1366_08_SE_C07.indd   227 2/24/17   11:05 AM



228	 Part I  ✦   The Linear Regression Model

worse, a convenient estimator would be a kernel density estimator as described in 
Section 12.4.1. Looking ahead, the computation would be

fn(0) =
1
n

 a
n

i= 1

1
h

 K c ei

h
d ,

where h is the bandwidth (to be discussed shortly), K[.] is a weighting, or kernel function, 
and ei, i = 1, c, n is the set of residuals. There are no hard and fast rules for choosing 
h; one popular choice is that used by Stata (2014), h = .9s/n1/5. The kernel function is 
likewise discretionary, though it rarely matters much which one chooses; the logit kernel 
(see Table 12.2) is a common choice.

The bootstrap method of inferring statistical properties is well suited for this 
application. Since the efficacy of the bootstrap has been established for this purpose, the 
search for a formula for standard errors of the LAD estimator is not really necessary. The 
bootstrap estimator for the asymptotic covariance matrix can be computed as follows:

Est.Var[bLAD] =
1
R

 a
R

r = 1
(bLAD(r) - bLAD)(bLAD(r) - bLAD)′,

where bLAD(r) is the rth LAD estimate of B based on a sample of n observations, drawn 
with replacement, from the original data set and bLAD is the mean of the r LAD estimators.

Example 7.10    LAD Estimation of a Cobb–Douglas Production Function
Zellner and Revankar (1970) proposed a generalization of the Cobb–Douglas production 
function that allows economies of scale to vary with output. Their statewide data on 
Y = value added (output), K = capital, L = labor, and N = the number of establishments 
in the transportation industry are given in Appendix Table F7.2. For this application, estimates 
of the Cobb–Douglas production function,

ln(Yi / Ni) = b1 + b2 ln(Ki / Ni) + b3 ln(Li / Ni) + ei,

are obtained by least squares and LAD. The standardized least squares residuals shown in 
Figure 7.5 suggest that two observations (Florida and Kentucky) are outliers by the usual 
construction. The least squares coefficient vectors with and without these two observations are 
(2.293, 0.279, 0.927) and (2.205, 0.261, 0.879), respectively, which bears out the suggestion that 
these two points do exert considerable influence. Table 7.5 presents the LAD estimates of the 
same parameters, with standard errors based on 500 bootstrap replications. The LAD estimates 
with and without these two observations are identical, so only the former are presented. 
Using the simple approximation of multiplying the corresponding OLS standard error by 
(p/2)1/2 = 1.2533 produces a surprisingly close estimate of the bootstrap-estimated standard 
errors for the two slope parameters (0.102, 0.123) compared with the bootstrap estimates of 
(0.124, 0.121). The second set of estimated standard errors are based on Koenker’s suggested 
estimator, 0.25/ fn 2(0) = 0.25/1.54672 = 0.104502. The bandwidth and kernel function are 
those suggested earlier. The results are surprisingly consistent given the small sample size.

7.3.2    QUANTILE REGRESSION MODELS

The quantile regression model is

Q[y � x, q] = x′Bq such that prob[y … x′Bq � x] = q, 0 6 q 6 1.

This is a semiparametric specification. No assumption is made about the distribution 
of y � x or about its conditional variance. The fact that q can vary continuously (strictly) 
between zero and one means that there are an infinite number of possible parameter 
vectors. It seems reasonable to view the coefficients, which we might write B(q) less 
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Figure 7.5    Standardized Residuals for a Production Function.
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as fixed parameters, as we do in the linear regression model, than loosely as features 
of the distribution of y � x. For example, it is not likely to be meaningful to view B49 to 
be discretely different from B50 or to compute precisely a particular difference such 
as B.5 - B.3. On the other hand, the qualitative difference, or possibly the lack of a 
difference, between B.3 and B.5 as displayed in our following example, may well be an 
interesting characteristic of the distribution.

