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11

MODELS FOR PANEL DATA

§
11.1	 INTRODUCTION

Data sets that combine time series and cross sections are common in economics. The 
published statistics of the OECD contain numerous series of economic aggregates 
observed yearly for many countries. The Penn World Tables [CIC (2010)] is a data bank 
that contains national income data on 167 countries for more than 60 years. Recently 
constructed longitudinal data sets contain observations on thousands of individuals or 
families, each observed at several points in time. Other empirical studies have examined 
time-series data on sets of firms, states, countries, or industries simultaneously. These 
data sets provide rich sources of information about the economy. The analysis of panel 
data allows the model builder to learn about economic processes while accounting 
for both heterogeneity across individuals, firms, countries, and so on and for dynamic 
effects that are not visible in cross sections. Modeling in this context often calls for 
complex stochastic specifications. In this chapter, we will survey the most commonly 
used techniques for time-series—cross-section (e.g., cross-country) and panel (e.g., 
longitudinal)—data. The methods considered here provide extensions to most of the 
models we have examined in the preceding chapters. Section 11.2 describes the specific 
features of panel data. Most of this analysis is focused on individual data, rather than 
cross-country aggregates. We will examine some aspects of aggregate data modeling in 
Section 11.10. Sections 11.3, 11.4, and 11.5 consider in turn the three main approaches 
to regression analysis with panel data, pooled regression, the fixed effects model, and 
the random effects model. Section 11.6 considers robust estimation of covariance 
matrices for the panel data estimators, including a general treatment of cluster effects. 
Sections 11.7 through 11.10 examine some specific applications and extensions of panel 
data methods. Spatial autocorrelation is discussed in Section 11.7. In Section 11.8, we 
consider sources of endogeneity in the random effects model, including a model of the 
sort considered in Chapter 8 with an endogenous right-hand-side variable and then two 
approaches to dynamic models. Section 11.9 builds the fixed and random effects models 
into nonlinear regression models. Finally, Section 11.10 examines random parameter 
models. The random parameters approach is an extension of the fixed and random 
effects model in which the heterogeneity that the FE and RE models build into the 
constant terms is extended to other parameters as well.

Panel data methods are used throughout the remainder of this book. We will develop 
several extensions of the fixed and random effects models in Chapter 14 on maximum 
likelihood methods, and in Chapter 15 where we will continue the development of 
random parameter models that is begun in Section 11.10. Chapter 14 will also present 
methods for handling discrete distributions of random parameters under the heading of 
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or time-series settings alone. Recent applications have allowed researchers to study the 
impact of health policy changes3 and, more generally, the dynamics of labor market 
behavior. In principle, the methods of Chapters 6 and 21 can be applied to longitudinal 
data sets. In the typical panel, however, there are a large number of cross-sectional units 
and only a few periods. Thus, the time-series methods discussed there may be somewhat 
problematic. Recent work has generally concentrated on models better suited to these 
short and wide data sets. The techniques are focused on cross-sectional variation, or 
heterogeneity. In this chapter, we shall examine in detail the most widely used models 
and look briefly at some extensions.

11.2.1    GENERAL MODELING FRAMEWORK FOR ANALYZING PANEL DATA

The fundamental advantage of a panel data set over a cross section is that it will allow 
the researcher great flexibility in modeling differences in behavior across individuals. 
The basic framework for this discussion is a regression model of the form

 yit = xit
=B + zi

=A + eit

	  = xit
=B + ci + eit. �

(11-1)

There are K regressors in xit, not including a constant term. The heterogeneity, or 
individual effect, is zi

=A where zi contains a constant term and a set of individual or 
group-specific variables, which may be observed, such as race, sex, location, and so on; 
or unobserved, such as family specific characteristics, individual heterogeneity in skill 
or preferences, and so on, all of which are taken to be constant over time t. As it stands, 
this model is a classical regression model. If zi is observed for all individuals, then the 
entire model can be treated as an ordinary linear model and fit by least squares. The 
complications arise when ci is unobserved, which will be the case in most applications. 
Consider, for example, analyses of the effect of education and experience on earnings 
from which “ability” will always be a missing and unobservable variable. In health care 
studies, for example, of usage of the health care system, “health” and “health care” will 
be unobservable factors in the analysis.

The main objective of the analysis will be consistent and efficient estimation of the 
partial effects,

B = 0E[yit � xit]/0xit.

Whether this is possible depends on the assumptions about the unobserved effects. We 
begin with a strict exogeneity assumption for the independent variables,

E[eit � xi1, xi2, c, ci] = E[eit � Xi, ci] = 0.

This implies the current disturbance is uncorrelated with the independent variables 
in every period, past, present, and future. A looser assumption of contemporaneous 
exogeneity is sometimes useful. If

E[yit � xi1, c, xiT, ci] = E[yit � xit, ci] = xit
=B + ci, 

then

E[eit � xit, ci] = 0.

2A compendium of the earliest literature is Maddala (1993). Book-length surveys on the econometrics of panel 
data include Hsiao (2003), Dielman (1989), Matyas and Sevestre (1996), Raj and Baltagi (1992), Nerlove (2002), 
Arellano (2003), and Baltagi (2001, 2013, 2015). There are also lengthy surveys devoted to specific topics, such 
as limited dependent variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)], discrete choice models [Greene 
(2015)] and semiparametric methods [Lee (1998)]. 3For example, Riphahn et al.’s (2003) analysis of reforms in German public health insurance regulations.

latent class models. In Chapter 21, we will return to the models of nonstationary panel 
data that are suggested in Section 11.8.4. The fixed and random effects approaches will 
be used throughout the applications of discrete and limited dependent variables models 
in microeconometrics in Chapters 17, 18, and 19.

11.2	 PANEL DATA MODELING

Many recent studies have analyzed panel, or longitudinal, data sets. Two very famous ones 
are the National Longitudinal Survey of Labor Market Experience (NLS, www.bls.gov/nls/
nlsdoc.htm) and the Michigan Panel Study of Income Dynamics (PSID, http://psidonline.isr.
umich.edu/). In these data sets, very large cross sections, consisting of thousands of 
microunits, are followed through time, but the number of periods is often quite small. The 
PSID, for example, is a study of roughly 6,000 families and 15,000 individuals who have been 
interviewed periodically from 1968 to the present. In contrast, the European Community 
Household Panel (ECHP, http://ec.europa.eu/eurostat/web/microdata/european-
community-household-panel) ran for a total of eight years (waves). An ongoing study in the 
United Kingdom is the Understanding Society survey (www.understandingsociety.ac.uk/
about) that grew out of the British Household Panel Survey (BHPS). This survey that was 
begun in 1991 with about 5,000 households has expanded to over 40,000 participants. Many 
very rich data sets have recently been developed in the area of health care and health 
economics, including the German Socioeconomic Panel (GSOEP, www.eui.eu/Research/
Library/ResearchGuides/Economics/Statistics/DataPortal/GSOEP.aspx), AHRQ’s Medical 
Expenditure Panel Survey (MEPS, www.meps.ahrq.gov/), and the Household Income and 
Labour Dynamics in Australia (HILDA, www.melbourneinstitute.com/hilda/). Constructing 
long, evenly spaced time series in contexts such as these would be prohibitively expensive, 
but for the purposes for which these data are typically used, it is unnecessary. Time effects 
are often viewed as transitions or discrete changes of state. The Current Population Survey 
(CPS, www.census.gov/cps/), for example, is a monthly survey of about 50,000 households 
that interviews households monthly for four months, waits for eight months, then 
reinterviews. This two-wave, rotating panel format allows analysis of short-term changes as 
well as a more general analysis of the U.S. national labor market. They are typically modeled 
as specific to the period in which they occur and are not carried across periods within a 
cross-sectional unit.1 Panel data sets are more oriented toward cross-section analyses; they 
are wide but typically short. Heterogeneity across units is an integral part—indeed, often 
the central focus—of the analysis. [See, e.g., Jones and Schurer (2011).]

The analysis of panel or longitudinal data is the subject of one of the most active 
and innovative bodies of literature in econometrics,2 partly because panel data provide 
such a rich environment for the development of estimation techniques and theoretical 
results. In more practical terms, however, researchers have been able to use time-series 
cross-sectional data to examine issues that could not be studied in either cross-sectional 

1Formal time-series modeling for panel data is briefly examined in Section 21.4.
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and only a few periods. Thus, the time-series methods discussed there may be somewhat 
problematic. Recent work has generally concentrated on models better suited to these 
short and wide data sets. The techniques are focused on cross-sectional variation, or 
heterogeneity. In this chapter, we shall examine in detail the most widely used models 
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11.2.1    GENERAL MODELING FRAMEWORK FOR ANALYZING PANEL DATA
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the researcher great flexibility in modeling differences in behavior across individuals. 
The basic framework for this discussion is a regression model of the form

 yit = xit
=B + zi

=A + eit

	  = xit
=B + ci + eit. �

(11-1)

There are K regressors in xit, not including a constant term. The heterogeneity, or 
individual effect, is zi

=A where zi contains a constant term and a set of individual or 
group-specific variables, which may be observed, such as race, sex, location, and so on; 
or unobserved, such as family specific characteristics, individual heterogeneity in skill 
or preferences, and so on, all of which are taken to be constant over time t. As it stands, 
this model is a classical regression model. If zi is observed for all individuals, then the 
entire model can be treated as an ordinary linear model and fit by least squares. The 
complications arise when ci is unobserved, which will be the case in most applications. 
Consider, for example, analyses of the effect of education and experience on earnings 
from which “ability” will always be a missing and unobservable variable. In health care 
studies, for example, of usage of the health care system, “health” and “health care” will 
be unobservable factors in the analysis.

The main objective of the analysis will be consistent and efficient estimation of the 
partial effects,

B = 0E[yit � xit]/0xit.

Whether this is possible depends on the assumptions about the unobserved effects. We 
begin with a strict exogeneity assumption for the independent variables,

E[eit � xi1, xi2, c, ci] = E[eit � Xi, ci] = 0.

This implies the current disturbance is uncorrelated with the independent variables 
in every period, past, present, and future. A looser assumption of contemporaneous 
exogeneity is sometimes useful. If

E[yit � xi1, c, xiT, ci] = E[yit � xit, ci] = xit
=B + ci, 

then

E[eit � xit, ci] = 0.

2A compendium of the earliest literature is Maddala (1993). Book-length surveys on the econometrics of panel 
data include Hsiao (2003), Dielman (1989), Matyas and Sevestre (1996), Raj and Baltagi (1992), Nerlove (2002), 
Arellano (2003), and Baltagi (2001, 2013, 2015). There are also lengthy surveys devoted to specific topics, such 
as limited dependent variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)], discrete choice models [Greene 
(2015)] and semiparametric methods [Lee (1998)]. 3For example, Riphahn et al.’s (2003) analysis of reforms in German public health insurance regulations.
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The regression model with this assumption restricts influences of x on E[y � x, c] to the 
current period. In this form, we can see that we have ruled out dynamic models such as

yit = wit
=B + gyi.t - 1 + ci + eit

because as long as g is nonzero, covariation between eit and xit = (wit, yi,t - 1) is 
transmitted through ci in yi,t - 1. We will return to dynamic specifications in Section 11.8.3. 
In some settings (such as the static fixed effects model in Section 11.4), strict exogeneity 
is stronger than necessary. It is, however, a natural assumption. It will prove convenient 
to start there, and loosen the assumption in specific cases where it would be useful.

The crucial aspect of the model concerns the heterogeneity. A convenient assumption 
is mean independence,

E[ci � xi1, xi2, c] = a.

If the unobserved variable(s) are uncorrelated with the included variables, then, as we 
shall see, they may be included in the disturbance of the model. This is the assumption 
that underlies the random effects model, as we will explore later. It is, however, a 
particularly strong assumption—it would be unlikely in the labor market and health 
care examples mentioned previously. The alternative would be

 E[ci � xi1, xi2, c,] = h(xi1, xi2, c) = h(Xi)

for some unspecified, but nonconstant function of Xi. This formulation is more general, 
but at the same time, considerably more complicated, the more so because estimation 
may require yet further assumptions about the nature of the regression function.

11.2.2    MODEL STRUCTURES

We will examine a variety of different models for panel data. Broadly, they can be 
arranged as follows:

1.	 Pooled Regression: If zi contains only a constant term, then ordinary least squares 
provides consistent and efficient estimates of the common a and the slope vector B.

2.	 Fixed Effects: If zi is unobserved, but correlated with xit, then the least squares 
estimator of B is biased and inconsistent as a consequence of an omitted variable. 
However, in this instance, the model

yit = xit
=B + ai + eit,

where ai = zi
=A, embodies all the observable effects and specifies an estimable 

conditional mean. This fixed effects approach takes ai to be a group-specific constant 
term in the regression model. It should be noted that the term “fixed” as used here 
signifies the correlation of ci and xit, not that ci is nonstochastic.

3.	 Random Effects: If the unobserved individual heterogeneity, however formulated, 
is uncorrelated with xit, then the model may be formulated as

	  yit = xit
=B + E[zi

=A] + {zi
=A - E[zi

=A]} + eit

	  = xit
=B + a + ui + eit,

that is, as a linear regression model with a compound disturbance that may be 
consistently, albeit inefficiently, estimated by least squares. This random effects 
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approach specifies that ui is a group-specific random element, similar to eit except 
that for each group, there is but a single draw that enters the regression identically 
in each period. Again, the crucial distinction between fixed and random effects is 
whether the unobserved individual effect embodies elements that are correlated 
with the regressors in the model, not whether these effects are stochastic or not. We 
will examine this basic formulation, then consider an extension to a dynamic model.

4.	 Random Parameters: The random effects model can be viewed as a regression 
model with a random constant term. With a sufficiently rich data set, we may extend 
this idea to a model in which the other coefficients vary randomly across individuals 
as well. The extension of the model might appear as

yit = xit
= (B + ui) + (a + ui) + eit,

where ui is a random vector that induces the variation of the parameters across 
individuals. This random parameters model has recently enjoyed widespread 
attention in several fields. It represents a natural extension in which researchers 
broaden the amount of heterogeneity across individuals while retaining some 
commonalities—the parameter vectors still share a common mean. Some recent 
applications have extended this yet another step by allowing the mean value of the 
parameter distribution to be person specific, as in

yit = xit
= (B + �zi + ui) + (a + ui) + eit,

where zi is a set of observable, person-specific variables, and �  is a matrix of 
parameters to be estimated. As we will examine in Chapter 17, this hierarchical 
model is extremely versatile.

