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The Generalized Regression 
Model and Heteroscedasticity

§
9.1	 INTRODUCTION

In this and the next several chapters, we will extend the multiple regression model 
to disturbances that violate Assumption A.4 of the classical regression model. The 
generalized linear regression model is

	  y = XB + E,	

	  E[E � X] = 0, � (9-1)

E[EE′ � X] = s2� = �,

where � is a positive definite matrix. The covariance matrix is written in the form 
s2� at several points so that we can obtain the classical model, s2I as a convenient 
special case.

The two leading cases are heteroscedasticity and autocorrelation. Disturbances 
are heteroscedastic when they have different variances. Heteroscedasticity arises 
in numerous applications, in both cross-section and time-series data. Volatile high-
frequency time-series data, such as daily observations in financial markets, are 
heteroscedastic. Heteroscedasticity appears in cross-section data where the scale of 
the dependent variable and the explanatory power of the model tend to vary across 
observations. Microeconomic data, such as expenditure surveys, are typical. Even after 
accounting for firm size, we expect to observe greater variation in the profits of large 
firms than in those of small ones. The variance of profits might also depend on product 
diversification, research and development expenditure, and industry characteristics and 
therefore might also vary across firms of similar sizes. When analyzing family spending 
patterns, we find that there is greater variation in expenditure on certain commodity 
groups among high-income families than low ones due to the greater discretion allowed 
by higher incomes.

The disturbances are still assumed to be uncorrelated across observations, so s2� 
would be

s2� = s2 Dv1 0 g 0
0 v2 g 0

f
0 0 g vn

T = Ds1
2 0 g 0

0 s2
2 g 0

f
0 0 g sn

2

T .

Autocorrelation is usually found in time-series data. Economic time series often display a 
memory in that variation around the regression function is not independent from one period 
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298	 Part II  ✦   Generalized Regression Model and Equation Systems

to the next. The seasonally adjusted price and quantity series published by government 
agencies are examples. Time-series data are usually homoscedastic, so s2� might be

s2� = s2 D 1 r1 g rn - 1

r1 1 g rn - 2

f
rn - 1 rn - 2 g 1

T .

The values that appear off the diagonal depend on the model used for the disturbance. 
In most cases, consistent with the notion of a fading memory, the values decline as we 
move away from the diagonal.

A number of other cases considered later will fit in this framework. Panel data, 
consisting of cross sections observed at several points in time, may exhibit both 
heteroscedasticity and autocorrelation. In the random effects model, yit = xit

=B + ui + eit, 
with E[eit � xit] = E[ui � xit] = 0, the implication is that

s2� = D� 0 g 0
0 � g 0

f
0 0 g �

T  where � = Dse
2 + su

2 su
2 g su

2

su
2 se

2 + su
2 g su

2

f
su

2 su
2 g se

2 + su
2

T .

The specification exhibits autocorrelation. We shall consider it in Chapter 11. Models 
of spatial autocorrelation, examined in Chapter 11, and multiple equation regression 
models, considered in Chapter 10, are also forms of the generalized regression model.

This chapter presents some general results for this extended model. We will focus 
on the model of heteroscedasticity in this chapter and in Chapter 14. A general model 
of autocorrelation appears in Chapter 20. Chapters 10 and 11 examine in detail other 
specific types of generalized regression models. We first consider the consequences for 
the least squares estimator of the more general form of the regression model. This will 
include devising an appropriate estimation strategy, still based on least squares. We 
will then examine alternative estimation approaches that can make better use of the 
characteristics of the model.

9.2	 ROBUST LEAST SQUARES ESTIMATION AND INFERENCE

The generalized regression model in (9-1) drops assumption A.4. If � ≠ I, then the 
disturbances may be heteroscedastic or autocorrelated or both. The least squares 
estimator is

	 b = B + (X′X)-1a n
i = 1xiei.	 (9-2)

The covariance matrix of the estimator based on (9-1) and (9-2) would be

	  Var[b � X] =
1
n

 ¢X′X
n

≤-1¢s2Σi = 1
n Σj = 1

n vijxixj
=

n
≤ ¢X′X

n
≤-1

	  =
1
n

 ¢X′X
n

≤-1¢X′(s2�)X
n

≤ ¢X′X
n

≤-1

. 	 (9-3)

M09_GREE1366_08_SE_C09.indd   298 2/24/17   10:44 AM



	 CHAPTER 9  ✦  The Generalized Regression Model and Heteroscedasticity	 299

Based on (9-3), we see that s2(X′X)-1 would not be the appropriate estimator for the 
asymptotic covariance matrix for the least squares estimator, b.  In Section 4.5, we 
considered a strategy for estimation of the appropriate covariance matrix, without 
making explicit assumptions about the form of �, for two cases, heteroscedasticity and 
clustering (which resembles the random effects model suggested in the Introduction). 
We will add some detail to that discussion for the heteroscedasticity case. Clustering is 
revisited in Chapter 11.

The matrix (X′X/n) is readily computable using the sample data. The complication 
is the center matrix that involves the unknown s2�. For estimation purposes, s2 is not 
a separate unknown parameter. We can arbitrarily scale the unknown �, say, by k, and 
s2 by 1/k and obtain the same product. We will remove the indeterminacy by assuming 
that trace (�) = n, as it is when � = I. Let � = s2�. It might seem that to estimate 
(1/n)X′�X, an estimator of �, which contains n(n + 1)/2 unknown parameters, is 
required. But fortunately (because with only n observations, this would be hopeless), 
this observation is not quite right. What is required is an estimator of the K(K + 1)/2 

unknown elements in the center matrix Q* = plim 
X′(s2�)X

n
= plim 

1
n a

n

i = 1
a
n

j = 1
sijxixj

=. 

The point is that Q* is a matrix of sums of squares and cross products that involves sij 
and the rows of X. The least squares estimator b is a consistent estimator of B, which 
implies that the least squares residuals ei are “pointwise” consistent estimators of their 
population counterparts ei. The general approach, then, will be to use X and e to devise 
an estimator of Q* for the heteroscedasticity case, sij = 0 when i ≠ j.

We seek an estimator of Q* = plim(1/n)a
n

i = 1
si

2xixi
=. White (1980, 2001) shows that, 

under very general conditions, the estimator

	 S0 =
1
n a

n

i = 1
ei

2xixi
=	 (9-4)

has plim S0 = Q*.1 The end result is that the White heteroscedasticity consistent 
estimator

	  est.asy.Var[b] =
1
n

 ¢ 1
n

 X′X≤-1¢ 1
n a

n

i = 1
ei

2xixi
=≤ ¢ 1

n
 X′X≤-1

	  = n(X′X)-1S0(X′X)-1	 (9-5)

can be used to estimate the asymptotic covariance matrix of b. This result implies that 
without actually specifying the type of heteroscedasticity, we can still make appropriate 
inferences based on the least squares estimator. This implication is especially useful if 
we are unsure of the precise nature of the heteroscedasticity (which is probably most 
of the time).

A number of studies have sought to improve on the White estimator for least 
squares.2 The asymptotic properties of the estimator are unambiguous, but its usefulness 
in small samples is open to question. The possible problems stem from the general result 
that the squared residuals tend to underestimate the squares of the true disturbances. 

1 See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
2 See, for example, MacKinnon and White (1985) and Messer and White (1984).
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[That is why we use 1/(n - K) rather than 1/n in computing s2.] The end result is that in 
small samples, at least as suggested by some Monte Carlo studies,3 the White estimator is 
a bit too optimistic; the matrix is a bit too small, so asymptotic t ratios are a little too large. 
Davidson and MacKinnon (1993) suggest a number of fixes, which include: (1) scaling up 
the end result by a factor n/(n - K) and (2) using the squared residual scaled by its true 
variance, ei

2/mii, instead of ei
2, where mii = 1 - xi

=(X′X)-1xi.4 (See Exercise 9.6.b.) On the 
basis of their study, Davidson and MacKinnon strongly advocate one or the other 
correction. Their admonition “One should never use [the White estimator] because 
[(2)] always performs better” seems a bit strong, but the point is well taken. The use of 
sharp asymptotic results in small samples can be problematic. The last two rows of 
Table 9.1 show the recomputed standard errors with these two modifications.

Example 9.1    Heteroscedastic Regression and the White Estimator
The data in Appendix Table F7.3 give monthly credit card expenditure, for 13,444 individuals. 
A subsample of 100 observations used here is given in Appendix Table F9.1. The estimates 
are based on the 72 of these 100 observations for which expenditure is positive. Linear 
regression of monthly expenditure on a constant, age, income and its square, and a dummy 
variable for home ownership produces the residuals plotted in Figure 9.1. The pattern of the 
residuals is characteristic of a regression with heteroscedasticity.