The estimator, bq, of Bq, for a specific quantile is computed by minimizing the function

 Fn(Bq � y, X) = a
n

i:yi Ú xi
=Bq

q � yi - xi
=Bq � + a

n

i:yi 6 xi
=Bq

(1 - q) � yi - xi
=Bq �

 = a
n

i= 1
 g(yi - xi

=Bq � q),

Least Squares LAD

Bootstrap Kernel Density

Coefficient Estimate Standard  
Error

t Ratio Estimate Standard  
Error

t Ratio Standard  
Error

t Ratio

Constant 2.293 0.107 21.396 2.275 0.202 11.246 0.183 12.374
bk 0.279 0.081 3.458 0.261 0.124 2.099 0.138 1.881
bl 0.927 0.098 9.431 0.927 0.121 7.637 0.169 5.498

Σe2 0.7814 0.7984

Σ � e � 3.3652 3.2541

TABLE 7.5  LS and LAD Estimates of a Production Function
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where

g(ei,q � q) = bqei,q if ei, q Ú 0
(1 - q)ei,q if ei, q 6 0

r , ei,q = yi - xi
=Bq.

When q = 0.5, the estimator is the least absolute deviations estimator we examined in 
Example 4.5 and Section 7.3.1. Solving the minimization problem requires an iterative 
estimator. It can be set up as a linear programming problem.19

We cannot use the methods of Chapter 4 to determine the asymptotic covariance 
matrix of the estimator. But the fact that the estimator is obtained by minimizing a sum 
does lead to a set of results similar to those we obtained in Section 4.4 for least squares.20 
Assuming that the regressors are well behaved, the quantile regression estimator of Bq 
is consistent and asymptotically normally distributed with asymptotic covariance matrix

Asy.Var.[bq] =
1
n

 H-1 GH-1,

where

H = plim 
1
n

 a
n

i= 1
fq(0 � xi)xixi

=

and

G = plim 
q(1 - q)

n
 a

n

i= 1
xixi

=.

This is the result we had earlier for the LAD estimator, now with quantile q instead of 
0.5. As before, computation is complicated by the need to compute the density of eq at 
zero. This will require either an approximation of uncertain quality or a specification of 
the particular density, which we have hoped to avoid. The usual approach, as before, is 
to use bootstrapping.

Example 7.11    Quantile Regression for Smoking Behavior
Laporte, Karimova, and Ferguson (2010) employed Becker and Murphy’s (1988) model of 
rational addiction to study the behavior of a sample of Canadian smokers. The rational 
addiction model is a model of inter-temporal optimization, meaning that, rather than making 
independent decisions about how much to smoke in each period, the individual plots out an 
optimal lifetime smoking trajectory, conditional on future values of exogenous variables such 
as price. The optimal control problem which yields that trajectory incorporates the individual’s 
attitudes to the harm smoking can do to her health and the rate at which she will trade the 
present against the future. This means that factors like the individual’s degree of myopia are 
built into the trajectory of cigarette consumption which she will follow, and that consumption 
trajectory is what yields the forward-looking second-order difference equation which 
characterizes rational addiction behavior.21

The proposed empirical model is a dynamic regression,

Ct = a + xt′B + g1Ct + 1 + g0Ct - 1 + et.

19See Koenker and D’Oray (1987) and Koenker (2005).
20See Buchinsky (1998).
21Laporte et al., p. 1064.
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Figure 7.6    Male Coefficient in Quantile Regressions.
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If it is assumed that xt is fixed at x* and et is fixed at its expected value of zero, then a long 
run equilibrium consumption occurs where Ct = Ct - 1 = C* so that

C* =
a + x*

=B

1 - g1 - g0

.

(Some restrictions on the coefficients must hold for a finite positive equilibrium to exist. We 
can see, for example, g0 + g1 must be less than one.) The long run partial effects are then 
0C*/0x*k = bk/(1 - g0 - g1). Various covariates enter the model including, gender, whether 
smoking is restricted in the workplace, self-assessment of poor diet, price, and whether the 
individual jumped to zero consumption.

The analysis in the study is done primarily through graphical descriptions of the quantile 
regressions. Figure 7.6 (Figure 4 from the article) shows the estimates of the coefficient on a 
gender dummy variable in the model. The center line is the quantile-based coefficient on the 
dummy variable. The bands show 95% confidence intervals. (The authors do not mention 
how the standard errors are computed.) The dotted horizontal line shows the least squares 
estimate of the same coefficient. Note that it coincides with the 50th quantile estimate of this 
parameter.

Example 7.12    Income Elasticity of Credit Card Expenditures
Greene (1992, 2007c) analyzed the default behavior and monthly expenditure behavior of a 
sample (13,444 observations) of credit card users. Among the results of interest in the study 
was an estimate of the income elasticity of the monthly expenditure. A quantile regression 
approach might be based on

Q[ln Spending � x, q] = b1, q + b2, q ln Income + b3, q Age + b4, q Dependents.