11.2.3    EXTENSIONS

The short list of model types provided earlier only begins to suggest the variety of 
applications of panel data methods in econometrics. We will begin in this chapter to study 
some of the formulations and uses of linear models. The random and fixed effects models 
and random parameters models have also been widely used in models of censoring, binary, 
and other discrete choices, and models for event counts. We will examine all of these in 
the chapters to follow. In some cases, such as the models for count data in Chapter 18, 
the extension of random and fixed effects models is straightforward, if somewhat more 
complicated computationally. In others, such as in binary choice models in Chapter 17 
and censoring models in Chapter 19, these panel data models have been used, but not 
before overcoming some significant methodological and computational obstacles.

11.2.4    BALANCED AND UNBALANCED PANELS

By way of preface to the analysis to follow, we note an important aspect of panel data 
analysis. As suggested by the preceding discussion, a panel data set will consist of n 
sets of observations on individuals to be denoted i = 1, c, n. If each individual in 
the data set is observed the same number of times, usually denoted T, the data set is 
a balanced panel. An unbalanced panel data set is one in which individuals may be 
observed different numbers of times. We will denote this Ti. A fixed panel is one in which 
the same set of individuals is observed for the duration of the study. The data sets we 
will examine in this chapter, while not all balanced, are fixed.
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A rotating panel is one in which the cast of individuals changes from one period to the 
next. For example, Gonzalez and Maloney (1999) examined self-employment decisions 
in Mexico using the National Urban Employment Survey. This is a quarterly data set 
drawn from 1987 to 1993 in which individuals are interviewed five times. Each quarter, 
one-fifth of the individuals is rotated out of the data set. The U.S. Census Bureau’s SIPP 
data (Survey of Income and Program Participation, www.census.gov/programs-surveys/
sipp/data.html) is another rotating panel. Some discussion and numerous references may 
be found in Baltagi (2013)

Example 11.1  �  A Rotating Panel: The Survey of Income and Program 
Participation (SIPP) Data

From the Census Bureau’s home site for this data set:
The SIPP survey design is a continuous series of national panels, with sample size ranging 

from approximately 14,000 to 52,000 interviewed households. The duration of each panel 
ranges from 21

2 years to 4 years. The SIPP sample is a multistage-stratified sample of the U.S. 
civilian non-institutionalized population. From 1984 to 1993, a new panel of households was 
introduced each year in February. A 4-year panel was implemented in April 1996; however, a 
3-year panel that was started in February 2000 was canceled after 8 months due to budget 
restrictions. Consequently, a 3-year panel was introduced in February 2001. The 21

2 year 
2004 SIPP Panel was started in February 2004 and was the first SIPP panel to use the 2000 
decennial-based redesign of the sample. The 2014 panel, starting in February 2014, is the 
first SIPP panel to use the 2010 decennial as the basis for its sample.

11.2.5    ATTRITION AND UNBALANCED PANELS

Unbalanced panels arise in part because of nonrandom attrition from the sample. 
Individuals may appear for only a subset of the waves. In general, if the attrition is 
systematically related to the outcome variable in the model being studied, then it may 
induce conditions of nonrandom sampling bias—sometimes called sample selection. The 
nature of the bias is unclear, but sample selection bias as a general aspect of econometric 
analysis is well documented. [An example would be attrition of subjects from a medical 
clinical trial for reasons related to the efficacy (or lack of) of the drug under study.] Verbeek 
and Nijman (1992) proposed a nonconstructive test for attrition in panel data models—
the test results detect the condition but do not imply a strategy if the hypothesis of no 
nonrandom attrition is rejected. Wooldridge (2002 and 2010, pp. 837–844) describes an 
inverse probability weighting (IPW) approach for correcting for nonrandom attrition.

Example 11.2  �  Attrition and Inverse Probability Weighting in a Model 
for Health

Contoyannis, Jones, and Rice (2004) employed an ordered probit model to study self-assessed 
health in the first eight waves of the BHPS.4 The sample exhibited some attrition as shown in 
Table 11.1 (from their Table V). (Although the sample size does decline after each wave, the 
remainder at each wave is not necessarily a subset of the previous wave. Some individuals 
returned to the sample. A subsample of observations for which attrition at each wave was an 
absorbing state—they did not return—was analyzed separately. This group is used for IPW-2 
in the results below.) To examine the issue of nonrandom attrition, the authors first employed 
Nijman and Verbeek’s tests. This entails adding three variables to the model:

4See Chapter 18 and Greene and Hensher (2010).
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NEXT WAVEit     = 1 if individual i is in the sample in wave t + 1,
ALL WAVEit   = 1 if individual i is in the sample for all waves,
NUMBER OF WAVES   = the number of waves for which the individual is present.

The results at this step included those in Table 11.2 (extracted from their Table IX). Curiously, 
at this step, the authors found strong evidence of nonrandom attrition in the subsample of men 
in the sample, but not in that for women. The authors then employed an inverse probability 
weighting approach to “correct” for the possibility of nonrandom attrition. They employed 
two procedures. First, for each individual in the sample, construct di = (di1, c., diT) where 
dit = 1 if individual i is present in wave t. By construction, di1 = 1 for everyone. A vector of 
covariates observed at the baseline that is thought to be relevant to attrition in each period is 
designated zi1. This includes ln Income, marital status, age, race, education, household size, 
and health status, and some indicators of morbidity. For each period, a probit model is fit for 
Prob(dit = 1 � zi1) and fitted probabilities, pn it are computed. (Note: pn i1 = 1.) With these fitted 
probabilities in hand, the model is estimated by maximizing the criterion function, in their 
case, the log-likelihood function, ln L = Σ iΣt (dit/pn it) ln Lit. (For the models examined in this 
chapter, the log-likelihood term would be the negative of a squared residuals to maximize the 
negative of the sum or squares.) These results are labeled IPW-1 in Table 11.3. For the second 
method, the sample is restricted to the subset for which attrition was permanent. For each 
period, the list of variables is expanded to include zi1 and zi,t - 1. The predicted probabilities at 
each, computed using the probit model, are denoted pnis. Finally, to account for the fact that 
the sample at each wave is based on selection from the previous wave (so that dit = Πs … tdis
) the probabilities are likewise adjusted: pn it = Πs = 1

t pnis. The results below show the influence 
of the sample treatment on one of the estimated coefficients in the full model.

Wave Individuals Survival Exited Attrition

1 10,256 — — —
2 8,957 87.33% 1299 12.67%
3 8,162 79.58% 795 8.88%
4 7,825 76.30% 337 4.13%
5 7,430 72.45% 395 5.05%
6 7,238 70.57% 192 2.58%
7 7,102 69.25% 136 1.88%
8 6,839 66.68% 263 3.70%

Table 11.1  Attrition from BHPS

Men Women

B t Ratio B t Ratio

NEXT WAVE 0.199 5.67 0.060 1.77
ALL WAVES 0.139 4.46 0.071 2.45
NUMBER OF WAVES 0.031 3.54 0.016 1.88

Table 11.2  Tests for Attrition Bias
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Example 11.3  �  Attrition and Sample Selection in an Earnings Model for 
Physicians

Cheng and Trivedi (2015) approached the attrition question from a nonrandom sample 
selection perspective in their panel data study of Australian physicians’ earnings. The starting 
point is a “missing at random” (MAR) interpretation of attrition. If individuals exit the sample 
for reasons that are unrelated to the variable under study—specifically, unrelated to the 
unobservables in the equation being used to model that variable—then attrition has no direct 
implications for the estimation of the parameters of the model.

Table 11.4 (derived from Table I in the article) shows that about one-third of the initial 
sample in their four-wave panel ultimately exited the sample. (Some individuals did return. 
The table shows the net effect.)

The model is a structural system,

 Attrition: Ait
* = zit

=G + uit;    Ait = 1 if Ait
* 7 0,

 ln Wages: yit
* = xit

=B + fi
=D + ai + eit; yit = yit

* if Ait = 0, unobserved otherwise,

where xit and zit are time-varying exogenous variables, fi is time-invariant, possibly endogenous 
variables, and ai is a fixed effect. This setup is an application of Heckman’s (1979) sample 
selection framework. (See Section 19.5.) The implication of the observation mechanism for 
the observed data is

 E[yit � xit, fi, ai, Ait = 0] = xit
=B + fi

=D + ai + E[eit � uit … -zit
=G]

 = xit
=B + fi

=D + ai + u l(zit
=G).

[In this reduced form of the model, u is not (yet) a structural parameter. A nonzero value of 
this coefficient implies the presence of the attrition (selection) effect. The effect is generic 
until some structure is placed on the joint observation and attrition mechanism.] If eit and 
uit are correlated, then [ul(zit

=G)] will be nonzero. Regression of yit on xit, fi, and whatever 
device is used to control for the fixed effects will be affected by the missing selection effect, 
lit = l(zit

=G). If this omitted variable is correlated with (xit, fi, ai), then the estimates of B and 
D are likely to be distorted. A partial solution is obtained by using first differences in the 

Balanced Sample Unbalanced IPW-1 IPW-2

NT = 19,460 NT = 24,371 NT = 24,370 NT = 23,211
Men 0.036 (0.022) 0.035 (0.019) 0.035 (0.020) 0.043 (0.021)

Women 0.029 (0.021) 0.033 (0.018) 0.021 (0.019) 0.018 (0.020)

*Coefficient on ln Income in Dynamic Ordered Probit Model. (Extracted from Table X and Table XI.)

Table 11.3  Estimated Coefficients* on ln Income in Ordered Probit Models 
(Standard errors in Parentheses)

General Practitioners Specialists

Year N Attrition* Survival N Attrition Survival

1 3906 840 100.0% 4596 926 100.0%
2 3066 242 78.5% 3670 303 79.9%
3 2824 270 72.3% 3367 299 73.3%
4 2554 — 65.4% 3068 — 66.8%

* Net attrition takes place after the indicated year.

Table 11.4  �Attrition from the Medicine in Australia Balancing Employment and Life Data
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regression. First differences will eliminate the time-invariant components of the regression, 
(fi, ai), but will not solve the selection problem unless the attrition mechanism is also time 
invariant, which is not assumed. This nonzero correlation will be the attrition effect.

If there is attrition bias (in the estimator that ignores attrition), then the sample should 
become progressively less random as the observation period progresses. This suggests 
a possible indirect test for attrition bias. The full unbalanced sample contains a balanced 
subsample of individuals who are present for all waves of the panel. (Individuals who left 
and rejoined the panel would be bypassed for purposes of this exercise.) Under the MAR 
assumption, estimation of B based on the unbalanced full sample and the balanced subsample 
should produce the same results (aside from some sampling variability). This suggests one 
might employ a Hausman style test. (See Section 11.5.6.) The authors employed a more direct 
strategy. A narrow assumption that (eit, uit) are bivariate normally distributed with zero means, 
variances, s2 and 1, and correlation r (a variance for uit is not identified) produces

ut l(zit
=Gt) = ut 

f(-zit
=Gt)

Φ(-zit
=Gt)

.

Estimates of the coefficients in this “control function” regression are computed for each of 
waves 2–4 and added to the first difference regression,

yit - yi,t - 1 = (xit - xi,t - 1)′B + a 4
t = 2 utl

n

it + wit,

which is then estimated using least squares. Standard errors are computed using 
bootstrapping. Under the joint normality assumption, this control function estimator is robust, 
in that if there is an attrition effect (nonzero r), the effect is accounted for while if r = 0, the 
original estimator (within or first differences) will be consistent on its own. A second approach 
that loosens the bivariate normality assumption is based on a copula model (Section 12.2.2) 
that is estimated by maximum likelihood.

Table 11.5 below (derived from Tables III and IV in the paper) summarizes the results. The 
bivariate normal model strongly suggests the presence of the attrition effect, though the 
impact on the main estimation result is relatively modest. But the results for the copula are 
quite different. The effect is found to be significant only for the specialists. The impact on the 
hours coefficient is quite large for this group as well.

General Practitioners Specialists

Fixed Effects Hours Coefficient
  Unbalanced* 0.460 (0.027) [7776] 0.287 (0.022) [8904]
  Balanced 0.407 (0.038) [3464] 0.356 (0.029) [4204]

First Differences Hours Coefficient
  Unbalanced 0.428 (0.042) [4106] 0.174 (0.038) [4291]
  Balanced 0.387 (0.055) [2598] 0.244 (0.053) [3153]

Bivariate Normal Hazards Attrition Model
  Hours coefficient 0.422 (0.041) [4043] 0.180 (0.035) [4875]
  Wald Statistic (3 df) 42.47 38.65
  p Value 0.000 0.000

Frank Copula Attrition Model
  Marginals Probit, Student’s t Logit, logistic
  Hours coefficient 0.315 (0.043) [5166] 0.104 (0.026) [6109]
  Wald Statistic (1 df) 1.862 7535.119
  p Value 0.172 0.000

* Standard errors in parentheses. Sample size in brackets.

Table 11.5  Earnings Models and Tests for Attrition Bias
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Unbalanced panels may arise for systematic reasons that induce problems that 
look like sample selection issues. But the attrition from a panel data set may also 
be completely ignorable, that is, due to issues that are out of the view of the analyst. 
In such cases, it is reasonable simply to treat the unbalanced nature of the data as a 
characteristic of the random sampling. Almost none of the useful theory that we will 
examine here relies on an assumption that the panel is balanced. The development to 
follow is structured so that the distinction between balanced and unbalanced panels, 
beyond the attrition issue, will entail little more than a trivial change in notation—
where for convenience we write T suggesting a balanced panel, merely changing T to 
Ti generalizes the results. We will note specifically when this is not the case, such as in 
Breusch and Pagan’s (1980) LM statistic.

11.2.6    WELL-BEHAVED PANEL DATA

The asymptotic properties of the estimators in the classical regression model were 
established in Section 4.4 under the following assumptions:

A.1.  Linearity: yi = xi1b1 + xi2b2 + g + xiKbK + ei.
A.2. � Full rank: The n * K sample data matrix, X has full column rank for every 

n 7 K.
A.3. � Strict exogeneity of the independent variables: E[ei � xj1, xj2, c, xjK] = 0, i,

 j = 1, c, n.
A.4. � Homoscedasticity and nonautocorrelation: E[eiej � X] = se

2 if i = j and 0 
otherwise.