Using White’s estimator for the regression produces the results in the row labeled “White S. E.” 
in Table 9.1. The adjustment of the least squares results is fairly large, but the Davidson and 
MacKinnon corrections to White are, even in this sample of only 72 observations, quite modest. 
The two income coefficients are individually and jointly statistically significant based on the 

3 For example, MacKinnon and White (1985).
4  This is the standardized residual in (4-69). The authors also suggest a third correction, ei

2/mii
2, as an approximation 

to an estimator based on the “jackknife” technique, but their advocacy of this estimator is much weaker than that 
of the other two. Note that both n/(n - K) and mii converge to 1 (quickly). The Davidson and MacKinnon results 
are strictly small sample considerations.

Figure 9.1    Plot of Residuals against Income.
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individual t ratios and F(2, 67) = [(0.244 - 0.064)/2]/[0.756/(72 - 5)] = 7.976. The 1% critical 
value is 4.94. (Using the internal digits, the value is 7.956.)

The differences in the estimated standard errors seem fairly minor given the extreme 
heteroscedasticity. One surprise is the decline in the standard error of the age coefficient. The 
F test is no longer available for testing the joint significance of the two income coefficients 
because it relies on homoscedasticity. A Wald test, however, may be used in any event. The 
chi-squared test is based on

W = (rb)′[r(Est.Asy.Var[b])r′]-1(rb) where r = J0 0 0 1 0
0 0 0 0 1

R ,

and the estimated asymptotic covariance matrix is the White estimator. The F statistic based 
on least squares is 7.976. The Wald statistic based on the White estimator is 20.604; the 
95% critical value for the chi-squared distribution with two degrees of freedom is 5.99, so 
the conclusion is unchanged.

9.3	 PROPERTIES OF LEAST SQUARES AND INSTRUMENTAL VARIABLES

The essential results for the classical model with E[E � X] = 0 and E[EE′ � X] = s2I are 
developed in Chapters 2 through 6. The least squares estimator

	 b = (X′X)-1X′y = B + (X′X)-1X′E	 (9-6)

is best linear unbiased (BLU), consistent and asymptotically normally distributed, and 
if the disturbances are normally distributed, asymptotically efficient. We now consider 
which of these properties continue to hold in the model of (9-1). To summarize, the least 
squares estimator retains only some of its desirable properties in this model. It remains 
unbiased, consistent, and asymptotically normally distributed. It will, however, no longer 
be efficient and the usual inference procedures based on the t and F distributions are 
no longer appropriate.

9.3.1    FINITE-SAMPLE PROPERTIES OF LEAST SQUARES

By taking expectations on both sides of (9-6), we find that if E[E � X] = 0, then

	 E[b] = EX[E[b � X]] = B	 (9-7)

Constant Age OwnRent Income Income2

Sample mean 31.28 0.36 3.369
Coefficient -237.15 -3.0818 27.941 234.35 -14.997
Standard error 199.35 5.5147 82.922 80.366 7.4693
t ratio -1.19 -0.5590 0.337 2.916 -2.0080
White S.E. 212.99 3.3017 92.188 88.866 6.9446
D. and M. (1) 220.79 3.4227 95.566 92.122 7.1991
D. and M. (2) 221.09 3.4477 95.672 92.084 7.1995

R2 = 0.243578, s = 284.7508, R2 without Income and income2 = 0.06393.

Mean expenditure = $262.53, Income is * $10,000
Tests for heteroscedasticity: White = 14.239, Breusch9Pagan = 49.061, Koenker9Bassett = 7.241.

TABLE 9.1  Least Squares Regression Results
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and

 Var[b � X] = E[(b - B)(b - B)′ � X]

 = E[(X′X)-1X′EE′X(X′X)-1 � X]

 = (X′X)-1X′(s2�)X(X′X)-1

 =
s2

n
 ¢X′X

n
≤-1¢X′�X

n
≤ ¢X′X

n
≤-1

.�

(9-8)

Because the variance of the least squares estimator is not s2(X′X)-1, statistical inference 
based on s2(X′X)-1 may be misleading. There is usually no way to know whether 
s2(X′X)-1 is larger or smaller than the true variance of b in (9-8). Without Assumption 
A.4, the familiar inference procedures based on the F and t distributions will no longer 
be appropriate even if A.6 (normality of E) is maintained.

THEOREM 9.1 � Finite-Sample Properties of b in the Generalized Regression 
Model

If the regressors and disturbances are uncorrelated, then the least squares estimator 
is unbiased in the generalized regression model. With nonstochastic regressors, or 
conditional on X, the sampling variance of the least squares estimator is given by  
(9-8). If the regressors are stochastic, then the unconditional variance is 
EX [Var[b � X]]. From (9-6), b is a linear function of E. Therefore, if E is normally 
distributed, then b � X ∼ N[B, s2(X′X)-1(X′�X)(X′X)-1].

9.3.2    ASYMPTOTIC PROPERTIES OF LEAST SQUARES

If Var[b � X] converges to zero, then b is mean square consistent.5 With well-behaved 
regressors, (X′X/n)-1 will converge to a constant matrix, and s2/n will converge to zero. 
But (s2/n)(X′�X/n) need not converge to zero. By writing this product as

	
s2

n
 ¢X′�X

n
≤ = ¢s2

n
≤ ¢ a n

i = 1a n
j = 1vij xixj

=

n
≤	 (9-9)

we see that the matrix is a sum of n2 terms, divided by n. Thus, the product is a scalar 
that is O(1/n) times a matrix that is O(n) (at least at this juncture) which is O(1). So, 
it does appear that if the product in (9-9) does converge, it might converge to a matrix 
of nonzero constants. In this case, the covariance matrix of the least squares estimator 
would not converge to zero, and consistency would be difficult to establish. We will 
examine in some detail the conditions under which the matrix in (9-9) converges to a 
constant matrix. If it does, then because s2/n does vanish, least squares is consistent as 
well as unbiased.

5 The argument based on the linear projection in Section 4.4.5 cannot be applied here because, unless � = I, (X, y) 
cannot be treated as a random sample from a joint distribution.
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Consistency will depend on both X and �. A formula that separates the two 
components is as follows:6

1.	 The smallest characteristic root of X′X increases without bound as n S ∞ , which 
implies that plim(X′X)-1 = 0. If the regressors satisfy the Grenander conditions 
in Table 4.2, then they will meet this requirement.

2.	 The largest characteristic root of � is finite for all n. For the heteroscedastic 
model, the variances are the characteristic roots, which requires them to be finite. 
For models with autocorrelation, the requirements are that the elements of � be 
finite and that the off-diagonal elements not be too large relative to the diagonal 
elements. We will examine this condition in Chapter 20.

The least squares estimator is asymptotically normally distributed if the limiting 
distribution of

	 2n(b - B) = ¢X′X
n

≤-1

 
12n

 X′E	 (9-10)

is normal. If plim(X′X/n) = Q, then the limiting distribution of the right-hand side is 
the same as that of

	 vn,LS = Q-1 
12n

 X′E = Q-1 
12n

a
n

i = 1
xiei,	 (9-11)

where xi
= is a row of X. The question now is whether a central limit theorem can be 

applied directly to v. If the disturbances are merely heteroscedastic and still uncorrelated, 
then the answer is generally yes. In fact, we already showed this result in Section 4.4.2 
when we invoked the Lindeberg–Feller central limit theorem (D.19) or the Lyapounov 
theorem (D.20). The theorems allow unequal variances in the sum. The proof of 
asymptotic normality in Section 4.4.2 is general enough to include this model without 
modification. As long as X is well behaved and the diagonal elements of � are finite and 
well behaved, the least squares estimator is asymptotically normally distributed, with 
the covariance matrix given in (9-8). In the heteroscedastic case, if the variances of ei are 
finite and are not dominated by any single term, so that the conditions of the Lindeberg–
Feller central limit theorem apply to vn,LS in (9-11), then the least squares estimator is 
asymptotically normally distributed with covariance matrix

	 asy.Var[b] =
s2

n
 Q-1 plim¢ 1

n
 X′�X≤Q-1.	 (9-12)

For the most general case, asymptotic normality is much more difficult to establish 
because the sums in (9-11) are not necessarily sums of independent or even uncorrelated 
random variables. Nonetheless, Amemiya (1985) and Anderson (1971) have established 
the asymptotic normality of b in a model of autocorrelated disturbances general enough 
to include most of the settings we are likely to meet in practice. We will revisit this issue 
in Chapter 20 when we examine time-series modeling. We can conclude that, except in 
particularly unfavorable cases, we have the following theorem.

6 Amemiya (1985, p. 184).
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9.3.3    HETEROSCEDASTICITY AND Var[b � X]

In the presence of heteroscedasticity, the least squares estimator b is still unbiased, 
consistent, and asymptotically normally distributed. The asymptotic covariance matrix 
is given in (9-12). For this case, with well-behaved regressors,

asy.Var[b � X] =
s2

n
 Q-1¢plim 

1
n a

n

i = 1
vixixi

=≤Q-1.

The mean square consistency of b depends on the limiting behavior of the matrix

Qn
* =

1
n a

n

i = 1
vixixi

=.