The data in Appendix Table F7.3 contain these and numerous other covariates that might explain 
spending; we have chosen these three for this example only. The 13,444 observations in the 
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Estimated Parameters

Quantile Constant ln Income Age Dependents

0.1 -6.73560 1.40306 -0.03081 -0.04297
0.2 -4.31504 1.16919 -0.02460 -0.04630
0.3 -3.62455 1.12240 -0.02133 -0.04788
0.4 -2.98830 1.07109 -0.01859 -0.04731

(Median) 0.5 -2.80376 1.07493 -0.01699 -0.04995
Std.Error (0.24564) (0.03223) (0.00157) (0.01080)

t -11.41 33.35 -10.79 -4.63

Least Squares -3.05581 1.08344 -0.01736 -0.04461
Std.Error (0.23970) (0.03212) (0.00135) (0.01092)

t -12.75 33.73 -12.88 -4.08

0.6 -2.05467 1.00302 -0.01478 -0.04609
0.7 -1.63875 0.97101 -0.01190 -0.03803
0.8 -0.94031 0.91377 -0.01126 -0.02245
0.9 -0.05218 0.83936 -0.00891 -0.02009

TABLE 7.6  Estimated Quantile Regression Models

data set are based on credit card applications. Of the full sample, 10,499 applications were 
approved and the next 12 months of spending and default behavior were observed.22 Spending 
is the average monthly expenditure in the 12 months after the account was initiated. Average 
monthly income and number of household dependents are among the demographic data in the 
application. Table 7.6 presents least squares estimates of the coefficients of the conditional 
mean function as well as full results for several quantiles.23 Standard errors are shown for the 
least squares and median (q = 0.5) results. The least squares estimate of 1.08344 is slightly and 
significantly greater than one—the estimated standard error is 0.03212 so the t statistic is 
(1 - 1.08344)/0.03212 = 2.60. This suggests an aspect of consumption behavior that might 
not be surprising. However, the very large amount of variation over the range of quantiles might 
not have been expected. We might guess that at the highest levels of spending for any income 
level, there is (comparably so) some saturation in the response of spending to changes in income.

Figure 7.7 displays the estimates of the income elasticity of expenditure for the range of 
quantiles from 0.1 to 0.9, with the least squares estimate, which would correspond to the fixed 
value at all quantiles, shown in the center of the figure. Confidence limits shown in the figure 
are based on the asymptotic normality of the estimator. They are computed as the estimated 
income elasticity plus and minus 1.96 times the estimated standard error. Figure 7.8 shows 
the implied quantile regressions for q = 0.1, 0.3, 0.5, 0.7, and 0.9.

22The expenditure data are taken from the credit card records while the income and demographic data are taken 
from the applications. While it might be tempting to use, for example, Powell’s (1986a,b) censored quantile 
regression estimator to accommodate this large cluster of zeros for the dependent variable, this approach would 
misspecify the model—the zeros represent nonexistent observations, not true zeros and not missing data. A more 
detailed approach—the one used in the 1992 study—would model separately the presence or absence of the 
observation on spending and then model spending conditionally on acceptance of the application. We will revisit 
this issue in Chapter 19 in the context of the sample selection model. The income data are censored at 100,000 
and 220 of the observations have expenditures that are filled with $1 or less. We have not “cleaned” the data set 
for these aspects. The full 10,499 observations have been used as they are in the original data set.
23We would note, if (7-33) is the statement of the model, then it does not follow that the conditional mean function 
is a linear regression. That would be an additional assumption.
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Figure 7.7    Estimates of Income Elasticity of Expenditure.
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Figure 7.8    Quantile Regressions for Spending vs. Income.
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7.4	 PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification issue. 
We examined this in detail in Chapter 6. Some approaches, including the use of dummy 
variables, logs, quadratics, and so on, were considered as a means of capturing nonlinearity. 
The translog model in particular  (Example 2.4) is a well-known approach to 
approximating an unknown nonlinear function. Even with these approaches, the 
researcher might still be interested in relaxing the assumption of functional form in the 
model. The partially linear model is another approach.24 Consider a regression model in 
which one variable, x, is of particular interest, and the functional form with respect to x 
is problematic. Write the model as