The following are the crucial results needed: For consistency of b, we need

 plim(1/n)X′X = plim Qn = Q, a positive definite matrix,
 plim(1/n)X′E = plim wn = E[wn] = 0.

(For consistency of s2, we added a fairly weak assumption about the moments of the 
disturbances.) To establish asymptotic normality, we required consistency and2n wn ¡d

N[0, s2Q].

With these in place, the desired characteristics are then established by the methods of 
Sections 4.4.1 and 4.4.2.

Exceptions to the assumptions are likely to arise in a panel data set. The sample 
will consist of multiple observations on each of many observational units. For example, 
a study might consist of a set of observations made at different points in time on a large 
number of families. In this case, the x’s will surely be correlated across observations, at 
least within observational units. They might even be the same for all the observations 
on a single family.

The panel data set could be treated as follows. Assume for the moment that the 
data consist of a fixed number of observations, say T, on a set of n families, so that the 
total number of rows in X is N = nT. The matrix Qn, in which n is all the observations 
in the sample, is

Qn =
1
n a

i

1
T

 Xi
=Xi =

1
n a

n

i = 1
Qi.

M11_GREE1366_08_SE_C11.indd   382 2/24/17   2:40 PM



	 CHAPTER 11  ✦  Models For Panel Data  	383

We then view the set of observations on the ith unit as if they were a single observation 
and apply our convergence arguments to the number of units increasing without bound. 
The point is that the conditions that are needed to establish convergence will apply with 
respect to the number of observational units. The number of observations taken for each 
observation unit might be fixed and could be quite small.

This chapter will contain relatively little development of the properties of 
estimators as was done in Chapter 4. We will rely on earlier results in Chapters 4, 8, and 
9 and focus instead on a variety of models and specifications.

11.3	 THE POOLED REGRESSION MODEL

We begin the analysis by assuming the simplest version of the model, the pooled model,

	 yit = a + xit
=B + eit, i = 1, c, n, t = 1, c, Ti,	 (11-2)

E[eit, � xi1, xi2, c, xiTi
] = 0,

E[eitejs � xi1, xi2, c, xiTi
] = se

2 if i = j and t = s and = 0 if i ≠ j or t ≠ s.

In this form, if the remaining assumptions of the classical model are met (zero 
conditional mean of eit, homoscedasticity, uncorrelatedness across observations, i and 
strict exogeneity of xit), then no further analysis beyond the results of Chapter 4 is 
needed. Ordinary least squares is the efficient estimator and inference can reliably 
proceed along the lines developed in Chapter 5.

11.3.1    LEAST SQUARES ESTIMATION OF THE POOLED MODEL

The crux of the panel data analysis in this chapter is that the assumptions underlying 
ordinary least squares estimation of the pooled model are unlikely to be met. The 
question, then, is what can be expected of the estimator when the heterogeneity does 
differ across individuals? The fixed effects case is obvious. As we will examine later, 
omitting (or ignoring) the heterogeneity when the fixed effects model is appropriate 
renders the least squares estimator inconsistent—sometimes wildly so. In the random 
effects case, in which the true model is

yit = ci + xit
=B + eit,

where E[ci � Xi] = a, we can write the model

	 yit = a + xit
=B + eit + (ci - E[ci � Xi])

	  = a + xit
=B + eit + ui

	  = a + xit
=B + wit.

In this form, we can see that the unobserved heterogeneity induces autocorrelation; 
E[witwis] = su

2 when t ≠ s. As we explored in Chapter 9—we will revisit it in Chapter 
20—the ordinary least squares estimator in the generalized regression model may 
be consistent, but the conventional estimator of its asymptotic variance is likely to 
underestimate the true variance of the estimator.
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11.3.2    ROBUST COVARIANCE MATRIX ESTIMATION AND BOOTSTRAPPING

Suppose we consider the model more generally. Stack the Ti observations for individual 
i in a single equation,

yi = XiB + wi,

where B now includes the constant term. In this setting, there may be heteroscedasticity 
across individuals. However, in a panel data set, the more substantive effect is cross-
observation correlation, or autocorrelation. In a longitudinal data set, the group of 
observations may all pertain to the same individual, so any latent effects left out of the 
model will carry across all periods. Suppose, then, we assume that the disturbance vector 
consists of eit plus these omitted components. Then,

 Var[wi � Xi] = se
2ITi

+ �i

 = �i.

(The subscript i on �i does not necessarily indicate a different variance for each i. 
The designation is necessary because the matrix is Ti * Ti.) The ordinary least squares 
estimator of B is

	  b = (X′X)-1X′y = Jan
i = 1

Xi
=XiR -1

a
n

i = 1
X=

iyi

 = Jan
i = 1

Xi
=XiR -1

a
n

i = 1
Xi

=(XiB + wi)

 = B + Jan
i = 1

Xi
=XiR -1

a
n

i = 1
Xi

=wi.

Consistency can be established along the lines developed in Chapter 4. The true 
asymptotic covariance matrix would take the form we saw for the generalized regression 
model in (9-8),

 Asy.Var[b] =
1
n

 plimJ 1
n a

n

i = 1
Xi

=XiR -1

 plimJ 1
n a

n

i = 1
Xi

=wiwi
=XiR  plimJ 1

n a
n

i = 1
Xi

=XiR -1

 =
1
n

 plimJ 1
n a

n

i = 1
Xi

=XiR -1

 plimJ 1
n a

n

i = 1
Xi

=�iXiR  plimJ 1
n a

n

i = 1
Xi

=XiR -1

.

This result provides the counterpart to (9-12). As before, the center matrix must be 
estimated. In the same fashion as the White estimator, we can estimate this matrix with

	 Est.Asy.Var[b] =
1
n

 J 1
n a

n

i = 1
Xi

=XiR -1J 1
n a

n

i = 1
Xi

=wn iwn i
=XiR J 1

n a
n

i = 1
Xi

=XiR -1

,	 (11-3)

where wn i
= is the vector of Ti residuals for individual i. In fact, the logic of the White 

estimator does carry over to this estimator. Note, however, this is not quite the same 
as (9-5). It is quite likely that the more important issue for appropriate estimation 
of the asymptotic covariance matrix is the correlation across observations, not 
heteroscedasticity. As such, it is likely that the White estimator  in (9-5) is not the 
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solution to the inference problem here. Example 11.4 shows this effect at work. This is 
the “cluster” robust estimator developed in Section 4.5.3.

Bootstrapping offers another approach to estimating an appropriate covariance 
matrix for the estimator. We used this approach earlier in a cross-section setting in 
Example 4.6 where we devised an estimator for the LAD estimator. Here, we will take 
the group or cluster as the unit of observation. For example, in the data in Example 11.4, 
there are 595 groups of 7 observations, so the block of 7 observations is the unit of 
observation. To compute the block bootstrap estimator, we use the following procedure. 
For each of R repetitions, draw random samples of N = 595 blocks with replacement. 
(Each time, some blocks are drawn more than once and others are not drawn.) After 
the R repetitions, compute the empirical variance of the R replicates. The estimator is

Est.Asy.Var[b] =
1
R aR

r = 1(br - b)(br - b)=.

Example 11.4    Wage Equation
Cornwell and Rupert (1988) analyzed the returns to schooling in a balanced panel of 595 
observations on heads of households. The sample data are drawn from years 1976–1982 
from the “Non-Survey of Economic Opportunity” from the Panel Study of Income Dynamics. 
Our estimating equation is a modified version of the one in the paper (without the time fixed 
effects);

 ln Wageit = b1 + b2 Expit + b3 Expit
2 + b4 Wksit + b5 Occit

 + b6 Indit + b7 Southit + b8 SMSAit + b9 MSit

 + b10 Unionit + b11 Edi + b12 Femi + b13 Blki + eit

where the variables in the model are

Exp  = years of full-time work experience,
Wks  = weeks worked,
Occ  = 1 if the individual has a blue-collar occupation, 0 if not,
Ind  = 1 if the individual works in a manufacturing industry, 0 if not,
South  = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if not,
MS  = 1 if the individual is married, 0 if not
Union  = 1 if the individual’s wage is set by a union contract, 0 if not
Ed  = years of education
Fem  = 1 if the individual is female, 0 if not,
Blk  = 1 if the individual is black, 0 if not.

See Appendix Table F8.1 for the data source. Note that Ed, Fem, and Blk are time 
invariant. The main interest of the study, beyond comparing various estimation methods, is 
b11, the return to education. Table 11.6 reports the least squares estimates based on the full 
sample of 4,165 observations. [The authors do not report OLS estimates. However, they do 
report linear least squares estimates of the fixed effects model, which are simple least squares 
using deviations from individual means. (See Section 11.4.)] The conventional OLS standard 
errors are given in the second column of results. The third column gives the robust standard 
errors computed using (11-3). For these data, the computation is

Est.Asy.Var[b] = Ja 595
i = 1Xi

=Xi R -1Ja 595
i = 1¢a 7

t = 1xiteit≤ ¢a 7
t = 1xiteit≤′ R Ja 595

i = 1Xi
=Xi R -1

.
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The robust standard errors are generally about twice the uncorrected ones. In contrast, the 
White robust standard errors are almost the same as the uncorrected ones. This suggests that 
for this model, ignoring the within-group correlations does, indeed, substantially affect the 
inferences one would draw. The block bootstrap standard errors based on 100 replications 
are shown in the last column. As expected, the block bootstrap results are quite similar to 
the two-step residual-based method.

11.3.3    CLUSTERING AND STRATIFICATION

Many recent studies have analyzed survey data sets, such as the Current Population 
Survey (CPS). Survey data are often drawn in clusters, partly to reduce costs. For example, 
interviewers might visit all the families in a particular block. In other cases, effects that 
resemble the common random effects in panel data treatments might arise naturally 
in the sampling setting. Consider, for example, a study of student test scores across 
several states. Common effects could arise at many levels in such a data set. Education 
curriculum or funding policies in a state could cause a “state effect”; there could be 
school district effects, school effects within districts, and even teacher effects within a 
particular school. Each of these is likely to induce correlation across observations that 
resembles the random (or fixed) effects we have identified. One might be reluctant to 
assume that a tightly structured model such as the simple random effects specification 
is at work. But, as we saw in Example 11.1, ignoring common effects can lead to serious 
inference errors.

Moulton (1986, 1990) examined the bias of the conventional least squares estimator 
of Asy.Var[b], s2(X′X)-1. The calculation is complicated because the comparison 
ultimately depends on the group sizes, the data themselves, and the within-group cross-
observation correlation of the common effects. For a simple case,

yi,g = b1 + xi,gb2 + ui,g + wg,

Variable
Least Squares 

Estimate
Standard 

Error
Clustered  
Std.Error

Bootstrapped  
Std.Error

White Hetero. 
Robust Std. Error

Constant 5.25112 0.07129 0.12355 0.11171 0.07435
Exp 0.00401 0.00216 0.00408 0.00434 0.00216
ExpSq -0.00067 0.00005 0.00009 0.00010 0.00005
Wks 0.00422 0.00108 0.00154 0.00164 0.00114
Occ -0.14001 0.01466 0.02724 0.02555 0.01494
Ind 0.04679 0.01179 0.02366 0.02153 0.01199
South -0.05564 0.01253 0.02616 0.02414 0.01274
SMSA 0.15167 0.01207 0.02410 0.02323 0.01208
MS 0.04845 0.02057 0.04094 0.03749 0.02049
Union 0.09263 0.01280 0.02367 0.02553 0.01233
Ed 0.05670 0.00261 0.00556 0.00483 0.00273
Fem -0.36779 0.02510 0.04557 0.04460 0.02310
Blk -0.16694 0.02204 0.04433 0.05221 0.02075

TABLE 11.6  Wage Equation Estimated by OLS
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a broad, approximate result is the Moulton factor,

Cluster Corrected Variance
OLS Uncorrected Variance

≈ [1 + (ng - 1)rxru],

where ng is the group size, rx is the cross-observation correlation (within a group) of xi,g 
and ru is the “intraclass correlation,” sw

 2/(sw
 2 + su

 2). The Moulton bias factor suggests 
that the conventional standard error is biased downward, potentially quite substantially 
if ng is large. It is worth noting the Moulton bias might create the impression that the 
correction of the standard errors always increases the standard errors. Algebraically, 
this is not true—a counterexample appears in Example 4.5. The Moulton result suggests 
a correction to the OLS standard errors. However, using it would require several 
approximations of unknown size (based on there being more than one regressor, 
variable cluster sizes, and needing an estimator for ru). The robust estimator suggested 
in Section 11.3.2 will be a preferable approach.

A refinement to (11-3) is sometimes employed to account for small-sample effects 
when the number of clusters is likely to be a significant proportion of a finite total, such 
as the number of school districts in a state. A degrees of freedom correction as shown in 
(11-4) is often employed for this purpose. The robust covariance matrix estimator would be

	  Est.Asy.Var[b] = J a
G

g = 1
Xg

=Xg R -1J G
G - 1 a

G

g = 1
¢ ang

i = 1
xigwn ig≤ ¢ ang

i = 1
xigwn ig≤=R J a

G

g = 1
Xg

=Xg R -1

	 = J a
G

g = 1
Xg

=Xg R -1J G
G - 1 a

G

g = 1
(Xg

=wn g)(wn g
=Xg) R J a

G

g = 1
Xg

=Xg R -1

,	 (11-4)

where G is the number of clusters in the sample and each cluster consists of 
ng, g = 1, c, G observations. [Note that this matrix is simply G/(G - 1) times the 
matrix in (11-3).] A further correction (without obvious formal motivation) sometimes 
employed is a degrees of freedom correction, [(Σgng) - 1]/[(Σgng) - K].