If Qn
* converges to a positive definite matrix, then as n S ∞ , b will converge to B in 

mean square. Under most circumstances, if vi is finite for all i, then we would expect 
this result to be true. Note that Qn

* is a weighted sum of the squares and cross products 
of x with weights vi/n, which sum to 1. We have already assumed that another weighted 
sum, X′X/n, in which the weights are 1/n, converges to a positive definite matrix Q, so it 
would be surprising if Qn

* did not converge as well. In general, then, we would expect that

b ∼
a

NJB, 
s2

n
 Q-1Q*Q-1 R , with Q* = plim Qn

*.

The conventionally estimated covariance matrix for the least squares estimator 
s2(X′X)-1 is inappropriate; the appropriate matrix is s2(X′X)-1(X′�X)(X′X)-1. It is 
unlikely that these two would coincide, so the usual estimators of the standard errors 
are likely to be erroneous. In this section, we consider how erroneous the conventional 
estimator is likely to be. It is easy to show that if b is consistent for B, then plim 
s2 = plim e′e/(n -  K) = s2, assuming tr(�) = n. The normalization tr(�) = n implies 
that s2 = s2 = (1/n)Σisi

2 and vi = si
2/s 2. Therefore, the least squares estimator, s2, 

converges to plim s2, that is, the probability limit of the average variance of the disturbances.
The difference between the conventional estimator and the appropriate (true) 

covariance matrix for b is

	 est.Var[b � X] - Var[b � X] = s2(X′X)-1 - s2(X′X)-1(X′�X)(X′X)-1.	 (9-13)

In a large sample (so that s2 ≈ s2), this difference is approximately equal to

	 D =
s2

n
 ¢X′X

n
≤-1

c X′X
n

-
X′�X

n
d ¢X′X

n
≤-1

.	 (9-14)

THEOREM 9.2 � Asymptotic Properties of b in the Generalized Regression 
Model

If Q = plim(X′X/n) and plim(X′�X/n) are both finite positive definite matrices, 
then b is consistent for B. Under the assumed conditions, plim b = B. If the 
regressors are sufficiently well behaved and the off-diagonal terms in � diminish 
sufficiently rapidly, then the least squares estimator is asymptotically normally dis-
tributed with mean B and asymptotic covariance matrix given in (9-12).
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The difference between the two matrices hinges on the bracketed matrix,

	 � = Σi = 1
n (1/n)xixi

= - Σi = 1
n (vi/n)xixi

= = (1/n)Σi = 1
n (1 - vi)xixi

=,	 (9-15)

where xi
= is the ith row of X. These are two weighted averages of the matrices xixi

= using 
weights 1 for the first term and vi for the second. The scaling tr(�) = n implies that 
Σi(vi/n) = 1. Whether the weighted average based on vi/n differs much from the one 
using 1/n depends on the weights. If the weights are related to the values in xi, then the 
difference can be considerable. If the weights are uncorrelated with xixi

=, however, then 
the weighted average will tend to equal the unweighted average.

Therefore, the comparison rests on whether the heteroscedasticity is related to 
any of xk or xj * xk. The conclusion is that, in general: If the heteroscedasticity is not 
correlated with the variables in the model, then at least in large samples, the ordinary least 
squares computations, although not the optimal way to use the data, will not be misleading.

9.3.4    INSTRUMENTAL VARIABLE ESTIMATION

Chapter 8 considered cases in which the regressors, X, are correlated with the 
disturbances, E. The instrumental variables (IV) estimator developed there enjoys a 
kind of robustness that least squares lacks in that it achieves consistency whether or not 
X and E are correlated, while b is neither unbiased nor consistent. However, efficiency 
was not a consideration in constructing the IV estimator. We will reconsider the IV 
estimator here, but because it is inefficient to begin with, there is little to say about the 
implications of (9-1) for the efficiency of the estimator. As such, the relevant question for 
us to consider here would be, essentially, does IV still work in the generalized regression 
model. Consistency and asymptotic normality will be the useful properties.

The IV/2SLS estimator is

 biV = [X′Z(Z′Z)-1Z′X]-1X′Z(Z′Z)-1Z′y

 = [Xn ′X]-1Xn ′y

 = B + [Xn ′X]-1Xn ′E, � (9-16)

where X is the set of K regressors and Z is a set of L Ú K instrumental variables. 
We now consider the extension of Theorem 9.2 to the IV estimator when 
E[EE′ � X] = s2�. Suppose that X and Z are well behaved as assumed in Section 8.2. 
That is, (1/n)Z′Z, (1/n)X′X, and (1/n)Z′X all converge to finite nonzero matrices. For 
convenience let

 QXX.Z = plimJ ¢ 1
n

 X′Z≤ ¢ 1
n

 Z′Z≤-1¢ 1
n

 Z′X≤ R -1¢ 1
n

 X′Z≤ ¢ 1
n

 Z′Z≤-1

 = [QXZQZZ
-1 QZX]-1QXZQZZ

-1 .

If Z is a valid set of instrumental variables, that is, if the second term in (9-16) vanishes 
asymptotically, then

plim biV = B + QXX.Z plim¢ 1
n

 Z′E≤ = B.

The large sample behavior of biV depends on the behavior of
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vn, iV =
12n

a
n

i = 1
ziei.

This result is exactly the one we analyzed in Section 4.4.2. If the sampling distribution of 
vn converges to a normal distribution, then we will be able to construct the asymptotic 
distribution for biV. This set of conditions is the same that was necessary for X when we 
considered b above, with Z in place of X. We will rely on the results of Anderson (1971) 
or Amemiya (1985) that, under very general conditions,

12n
a
n

i = 1
ziei ¡d

NJ0, s2 plim¢ 1
n

 Z′�Z≤ R .

With the other results already in hand, we now have the following.

THEOREM 9.3 � Asymptotic Properties of the IV Estimator in the 
Generalized Regression Model

If the regressors and the instrumental variables are well behaved in the fashions 
discussed above, then biV is consistent and asymptotically normally distributed with

biV ∼
a

N[B, ViV],

where

ViV =
s2

n
 (QXX.Z) plim¢ 1

n
 Z′�Z≤(QXX.Z

= ).

9.4	 EFFICIENT ESTIMATION BY GENERALIZED LEAST SQUARES

Efficient estimation of B in the generalized regression model requires knowledge of �. 
To begin, it is useful to consider cases in which � is a known, symmetric, positive 
definite matrix. This assumption will occasionally be true, though in most models � 
will contain unknown parameters that must also be estimated. We shall examine this 
case in Section 9.4.2.

9.4.1    GENERALIZED LEAST SQUARES (GLS)

Because � is a positive definite symmetric matrix, it can be factored into

� = C�C′,

where the columns of C are the characteristic vectors of � and the characteristic roots 
of � are arrayed in the diagonal matrix, �. Let �1/2 be the diagonal matrix with ith 
diagonal element, 2li, and let T = C�1/2. Then, � = TT′. Also, let P′ = C�-1/2, so 
�-1 = P′P. Premultiply the model in (9-1) by P to obtain

Py = PXB + PE

or
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	 y* = X*B + E*.	 (9-17)

The conditional variance of E* is

E[E*E*
= � X*] = Ps2�P′ = s2I,

so the classical regression model applies to this transformed model. Because � is 
assumed to be known, y* and X* are observed data. In the classical model, ordinary 
least squares is efficient; hence,

 Bn = (X*
=X*)

-1X*
=y*

 = (X′P′PX)-1X′P′Py

 = (X′�-1X)-1X′�-1y

is the efficient estimator of B. This estimator is the generalized least squares (GLS) or 
Aitken (1935) estimator of B. This estimator is in contrast to the ordinary least squares 
(OLS) estimator, which uses a weighting matrix, I, instead of �-1. By appealing to the 
classical regression model in (9-17), we have the following theorem, which includes the 
generalized regression model analogs to our results of Chapter 4:

THEOREM 9.4  Properties of the Generalized Least Squares Estimator
If E[E* � X*] = 0, then

E[Bn � X*] = E[(X*
=X*)

-1X*
=y* � X*] = B + E[(X*

=X*)
-1X*

=E* � X*] = B.

The GLS estimator Bn  is unbiased. This result is equivalent to E[PE � PX] = 0, 
but because P is a matrix of known constants, we return to the familiar 
requirement E[E � X] = 0. The requirement that the regressors and disturbances 
be uncorrelated is unchanged.

The GLS estimator is consistent if plim(1/n)X*
=X* = Q*, where Q* is a 

finite positive definite matrix. Making the substitution, we see that this implies

	 plim[(1/n)X′�-1X]-1 = Q*
-1.� (9-18)

We require the transformed data X* = PX, not the original data X, to be well 
behaved.7 Under the assumption in (9-1), the following hold:

The GLS estimator is asymptotically normally distributed, with mean B 
and sampling variance

	 Var[Bn � X*] = s2(X*
=X*)

-1 = s2(X′�-1X)-1.� (9-19)

The GLS estimator Bn  is the minimum variance linear unbiased estimator 
in the generalized regression model. This statement follows by applying the 
Gauss–Markov theorem to the model in (9-17). The result in Theorem 9.5 
is Aitken’s theorem (1935), and Bn  is sometimes called the Aitken estimator. 
This broad result includes the Gauss–Markov theorem as a special case when 
� = I.