yi = f(xi) + zi
=B + ei,

where the data are assumed to be well behaved and, save for the functional form, the 
assumptions of the classical model are met. The function f(xi) remains unspecified. As 
stated, estimation by least squares is not feasible until f(xi) is specified. Suppose the 
data were such that they consisted of pairs of observations (yj1, yj2), j = 1, c, n/2, in 
which xj1 = xj2 within every pair. If so, then estimation of B could be based on the simple 
transformed model,

yj2 - yj1 = (zj2 - zj1)′B + (ej2 - ej1), j = 1, c, n/2.

As long as observations are independent, the constructed disturbances, vi, still have zero 
mean, variance now 2s2, and remain uncorrelated across pairs, so a classical model 
applies and least squares is actually optimal. Indeed, with the estimate of B, say, Bnd in 
hand, a noisy estimate of f(xi) could be estimated with yi - zi

=Bnd (the estimate contains 
the estimation error as well as ei).25

The problem, of course, is that the enabling assumption is heroic. Data would not 
behave in that fashion unless they were generated experimentally. The logic of the 
partially linear regression estimator is based on this observation nonetheless. Suppose 
that the observations are sorted so that x1 6 x2 6 g 6 xn. Suppose, as well, that 
this variable is well behaved in the sense that, as the sample size increases, this sorted 
data vector more completely and uniformly fills the space within which xi is assumed 
to vary. Then, intuitively, the difference is “almost” right, and becomes better as the 
sample size grows.26 A theory is also developed for a better differencing of groups of 
two or more observations. The transformed observation is yd,i = aM

m= 0dmyi - m, where 

aM
m= 0dm = 0 and aM

m= 0dm
2 = 1. (The data are not separated into nonoverlapping 

groups for this transformation—we merely used that device to motivate the 
technique.) The pair of weights for M = 1 is obviously {20.5 —this is just a scaling 
of the simple difference, 1, -1. Yatchew [1998, p. 697)] tabulates optimal differencing 
weights for M = 1, c, 10. The values for M = 2 are (0.8090, -0.500, -0.3090) and 
for M = 3 are (0.8582, -0.3832, -0.2809, -0.1942). This estimator is shown to be 

24Analyzed in detail by Yatchew (1998, 2000) and Härdle, Liang, and Gao (2000).
25See Estes and Honoré (1995) who suggest this approach (with simple differencing of the data).
26Yatchew (1997, 1998) goes more deeply into the underlying theory. 27Yatchew (2000, p. 191) denotes this covariance matrix E[cov[z � x]].
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7.4	 PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification issue. 
We examined this in detail in Chapter 6. Some approaches, including the use of dummy 
variables, logs, quadratics, and so on, were considered as a means of capturing nonlinearity. 
The translog model in particular  (Example 2.4) is a well-known approach to 
approximating an unknown nonlinear function. Even with these approaches, the 
researcher might still be interested in relaxing the assumption of functional form in the 
model. The partially linear model is another approach.24 Consider a regression model in 
which one variable, x, is of particular interest, and the functional form with respect to x 
is problematic. Write the model as

yi = f(xi) + zi
=B + ei,

where the data are assumed to be well behaved and, save for the functional form, the 
assumptions of the classical model are met. The function f(xi) remains unspecified. As 
stated, estimation by least squares is not feasible until f(xi) is specified. Suppose the 
data were such that they consisted of pairs of observations (yj1, yj2), j = 1, c, n/2, in 
which xj1 = xj2 within every pair. If so, then estimation of B could be based on the simple 
transformed model,

yj2 - yj1 = (zj2 - zj1)′B + (ej2 - ej1), j = 1, c, n/2.