Many further refinements for more complex samples—consider the test scores 
example—have been suggested. For a detailed analysis, see Cameron and Trivedi (2005, 
Chapter 24) and Cameron and Miller (2015). Several aspects of the computation are 
discussed in Wooldridge (2010, Chapter 20) as well. An important question arises 
concerning the use of asymptotic distributional results in cases in which the number 
of clusters might be relatively small. Angrist and Lavy (2002) find that the clustering 
correction after pooled OLS, as we have done in Example 11.3, is not as helpful as might 
be hoped for (though our correction with 595 clusters each of size 7 would be “safe” by 
these standards). But, the difficulty might arise, at least in part, from the use of OLS in the 
presence of the common effects. Kezde (2001) and Bertrand, Dufflo, and Mullainathan 
(2002) find more encouraging results when the correction is applied after estimation of 
the fixed effects regression. Yet another complication arises when the groups are very 
large and the number of groups is relatively small, for example, when the panel consists 
of many large samples from a subset (or even all) of the U.S. states. Since the asymptotic 
theory we have used to this point assumes the opposite, the results will be less reliable 
in this case. Donald and Lang (2007) find that this case gravitates toward analysis of 
group means rather than the individual data. Wooldridge (2003) provides results that 
help explain this finding. Finally, there is a natural question as to whether the correction 
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is even called for if one has used a random effects, generalized least squares procedure 
(see Section 11.5) to do the estimation at the first step. If the data-generating mechanism 
were strictly consistent with the random effects model, the answer would clearly be 
negative. Under the view that the random effects specification is only an approximation 
to the correlation across observations in a cluster, then there would remain residual 
correlation that would be accommodated by the correction in (11-4) (or some GLS 
counterpart). (This would call the specific random effects correction in Section 11.5 
into question, however.) A similar argument would motivate the correction after fitting 
the fixed effects model as well. We will pursue these possibilities in Section 11.6.4 after 
we develop the fixed and random effects estimator in detail.

11.3.4    ROBUST ESTIMATION USING GROUP MEANS

The pooled regression model can also be estimated using the sample means of the data. 
The implied regression model is obtained by premultiplying each group by (1/T)i′ where 
i′ is a row vector of ones,

(1/T)i′yi = (1/T)i′XiB + (1/T)i′wi

or

yi. = xi
=B + wi.

In the transformed linear regression, the disturbances continue to have zero conditional 
means but heteroscedastic variances si

2 = (1/T 2)i′�ii. With �i unspecified, this is a 
heteroscedastic regression for which we would use the White estimator for appropriate 
inference. Why might one want to use this estimator when the full data set is available? If 
the classical assumptions are met, then it is straightforward to show that the asymptotic 
covariance matrix for the group means estimator is unambiguously larger, and the answer 
would be that there is no benefit. But failure of the classical assumptions is what brought 
us to this point, and then the issue is less clear-cut. In the presence of unstructured cluster 
effects the efficiency of least squares can be considerably diminished, as we saw in the 
preceding example. The loss of information that occurs through the averaging might be 
relatively small, though in principle the disaggregated data should still be better.

We emphasize that using group means does not solve the problem that is addressed 
by the fixed effects estimator. Consider the general model,

yi = XiB + cii + wi,

where as before, ci is the latent effect. If the mean independence assumption, 
E[ci � Xi] = a, is not met, then the effect will be transmitted to the group means as well. 
In this case, E[ci � Xi] = h(Xi). A common specification is Mundlak’s (1978), where we 
employ the projection of ci on the group means (see Section 4.4.5),

ci � Xi = xi
=. G + vi.

Then,

 yit = xit
=B + ci + eit

 = xit
=B + xi.

=  G + [eit + vi]

 = xit
=B + xi.

=  G + uit,
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where, by construction, Cov[uit, xi] = 0. Taking means as before,

 yi. = xi.
=  B + xi.

=  G + ui.

 = xi.
=  (B + G) + ui..

The implication is that the group means estimator estimates not B, but B + G. Averaging 
the observations in the group collects the entire set of effects, observed and latent, in 
the group means.

One consideration that remains, which, unfortunately, we cannot resolve analytically, 
is the possibility of measurement error. If the regressors are measured with error, 
then, as we examined in Section 8.7, the least squares estimator is inconsistent and, as 
a consequence, efficiency is a moot point. In the panel data setting, if the measurement 
error is random, then using group means would work in the direction of averaging it 
out—indeed, in this instance, assuming the benchmark case xitk = xitk* + uitk, one could 
show that the group means estimator would be consistent as T S ∞  while the OLS 
estimator would not.

Example 11.5    Robust Estimators of the Wage Equation
Table 11.7 shows the group means estimates of the wage equation shown in Example 11.4 
with the original least squares estimates. In both cases, a robust estimator is used for the 
covariance matrix of the estimator. It appears that similar results are obtained with the means.

11.3.5    ESTIMATION WITH FIRST DIFFERENCES

First differencing is another approach to estimation. Here, the intent would explicitly be 
to transform latent heterogeneity out of the model. The base case would be

yit = ci + xit
=B + eit,

Coefficient
OLS Estimated 

Coefficient
Cluster Robust 
Standard Error

Group Means 
Estimates

White Robust 
Standard Error

Constant 5.25112 0.12330 5.12143 0.20425
Exp 0.04010 0.00408 0.03190 0.00478

Exp2 -0.00067 0.00009 -0.00057 0.00010

Wks 0.00422 0.00154 0.00919 0.00360
Occ -0.14001 0.02724 -0.16762 0.03382
Ind 0.04679 0.02366 0.05792 0.02554
South -0.05564 0.02616 -0.05705 0.02597
SMSA 0.15167 0.02410 0.17578 0.02576
MS 0.04845 0.04094 0.11478 0.04770
Union 0.09263 0.02367 0.10907 0.02923
Ed 0.05670 0.00556 0.05144 0.00555
Fem -0.36779 0.04557 -0.31706 0.05473
Blk -0.16694 0.04433 -0.15780 0.04501

TABLE 11.7  Wage Equation Estimated by OLS

M11_GREE1366_08_SE_C11.indd   389 2/24/17   2:40 PM



390	 Part II  ✦   Generalized Regression Model and Equation Systems

which implies the first differences equation,

∆yit = ∆ci + (∆xit)′B + ∆eit,

or
 ∆yit = (∆xit)′B + eit - ei,t - 1

 = (∆xit)′B + uit.

The advantage of the first difference approach is that it removes the latent heterogeneity 
from the model whether the fixed or random effects model is appropriate. The 
disadvantage is that the differencing also removes any time-invariant variables from the 
model. In our example, we had three, Ed, Fem, and Blk. If the time-invariant variables 
in the model are of no interest, then this is a robust approach that can estimate the 
parameters of the time-varying variables consistently. Of course, this is not helpful for 
the application in the example because the impact of Ed on ln Wage was the primary 
object of the analysis. Note, as well, that the differencing procedure trades the cross-
observation correlation in ci for a moving average (MA) disturbance, ui,t = ei,t - ei,t - 1.5 
The new disturbance, ui,t, is autocorrelated, though across only one period. Nonetheless, 
in order to proceed, it would have to be true that ∆xt is uncorrelated with ∆et. Strict 
exogeneity of xit is sufficient, but in the absence of that assumption, such as if only 
Cov(eit, xit) = 0 has been assumed, then it is conceivable that ∆xt and ∆et could be 
correlated. The presence of a lagged value of yit in the original equation would be such 
a case. Procedures are available for using two-step feasible GLS for an MA 
disturbance (see Chapter 20). Alternatively, this model is a natural candidate for OLS 
with the Newey–West robust covariance estimator because the right number of lags 
(one) is known. (See Section 20.5.2.)

As a general observation, with a variety of approaches available, the first difference 
estimator does not have much to recommend it, save for one very important application. 
Many studies involve two period panels, a before and an after treatment. In these cases, 
as often as not, the phenomenon of interest may well specifically be the change in the 
outcome variable—the “treatment effect.” Consider the model

yit = ci + xit
=B + uSit + eit,

where t = 1, 2 and Sit = 0 in period 1 and 1 in period 2; Sit indicates a treatment that 
takes place between the two observations. The treatment effect would be

E[∆yi � (∆xi = 0)] = u,

which is precisely the constant term in the first difference regression,

∆yi = u + (∆xi)′B + ui.

We examined cases like these in detail in Section 6.3.

11.3.6    THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

The pooled regression model is

	 yit = a + xit
=B + eit.	 (11-5a)

5If the original disturbance, eit were a random walk, ei,t = ei,t - 1 + uit, then the disturbance in the first differenced 
equation would be homoscedastic and nonautocorrelated. This would be a narrow assumption that might apply in a 
particular situation. This would not seem to be a natural specification for the model in Example 11.4, for example.
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In terms of the group means,

	 yi. = a + xi.
=B + ei.,	 (11-5b)

while in terms of deviations from the group means,

yit - yi. = (xit - xi.)′B + eit - ei..

For convenience later, write this as

	 y
$ = x$it

=B + e
$

it.	 (11-5c)

[We are assuming there are no time-invariant variables in xit, such as Ed in Example 11.4. 
These would become all zeros in (11-5c).] All three are classical regression models, and in 
principle, all three could be estimated, at least consistently if not efficiently, by ordinary 
least squares. [Note that (11-5b) defines only n observations, the group means.] Consider 
then the matrices of sums of squares and cross products that would be used in each case, 
where we focus only on estimation of B. In (11-5a), the moments would accumulate 
variation about the overall means, y and x, and we would use the total sums of squares 
and cross products,

	 Sxx
total = a

n

i = 1
a
T

t = 1
(xit - x)(xit - x)′ and Sxy

total = a
n

i = 1
a
T

t = 1
(xit - x)(yit - y).	 (11-6)

For (11-5c), because the data are in deviations already, the means of (yit - yi.) and 
(xit - xi.) are zero. The moment matrices are within-groups (i.e., variation around group 
means) sums of squares and cross products,

Sxx
within = a

n

i = 1
a
T

t = 1
(xit - xi.)(xit - xi.)′ and Sxy

within = a
n

i = 1
a
T

t = 1
(xit - xi.)(yit - yi.).

Finally, for (11-5b), the mean of group means is the overall mean. The moment matrices 
are the between-groups sums of squares and cross products—that is, the variation of the 
group means around the overall means,

Sxx
between = a

n

i = 1
T(xi. - x)(xi. - x)′ and Sxy

between = a
n

i = 1
T(xi. - x)(yi. - y).

It is easy to verify that

Sxx
total = Sxx

within + Sxx
between and Sxy

total = Sxy
within + Sxy

between.

Therefore, there are three possible least squares estimators of B corresponding to the 
decomposition. The least squares estimator is

	 btotal = JSxx
totalR -1

Sxy
total = JSxx

within + Sxx
between R -1JSxy

within + Sxy
between R .	 (11-7)

The within-groups estimator is

	 bwithin = JSxx
within R -1

Sxy
within.	 (11-8)

This is the dummy variable estimator developed in Section 11.4. An alternative estimator 
would be the between-groups estimator,
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	 bbetween = JSxx
between R -1

Sxy
between.	 (11-9)

This is the group means estimator. This least squares estimator of (11-5b) is based on 
the n sets of groups means. (Note that we are assuming that n is at least as large as K.) 
From the preceding expressions (and familiar previous results),

Sxy
within = Sxx

withinbwithin and Sxy
between = Sxx

betweenbbetween.

Inserting these in (11-7), we see that the least squares estimator is a matrix weighted 
average of the within- and between-groups estimators:

	 btotal = Fwithinbwithin + Fbetweenbbetween,	 (11-10)

where

Fwithin = JSxx
within + Sxx

between R -1

Sxx
within = I - Fbetween.

The form of this result resembles the Bayesian estimator in the classical model discussed 
in Chapter 16. The resemblance is more than passing; it can be shown6 that

Fwithin = {[Asy.Var(bwithin)]-1 + [Asy.Var(bbetween)]-1}-1[Asy.Var(bwithin)]-1,

which is essentially the same mixing result we have for the Bayesian estimator. In the 
weighted average, the estimator with the smaller variance receives the greater weight.

Example 11.6  �  Analysis of Covariance and the World Health Organization 
(WHO) Data

The decomposition of the total variation in Section 11.3.6 extends to the linear regression model 
the familiar analysis of variance, or ANOVA, that is often used to decompose the variation in a 
variable in a clustered or stratified sample, or in a panel data set. One of the useful features of 
panel data analysis as we are doing here is the ability to analyze the between-groups variation 
(heterogeneity) to learn about the main regression relationships and the within-groups variation 
to learn about dynamic effects.

The WHO data used in Example 6.22 is an unbalanced panel data set—we used only one 
year of the data in Example 6.22. Of the 191 countries in the sample, 140 are observed in the 
full five years, one is observed four times, and 50 are observed only once. The original WHO 
studies (2000a, 2000b) analyzed these data using the fixed effects model developed in the 
next section. The estimator is that in (11-8). It is easy to see that groups with one observation 
will fall out of the computation, because if Ti = 1, then the observation equals the group 
mean. These data have been used by many researchers in similar panel data analyses.7 
Gravelle et al. (2002a) have strongly criticized these analyses, arguing that the WHO data are 
much more like a cross section than a panel data set.

From Example 6.22, the model used by the researchers at WHO was

ln DALEit = ai + b1 ln Health Expenditureit + b2 ln Educationit + b3 ln2 Educationit + eit.

Additional models were estimated using WHO’s composite measure of health care attainment, 
COMP. The analysis of variance for a variable xit is based on the decomposition

a
n

i = 1
a
Ti

t = 1
(xit - x)2 = a

n

i = 1
a
Ti

t = 1
(xit - xi.)2 + a

n

t = 1
Ti(xi. - x)2.

6See, for example, Judge et al. (1985).
7See, e.g., Greene (2004c) and several references.
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Dividing both sides of the equation by the left-hand side produces the decomposition

1 = Within@groups proportion + Between@groups proportion.

The first term on the right-hand side is the within-group variation that differentiates a panel 
data set from a cross section (or simply multiple observations on the same variable). Table 11.8 
lists the decomposition of the variation in the variables used in the WHO studies.

The results suggest the reasons for the authors’ concern about the data. For all but COMP, 
virtually all the variation in the data is between groups—that is cross-sectional variation. As 
the authors argue, these data are only slightly different from a cross section.