7 Once again, to allow a time trend, we could weaken this assumption a bit.

M09_GREE1366_08_SE_C09.indd   307 2/24/17   10:44 AM



308	 Part II  ✦   Generalized Regression Model and Equation Systems

For testing hypotheses, we can apply the full set of results  in Chapter 5 to the 
transformed model in (9-17). For testing the J linear restrictions, RB = q, the appropriate 
statistic is

F[J, n - K] =
(RBn - q)′[Rsn 2(X*

=X*)
-1R′]-1(RBn - q)

J
=

(Enc
=Enc - En ′En)/J

sn 2 ,

where the residual vector is

En = y* - X*B
n

and

	 sn 2 =
En ′En

n - K
=

(y - XBn)′�-1(y - XBn)

n - K
.	 (9-20)

The constrained GLS residuals, Enc = y* - X*B
n

c, are based on

Bnc = Bn - [X′�-1X]-1R′[R(X′�-1X)-1R′]-1(RBn - q).8

To summarize, all the results for the classical model, including the usual inference 
procedures, apply to the transformed model in (9-17).

There is no precise counterpart to R2 in the generalized regression model. 
Alternatives have been proposed, but care must be taken when using them. For example, 
one choice is the R2 in the transformed regression, (9-17). But this regression need 
not have a constant term, so the R2 is not bounded by zero and one. Even if there is 
a constant term, the transformed regression is a computational device, not the model 
of interest. That a good (or bad) fit is obtained in the model in (9-17) may be of no 
interest; the dependent variable in that model, y*, is different from the one in the model 
as originally specified. The usual R2 often suggests that the fit of the model is improved 
by a correction for heteroscedasticity and degraded by a correction for autocorrelation, 
but both changes can often be attributed to the computation of y*. A more appealing 
fit measure might be based on the residuals from the original model once the GLS 
estimator is in hand, such as

RG
2 = 1 -

(y - XBn)′(y - XBn)

a n
i = 1(yi - y)2 .

Like the earlier contender, however, this measure is not bounded in the unit interval. In 
addition, this measure cannot be reliably used to compare models. The generalized least 
squares estimator minimizes the generalized sum of squares

E*
=E* = (y - XB)′�-1(y - XB),

not E′E. As such, there is no assurance, for example, that dropping a variable from the 
model will result in a decrease in RG

2 , as it will in R2. Other goodness-of-fit measures, 
designed primarily to be a function of the sum of squared residuals (raw or weighted by 
�-1) and to be bounded by zero and one, have been proposed.9 Unfortunately, they all 
suffer from at least one of the previously noted shortcomings. The R2@like measures in 

8 Note that this estimator is the constrained OLS estimator using the transformed data. [See (5-23).]
9 See Judge et al. (1985, p. 32) and Buse (1973).
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this setting are purely descriptive. That being the case, the squared sample correlation 
between the actual and predicted values, r2

y, yn = corr2(y, yn) = corr2(y, x′bn), would 
likely be a useful descriptor. Note, though, that this is not a proportion of variation 
explained, as is R2; it is a measure of the agreement of the model predictions with the 
actual data.

9.4.2    FEASIBLE GENERALIZED LEAST SQUARES (FGLS)

To use the results of Section 9.4.1, � must be known. If � contains unknown parameters 
that must be estimated, then generalized least squares is not feasible. But with an 
unrestricted �, there are n(n + 1)/2 additional parameters in s2�. This number is far 
too many to estimate with n observations. Obviously, some structure must be imposed 
on the model if we are to proceed.

The typical problem involves a small set of parameters A such that � = �(A). For 
example, a commonly used formula in time-series settings is

�(r) = D 1 r r2 r3 g rn - 1

r 1 r r2 g rn - 2

f
rn - 1 rn - 2 g 1

T ,

which involves only one additional unknown parameter. A model of heteroscedasticity 
that also has only one new parameter is

	 si
2 = s2zi

u	 (9-21)

for some exogenous variable z. Suppose, then, that An  is a consistent estimator of A. 
(We consider later how such an estimator might be obtained.) To make GLS estimation 
feasible, we shall use �n = �(An ) instead of the true �. The issue we consider here is 
whether using �(An ) requires us to change any of the results of Section 9.4.1.

It would seem that if plim An = A, then using �n  is asymptotically equivalent to using 
the true �.10 Let the feasible generalized least squares estimator be denoted

Bn
n = (X′�n -1X)-1X′�n -1y.

Conditions that imply that Bn
n

 is asymptotically equivalent to Bn  are

	 plim J ¢ 1
n

 X′�n -1X≤ - ¢ 1
n

 X′�-1X≤ R = 0	 (9-22)

and

	 plim J ¢ 12n
 X′�n -1E≤ - ¢ 12n

 X′�-1E≤ R = 0.	 (9-23)

The first of these equations states that if the weighted sum of squares matrix based on 
the true � converges to a positive definite matrix, then the one based on �n  converges 
to the same matrix. We are assuming that this is true. In the second condition, if the 

10 This equation is sometimes denoted plim �n - �. Because � is n * n, it cannot have a probability limit. We 
use this term to indicate convergence element by element.
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transformed regressors are well behaved, then the right-hand-side sum will have a 
limiting normal distribution. This condition is exactly the one we used in Chapter 4 to 
obtain the asymptotic distribution of the least squares estimator; here we are using the 
same results for X* and E*. Therefore, (9-23) requires the same condition to hold when 
� is replaced with �n .11

These conditions, in principle, must be verified on a case-by-case basis. Fortunately, 
in most familiar settings, they are met. If we assume that they are, then the FGLS 
estimator based on An  has the same asymptotic properties as the GLS estimator. This 
result is extremely useful. Note, especially, the following theorem.

Except for the simplest cases, the finite-sample properties and exact distributions of 
FGLS estimators are unknown. The asymptotic efficiency of FGLS estimators may not 
carry over to small samples because of the variability introduced by the estimated �. 
Some analyses for the case of heteroscedasticity are given by Taylor (1977). A model 
of autocorrelation is analyzed by Griliches and Rao (1969). In both studies, the authors 
find that, over a broad range of parameters, FGLS is more efficient than least squares. 
But if the departure from the classical assumptions is not too severe, then least squares 
may be more efficient than FGLS in a small sample.

9.5	 HETEROSCEDASTICITY AND WEIGHTED LEAST SQUARES

In the heteroscedastic regression model,

Var[ei � X] = si
2 = s2vi, i = 1, c, n.

This form is an arbitrary scaling which allows us to use a normalization, 
trace(�) = Σivi = n. This makes the classical regression with homoscedastic 
disturbances a simple special case with vi = 1, i = 1, c, n. Intuitively, one might then 
think of the v s as weights that are scaled in such a way as to reflect only the variety in 
the disturbance variances. The scale factor s2 then provides the overall scaling of the 
disturbance process.

We will examine the heteroscedastic regression model, first in general terms, then 
with some specific forms of the disturbance covariance matrix. Specification tests for 
heteroscedasticity are considered in Section 9.6. Section 9.6 considers generalized 
(weighted) least squares, which requires knowledge at least of the form of �. Finally, 
two common applications are examined in Section 9.7.

11 The condition actually requires only that if the right-hand-side sum has any limiting distribution, then the left-
hand one has the same one. Conceivably, this distribution might not be the normal distribution, but that seems 
unlikely except in a specially constructed, theoretical case.

THEOREM 9.5  Efficiency of the FGLS Estimator
An asymptotically efficient FGLS estimator does not require that we have an 
efficient estimator of A; only a consistent one is required to achieve full efficiency 
for the FGLS estimator.
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9.5.1    WEIGHTED LEAST SQUARES

The GLS estimator is

	 Bn = (X′�-1X)-1X′�-1y.	 (9-24)

In the most general case, Var[ei � X] = si
2 = s2vi, �-1 is a diagonal matrix whose ith 

diagonal element is 1/vi. The GLS estimator is obtained by regressing

Py = D y1/2v1

y2/2v2

f
yn/2vn

T on PX = D x1
= /2v1

x2
= /2v2

f
xn
= /2vn

T .

Applying ordinary least squares to the transformed model, we obtain the weighted least 
squares estimator.

	 Bn = Jan
i = 1

wixixi
= R -1Jan

i = 1
wixiyiR ,	 (9-25)

where wi = 1/vi.12 The logic of the computation is that observations with smaller 
variances receive a larger weight in the computations of the sums and therefore have 
greater influence in the estimates obtained.