As long as observations are independent, the constructed disturbances, vi, still have zero 
mean, variance now 2s2, and remain uncorrelated across pairs, so a classical model 
applies and least squares is actually optimal. Indeed, with the estimate of B, say, Bnd in 
hand, a noisy estimate of f(xi) could be estimated with yi - zi

=Bnd (the estimate contains 
the estimation error as well as ei).25

The problem, of course, is that the enabling assumption is heroic. Data would not 
behave in that fashion unless they were generated experimentally. The logic of the 
partially linear regression estimator is based on this observation nonetheless. Suppose 
that the observations are sorted so that x1 6 x2 6 g 6 xn. Suppose, as well, that 
this variable is well behaved in the sense that, as the sample size increases, this sorted 
data vector more completely and uniformly fills the space within which xi is assumed 
to vary. Then, intuitively, the difference is “almost” right, and becomes better as the 
sample size grows.26 A theory is also developed for a better differencing of groups of 
two or more observations. The transformed observation is yd,i = aM

m= 0dmyi - m, where 

aM
m= 0dm = 0 and aM

m= 0dm
2 = 1. (The data are not separated into nonoverlapping 

groups for this transformation—we merely used that device to motivate the 
technique.) The pair of weights for M = 1 is obviously {20.5 —this is just a scaling 
of the simple difference, 1, -1. Yatchew [1998, p. 697)] tabulates optimal differencing 
weights for M = 1, c, 10. The values for M = 2 are (0.8090, -0.500, -0.3090) and 
for M = 3 are (0.8582, -0.3832, -0.2809, -0.1942). This estimator is shown to be 

24Analyzed in detail by Yatchew (1998, 2000) and Härdle, Liang, and Gao (2000).
25See Estes and Honoré (1995) who suggest this approach (with simple differencing of the data).
26Yatchew (1997, 1998) goes more deeply into the underlying theory. 27Yatchew (2000, p. 191) denotes this covariance matrix E[cov[z � x]].

consistent, asymptotically normally distributed, and have asymptotic covariance 
matrix,27

Asy.Var[Bnd] = a1 +
1

2M
b  
sv

2

n
 Ex[Var[z � x]].

The matrix can be estimated using the sums of squares and cross products of the 
differenced data. The residual variance is likewise computed with

sn v
2 = a n

i=M + 1(yd,i - zd,i
= Bnd)2

n - M
.

Yatchew suggests that the partial residuals, yd,i - zd,i
= Bnd, be smoothed with a kernel 

density estimator to provide an improved estimator of f(xi). Manzan and Zeron (2010) 
present an application of this model to the U.S. gasoline market.

Example 7.13    Partially Linear Translog Cost Function
Yatchew (1998, 2000) applied this technique to an analysis of scale effects in the costs 
of electricity supply. The cost function, following Nerlove (1963) and Christensen and 
Greene (1976), was specified to be a translog model (see Example 2.4 and Section 10.3.2) 
involving labor and capital input prices, other characteristics of the utility, and the variable 
of interest, the number of customers in the system, C. We will carry out a similar analysis 
using Christensen and Greene’s 1970 electricity supply data. The data are given in Appendix 
Table F4.4. (See Section 10.3.1 for description of the data.) There are 158 observations in the 
data set, but the last 35 are holding companies that are comprised of combinations of the 
others. In addition, there are several extremely small New England utilities whose costs are 
clearly unrepresentative of the best practice in the industry. We have done the analysis using 
firms 6–123 in the data set. Variables in the data set include Q = output, C = total cost, and 
PK, PL, and PF = unit cost measures for capital, labor, and fuel, respectively. The parametric 
model specified is a restricted version of the Christensen and Greene model,

c = b1k + b2l + b3q + b4 (q2/2) + b5 + e,

where c = ln[C/(Q * PF)], k = ln(PK/PF), l = ln(PL/PF), and q = ln Q. The partially linear 
model substitutes f(q) for the last three terms. The division by PF ensures that average cost is 
homogeneous of degree one in the prices, a theoretical necessity. The estimated equations, 
with estimated standard errors, are shown here.

(parametric) c = -7.32 + 0.069k + 0.241 - 0.569q + 0.057q2/2 + e,
(0.333) (0.065) (0.069)   (0.042)     (0.006) s = 0.13949

(partially linear) cd = 0.108kd + 0.163ld + f(q) + v
(0.076) (0.081) s = 0.16529

7.5	 NONPARAMETRIC REGRESSION

The regression function of a variable y on a single variable x is specified as

y = m(x) + e.

No assumptions about distribution, homoscedasticity, serial correlation or, most 
importantly, functional form are made at the outset; m(x) may be quite nonlinear. 
Because this is the conditional mean, the only substantive restriction would be that 
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deviations from the conditional mean function are not a function of (correlated with) x.  
We have already considered several possible strategies for allowing the conditional 
mean to be nonlinear, including spline functions, polynomials, logs, dummy variables, 
and so on. But each of these is a “global” specification. The functional form is still the 
same for all values of x. Here, we are interested in methods that do not assume any 
particular functional form.