11.4	 THE FIXED EFFECTS MODEL

The fixed effects model arises from the assumption that the omitted effects, ci, in the 
regression model of (11-1),

	 yit = xit
=B + ci + eit, i = 1, c, n, t = 1, c, Ti,

E[eit � xi1, xi2, c, xiTi
] = 0,

	 E[eitejs � xi1, xi2, c, xiTi
] = se

2 if i = j and t = s and = 0 if i ≠ j or t ≠ s,	

(11-11)

can be arbitrarily correlated with the included variables. In a generic form,

	 E[ci � xi1, c,xiT] = E[ci � Xi] = h(Xi).	 (11-12)

We also assume that Var[ci � Xi] is constant and all observations ci and cj are independent. 
We emphasize it is (11-12) that signifies the fixed effects model, not that any variable is 
fixed in this context and random elsewhere. The formulation implies that the 
heterogeneity across groups is captured in the constant term.8 In (11-1), zi = (1) and

yit = ai + xit
=B + eit.

Each ai can be treated as an unknown parameter to be estimated.

11.4.1    LEAST SQUARES ESTIMATION

Let yi and Xi be the T observations for the ith unit, let i be a T * 1 column of ones, and 
let Ei be the associated T * 1 vector of disturbances.9 Then,

yi = iai + XiB + ei.

8It is also possible to allow the slopes to vary across i. A study on the topic is Cornwell and Schmidt (1984). We 
will examine this case in Section 11.4.6.
9The assumption of a fixed group size, T, at this point is purely for convenience. As noted in Section 11.2.4, the 
unbalanced case is a minor variation.

Variable Within-Groups Variation (%) Between-Groups Variation (%)

COMP 5.635 94.635
DALE 0.150 99.850
Expenditure 0.635 99.365
Education 0.177 99.823

TABLE 11.8  Analysis of Variance for WHO Data on Health Care Attainment
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Collecting these terms givesD y1

y2

f
yn

T = D i 0 g 0
0 i g 0

f
0 0 g i

T §a1

a2

f
an

¥ + DX1

X2

f
Xn

T § b1

b2

f
bK

¥ + D E1

E2

f
En

T
or

y = [d1 d2, c, dn X]JA
B
R + E,

where di is a dummy variable indicating the ith unit. Let the nT * n matrix 
D = [d1, d2, c, dn]. Then, assembling all nT rows gives

	 y = D A + XB + E.	 (11-13)

This model is occasionally referred to as the least squares dummy variable (LSDV) 
model (although the “least squares” part of the name refers to the technique usually 
used to estimate it, not to the model itself).

This model is a classical regression model, so no new results are needed to analyze 
it. If n is small enough, then the model can be estimated by ordinary least squares with 
K regressors in X and n columns in D, as a multiple regression with K + n parameters. 
Of course, if n is thousands, as is typical, then treating (11-13) as an ordinary regression 
will be extremely cumbersome. But, by using familiar results for a partitioned regression, 
we can reduce the size of the computation.10 We write the least squares estimator of B as

	 bLSDV = [X′MDX]-1[X′MDy] = bwithin,	 (11-14)

where

MD = InT - D(D′D)-1D′.

Because MD is symmetric and idempotent, bLSDV = [(X′MD)(MDX)]-1[(X′MD)(MDy)]. 
This amounts to a least squares regression using the transformed data MDX = X

$
 and 

MDy = y$. The structure of D is particularly convenient; its columns are orthogonal, so

MD = DM0 0 0 g 0
0 M0 0 g 0

g
0 0 0 g M0

T .

Each matrix on the diagonal is

	 M0 = IT -
1
T

 ii′.	 (11-15)

Premultiplying any T * 1 vector zi by M0 creates M0zi = zi - zi. (Note that the mean 
is taken over only the T observations for unit i.) Therefore, the least squares regression 
of MDy = y$  on MDX = X

$
 is equivalent to a regression of [yit - yi.] = y

$
it on 

10See Theorem 3.2.

M11_GREE1366_08_SE_C11.indd   394 2/24/17   2:40 PM



	 CHAPTER 11  ✦  Models For Panel Data  	395

[xit - xi.] = x$it, where yi. and xi. are the scalar and K * 1 vector of means of yit and xit 
over the T observations for group i.11

In terms of the within transformed data, then,

	  bLSDV = Ja n
i = 1(M0Xi)′(M0Xi) R -1Ja n

i = 1(M0Xi)′(M0yi) R
	  = Ja n

i = 1X
$

i
=X

$
iR -1Ja n

i = 1X
$

i
=y$iR

	  = (X
$

′X
$
)-1X

$
′y$.	

(11-16a)

The dummy variable coefficients can be recovered from the other normal equation in 
the partitioned regression,

D′Da + D′XbLSDV = D′y

or

a = [D′D]-1D′(y - XbLSDV).

This implies that for each i,

	 ai = yi. - xi.
=bLSDV.	 (11-16b)

The appropriate estimator of the asymptotic covariance matrix for b is

	 Est.Asy.Var.[bLSDV] = s2Ja n
i = 1X

$
i
=X

$
iR -1

.	 (11-17)

Based on (11-14) and (11-16), the disturbance variance estimator is

	  s2 =
(y$ - X

$
b)′(y$ - X

$
bLSDV)

nT - n - K
= a n

i = 1(y$i - X
$

ibLSDV)′(y$i - X
$

ibLSDV)

nT - n - K

	  = a n
i = 1a T

t = 1(yit - xit
=bLSDV - ai)

2

nT - n - K
.	

(11-18)

The itth residual used in this computation is

 eit = yit - xit′bLSDV - ai = yit - xit
=bLSDV - (yi. - xi.

=bLSDV)
 = (yit - yi.) - (xit - xi.)′ bLSDV.

Thus, the numerator in s2 is exactly the sum of squared residuals using the least squares 
slopes and the data in group mean deviation form. But, done in this fashion, one might 
then use nT - K instead of nT - n - K for the denominator in computing s2, so a 
correction would be necessary.12 For the individual effects,

11An interesting special case arises if T = 2. In the two-period case, you can show—we leave it as an exercise—
that this least squares regression is done with nT first difference observations, by regressing observation (yi2 - yi1) 
(and its negative) on (xi2 - xi1) (and its negative).

12The maximum likelihood estimator of s2 for the fixed effects model with normally distributed disturbances is 
ΣiΣteit

2/nT, with no degrees of freedom correction. This is a case in which the MLE is biased, given (11-18) which 
gives the unbiased estimator. This bias in the MLE for a fixed effects model is an example (actually, the first 
example) of the incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] With a bit of 
manipulation it is clear that although the estimator is biased, if T increases asymptotically, then the bias eventually 
diminishes to zero. This is the signature feature of estimators that are affected by the incidental parameters problem.
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	 Asy.Var[ai] =
se

2

T
+ xi.′{Asy.Var[b]}xi.,	 (11-19)

so a simple estimator based on s2 can be computed.
With increasing n, the asymptotic variance of ai declines to a lower bound of se

2/T 
which does not converge to zero. The constant term estimators in the fixed effects model 
are not consistent estimators of ai. They are not inconsistent because they gravitate 
toward the wrong parameter. They are so because their asymptotic variances do not 
converge to zero, even as the sample size grows. It is easy to see why this is the case. We 
see that each ai is estimated using only T observations—assume n were infinite, so that 
B were known. Because T is not assumed to be increasing, we have the surprising result. 
The constant terms are inconsistent unless T S ∞ , which is not part of the model.

We note a major shortcoming of the fixed effects approach. Any  
time-invariant variables in xit will mimic the individual specific constant term. Consider 
the application of Example 11.3. We could write the fixed effects formulation as

ln Wageit = xit
=B + [b10Edi + b11Femi + b12Blki + ci] + eit.

The fixed effects formulation of the model will absorb the last four terms in the regression 
in ai. The coefficients on the time-invariant variables cannot be estimated. For any xk 
that is time invariant, every observation is the group mean, so MDxk = x$k = 0 so the 
corresponding column of X

$
 becomes a column of zeros and (X

$
′X

$
)-1 will not exist.

11.4.2    A ROBUST COVARIANCE MATRIX FOR blSDV

The LSDV estimator is computed as

	bLSDV = Ja n
i = 1X

$
i
=X

$
iR -1Ja n

i = 1X
$

i
=y$iR = B + Ja n

i = 1X
$

i
=X

$
iR -1Ja n

i = 1X
$

i
=E
$

iR .	 (11-20)

The asymptotic covariance matrix for the estimator derives from

Var[(bLSDV - B)�X] = Ja n
i =1X

$
i
=X

$
iR -1

Eb Ja n
i =1X

$
i
=E
$

iR Ja n
i =1X

$
i
=E
$

iR =

�Xr Ja n
i =1X

$
i
=X

$
iR -1

.

The center matrix is a double sum over i,j = 1, c, n, but terms with i ≠ j are 
independent and have expectation zero, so the matrix is

Eb Ja n
i = 1X

$
i
=E
$

iR Ja n
i = 1X

$
i
=E
$

iR =

� X r = Eb Ja n
i = 1(X

$
iE
$

i)(E$ i
=X

$
i) R � X r .

Each term in the sum is (X
$

i
=E
$

i)(E$ i
=X

$
i) = (Xi

=M0M0Ei)(Ei
=M0M0Xi

=). But M0 is idempotent, 
so X

$
i
=E
$

i = X
$

iEi, and we have assumed that E[EiEi
= � X] = se

 2I. Collecting the terms,

 Var[(bLSDV - B) � X] = Ja n
i = 1X

$
i
=X

$
iR -1

Eb Ja n
i = 1X

$
i
=EiEi

=X
$

iR � X r Ja n
i = 1X

$
i
=X

$
iR -1

 = Ja n
i = 1X

$
i
=X

$
iR -1b Ja n

i = 1X
$

i
=(se

2I)X
$

iR r Ja n
i = 1X

$
i
=X

$
iR -1

 = se
2Ja n

i = 1X
$

i
=X

$
iR -1

,
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which produces the estimator in (11-17). If the disturbances in (11-11) are heteroscedastic 
and/or autocorrelated, then E[EiEi

= � X] ≠ se
 2I. A robust counterpart to (11-4) would be

	 Est.Asy.Var[bLSDV] = Ja n
i = 1X

$=
iX

$
iR -1b Ja n

i = 1(X
$

i
=ei)(ei

=X
$

i)R r Ja n
i = 1X

$
i
=X

$
iR -1

,	 (11-21)

where eit is the residual shown after (11-18). Note that using e$it in this calculation gives 
exactly the same result because ei. = 0. 13

11.4.3    TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The t ratio for ai can be used for a test of the hypothesis that ai equals zero. This 
hypothesis about one specific group, however, is typically not useful for testing in this 
regression context. If we are interested in differences across groups, then we can test the 
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis 
of equality, the efficient estimator is pooled least squares. The F ratio used for this test is

F(n - 1, nT - n - K) =
(RLSDV

2 - RPooled
2 )/(n - 1)

(1 - RLSDV
2 )/(nT - n - K)

,

where LSDV indicates the dummy variable model and Pooled indicates the pooled or 
restricted model with only a single overall constant term. Alternatively, the model may 
have been estimated with an overall constant and n - 1 dummy variables instead. All 
other results (i.e., the least squares slopes, s2, R2) will be unchanged, but rather than 
estimate ai, each dummy variable coefficient will now be an estimate of ai - a1 where 
group “1” is the omitted group. The F test that the coefficients on these n - 1 dummy 
variables are zero is identical to the one above. It is important to keep in mind, however, 
that although the statistical results are the same, the interpretation of the dummy 
variable coefficients in the two formulations is different.14

Example 11.7    Fixed Effects Estimates of a Wage Equation
We continue Example 11.4 by computing the fixed effects estimates of the wage equation, now

 ln Wageit = ai + b2 Expit + b3 Expit
2 + b4 Wksit + b5 Occit

 + b6 Indit + b7 Southit + b8 SMSAit + b9 MSit  
 + b10 Unionit + 0 * Edi + 0 * Femi + 0 * Blki + eit .

Because Ed, Fem, and Blk are time invariant, their coefficients will not be estimable, and 
will be set to zero. The OLS and fixed effects estimates are presented in Table 11.9. Each is 
accompanied by the conventional standard errors and the robust standard errors. We note, 
first, the rather large change in the parameters that occurs when the fixed effects specification 
is used. Even some statistically significant coefficients in the least squares results change 
sign in the fixed effects results. Likewise, the robust standard errors are characteristically 
much larger than the conventional counterparts. The fixed effects standard errors increased 

13See Arellano (1987) and Arellano and Bover (1995).
14The F statistic can also be based on the sum of squared residuals rather than the R2s, [See (5-29) and (5-30).] 
In this connection, we note that the software package Stata contains two estimators for the fixed effects linear 
regression, areg and xtreg. In computing the former, Stata uses ΣiΣt(ytt - y)2 as the denominator, as it would 
in computing the counterpart for the constrained regression. But xtreg (which is the procedure typically used) 
uses ΣiΣt(yit - yi)

2, which is smaller. The R2 produced by xtreg will be smaller, as will be the F statistic, possibly 
substantially so.
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more than might have been expected, given that heteroscedasticity is not a major issue, but 
a source of autocorrelation is in the equation (as the fixed effects). The large changes suggest 
that there may yet be some additional, unstructured correlation remaining in eit. The test for 
the presence of the fixed effects is based on

F = [(0.90724 - 0.42861)/594]/[(1 - 0.90724)/(4165 - 595 - 9)] = 30.933.

The critical value from the F table would be less than 1.3, so the hypothesis of homogeneity 
is rejected.

11.4.4    FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific 
effect as well. One way to formulate the extended model is simply to add the time effect, 
as in

	 yit = xit
=B + ai + dt + eit.	 (11-22)

This model is obtained from the preceding one by the inclusion of an additional T - 1  
dummy variables. (One of the time effects must be dropped to avoid perfect collinearity—
the group effects and time effects both sum to one.) If the number of variables is too 
large to handle by ordinary regression, then this model can also be estimated by using 
the partitioned regression. There is an asymmetry in this formulation, however, because 
each of the group effects is a group-specific intercept, whereas the time effects are 
contrasts—that is, comparisons to a base period (the one that is excluded). A symmetric 
form of the model is

	 yit = xit
=B + m + ai + dt + eit,	 (11-23)

Pooled OLS Fixed Effects LSDV

Variable
Least Squares 

Estimate
Standard 

Error
Clustered Std.

Error
Fixed Effects 

Estimates
Standard 

Error
Robust Std.