9.5.2    WEIGHTED LEAST SQUARES WITH KNOWN �

A common specification is that the variance is proportional to one of the regressors or its 
square. Our earlier example of family expenditures is one in which the relevant variable 
is usually income. Similarly, in studies of firm profits, the dominant variable is typically 
assumed to be firm size. If

si
2 = s2xik

2 ,

then the transformed regression model for GLS is

	
y
xk

= bk + b1¢ x1

xk
≤ + b2¢ x2

xk
≤ + g +

e

xk
.	 (9-26)

If the variance is proportional to xk instead of xk
2, then the weight applied to each 

observation is 1/2xk instead of 1/xk.
In (9-26), the coefficient on xk becomes the constant term. But if the variance is 

proportional to any power of xk other than two, then the transformed model will no longer 
contain a constant, and we encounter the problem of interpreting R2 mentioned earlier. For 
example, no conclusion should be drawn if the R2 in the regression of y/z on 1/z and x/z is 
higher than in the regression of y on a constant and x for any z, including x. The good fit of 
the weighted regression might be due to the presence of 1/z on both sides of the equality.

It is rarely possible to be certain about the nature of the heteroscedasticity in a 
regression model. In one respect, this problem is only minor. The weighted least squares 
estimator

12 The weights are often denoted wi = 1/si
2. This expression is consistent with the equivalent 

Bn = [X=(s2�)-1X′]-1X′(s2�)-1y. The s2s cancel, leaving the expression given previously.
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Bn = Jan
i = 1

wixixi
= R -1Jan

i = 1
wixiyiR

is consistent regardless of the weights used, as long as the weights are uncorrelated with 
the disturbances. But using the wrong set of weights has two other consequences that 
may be less benign. First, the improperly weighted least squares estimator is inefficient. 
This point might be moot if the correct weights are unknown, but the GLS standard 
errors will also be incorrect. The asymptotic covariance matrix of the estimator

	 Bn = [X′V-1X]-1X′V-1y	 (9-27)

is

	 asy.Var[Bn] = s2[X′V-1X]-1X′V-1�V-1X[X′V-1X]-1.	 (9-28)

This result may or may not resemble the usual estimator, which would be the matrix in 
brackets, and underscores the usefulness of the White estimator in (9-5).

The standard approach in the literature is to use OLS with the White estimator or 
some variant for the asymptotic covariance matrix. One could argue both flaws and 
virtues in this approach. In its favor, robustness to unknown heteroscedasticity is a 
compelling virtue. In the clear presence of heteroscedasticity, however, least squares 
can be inefficient. The question becomes whether using the wrong weights is better than 
using no weights at all. There are several layers to the question. If we use one of the 
models mentioned earlier—Harvey’s, for example, is a versatile and flexible candidate—
then we may use the wrong set of weights and, in addition, estimation of the variance 
parameters introduces a new source of variation into the slope estimators for the model. 
However, the weights we use might well be better than none. A heteroscedasticity robust 
estimator for weighted least squares can be formed by combining (9-27) with the White 
estimator. The weighted least squares estimator in (9-27) is consistent with any set of 
weights V = diag[v1, v2, c, vn]. Its asymptotic covariance matrix can be estimated with

	 est.asy.Var[Bn] = (X′V-1X)-1Jan
i = 1

¢ ei
2

vi
2 ≤xixi

= R (X′V-1X)-1.	 (9-29)

Any consistent estimator can be used to form the residuals. The weighted least squares 
estimator is a natural candidate.

9.5.3    ESTIMATION WHEN �  CONTAINS UNKNOWN PARAMETERS

The general form of the heteroscedastic regression model has too many parameters to 
estimate by ordinary methods. Typically, the model is restricted by formulating s2� as 
a function of a few parameters, as in si

2 = s2xi
a or si

2 = s2(xi
=A)2. Write this as �(A). 

FGLS based on a consistent estimator of �(A) (meaning a consistent estimator of A) is 
asymptotically equivalent to full GLS. The new problem is that we must first find consistent 
estimators of the unknown parameters in �(A). Two methods are typically used, two-step 
GLS and maximum likelihood. We consider the two-step estimator here and the maximum 
likelihood estimator in Chapter 14.

For the heteroscedastic model, the GLS estimator is

	 Bn = Jan
i = 1

¢ 1
si

2 ≤xixi
= R -1Jan

i = 1
¢ 1
si

2 ≤xiyiR .	 (9-30)
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The two-step estimators are computed by first obtaining estimates sn i
2, usually using some 

function of the ordinary least squares residuals. Then, Bn
n

 uses (9-30) and sn i
2. The ordinary 

least squares estimator of B, although inefficient, is still consistent. As such, statistics 
computed using the ordinary least squares residuals, ei = (yi - xi

=b), will have the same 
asymptotic properties as those computed using the true disturbances, ei = (yi - xi

=B). This 
result suggests a regression approach for the true disturbances and variables zi that may 
or may not coincide with xi. Now E[ei

2 � zi] = si
2, so ei

2 = si
2 + vi, where vi is just the 

difference between ei
2 and its conditional expectation. Because ei is unobservable, we 

would use the least squares residual, for which ei = ei - xi
=(b - B) = ei + ui. Then, 

ei
2 = ei

2 + ui
2 + 2eiui. But, in large samples, as b ¡p

B, terms in ui will become 
negligible, so that at least approximately,13

	 ei
2 = si

2 + vi
*.	 (9-31)

The procedure suggested is to treat the variance function as a regression and use the 
squares or some other functions of the least squares residuals as the dependent variable.14 
For example, if si

2 = zi
=A, then a consistent estimator of A will be the least squares slopes, 

a, in the “model,”

ei
2 = zi

=A + vi
*.

In this model, vi
* is both heteroscedastic and autocorrelated, so a is consistent but 

inefficient. But consistency is all that is required for asymptotically efficient estimation 
of B using �(An ). It remains to be settled whether improving the estimator of A in this 
and the other models we will consider would improve the small sample properties of the 
two-step estimator of B.15

The two-step estimator may be iterated by recomputing the residuals after computing 
the FGLS estimates and then reentering the computation. The asymptotic properties 
of the iterated estimator are the same as those of the two-step estimator, however. In 
some cases, this sort of iteration will produce the maximum likelihood estimator at 
convergence. Yet none of the estimators based on regression of squared residuals on 
other variables satisfy the requirement. Thus, iteration in this context provides little 
additional benefit, if any.

9.6	 TESTING FOR HETEROSCEDASTICITY

Tests for heteroscedasticity are based on the following strategy. Ordinary least squares 
is a consistent estimator of B even in the presence of heteroscedasticity. As such, the 
ordinary least squares residuals will mimic, albeit imperfectly because of sampling 
variability, the heteroscedasticity of the true disturbances. Therefore, tests designed 
to detect heteroscedasticity will, in general, be applied to the ordinary least squares 
residuals.

13 See Amemiya (1985) and Harvey (1976) for formal analyses.
14 See, for example, Jobson and Fuller (1980).
15 Fomby, Hill, and Johnson (1984, pp. 177–186) and Amemiya (1985, pp. 203–207; 1977) examine this model.

M09_GREE1366_08_SE_C09.indd   313 2/24/17   10:44 AM



314	 Part II  ✦   Generalized Regression Model and Equation Systems

9.6.1    WHITE’S GENERAL TEST

To formulate the available tests, it is necessary to specify, at least in rough terms, the 
nature of the heteroscedasticity. White’s (1980) test proposes a general hypothesis of 
the form

 H0 : si
2 = E[ei

2 � xi] = s2 for all i,

 H1 : Not H0.

A simple operational version of his test is carried out by obtaining nR2 in the regression 
of the squared OLS residuals, ei

2, on a constant and all unique variables contained in x 
and x ⊗ x. The statistic has a limiting chi-squared distribution with P - 1 degrees of 
freedom, where P is the number of regressors in the equation, including the constant. 
An equivalent approach is to use an F test to test the hypothesis that G1 = 0 and G2 = 0 
in the regression

ei
2 = g0 + xi

=G1 + (xi ⊗ xi)′G2 + vi
*.

[As before, (xi ⊗ xi) contains only the unique components.] The White test is extremely 
general. To carry it out, we need not make any specific assumptions about the nature of 
the heteroscedasticity.

9.6.2    THE LAGRANGE MULTIPLIER TEST

Breusch and Pagan (1979) and Godfrey (1988) present a Lagrange multiplier test of 
the hypothesis that si

2 = s2f(a0 + A′zi), where zi is a vector of independent variables. 
The disturbance is homoscedastic if A = 0. The test can be carried out with a simple 
regression:

	lM = 1
2 * explained sum of squared residuals in the regression of ei

2/(e′e/n) on (1, zi).
� (9-32)

For computational purposes, let Z be the n * P matrix of observations on (1, zi), and let g 
be the vector of observations of gi = ei

2/(e′e/n) - 1. Then lM = (1/2)[g′Z(Z′Z)-1Z′g]. 
Under the null hypothesis of homoscedasticity, LM has a limiting chi-squared distribution 
with P - 1 degrees of freedom.

It has been argued that the Breusch–Pagan Lagrange multiplier test is sensitive to 
the assumption of normality. Koenker (1981) and Koenker and Bassett (1982) suggest 
that the computation of LM be based on a more robust estimator of the variance of ei

2,

V =
1
n a

n

i = 1
Jei

2 -
e′e
n

R 2

.