The simplest case to analyze would be one in which several (different) observations 
on yi were made with each specific value of xi. Then, the conditional mean function 
could be estimated naturally using the simple group means. The approach has two 
shortcomings, however. Simply connecting the points of means, (xi, y � xi) does not 
produce a smooth function. The method would still be assuming something specific 
about the function between the points, which we seek to avoid. Second, this sort of data 
arrangement is unlikely to arise except in an experimental situation. Given that data 
are not likely to be grouped, another possibility is a piecewise regression in which we 
define “neighborhoods” of points around each x of interest and fit a separate linear or 
quadratic regression in each neighborhood. This returns us to the problem of continuity 
that we noted earlier, but the method of splines, discussed in Section 6.3.1, is actually 
designed specifically for this purpose. Still, unless the number of neighborhoods is quite 
large, such a function is still likely to be crude.

Smoothing techniques are designed to allow construction of an estimator of the 
conditional mean function without making strong assumptions about the behavior of the 
function between the points. They retain the usefulness of the nearest neighbor concept 
but use more elaborate schemes to produce smooth, well-behaved functions. The general 
class may be defined by a conditional mean estimating function

mn (x*) = a
n

i= 1
wi(x* � x1, x2, c, xn)yi = a

n

i= 1
wi(x* � x)yi,

where the weights sum to 1. The linear least squares regression line is such an estimator. 
The predictor is

mn (x*) = a + bx*,

where a and b are the least squares constant and slope. For this function, you can show that

wi(x* � x) =
1
n

+
x*(xi - x)

a n
i= 1(xi - x)2

.

The problem with this particular weighting function, which we seek to avoid here, is that 
it allows every xi to be in the neighborhood of x*, but it does not reduce the weight of 
any xi when it is far from x*. A number of smoothing functions have been suggested that 
are designed to produce a better behaved regression function.28 We will consider two.

The locally weighted smoothed regression estimator (loess or lowess depending 
on your source) is based on explicitly defining a neighborhood of points that is close 
to x*. This requires the choice of a bandwidth, h. The neighborhood is the set of points 
for which � x* - xi � is small. For example, the set of points that are within the range 
x* { h/2 might constitute the neighborhood. The choice of bandwidth is crucial, as we 

28See Cleveland (1979) and Schimek (2000).
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will explore in the following example, and is also a challenge. There is no single best 
choice. A common choice is Silverman’s (1986) rule of thumb,

hSilverman =
.9[min(s, IQR)]

1.349n0.2 ,

where s is the sample standard deviation and IQR is the interquartile range (0.75 quantile 
minus 0.25 quantile). A suitable weight is then required. Cleveland (1979) recommends 
the tricube weight,

Ti(x* � x, h) = J1 - a � xi - x* �
h

b
3 R 3

.

Combining terms, then the weight for the loess smoother is

wi(x* � x, h) = 1(xi in the neighborhood) * Ti(x* � x, h).

The bandwidth is essential in the results. A wider neighborhood will produce a smoother 
function, but the wider neighborhood will track the data less closely than a narrower one. 
A second possibility, similar to the least squares approach, is to allow the neighborhood 
to be all points but make the weighting function decline smoothly with the distance 
between x* and any xi. A variety of kernel functions are used for this purpose. Two 
common choices are the logistic kernel,

K(x* � xi, h) = Λ(vi)[1 - Λ(vi)] where Λ(vi) = exp(vi)/[1 + exp(vi)], vi = (xi - x*)/h,

and the Epanechnikov kernel,

K(x* � xi, h) = 0.75(1 - 0.2vi
2)/U5 if � vi � … 5 and 0 otherwise.

This produces the kernel weighted regression estimator,

mn (x* � x, h) =

1
n

 a
n

i= 1
 
1
h

 K c xi - x*

h
d yi

1
n

 a
n

i= 1
 
1
h

 K c xi - x*

h
d

,

which has become a standard tool in nonparametric analysis.