Error

R2 0.42861 0.90724

Constant 5.25112 0.07129 0.12355 — — —
Exp 0.00401 0.00216 0.00408 0.11321 0.00247 0.00438
ExpSq -0.00067 0.00005 0.00009 -0.00042 0.00006 0.00009
Wks 0.00422 0.00108 0.00154 0.00084 0.00060 0.00094
Occ -0.14001 0.01466 0.02724 -0.02148 0.01379 0.02053
Ind 0.04679 0.01179 0.02366 0.01921 0.01545 0.02451
South -0.05564 0.01253 0.02616 -0.00186 0.03431 0.09650
SMSA 0.15167 0.01207 0.02410 -0.04247 0.01944 0.03186
MS 0.04845 0.02057 0.04094 -0.02973 0.01899 0.02904
Union 0.09263 0.01280 0.02367 0.03278 0.01493 0.02709
Ed 0.05670 0.00261 0.00556 — — —
Fem -0.36779 0.02510 0.04557 — — —
Blk -0.16694 0.02204 0.04433 — — —

TABLE 11.9  Wage Equation Estimated by OLS and LSDV
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where a full n and T effects are included, but the restrictions

a
i
ai = a

t
dt = 0

are imposed. Least squares estimates of the slopes in this model are obtained by 
regression of

y*it = yit - yi. - y.t + y

on	 x*it = xit - xi. - x.t + x,�
(11-24)

where the period-specific and overall means are

y.t =
1
n a

n

i = 1
yit  and  y =

1
nT a

n

i = 1
a
T

t = 1
yit,

and likewise for x.t and x. The overall constant and the dummy variable coefficients can 
then be recovered from the normal equations as

 mn = m = y - x′b,

 an i = ai = (yi. - y) - (xi. - x)′b,

	  dnt = dt = (y.t - y) - (x.t - x)′b.�

(11-25)

The estimator of the asymptotic covariance matrix for b is computed using the sums of 
squares and cross products of x*it computed in (11-24) and

	 s2 = a n
i = 1a T

t = 1(yit - xit
=b - m - ai - dt)

2

nT - (n - 1) - (T - 1) - K - 1
.	 (11-26)

The algebra of the two-way fixed effects estimator is rather complex—see, for 
example, Baltagi (2014). It is not obvious from the presentation so far, but the template 
result in (11-24) is incorrect if the panel is unbalanced. Unfortunately, for the unwary, 
the result does not fail in a way that would make the mistake obvious; if the panel is 
unbalanced, (11-24) simply leads to the wrong answer, but one that could look right. A 
numerical example is shown in Example 11.8. The conclusion for the practitioner is that 
(11-24) should only be used with balanced panels, but the augmented one-way estimator 
can be used in all cases.

Example 11.8    Two-Way Fixed Effects with Unbalanced Panel Data
The following experiment is done with the Cornwell and Rupert data used in Examples 11.4, 
11.5, and 11.7. There are 595 individuals and 7 periods. Each group is 7 observations. Based 
on the balanced panel using all 595 individuals, in the fixed effects regression of ln Wage on 
just Wks, both methods give the answer b = 0.00095. If the first 300 groups are shortened by 
dropping the last 3 years of data, the unbalanced panel now has 300 groups with T = 4 and 
295 with T = 7. For the same regression, the one-way estimate with time dummy variables 
is 0.00050 but the template result in (11-24) (which is incorrect) gives 0.00283.

11.4.5  �  REINTERPRETING THE WITHIN ESTIMATOR: INSTRUMENTAL VARIABLES AND 
CONTROL FUNCTIONS

The fixed effects model, in basic form, is
yit = xit

=B + (ci + eit).
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We once again first consider least squares estimation. As we have already noted, for 
this case, bOLS is inconsistent because of the correlation between xit and ci. Therefore, in 
the absence of the dummy variables, xit is endogenous in this model. We used the within 
estimator in Section 11.4.1 instead of least squares to remedy the problem. The LSDV 
estimator is

bLSDV = (X
$

′X
$
)-1X

$
′y$.

The LSDV estimator is computed by regressing y transformed to deviations from 
group means on the same transformation of X; that is, MDy on MDX. But, because 
MD is idempotent, we may also write bLSDV = (X

$
′X)-1X

$
′y. In this form, X

$
 appears 

to be a set of instrumental variables, precisely in the form of (8-6). We have already 
demonstrated the consistency of the estimator, though it remains to verify the 
exogeneity and relevance conditions. These are both straightforward to verify. For 
the exogeneity condition, let c denote the full set of common effects. By construction, 
(1/nT)X

$
′c = 0. We have assumed at the outset that plim(1/nT)X′E = 0. We need 

plim(1/nT)X′MDE = plim(1/nT)X′(MDE). If X is uncorrelated with e, it will be 
uncorrelated with e in deviations from its group means. For the relevance condition, 
all that will be needed is full rank of (1/nT)X

$
′X, which is equivalent to (1/nT)(X

$
′X

$
). 

This matrix will have full rank so long as no variables in X are time invariant—note 
that (X

$
′X

$
)-1 is used to compute bLSDV. The conclusion is that the data in group mean 

deviations form, that is, X
$
, are valid instrumental variables for estimation of the fixed 

effects model. This useful result will reappear when we examine Hausman and Taylor’s 
model in Section 11.8.2.

We continue to assume that there are no time-invariant variables in X. The matrix of 
group means is obtained as D(D′D)-1D′X = PDX = (I - MD)X. [See (11-14)–(11-17).] 
Consider, then, least squares regression of y on X and PDX, that is, on X and the group 
means, X. Using the partitioned regression formulation [Theorem 3.2 and (3-19)], we 
find this estimator of B is

 bMundlak = (X′MPXX)-1X′MPXy

 = {X′[I - X(X′X)-1X′]X}-1 * {X′[I - X(X′X)-1X′]y}.

This simplifies considerably. Recall X = PDX and PD is idempotent. We expand the first 
matrix in braces.

 {X′[I - (PDX)[(PDX)′(PDX)]-1(PDX)′]X} = X′X - X′PDX[X′PD
= PDX]-1X′PD

= X

 = X′X - X′PDX

 = X′[I - PD]X

 = X′MDX.

The same result will emerge for the second term, which implies that the coefficients on 
X in the regression of y on (X, X) is the within estimator, bLSDV. So, the group means 
qualify as a control function, as defined in Section 8.4.2. This useful insight makes the 
Mundlak approach a very useful method of dealing with fixed effects in regression, and 
by extension, in many other settings that appear in the literature.
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11.4.6    PARAMETER HETEROGENEITY

With a small change in notation, the common effects model in (11-1) becomes

 yit = ci + xit
=B + eit

 = (a + ui) + xit
=B + eit

 = ai + x=
itB + eit,

where E[ui] = 0 and E[ai] = a. The heterogeneity affects the constant term. We 
can extend the model to allow other parameters to be heterogeneous as well. In the 
labor market model examined in Example 11.3, an extension in which the partial 
effect of weeks worked depends on both market and individual characteristics, might 
appear as

 ln Wageit = ai1 + ai2 Wksit + b2 Expit + b3 Expit
2 + b5 Occit

 + b6 Indit + b7 Southit + b8 SMSAit + b9 MSit

 + b10 Unionit + b11 Edi + b12 Femi + b13 Blki + eit

 Ai = ¢ai1

ai2
≤ = ¢a1

a2
≤ + ¢ui1

ui2
≤ = A + ui.

Another interesting case is a random trend model, yit = ai1 + ai2t + xit
=B + eit. As 

before, the difference between the random and fixed effects models is whether E[ui � Xi] 
is zero or not. For the present, we will allow this to be nonzero—a fixed effects form of 
the model.

The preceding developments have been concerned with a strategy for estimation 
and inference about B in the presence of ui. In this fixed effects setting, the dummy 
variable approach of Section 11.4.1 can be extended essentially with only a small change 
in notation. First, let’s generalize the model slightly,

yit = zit
=Ai + xit

=B + eit.

In the basic common effects model, zit
= = (1); in the random trend model, zit

= = (1,t); in 
the suggested extension of the labor market model, zit

= = (1, Wksit), with E[ui � Xi,Zi] ≠ 0 
(fixed effects) and E[uiui

= � Xi, Zi] = �, a constant, positive definite matrix. The strict 
exogeneity assumption now is E[eit � xi1, c, xiT, zi1, c, ziT, ui] = 0. For the present, 
we assume eit is homoscedastic and nonautocorrelated, so E[EiEi

= � Xi, Zi, ui] = se
 2I. We 

can approach estimation of B the same way we did in Section 11.4.1. Recall the LSDV 
estimator is based on

	 y = DA + XB + E,	 (11-27)

where D is the nT * n matrix of individual specific dummy variables. The estimator of B is

 bLSDV = (X′MDX)-1X′MDy = Ja n
i = 1X

$
i
=X

$
iR -1Ja n

i = 1X
$

i
=y$iR ,

 aLSDV = (D′D)-1D′(y - XbLSDV) = y - XbLSDV,

 MD = I - D(D′D)-1D′.
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The special structure of D—the columns are orthogonal—allows the calculations to 
be done with two convenient steps: (1) compute bLSDV by regression of (yit - yi.) on 
(xit - xi.); (2) compute ai as (1/T)Σt(yit - xit

=bLSDV).
No new results are needed to develop the fixed effects estimator in the extended 

model. In this specification, we have simply respecified D to contain two or more sets of N 
columns. For the time trend case, for example, define an nT * 1 column vector of time 
trends, t*′ = (1, 2, c, T, 1, 2, c, T, c, 1, 2, c, T). Then, D has 2N columns, 
{[d1, c, dn], [d1 ~ t*, d2 ~ t* c,dn ~ t*]}. This is an nT * 2n matrix of dummy variables 
and interactions of the dummy variables with the time trend. (The operation di ~ t* is the 
Hadamard product—element by element multiplication—of di and t*.) With D redefined 
this way, the results in Section 11.4.1 can be applied as before. For example, for the random 
trends model, X

$
i is obtained by “detrending” the columns of Xi. Define Zi to be the T * 2 

matrix (1,t). Then, for individual i, the block of data in X
$

i is [I - Zi(Zi
=Zi)

-1Zi
=]Xi and bLSDV 

is computed using (11-20). (Note that this requires that T be at least J + 1 where J is the 
number of variables in Z. In the simpler fixed effects case, we require at least two 
observations in group i. Here, in the random trend model, that would be three observations.) 
In computing s2, the appropriate degrees of freedom will be (n(T - J) - K). The 
asymptotic covariance matrices in (11-17) and (11-21) are computed as before.15 For each 
group, ai = (Zi

=Zi)
-1Zi

=(yi - XibLSDV). The natural estimator of a = E[ai] would be 
a = 1

n Σi = 1
n ai. The asymptotic variance matrix for a can be estimated with

Est.Asy.Var[a] = (1/n2)Σifif i
= where fi = [(ai - a) - CA-1X

$
i
=ei], A = 1

n Σi = 1
n X

$
i
=X

$
i and 

C = 1
n Σi = 1

n (Zi
=Zi)

-1Zi
=Xi.

[See Wooldridge (2010, p. 381).]

Example 11.9  �  Heterogeneity in Time Trends in an Aggregate Production 
Function

We extend Munnell’s (1990) proposed model of productivity of public capital at the state 
level that was estimated in Example 10.1. The central equation of the analysis that we will 
extend here is a Cobb–Douglas production function,

 ln gspit = ai1 + ai2t + b1 ln pcit + b2 ln hwyit + b3 ln waterit
 + b4 ln utilit + b5 ln empit + b6 unempit + eit,

where	 gsp  = gross state product,
	 pc  = private capital,
	 hwy  = highway capital,
	 water  = water utility capital,
	 util  = utility capital,
	 emp  = employment (labor),
	 unemp = unemployment rate.

The data, measured for the lower 48 U.S. states (excluding Alaska and Hawaii) and years 
1970–1986, are given in Appendix Table F10.1. Table 11.10 reports estimates of the several 

15The random trends model is a special case that can be handled by differences rather than the partitioned 
regression method used here. In yit = ai1 + ai2t + xit

=B + eit, (yit - yi,t - 1) = ∆yit = ai2 + (∆xit)
=B + ∆eit. 

The time trend becomes the common effect. This can be treated as a fixed effects model. Or, taking a second 
difference, ∆yit - ∆yi,t - 1 = ∆2yit removes ai2 and leaves a linear regression, ∆2yit = ∆2xit

=B + ∆2eit. Details are 
given in Wooldridge (2010, pp. 375–377).
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fixed effects models. The pooled estimator is computed using simple least squares for all 816 
observations. The standard errors use s2(X=X )-1. The robust standard errors are based on (11-4). 
For the two fixed effects models, the standard errors are based on (11–17) and (11–21). Finally, 
for the difference estimator, two sets of robust standard errors are computed. The Newey–West 
estimator assumes that eit in the model is homoscedastic so that ∆2eit = eit - 2ei,t - 1 + ei,t - 2. 
The robust standard errors are based, once again, on (11-4). Note that two observations have 
been dropped from each state with the second difference estimator. The patterns of the 
standard errors are predictable. They all rise substantially with the correction for clustering, 
in spite of the presence of the fixed effects. The effect is quite substantial, with most of the 
standard errors rising by a factor of 2 to 4. The Newey–West correction (see Section 20.5.2) 
of the difference estimators seems mostly to cover the effect of the autocorrelation. The 
F test for the hypothesis that neither the constant nor the trend are heterogeneous is 
F[94,816@96@6] = [(0.99953 - 0.99307)/94]/[(1 - 0.99953)/(816 - 96 - 6)] = 104.40. The 
critical value from the F table is 1.273, so the hypothesis of homogeneity is rejected. The 
differences in the estimated parameters across the specifications are also quite pronounced. 
The difference between the random trend and difference estimators is striking, given that 
these are two different estimation approaches to the same model.

11.5	 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with 
the included variables. We then modeled the differences between units as parametric 
shifts of the regression function. This model might be viewed as applying only to the 
cross-sectional units in the study, not to additional ones outside the sample. For example, 
an intercountry comparison may well include the full set of countries for which it is 
reasonable to assume that the model is constant. Example 6.5 is based on a panel 
consisting of data on 31 baseball teams. Save for rare discrete changes in the league, 
these 31 units will always be the entire population. If the individual effects are strictly 
uncorrelated with the regressors, then it might be appropriate to model the individual 
specific constant terms as randomly distributed across cross-sectional units. This view 
would be appropriate if we believed that sampled cross-sectional units were drawn from 
a large population. It would certainly be the case for the longitudinal data sets listed in 
the introduction to this chapter and for the labor market data we have used in several 
examples in this chapter.16

The payoff to this form is that it greatly reduces the number of parameters to be 
estimated. The cost is the possibility of inconsistent estimators, if the assumption is 
inappropriate.