Let u equal (e1
2, e2

2, c, en
2) and i be an n * 1 column of 1s. Then u = e′e/n. With 

this change, the computation becomes lM = (1/V)(u - u i)′Z(Z′Z)-1Z′(u - u i). 
Under normality, this modified statistic will have the same limiting distribution as the 
Breusch–Pagan statistic, but absent normality, there is some evidence that it provides a 
more powerful test. Waldman (1983) has shown that if the variables in zi are the same 
as those used for the White test described earlier, then the two tests are algebraically 
the same.
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Example 9.2    Testing for Heteroscedasticity
We use the suggested diagnostics to test for heteroscedasticity in the credit card expenditure 
data in Example 9.2.

1.	 White’s Test: There are 15 variables in (x, x ⊗ x), including the constant term. But 
because OwnRent2 = OwnRent and Income * Income = Income2, which is also in the 
equation, only 13 of the 15 are unique. Regression of the squared least squares residuals 
on these 13 variables produces R2 = 0.199013. The chi-squared statistic is therefore 
72(0.199013) = 14.329. The 95% critical value of chi-squared with 12 degrees of freedom 
is 21.03, so despite what might seem to be obvious in Figure 9.1, the hypothesis of 
homoscedasticity is not rejected by this test.

2.	 Breusch–Pagan Test: This test requires a specific alternative hypothesis. For this purpose, 
we specify the test based on z = [1, Income, Income2]. Using the least squares residuals, 
we compute gi = ei

2/(e′e/72) - 1; then LM = 1
2 g′Z(Z′Z)-1Z′g. The computation produces 

LM = 41.920. The critical value for the chi-squared distribution with two degrees of 
freedom is 5.99, so the hypothesis of homoscedasticity is rejected. The Koenker and 
Bassett variant of this statistic is only 6.187, which is still significant but much smaller 
than the LM statistic. The wide difference between these two statistics suggests that the 
assumption of normality is erroneous. If the Breusch and Pagan test is based on (1, x), the 
chi squared statistic is 49.061 with 4 degrees of freedom, while the Koenker and Bassett 
version is 7.241. The same conclusions are reached.

9.7	 TWO APPLICATIONS

This section will present two common applications of the heteroscedastic regression 
model, Harvey’s model of multiplicative heteroscedasticity and a model of groupwise 
heteroscedasticity that extends to the disturbance variance some concepts that are 
usually associated with variation in the regression function.

9.7.1    MULTIPLICATIVE HETEROSCEDASTICITY

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general 
model that includes most of the useful formulations as special cases. The general 
formulation is

si
2 = s2 exp(zi

=A).

A model with heteroscedasticity of the form si
2 = s2 q

M

m = 1
zim
am results if the logs of the 

variables are placed in zi. The groupwise heteroscedasticity model described in Example 9.4 
is produced by making zi a set of group dummy variables (one must be omitted). In this 
case, s2 is the disturbance variance for the base group whereas for the other groups, 
sg

2 = s2 exp(ag).

Example 9.3    Multiplicative Heteroscedasticity
In Example 6.6, we fit a cost function for the U.S. airline industry of the form

In Cit = b1 + b2 In Qit + b3(ln Qit)2 + b4 ln Pfuel,i,t + b5 Loadfactori,t + ei,t

where Ci,t is total cost, Qi,t is output, and Pfuel,i,t is the price of fuel, and the 90 observations in 
the data set are for six firms observed for 15 years. (The model also included dummy variables 
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for firm and year, which we will omit for simplicity.) We now consider a revised model in which 
the load factor appears in the variance of ei,t rather than in the regression function. The model is

 si,t
2 = s2 exp(g Loadfactori,t)

 = exp(g1 + g2 Loadfactori,t).

The constant in the implied regression is g1 = ln s2. Figure 9.2 shows a plot of the least 
squares residuals against Loadfactor for the 90 observations. The figure does suggest the 
presence of heteroscedasticity. (The dashed lines are placed to highlight the effect.) We 
computed the LM statistic using (9-32). The chi-squared statistic is 2.959. This is smaller than 
the critical value of 3.84 for one degree of freedom, so on this basis, the null hypothesis of 
homoscedasticity with respect to the load factor is not rejected.

To begin, we use OLS to estimate the parameters of the cost function and the set of 
residuals, ei,t. Regression of log(eit

2) on a constant and the load factor provides estimates of 
g1 and g2, denoted c1 and c2. The results are shown in Table 9.2. As Harvey notes, exp(c1) 
does not necessarily estimate s2 consistently—for normally distributed disturbances, it is low 
by a factor of 1.2704. However, as seen in (9-24), the estimate of s2 (biased or otherwise) is 
not needed to compute the FGLS estimator. Weights wi,t = exp(-c1 - c2 Loadfactori,t) are 
computed using these estimates, then weighted least squares using (9-25) is used to obtain 
the FGLS estimates of B. The results of the computations are shown in Table 9.2.

We might consider iterating the procedure. Using the results of FGLS at step 2, we can 
recompute the residuals, then recompute c1 and c2 and the weights, and then reenter the 
iteration. The process converges when the estimate of c2 stabilizes. This requires seven iterations. 
The results are shown in Table 9.2. As noted earlier, iteration does not produce any gains here. 
The second step estimator is already fully efficient. Moreover, this does not produce the MLE, 
either. That would be obtained by regressing [ei,t

2 /exp(c1 + c2 Loadfactori,t) - 1] on the constant 
and load factor at each iteration to obtain the new estimates. We will revisit this in Chapter 14.

Figure 9.2    Plot of Residuals against Load Factor.
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9.7.2    GROUPWISE HETEROSCEDASTICITY

A groupwise heteroscedastic regression has the structural equations

 yi = xi′B + ei, i = 1, c, n

 E[ei � xi] = 0.

The n observations are grouped into G groups, each with ng observations. The slope 
vector is the same in all groups, but within group g,

Var[eig � xig] = sg
2, i = 1, c, ng.

If the variances are known, then the GLS estimator is

	 Bn = J a
G

g = 1
¢ 1
sg

2 ≤Xg
=Xg R -1J a

G

g = 1
¢ 1
sg

2 ≤Xg
=yg R .	 (9-33)

Because Xg
=yg = Xg

=Xgbg, where bg is the OLS estimator in the gth subset of observations,

Bn = J a
G

g = 1
¢ 1
sg

2 ≤Xg
=Xg R -1J a

G

g = 1
¢ 1
sg

2 ≤Xg
=Xgbg R = J a

G

g = 1
Vg R -1J a

G

g = 1
Vgbg R = a

G

g = 1
Wgbg.

This result is a matrix weighted average of the G least squares estimators. The weighting 

matrices are Wg = JaG
g = 1(Var[bg � Xg])

-1 R -1

(Var[bg � Xg])
-1. The estimator with the 

smaller covariance matrix therefore receives the larger weight. [If Xg is the same in every 

group, then the matrix Wg reduces to the simple, wgI = ¢hg/a ghg≤I where hg = 1/sg
2.]

The preceding is a useful construction of the estimator, but it relies on an algebraic 
result that might be unusable. If the number of observations in any group is smaller than 
the number of regressors, then the group-specific OLS estimator cannot be computed. 

Constant ln Q ln2 Q ln Pf R2 Sum of Squares

OLS 9.1382 0.92615 0.029145 0.41006
0.24507a 0.032306 0.012304 0.018807 0.9861674b 1.577479c

0.22595d 0.030128 0.011346 0.017524
Two step 9.2463 0.92136 0.024450 0.40352 0.986119 1.612938

0.21896 0.033028 0.011412 0.016974
Iteratede 9.2774 0.91609 0.021643 0.40174 0.986071 1.645693

0.20977 0.032993 0.011017 0.016332
aConventional OLS standard errors
bSquared correlation between actual and fitted values
cSum of squared residuals
dWhite robust standard errors
eValues of c2 by iteration: 8.254344, 11.622473, 11.705029, 11.710618, 11.711012, 11.711040, 11.711042

TABLE 9.2  Multiplicative Heteroscedasticity Model
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But, as can be seen in (9-33), that is not what is needed to proceed; what is needed are 
the weights. As always, pooled least squares is a consistent estimator, which means that 
using the group-specific subvectors of the OLS residuals,

	 sn g
2 =

eg
=eg

ng
,	 (9-34)

provides the needed estimator for the group-specific disturbance variance. Thereafter, 
(9-33) is the estimator and the inverse matrix in that expression gives the estimator of 
the asymptotic covariance matrix.