Example 7.14    A Nonparametric Average Cost Function
In Example 7.13, we fit a partially linear regression for the relationship between average cost and 
output for electricity supply. Figure 7.9 shows the less ambitious nonparametric regressions of 
average cost on output. The overall picture is the same as in the earlier example. The kernel 
function is the logistic density in both cases. The functions in Figure 7.9 use bandwidths of 
2,000 and 100. Because 2,000 is a fairly large proportion of the range of variation of output, 
this function is quite smooth. The other function in Figure 7.9 uses a bandwidth of only 100. 
The function tracks the data better, but at an obvious cost. The example demonstrates what 
we and others have noted often. The choice of bandwidth in this exercise is crucial.

Data smoothing is essentially data driven. As with most nonparametric techniques, 
inference is not part of the analysis—this body of results is largely descriptive. As can 
be seen in the example, nonparametric regression can reveal interesting characteristics 
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of the data set. For the econometrician, however, there are a few drawbacks. There is no 
danger of misspecifying the conditional mean function; however, the great generality of 
the approach limits the ability to test one’s specification or the underlying theory.29 Most 
relationships are more complicated than a simple conditional mean of one variable. In 
Example 7.14, some of the variation in average cost relates to differences in factor prices 
(particularly fuel) and in load factors. Extensions of the fully nonparametric regression 
to more than one variable is feasible, but very cumbersome.30 A promising approach is 
the partially linear model considered earlier. Henderson and Parmeter (2015) describe 
extensions of the kernel regression that accommodate multiple regression.

7.6	 SUMMARY AND CONCLUSIONS

In this chapter, we extended the regression model to a form that allows nonlinearity 
in the parameters in the regression function. The results for interpretation, estimation, 
and hypothesis testing are quite similar to those for the linear model. The two crucial 
differences between the two models are, first, the more involved estimation procedures 
needed for the nonlinear model and, second, the ambiguity of the interpretation of the 
coefficients in the nonlinear model (because the derivatives of the regression are often 
nonconstant, in contrast to those in the linear model).

29See, for example, Blundell, Browning, and Crawford’s (2003) extensive study of British expenditure patterns.
30See Härdle (1990), Li and Racine (2007), and Henderson and Parmeter (2015).

Figure 7.9    Nonparametric Cost Functions.
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Exercises

1.	 Describe how to obtain nonlinear least squares estimates of the parameters of the 
model y = axb + e.

2.	 Verify the following differential equation, which applies to the Box–Cox 
transformation:

	
dix(l)

dli = a 1
l
b cxl(ln x)i -

idi - 1x(l)

dli - 1 d .� (7-34)

Show that the limiting sequence for l = 0 is

	 lim
lS0

 
dix(l)

dli =
(ln x)i + 1

i + 1
.� (7-35)

These results can be used to great advantage in deriving the actual second 
derivatives of the log-likelihood function for the Box–Cox model.

Key Terms and Concepts

•	Bandwidth
•	Bootstrap
•	Box–Cox transformation
•	Conditional mean function
•	Conditional median
•	Delta method
•	Epanechnikov kernel
•	GMM estimator
•	Identification condition
•	Identification problem
•	Indirect utility function
•	Interaction term
•	Iteration

•	Jacobian
•	Kernel density estimator
•	Kernel functions
•	Lagrange multiplier test
•	Least absolute deviations 

(LAD)
•	Linear regression model
•	Linearized regression 

model
•	Logistic kernel
•	Median regression
•	Nearest neighbor
•	Neighborhood

•	Nonlinear least squares
•	Nonlinear regression model
•	Nonparametric regression
•	Orthogonality condition
•	Overidentifying restrictions
•	Partially linear model
•	Pseudoregressors
•	Quantile regression model
•	Roy’s identity
•	Semiparametric
•	Silverman’s rule of thumb
•	Smoothing function
•	Starting values

Applications

1.	 Using the Box–Cox transformation, we may specify an alternative to the Cobb–
Douglas model as

ln Y = a + bk 
(Kl - 1)

l
+ bl 

(Ll - 1)

l
+ e.

Using Zellner and Revankar’s data in Appendix Table F7.2, estimate a, bk, bl, and 
l by using the scanning method suggested in Example 7.5. (Do not forget to scale 
Y, K, and L by the number of establishments.) Use (7-24), (7-15), and (7-16) to 
compute the appropriate asymptotic standard errors for your estimates. Compute 
the two output elasticities, 0 ln Y/0 ln K and 0 ln Y/0 ln L, at the sample means of K 
and L. (Hint: 0 ln Y/0 ln K = K0 ln Y/0K.)