Consider, then, a reformulation of the model,

	 yit = xit
=B + (a + ui) + eit,	 (11-28)

where there are K regressors including a constant and now the single constant term is 
the mean of the unobserved heterogeneity, E[zi

=A]. The component ui is the random 
heterogeneity specific to the ith observation and is constant through time; recall from 
Section 11.2.1, ui = {zi

=A - E[zi
=A]}. For example, in an analysis of families, we can view 

16This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak (1978) 
for a methodological discussion of the distinction between fixed and random effects.
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ui as the collection of factors, zi
=A, not in the regression that are specific to that family. 

We continue to assume strict exogeneity:

 E[eit � Xi] = E[ui � Xi] = 0,

 E[eit
2 � Xi] = se

2,

 E[ui
2 � Xi] = su

2,

 E[eituj � Xi] = 0 for all i, t, and j,

 E[eitejs � Xi] = 0 if t ≠ s or i ≠ j,

	  E[uiuj � Xi, Xj] = 0 if i ≠ j. �

(11-29)

As before, it is useful to view the formulation of the model in blocks of T observations 
for group i, yi, Xi, uii, and Ei. For these T observations, let

hit = eit + ui

and

Hi = [hi1, hi2, c, hiT]′.

In view of this form of Hit, we have what is often called an error components model. For 
this model,

 E[hit
2 � Xi] = se

2 + su
2,

 E[hithis � Xi] = su
2, t ≠ s,

	  E[hithjs � Xi] = 0  for all t and s, if i ≠ j.	

(11-30)

For the T observations for unit i, let � = E[Hi, Hi
= � X]. Then

	 � = Dse
2 + su

2 su
2 su

2 g su
2

su
2 se

2 + su
2 su

2 g su
2

g
su

2 su
2 su

2 g se
2 + su

2

T = se
2 IT + su

2iTiT
= ,	 (11-31)

where iT is a T * 1 column vector of 1s. Because observations i and j are independent, 
the disturbance covariance matrix for the full nT observations is

	 � = D � 0 0 g 0
0 � 0 g 0

f
0 0 0 g �

T = In ⊗ �.	 (11-32)

11.5.1    LEAST SQUARES ESTIMATION

The model defined by (11-28),

yit = a + xit
=B + ui + eit,

with the strict exogeneity assumptions in (11-29) and the covariance matrix detailed in (11-31) 
and (11-32), is a generalized regression model that fits into the framework we developed in 
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Chapter 9. The disturbances are autocorrelated in that observations are correlated across 
time within a group, though not across groups. All the implications of Section 9.2 would 
apply here. In particular, the parameters of the random effects model can be estimated 
consistently, though not efficiently, by ordinary least squares (OLS). An appropriate robust 
asymptotic covariance matrix for the OLS estimator would be given by (11-3).

There are other consistent estimators available as well. By taking deviations from 
group means, we obtain

yit - yi = (xit - xi)′B + eit - ei.

This implies that (assuming there are no time-invariant regressors in xit), the LSDV 
estimator of (11-14) is a consistent estimator of B. An estimator based on first differences,

yit - yi,t - 1 = (xit - xi,t - 1)
=B + eit - ei,t - 1.

(The LSDV and first differences estimators are robust to whether the correct specification 
is actually a random or a fixed effects model.) As is OLS, LSDV is inefficient because, 
as we will show in Section 11.5.2, there is an efficient GLS estimator that is not equal to 
bLSDV. The group means (between groups) regression model,

yi = a + xi
=B + ui + ei, i = 1, c, n,

provides a fourth method of consistently estimating the coefficients B. None of these is 
the preferred estimator in this setting because the GLS estimator will be more efficient 
than any of them. However, as we saw in Chapters 9 and 10, many generalized regression 
models are estimated in two steps, with the first step being a robust least squares 
regression that is used to produce a first round estimate of the variance parameters 
of the model. That would be the case here as well. To suggest where this logic will lead 
in Section 11.5.3, note that for the four cases noted, the sum of squared residuals can 
produce the following consistent estimators of functions of the variances:

(Pooled)  plim [epooled
=epooled/(nT)] = su

2 + se
2,

(LSDV)  plim [eLSDV
=eLSDV/(n(T - 1) - K)] = se

2,

(Differences)  plim [eFD
=eFD/(n(T - 1))] = 2se

2,

(Means)  plim [emeans
=emeans/(nT)] = su

2 + se
2/T.

Baltagi (2001) suggests yet another method of moments estimator that could be based 
on the pooled OLS results. Based on (11-31), Cov(eit,eis) = su

 2 within group i for t ≠ s. 
There are T(T - 1 )/ 2  pairs of residuals that can be used, so for each group, we could use 
(1/(T(T - 1)/2))ΣsΣt eit eis to estimate su

 2. Because we have n groups that each provide 
an estimator, we can average the n implied estimators, to obtain

(OLS)	 plim 
1
n a n

i = 1

Σt = 2
T Σs = 1

t - 1 eiteis

T(T - 1)/2
= su

2.

Different pairs of these estimators (and other candidates not shown here) could provide 
a two-equation method of moments estimator of (su

2, se
2). (Note that the last of these 

is using a covariance to estimate a variance. Unfortunately, unlike the others, this could 
be negative in a finite sample.) With these in mind, we will now develop an efficient 
generalized least squares estimator.
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11.5.2    GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

Bn = (X′�-1X)-1X′�-1y = ¢ an
i = 1

Xi
=�-1Xi≤-1¢ an

i = 1
Xi

=�-1yi≤.

To compute this estimator  as we did in Chapter 9 by transforming the data 
and using ordinary least squares with the transformed data, we will require 
�-1/2 = [In ⊗ �]-1/2 = In ⊗ �-1/2. We need only find �-1/2, which is

	 �-1/2 = JIT -
ui

T
 iTiT

= R ,	 (11-33)

where

u = 1 -
se2se

2 + Tsu
2

.

The transformation of yi and Xi for GLS is therefore

	 �-1/2yi =
1
se

 D yi1 - uyi.

yi2 - uyi.

f
yi T - uyi.

T ,	 (11-34)

and likewise for the rows of Xi. For the data set as a whole, then, generalized least 
squares is computed by the regression of these partial deviations of yit on the same 
transformations of xit. Note the similarity of this procedure to the computation in the 
LSDV model, which uses u = 1 in (11-15).

It can be shown that the GLS estimator is, like the pooled OLS estimator, a matrix 
weighted average of the within- and between-units estimators,

Bn = Fnwithinbwithin + (I - Fnwithin)bbetween,

where now,

Fnwithin = [Sxx
within + lSxx

between]-1Sxx
within,

l =
se

2

se
2 + Tsu

2 = (1 - u)2.

To the extent that l differs from one, we see that the inefficiency of ordinary least 
squares will follow from an inefficient weighting of the two estimators. Compared with 
generalized least squares, ordinary least squares places too much weight on the between-
units variation. It includes all of it in the variation in X, rather than apportioning some 
of it to random variation across groups attributable to the variation in ui across units.

Unbalanced panels complicate the random effects model a bit. The matrix � in 
(11-32) is no longer In ⊗ � because the diagonal blocks in � are of different sizes. In 
(11-33), the ith diagonal block in �-1/2 is

�i
-1/2 =

1
se

 JITi
-

ui

Ti
 iTi

iTi

= R , ui = 1 -
se2se

2 + Tisu
2
.
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In principle, estimation is still straightforward, because the source of the groupwise 
heteroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with 
estimated variance components, it is necessary only to use the group-specific ui in the 
transformation in (11-34).

11.5.3  �  FEASIBLE GENERALIZED LEAST SQUARES ESTIMATION OF THE RANDOM EFFECTS 
MODEL WHEN �  IS UNKNOWN

If the variance components are known, generalized least squares can be computed as 
shown earlier. Of course, this is unlikely, so as usual, we must first estimate the disturbance 
variances and then use an FGLS procedure. A heuristic approach to estimation of the 
variance components is as follows:

yit = xit
=B + a + eit + ui

	 yi. = xi.
=B + a + ei. + ui.�

(11-35)and

Therefore, taking deviations from the group means removes the heterogeneity,

	 yit - yi. = [xit - xi.]′B + [eit - ei.].	 (11-36)

Because

EJaT
t = 1

(eit - ei.)
2 R = (T - 1)se

2,

if B were observed, then an unbiased estimator of se
2 based on T observations in group 

i would be

	 sn e
2(i) = a T

t = 1(eit - ei.)
2

T - 1
.	 (11-37)

Because B must be estimated—the LSDV estimator is consistent, indeed, unbiased in 
general—we make the degrees of freedom correction and use the LSDV residuals in

	 se
2(i) = a T

t = 1(eit - ei.)
2

T - K - 1
	 (11-38)

(Note that based on the LSDV estimates, ei. is actually zero. We will carry it through 
nonetheless to maintain the analogy to (11-35) where ei. is not zero but is an estimator 
of E[eit] = 0.) We have n such estimators, so we average them to obtain

	 se
2 =

1
n a

n

i = 1
se

2(i) =
1
n a

n

i = 1
J a T

t = 1(eit - ei.)
2

T - K - 1
R = a n

i = 1a T
t = 1(eit - ei.)

2

nT - nK - n
	 (11-39a)

The degrees of freedom correction in se
2 is excessive because it assumes that a and B 

are reestimated for each i. The estimated parameters are the n means yi #  and the K 
slopes. Therefore, we propose the unbiased estimator17

sn e
2 = sLSDV

2 = a n
i = 1a T

t = 1(eit - ei.)
2

nT - n - K
.

17A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).
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This is the variance estimator in the fixed effects model in (11-18), appropriately 
corrected for degrees of freedom. It remains to estimate su

2. Return to the original model 
specification in (11-35). In spite of the correlation across observations, this is a classical 
regression model in which the ordinary least squares slopes and variance estimators are 
both consistent and, in most cases, unbiased. Therefore, using the ordinary least squares 
residuals from the model with only a single overall constant, we have

	 plim sPooled
2 = plim 

e′e
nT - K - 1

= se
2 + su

2.	 (11-39b)

This provides the two estimators needed for the variance components; the second 
would be sn u

2 = sPooled
2 - sLSDV

2 . As noted in Section 11.5.1, there are a variety of pairs 
of variance estimators that can be used to obtain estimates of se

 2 and su
 2.18 The 

estimators based on sLSDV
2  and sPooled

2  are common choices. Alternatively, let [b, a] be any 
consistent estimator of [B, a] in (11-35), such as the ordinary least squares estimator. 
Then, sPooled

2  provides a consistent estimator of mee = se
2 + su

2. The mean squared 
residuals using a regression based only on the n group means in (11-35) provides a 
consistent estimator of m** = su

2 + (se
2/T), so we can use

sn e
2 =

T
T - 1

(mee - m**),

sn u
2 =

T
T - 1

 m** -
1

T - 1
 mee = vm** + (1 - v)mee,

where v 7 1. A possible complication is that the estimator of su
 2 can be negative in any 

of these cases. This happens fairly frequently in practice, and various ad hoc solutions 
are typically tried. (The first approach is often to try out different pairs of moments. 
Unfortunately, typically, one failure is followed by another. It would seem that this failure 
of the estimation strategy should suggest to the analyst that there is a problem with the 
specification to begin with. A last solution in the face of a persistently negative estimator 
is to set su

 2 to the value the data are suggesting, zero, and revert to least squares.)

11.5.4    ROBUST INFERENCE AND FEASIBLE GENERALIZED LEAST SQUARES

The feasible GLS estimator based on (11-28) and (11-31) is

Bn = (X′�-1X)-1(X′�-1X) = ¢ a n
i = 1Xi

=�i
-1Xi≤-1¢ a n

i = 1Xi
=�i

-1yi≤.

There is a subscript i on �i because of the consideration of unbalanced panels discussed 
at the end of Section 11.5.2. If the panel is unbalanced, a minor adjustment is needed 
because �i is Ti * Ti and because of the specific computation of ui. The feasible GLS 
estimator is then

	 Bn
n = B + ¢ a n

i = 1Xi
=�n i

-1Xi≤-1¢ a n
i = 1Xi

=�n i
-1Ei≤.	 (11-40)

18See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya (1971). 
This is a point on which modern software varies. Generally, programs begin with (11-39a) and (11-39b) to estimate 
the variance components. Others resort to different strategies based on, for example, the group means estimator. 
The unfortunate implication for the unwary is that different programs can systematically produce different 
results using the same model and the same data. The practitioner is strongly advised to consult the program 
documentation for resolution.
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This form suggests a way to accommodate failure of the random effects assumption in 
(11-28). Following the approach used in the earlier applications, the estimator would be

Est.Asy.Var[Bn
n

] = ¢a n
i = 1Xi

=�n i
-1Xi≤-1¢a n

i = 1(Xi
=�n i

-1ei)(Xi
=�n i

-1ei)
=≤ ¢a n

i = 1Xi
=�n i

-1Xi≤-1

.
�

(11-41)

With this estimator in hand, inference would be based on Wald statistics rather than F 
statistics.

There is a loose end in the proposal just made. If assumption (11-28) fails, then what 
are the properties of the generalized least squares estimator based on � in (11-31)? The 
FGLS estimator remains consistent and asymptotically normally distributed—consider 
that OLS is also a consistent estimator that uses the wrong covariance matrix. And 
(11-41) would provide an appropriate estimator to use for statistical inference about B. 
However, in this case, (11-31) is the wrong starting point for FGLS estimation.

If the random effects assumption is not appropriate, then a more general starting point is

yi = ai + XiB + Ei, E[EiEi
= � Xi] = �,

which returns us to the pooled regression model in Section 11.3.1. An appealing approach 
based on that would base feasible GLS on (11-32) and, assuming n is reasonably large and 

T is relatively small, would use �n =
1
n a n

i = 1eOLS,ieOLS,i
= . Then, feasible GLS would be 

based on (11-40). One serious complication is how to accommodate an unbalanced panel. 
With the random effects formulation, the covariances in � are identical, so positioning of 
the observations in the matrix is arbitrary. This is not so with an unbalanced panel. We will 
see in the example below, in this more general case, a distinct pattern in the locations of the 
cells in the matrix emerges. It is unclear what should be done with the unfilled cells in �.