Continuing this line of reasoning, one might consider iterating the estimator by 
returning to (9-34) with the two-step FGLS estimator, recomputing the weights, then 
returning to (9-33) to recompute the slope vector. This can be continued until 
convergence. It can be shown that so long as (9-34) is used without a degrees of freedom 
correction, then if this does converge, it will do so at the maximum likelihood estimator 
(with normally distributed disturbances).16

For testing the homoscedasticity assumption, both White’s test and the LM test are 
straightforward. The variables thought to enter the conditional variance are simply a 
set of G - 1 group dummy variables, not including one of them (to avoid the dummy 
variable trap), which we’ll denote Z*. Because the columns of Z* are binary and 
orthogonal, to carry out White’s test, we need only regress the squared least squares 
residuals on a constant and Z* and compute NR2 where N = a gng. The LM test is also 
straightforward. For purposes of this application of the LM test, it will prove convenient 
to replace the overall constant in Z in (9-32) with the remaining group dummy variable. 
Because the column space of the full set of dummy variables is the same as that of a 
constant and G - 1 of them, all results that follow will be identical. In (9-32), the vector 
g will now be G subvectors where each subvector is the ng elements of [(eig

2 /sn 2) - 1], 
and sn 2 = e′e/N. By multiplying it out, we find that g′Z is the G vector with elements 
ng[(sn g

2/sn 2) - 1], while (Z′Z)-1 is the G * G matrix with diagonal elements 1/ng. It 
follows that

	 LM =
1
2

 g′Z(Z′Z)-1Z′g =
1
2 a

G

g = 1
ng¢sn g

2

sn 2 - 1≤2

.	 (9-35)

Both statistics have limiting chi-squared distributions with G - 1 degrees of freedom 
under the null hypothesis of homoscedasticity. (There are only G - 1 degrees of freedom 
because the hypothesis imposes G - 1 restrictions, that the G variances are all equal to 
each other. Implicitly, one of the variances is free and the other G - 1 equal that one.)

Example 9.4    Groupwise Heteroscedasticity
Baltagi and Griffin (1983) is a study of gasoline usage in 18 of the 30 OECD countries. The 
model analyzed in the paper is

 ln (Gasoline usage/car)i,t = b1 + b2 ln(Per capita income)i,t + b3 ln Pricei,t
 + b4 ln(Cars per capita)i,t + ei,t,

16 See Oberhofer and Kmenta (1974).
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where i = country and t = 1960, c, 1978. This is a balanced panel (see Section 11.2) with 
19(18) = 342 observations in total. The data are given in Appendix Table F9.2.

Figure 9.3 displays the OLS residuals using the least squares estimates of the model 
above with the addition of 18 country dummy variables (1 to 18) (and without the overall 
constant). (The country dummy variables are used so that the country-specific residuals 
will have mean zero.) The F statistic for testing the null hypothesis that all the constants are 
equal is

 F[(G - 1),(Σg = 1
G ng - K - G)] =

(e0
=e0 - e1

=e1)/(G - 1 )

e1
=e1/(Σg = 1

G ng - K - G)

 =
(14.90436 - 2.73649)/17
2.73649/(342 - 3 - 18)

= 83.960798,

where e0 is the vector of residuals in the regression with a single constant term and e1 is the 
regression with country-specific constan t terms. The critical value from the F table with 17 
and 321 degrees of freedom is 1.655. The regression results are given in Table 9.3. Figure 9.3 
does convincingly suggest the presence of groupwise heteroscedasticity. The White and LM 
statistics are 342(0.38365) = 131.21 and 279.588, respectively. The critical value from the 
chi-squared distribution with 17 degrees of freedom is 27.587. So, we reject the hypothesis 
of homoscedasticity and proceed to fit the model by feasible GLS. The two-step estimates 
are shown in Table 9.3. The FGLS estimator is computed by using weighted least squares, 
where the weights are 1/sn g

2 for each observation in country g. Comparing the White standard 
errors to the two-step estimators, we see that in this instance, there is a substantial gain to 
using feasible generalized least squares.

Figure 9.3    Plot of OLS Residuals by Country.
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9.8	 SUMMARY AND CONCLUSIONS

This chapter has introduced a major extension of the classical linear model. By allowing for 
heteroscedasticity and autocorrelation in the disturbances, we expand the range of models 
to a large array of frameworks. We will explore these in the next several chapters. The formal 
concepts introduced in this chapter include how this extension affects the properties of the 
least squares estimator, how an appropriate estimator of the asymptotic covariance matrix 
of the least squares estimator can be computed in this extended modeling framework, and, 
finally, how to use the information about the variances and covariances of the disturbances 
to obtain an estimator that is more efficient than ordinary least squares.

We have analyzed in detail one form of the generalized regression model, the model 
of heteroscedasticity. We first considered least squares estimation. The primary result 
for least squares estimation is that it retains its consistency and asymptotic normality, 
but some correction to the estimated asymptotic covariance matrix may be needed 
for appropriate inference. The White estimator is the standard approach for this 
computation. After examining two general tests for heteroscedasticity, we then narrowed 
the model to some specific parametric forms, and considered weighted (generalized) least 
squares for efficient estimation and maximum likelihood estimation. If the form of the 
heteroscedasticity is known but involves unknown parameters, then it remains uncertain 

OLS FGLS

Coefficient Std. Error White Std. Err. Coefficient Std. Error

ln Income 0.66225 0.07339 0.07277 0.57507 0.02927
ln Price -0.32170 0.04410 0.05381 -0.27967 0.03519
ln Cars/Cap. -0.64048 0.02968 0.03876 -0.56540 0.01613
Country 1 2.28586 0.22832 0.22608 2.43707 0.11308
Country 2 2.16555 0.21290 0.20983 2.31699 0.10225
Country 3 3.04184 0.21864 0.22479 3.20652 0.11663
Country 4 2.38946 0.20809 0.20783 2.54707 0.10250

Country 5 2.20477 0.21647 0.21087 2.33862 0.10101
Country 6 2.14987 0.21788 0.21846 2.30066 0.10893
Country 7 2.33711 0.21488 0.21801 2.57209 0.11206
Country 8 2.59233 0.24369 0.23470 2.72376 0.11384
Country 9 2.23255 0.23954 0.22973 2.34805 0.10795
Country 10 2.37593 0.21184 0.22643 2.58988 0.11821
Country 11 2.23479 0.21417 0.21311 2.39619 0.10478
Country 12 2.21670 0.20304 0.20300 2.38486 0.09950
Country 13 1.68178 0.16246 0.17133 1.90306 0.08146
Country 14 3.02634 0.39451 0.39180 3.07825 0.20407
Country 15 2.40250 0.22909 0.23280 2.56490 0.11895
Country 16 2.50999 0.23566 0.26168 2.82345 0.13326
Country 17 2.34545 0.22728 0.22322 2.48214 0.10955
Country 18 3.05525 0.21960 0.22705 3.21519 0.11917

TABLE 9.3  Estimated Gasoline Consumption Equations
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whether FGLS corrections are better than OLS. Asymptotically, the comparison is clear, 
but in small or moderately sized samples, the additional variation incorporated by the 
estimated variance parameters may offset the gains to GLS.

Key Terms and Concepts

•	Asymptotic properties
•	Autocorrelation
•	Breusch–Pagan Lagrange 

multiplier test
•	Efficient estimator
•	Feasible generalized least 

squares (FGLS)
•	Finite-sample properties
•	Generalized least squares 

(GLS)
•	Generalized linear 

regression model

•	Generalized sum of squares
•	Groupwise 

heteroscedasticity
•	Heteroscedasticity
•	Lagrange multiplier test
•	Multiplicative 

heteroscedasticity
•	Ordinary least squares 

(OLS)
•	Panel data

•	Robust estimator
•	Robustness to unknown 

heteroscedasticity
•	Two-step estimator
•	Weighted least squares 

(WLS)
•	White heteroscedasticity 

robust estimator
•	White test
•	Aitken’s theorem

Exercises

1.	 What is the covariance matrix, cov[Bn , Bn - b], of the GLS estimator 
Bn = (X′�-1X)-1X′�-1y and the difference between it and the OLS estimator, 
b = (X′X)-1X′y? The result plays a pivotal role in the development of specification 
tests in Hausman (1978).

2.	 This and the next two exercises are based on the test statistic usually used to test a 
set of J linear restrictions in the generalized regression model,

F[J, n - K] =
(RBn - q)′[R(X′�-1X)-1R′]-1(RBn - q)/J

(y - XBn)′�-1(y - XBn)/(n - K)
,

where Bn  is the GLS estimator. Show that if �  is known, if the disturbances 
are normally distributed and if the null hypothesis, RB = q, is true, then this 
statistic is exactly distributed as F with J and n - K degrees of freedom. What 
assumptions about the regressors are needed to reach this conclusion? Need they 
be nonstochastic?

3.	 Now suppose that the disturbances are not normally distributed, although � is still 
known. Show that the limiting distribution of the previous statistic is (1/J) times a 
chi-squared variable with J degrees of freedom. (Hint: The denominator converges 
to s2.) Conclude that, in the generalized regression model, the limiting distribution 
of the Wald statistic,

W = (RBn - q)′{R(est. Var[Bn])R′}-1(RBn - q),

is chi-squared with J degrees of freedom, regardless of the distribution of the 
disturbances, as long as the data are otherwise well behaved. Note that in a finite 
sample, the true distribution may be approximated with an F[J, n - K] distribution. 
It is a bit ambiguous, however, to interpret this fact as implying that the statistic 
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is asymptotically distributed as F with J and n - K degrees of freedom, because 
the limiting distribution used to obtain our result is the chi-squared, not the F. In 
this instance, the F[J, n - K] is a random variable that tends asymptotically to the 
chi-squared variate.