2.	 For the model in Application 1, test the hypothesis that l = 0 using a Wald test 
and a Lagrange multiplier test. Note that the restricted model is the Cobb–Douglas 
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loglinear model. The LM test statistic is shown in (7-22). To carry out the test, you 
will need to compute the elements of the fourth column of X0, the pseudoregressor 
corresponding to l is 0E[y � x]/0l �l = 0. Result (7-35) will be useful.

3.	 The National Institute of Standards and Technology (NIST) has created a Web site 
that contains a variety of estimation problems, with data sets, designed to test the 
accuracy of computer programs. (The URL is http://www.itl.nist.gov/div898/strd/.) 
One of the five suites of test problems is a set of 27 nonlinear least squares problems, 
divided into three groups: easy, moderate, and difficult. We have chosen one of them 
for this application. You might wish to try the others (perhaps to see if the software 
you are using can solve the problems). This is the Misralc problem (http://www 
.itl.nist.gov/div898/strd/nls/data/misra1c.shtml). The nonlinear regression model is

 yi = h(x, B) + e

 = b1¢1 -
121 + 2b2xi

≤ + ei.

The data are as follows:

Y X

10. 07 77.6
14. 73 114.9
17. 94 141.1
23. 93 190.8
29. 61 239.9
35. 18 289.0
40. 02 332.8
44. 82 378.4
50. 76 434.8
55. 05 477.3
61. 01 536.8
66. 40 593.1
75. 47 689.1
81. 78 760.0

For each problem posed, NIST also provides the “certified solution” (i.e., the right 
answer). For the Misralc problem, the solutions are as follows:

Estimate Estimated Standard Error

b1 6.3642725809e+02 4.6638326572e+00
b2 2.0813627256E–04 1.7728423155E–06
e′e 4.0966836971E–02

s2 = e′e/(n - K) 5.8428615257E–02

Finally, NIST provides two sets of starting values for the iterations, generally one 
set that is “far” from the solution and a second that is “close” to the solution. 
For this problem, the starting values provided are B1 = (500, 0.0001) and 
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B2 = (600, 0.0002). The exercise here is to reproduce the NIST results with your 
software. [For a detailed analysis of the NIST nonlinear least squares benchmarks 
with several well-known computer programs, see McCullough (1999).]

4.	 In Example 7.1, the CES function is suggested as a model for production,

	 ln y = ln g -
n

r
 ln [dK-r + (1 - d)L-r] + e.� (7-36)

Example 6.19 suggested an indirect method of estimating the parameters of this 
model. The function is linearized around r = 0, which produces an intrinsically 
linear approximation to the function,

ln y = b1 + b2 ln K + b3 ln L + b4[1/2(ln K - ln L)2] + e,

where b1 = ln g, b2 = nd, b3 = n(1 - d) and b4 = rnd(1 - d). The approximation 
can be estimated by linear least squares. Estimates of the structural parameters are 
found by inverting the preceding four equations. An estimator of the asymptotic 
covariance matrix is suggested using the delta method. The parameters of (7-36) 
can also be estimated directly using nonlinear least squares and the results given 
earlier in this chapter.

Christensen and Greene’s (1976) data on U.S. electricity generation are given in 
Appendix Table F4.4. The data file contains 158 observations. Using the first 123, fit 
the CES production function, using capital and fuel as the two factors of production 
rather than capital and labor. Compare the results obtained by the two approaches, 
and comment on why the differences (which are substantial) arise.

The following exercises require specialized software. The relevant techniques 
are available in several packages that might be in use, such as SAS, Stata, or 
NLOGIT. The exercises are suggested as departure points for explorations using a 
few of the many estimation techniques listed in this chapter.

5.	 Using the gasoline market data in Appendix Table F2.2, use the partially linear 
regression method in Section 7.4 to fit an equation of the form

ln(G/Pop) = b1 ln(Income) + b2 ln Pnew cars + b3 ln Pused cars + g(ln Pgasoline) + e.

6.	 To continue the analysis in Application 5, consider a nonparametric regression of 
G/Pop on the price. Using the nonparametric estimation method in Section 7.5, 
fit the nonparametric estimator using a range of bandwidth values to explore the 
effect of bandwidth.
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