4.	 Finally, suppose that � must be estimated, but that assumptions (9-22) and (9-23) 
are met by the estimator. What changes are required in the development of the 
previous problem?

5.	 In the generalized regression model, if the K columns of X are characteristic vectors 
of �, then ordinary least squares and generalized least squares are identical. (The 
result is actually a bit broader; X may be any linear combination of exactly K 
characteristic vectors. This result is Kruskal’s theorem.)
a.	 Prove the result directly using matrix algebra.
b.	 Prove that if X contains a constant term and if the remaining columns are in 

deviation form (so that the column sum is zero), then the model of Exercise 8 
is one of these cases. (The seemingly unrelated regressions model with identical 
regressor matrices, discussed in Chapter 10, is another.)

6.	 In the generalized regression model, suppose that � is known.
a.	 What is the covariance matrix of the OLS and GLS estimators of B?
b.	 What is the covariance matrix of the OLS residual vector e = y - Xb?
c.	 What is the covariance matrix of the GLS residual vector En = y - XBn?
d.	 What is the covariance matrix of the OLS and GLS residual vectors?

7.	 Suppose that y has the pdf f(y � x) = (1/x′B)e-y/(x′B), y 7 0. Then E[y � x] = x′B 
and Var[y � x] = (x′B)2. For this model, prove that GLS and MLE are the same, 
even though this distribution involves the same parameters in the conditional mean 
function and the disturbance variance.

8.	 Suppose that the regression model is y = m + e, where e has a zero mean, constant 
variance, and equal correlation, r, across observations. Then cov[ei, ej] = s2r 
if i ≠ j. Prove that the least squares estimator of m is inconsistent. Find the 
characteristic roots of � and show that Condition 2 before (9-10) is violated.

9.	 Suppose that the regression model is yi = m + ei, where

E[ei � xi] = 0, cov[ei, ej � xi, xj] = 0 for i = j, but Var[ei � xi] = s2xi
2, xi 7 0.

a.	 Given a sample of observations on yi and xi, what is the most efficient estimator 
of m? What is its variance?

b.	 What is the OLS estimator of m, and what is the variance of the OLS estimator?
c.	 Prove that the estimator in part a is at least as efficient as the estimator in part b.

10.	 For the model in Exercise 9, what is the probability limit of s2 =
1
n a n

i = 1(yi - y)2? 

Note that s2 is the least squares estimator of the residual variance. It is also n times 
the conventional estimator of the variance of the OLS estimator,

est.Var [y] = s2(X′X)-1 =
s2

n
.

How does this equation compare with the true value you found in part b of Exercise 9? 
Does the conventional estimator produce the correct estimator of the true asymptotic 
variance of the least squares estimator?
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11.	 For the model in Exercise 9, suppose that e is normally distributed, with mean zero 
and variance s2[1 + (gx)2]. Show that s2 and g2 can be consistently estimated by a 
regression of the least squares residuals on a constant and x2. Is this estimator efficient?

12.	 Two samples of 50 observations each produce the following moment matrices. (In 
each case, X is a constant and one variable.)

 sample 1 sample 2

X′X c 50
300
 

300
2100

d c 50
300
 

300
2100

d
y′X [300 2000] [300 2200]
y′y [2100] [2800]

a.	 Compute the least squares regression coefficients and the residual variances s2 
for each data set. Compute the R2 s for each regression.

b.	 Compute the OLS estimate of the coefficient vector assuming that the coefficients 
and disturbance variance are the same in the two regressions. Also compute the 
estimate of the asymptotic covariance matrix of the estimate.

c.	 Test the hypothesis that the variances in the two regressions are the same without 
assuming that the coefficients are the same in the two regressions.

d.	 Compute the two-step FGLS estimator of the coefficients in the regressions, 
assuming that the constant and slope are the same in both regressions. Compute 
the estimate of the covariance matrix and compare it with the result of part b.

13.	 Suppose that in the groupwise heteroscedasticity model of Section 9.7.2, Xi is the 
same for all i. What is the generalized least squares estimator of B? How would you 
compute the estimator if it were necessary to estimate si

2?
14.	 The model Jy1

y2
R = Jx1

x2
Rb + JE1

E2
R

satisfies the groupwise heteroscedastic regression model of Section 9.7.2 All 
variables have zero means. The following sample second-moment matrix is obtained 
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2

 D20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

T .

a.	 Compute the two separate OLS estimates of b, their sampling variances, the 
estimates of s1

2 and s2
2, and the R2 s in the two regressions.

b.	 Carry out the Lagrange multiplier test of the hypothesis that s1
2 = s2

2.
c.	 Compute the two-step FGLS estimate of b and an estimate of its sampling 

variance. Test the hypothesis that b equals 1.
d.	 Compute the maximum likelihood estimates of b, s1

2, and s2
2 by iterating the 

FGLS estimates to convergence.
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15.	 The following table presents a hypothetical panel of data:

i = 1 i = 2 i = 3

t y x y x y x

1 30.27 24.31 38.71 28.35 37.03 21.16
2 35.59 28.47 29.74 27.38 43.82 26.76
3 17.90 23.74 11.29 12.74 37.12 22.21
4 44.90 25.44 26.17 21.08 24.34 19.02
5 37.58 20.80 5.85 14.02 26.15 18.64
6 23.15 10.55 29.01 20.43 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 25.65 25.41 15.86

10 36.85 25.60 33.90 11.66 26.04 13.28

a.	 Estimate the groupwise heteroscedastic model of Section 9.7.2. Include an 
estimate of the asymptotic variance of the slope estimator. Use a two-step 
procedure, basing the FGLS estimator at the second step on residuals from the 
pooled least squares regression.

b.	 Carry out the Lagrange multiplier tests of the hypothesis that the variances are 
all equal.

Applications

1.	 This application is based on the following data set.

50 Observations on y:

-1.42 2.75 2.10 -5.08 1.49 1.00 0.16 -1.11 1.66
-0.26 -4.87 5.94 2.21 -6.87 0.90 1.61 2.11 -3.82
-0.62 7.01 26.14 7.39 0.79 1.93 1.97 -23.17 -2.52
-1.26 -0.15 3.41 -5.45 1.31 1.52 2.04 3.00 6.31
5. 51 -15.22 -1.47 -1.48 6.66 1.78 2.62 -5.16 -4.71

-0.35 -0.48 1.24 0.69 1.91
50 Observations on x1:

-1.65 1.48 0.77 0.67 0.68 0.23 -0.40 -1.13 0.15
-0.63 0.34 0.35 0.79 0.77 -1.04 0.28 0.58 -0.41
-1.78 1.25 0.22 1.25 -0.12 0.66 1.06 -0.66 -1.18
-0.80 -1.32 0.16 1.06 -0.60 0.79 0.86 2.04 -0.51
0. 02 0.33 -1.99 0.70 -0.17 0.33 0.48 1.90 -0.18

-0.18 -1.62 0.39 0.17 1.02
50 Observations on x2:

-0.67 0.70 0.32 2.88 -0.19 -1.28 -2.72 -0.70 -1.55
-0.74 -1.87 1.56 0.37 -2.07 1.20 0.26 -1.34 -2.10
0. 61 2.32 4.38 2.16 1.51 0.30 -0.17 7.82 -1.15
1. 77 2.92 -1.94 2.09 1.50 -0.46 0.19 -0.39 1.54
1. 87 -3.45 -0.88 -1.53 1.42 -2.70 1.77 -1.89 -1.85
2. 01 1.26 -2.02 1.91 -2.23
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a.	 Compute the OLS regression of y on a constant, x1, and x2. Be sure to compute 
the conventional estimator of the asymptotic covariance matrix of the OLS 
estimator as well.

b.	 Compute the White estimator of the appropriate asymptotic covariance matrix 
for the OLS estimates.

c.	 Test for the presence of heteroscedasticity using White’s general test. Do your 
results suggest the nature of the heteroscedasticity?

d.	 Use the Breusch-Pagan (1980) and Godfrey (1988) Lagrange multiplier test to 
test for heteroscedasticity.

e.	 Reestimate the parameters using a two-step FGLS estimator. Use Harvey’s 
formulation, Var[ei � xi1, xi2] = s2 exp(g1xi1 + g2xi2).

2.	 (We look ahead to our use of maximum likelihood to estimate the 
models discussed in this chapter in Chapter 14.) In Example 9.3, we 
computed an iterated FGLS estimator using the airline data and the model 
Var[eit � Loadfactori,t] = exp(g1 + g2 Loadfactori,t). The weights computed at each 
iteration were computed by estimating (g1, g2) by least squares regression of ln eni,t

2  
on a constant and Loadfactor. The maximum likelihood estimator would proceed 
along similar lines, however the weights would be computed by regression of 
[eni,t

2 /sn i,t
2 - 1] on a constant and Loadfactori,t instead. Use this alternative procedure 

to estimate the model. Do you get different results?
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