11.5.5    TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random effects 
model based on the OLS residuals.19 For

 H0: su
 2 = 0,

 H1: su
 2 7 0,

the test statistic is

LM =
nT

2(T - 1)
 D a n

i = 1 c a T
t = 1eit d

2

a n
i = 1a T

t = 1eit
2

- 1T 2

=
nT

2(T - 1)
 D a n

i = 1(Tei.)
2

a n
i = 1a T

t = 1eit
2

- 1T 2

.

(11-42)

Under the null hypothesis, the limiting distribution of LM is chi-squared with one degree 
of freedom. (The computation for an unbalanced panel replaces the multiple by 
[(Σi = 1

n Ti)
2]/[2Σi = 1

n Ti(Ti - 1)] and replaces T with Ti in the summations.) The LM 

19Thus far, we have focused strictly on generalized least squares and moments-based consistent estimation of the 
variance components. The LM test is based on maximum likelihood estimation, instead. See Maddala (1971) and 
Baltagi (2013) for this approach to estimation.
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statistic is based on normally distributed disturbances. Wooldridge (2010) proposed a 

statistic that is more robust to the distribution, z =
Σi = 1

n (Σt = 2
Ti Σs = 1

t - 1 eiteis)2Σi = 1
n (Σt = 2

Ti Σs = 1
t - 1 eiteis)

2
, which 

converges to N[0,1] in all cases, or z2 which has a limiting chi-squared distribution with 
one degree of freedom. The inner double sums in the statistic sum the below diagonal 
terms in eiei

= which is one-half the sum of all the terms minus the diagonals, ei
=ei. The ith 

term in the sum is 
1
2

 [(Σt = 1
T eit)

2 - (Σt = 1
T eit

2)] = fi. By manipulating this result, we find 

that z2 = (nf 2/sf
2) (where sf

2 is computed around the assumed E[fi] = 0), which would 
be the standard test statistic for the hypothesis that E[fi] = 0. This makes sense, because 
fi is essentially composed of the difference between two estimators of se

2.20 With some 
tedious manipulation, we can show that the LM statistic is also a multiple of nf 2.

Example 11.10    Test for Random Effects
We are interested in comparing the random and fixed effects estimators in the Cornwell and 
Rupert wage interested equation,

 ln Wageit = b1 + b2 Expit + b3 Expit
2 + b4 Wksit + b5 Occit

 + b6 Indit + b7 Southit + b8 SMSAit + b9 MSit

 + b10 Unionit + b11 Edi + b12 Femi + b13 Blki + ci + eit.

The least squares estimates appear in Table 11.6 in Example 11.4. We will test for the 
presence of random effects. The computations in the two statistics are simpler than it might 
appear at first. The LM statistic is

LM =
nT

2(T - 1)
 Je′DD′e

e′e
- 1R 2

,

where D is the matrix of individual dummy variables in (11-13). To compute z2, we compute

f =
1
2

 (D′e ∘ D′e - D′(e ∘ e)),

(° is the Hadamard product—element by element multiplication) then z2 = i′f/f′f. The results for 
the two statistics are LM = 3497.02 and z2 = 179.66. These far exceed the 95% critical value 
for the chi-squared distribution with one degree of freedom, 3.84. At this point, we conclude that 
the classical regression model without the heterogeneity term is inappropriate for these data. The 
result of the test is to reject the null hypothesis in favor of the random effects model. But it is best to 
reserve judgment on that because there is another competing specification that might induce these 
same results, the fixed effects model. We will examine this possibility in the subsequent examples.

With the variance estimators in hand, FGLS can be used to estimate the parameters 
of the model. All of our earlier results for FGLS estimators apply here. In particular, all 
that is needed for efficient estimation of the model parameters are consistent estimators 
of the variance components, and there are several.21

20Wooldridge notes that z can be negative, suggesting a negative estimate of su
 2. This counterintuitive result arises, 

once again (see Section 11.5.1), from using a covariance estimator to estimate a variance. However, with some 
additional manipulation, we find that the numerator of z is actually (nT/2)[sn e

2(based on ei) - sn e
2(based on eit)] so 

the outcome is not so contradictory as it might appear—since the statistic has a standard normal distribution, the 
negative result should occur half of the time. The test is not actually based on the covariance; it is based on the 
difference of two estimators of the same variance (under the null hypothesis). The numerator of the LM statistic, 
e′DD′e - e′e, is the same as that of z, though it is squared to produce the test statistic.
21See Hsiao (2003), Baltagi (2005), Nerlove (2002), Berzeg (1979), and Maddala and Mount (1973).
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Example 11.11    Estimates of the Random Effects Model
In the previous example, we found the total sum of squares for the least squares estimator 
was 506.766. The fixed effects (LSDV) estimates for this model appear in Table 11.10. 
The sum of squares is 82.26732. Therefore, the moment estimators of the variance 
parameters are

sn e
2 + sn u

2 =
506.766

4165 - 13
= 0.122053

and

sn e
2 =

82.26732
4165 - 595 - 9

= 0.0231023.

The implied estimator of su
2 is 0.098951. (No problem of negative variance components has 

emerged. Note that the three time-invariant variables have not been used in computing the 
fixed effects estimator to estimate se

 2.) The estimate of u for FGLS is

un = 1 - A 0.0231023
0.0231023 + 7(0.098951)

= 0.820343.

FGLS estimates are computed by regressing the partial differences of ln Wageit on the partial 
differences of the constant and the 12 regressors, using this estimate of u in (11-33). The 
full GLS estimates are obtained by estimating � using the OLS residuals. The estimate 

of � is listed below with the other estimates. Thus, �n =
1

595 a 595
i = 1eiei

=. The estimate of 

� = se
2I + su

2ii′. Estimates of the parameters using the OLS and random effects estimators 
appear in Table 11.11. The similarity of the estimates is to be expected given that, under the 
hypothesis of the model, all three estimators are consistent.

The random effects specification is a substantive restriction on the stochastic part 
of the regression. The assumption that the disturbances are equally correlated across 
periods regardless of how far apart the periods are may be a particularly strong 
assumption, particularly if the time dimension of the panel is relatively long. The force 
of the restrictions can be seen in the covariance matrices shown below. In the random 
effects model, the cross period correlation is su

2/(se
2 + su

2) which we have estimated 
as 0.9004 for all periods. But, the first column of the estimate of �  suggests quite a 
different pattern; the cross period covariances diminish substantially with the separation 
in time. If an AR(1) pattern is assumed, ei,t = rei, t - 1 + vi,t then the implied estimate of r 
would be r = 0.1108/0.1418 = 0.7818. The next two periods appear consistent with the 
pattern, r2 then r3. The first-order autoregression might be a reasonable candidate for 
the model. At the same time, the diagonal elements of �n  do not strongly suggest much 
heteroscedasticity across periods.

None of the desirable properties of the estimators in the random effects model rely 
on T going to infinity.22 Indeed, T is likely to be quite small. The estimator of se

2 is equal 
to an average of n estimators, each based on the T observations for unit i. [See (11-39a).] 
Each component in this average is, in principle, consistent. That is, its variance is of order 
1/T or smaller. Because T is small, this variance may be relatively large. But each term 
provides some information about the parameter. The average over the n cross-sectional 
units has a variance of order 1/(nT), which will go to zero if n increases, even if we regard 
T as fixed. The conclusion to draw is that nothing in this treatment relies on T growing 
large. Although it can be shown that some consistency results will follow for T increasing, 
the typical panel data set is based on data sets for which it does not make sense to 

assume that T increases without bound or, in some cases, at all.23 As a general proposition, 
it is necessary to take some care in devising estimators whose properties hinge on 
whether T is large or not. The widely used conventional ones we have discussed here do 
not, but we have not exhausted the possibilities.

22See Nickell (1981).

23In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact, take T 
as given in the model and that base consistency results solely on n increasing. Some additional results for dynamic 
models are given by Bhargava and Sargan (1983). Recent research on “bias reduction” in nonlinear panel models, 
such as Fernandez-Val (2010), do make use of large T approximations in explicitly small T settings.
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Variable
Least Squares 

Estimate
Clustered Std.

Error
Random  

Effects Ests.
Standard 

Error
Generalized 

Least Squares
Standard 

Error

Constant 5.25112 0.12355 4.04144 0.08330 5.31019 0.07948
Exp 0.04010 0.00408 0.08748 0.00225 0.04478 0.00388
ExpSq -0.00067 0.00009 -0.00076 0.00005 -0.00071 0.00009
Wks 0.00422 0.00154 0.00096 0.00059 0.00071 0.00055
Occ -0.14001 0.02724 -0.04322 0.01299 -0.03842 0.01265
Ind 0.04679 0.02366 0.00378 0.01373 0.02671 0.01340
South -0.05564 0.02616 -0.00825 0.02246 -0.06089 0.02129
SMSA 0.15167 0.02410 -0.02840 0.01616 0.06737 0.01669
MS 0.04845 0.04094 -0.07090 0.01793 -0.02610 0.02020
Union 0.09263 0.02367 0.05835 0.01350 0.03544 0.01316
Ed 0.05670 0.00556 0.10707 0.00511 0.06507 0.00429
Fem -0.36779 0.04557 -0.30938 0.04554 -0.39606 0.03889
Blk -0.16694 0.04433 -0.21950 0.05252 -0.15154 0.04262

GLS Estimated Covariance Matrix of Ei
1 2 3 4 5 6 7

0.1418
0.1108 0.1036
0.0821 0.0748 0.1135
0.0583 0.0579 0.0845 0.1046
0.0368 0.0418 0.0714 0.0817 0.1008
0.0152 0.0250 0.0627 0.0799 0.0957 0.1246

-0.0056 0.0099 0.0585 0.0822 0.1024 0.1259 0.1629

Estimated Covariance Matrix for Ei Based on Random 
Effects Model

1 2 3 4 5 6 7

0.1221
0.0989 0.1221
0.0989 0.0989 0.1221
0.0989 0.0989 0.0989 0.1221
0.0989 0.0989 0.0989 0.0989 0.1221
0.0989 0.0989 0.0989 0.0989 0.0989 0.1221
0.0989 0.0989 0.0989 0.0989 0.0989 0.0989 0.1221

TABLE 11.11  Wage Equation Estimated by GLS

assume that T increases without bound or, in some cases, at all.23 As a general proposition, 
it is necessary to take some care in devising estimators whose properties hinge on 
whether T is large or not. The widely used conventional ones we have discussed here do 
not, but we have not exhausted the possibilities.

22See Nickell (1981).

23In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact, take T 
as given in the model and that base consistency results solely on n increasing. Some additional results for dynamic 
models are given by Bhargava and Sargan (1983). Recent research on “bias reduction” in nonlinear panel models, 
such as Fernandez-Val (2010), do make use of large T approximations in explicitly small T settings.
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11.5.6    HAUSMAN’S SPECIFICATION TEST FOR THE RANDOM EFFECTS MODEL

At various points, we have made the distinction between fixed and random effects 
models. An inevitable question is, which should be used? From a purely practical 
standpoint, the dummy variable approach is costly in terms of degrees of freedom lost. 
On the other hand, the fixed effects approach has one considerable virtue. There is little 
justification for treating the individual effects as uncorrelated with the other regressors, 
as is assumed in the random effects model. The random effects treatment, therefore, may 
suffer from the inconsistency due to this correlation between the included variables and 
the random effect.24

The specification test devised by Hausman (1978)25 is used to test for orthogonality 
of the common effects and the regressors. The test is based on the idea that under the 
hypothesis of no correlation, both LSDV and FGLS estimators are consistent, but LSDV 
is inefficient,26 whereas under the alternative, LSDV is consistent, but FGLS is not. 
Therefore, under the null hypothesis, the two estimates should not differ systematically, 
and a test can be based on the difference. The other essential ingredient for the test is 
the covariance matrix of the difference vector, [bFE - BnRE],

	Var[bFE - BnRE] = Var[bFE] + Var[BnRE] - Cov[bFE, BnRE] - Cov[BnRE, bFE].	 (11-43)

Hausman’s essential result is that the covariance of an efficient estimator with its difference 
from an inefficient estimator is zero, which implies that

Cov[(bFE - BnRE), BnRE] = Cov[bFE, BnRE] - Var[BnRE] = 0,

or that

Cov[bFE, BnRE] = Var[BnRE].

Inserting this result in (11-43) produces the required covariance matrix for the test,

Var[bFE - BnRE] = Var[bFE] - Var[BnRE] = �.

The chi-squared test is based on the Wald criterion,

	 W = x2[K - 1] = [bFE - BnRE]′�n -1[bFE - BnRE].	 (11-44)

For �n , we use the estimated covariance matrices of the slope estimator in the LSDV 
model and the estimated covariance matrix in the random effects model, excluding the 
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with 
K - 1 degrees of freedom.

The Hausman test is a useful device for determining the preferred specification of 
the common effects model. As developed here, it has one practical shortcoming. The 
construction in (11-43) conforms to the theory of the test. However, it does not guarantee 
that the difference of the two covariance matrices will be positive definite in a finite 
sample. The implication is that nothing prevents the statistic from being negative when 
it is computed according to (11-44). One might, in that event, conclude that the random 
effects model is not rejected, because the similarity of the covariance matrices is what 

24See Hausman and Taylor (1981) and Chamberlain (1978).
25Related results are given by Baltagi (1986).
26Referring to the FGLS matrix weighted average given earlier, we see that the efficient weight uses u, whereas 
LSDV sets u = 1.
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is causing the problem, and under the alternative (fixed effects) hypothesis, they should 
be significantly different. There are, however, several alternative methods of computing 
the statistic for the Hausman test, some asymptotically equivalent and others actually 
numerically identical. Baltagi (2005, pp. 65–73) provides an extensive analysis. One 
particularly convenient form of the test finesses the practical problem noted here. An 
asymptotically equivalent test statistic is given by

	H′ = (bFE - bMEANS)′[Asy.Var[bFE] + Asy.Var[bMEANS]]-1 (bFE - bMEANS)	 (11-45)

where bMEANS is the group means estimator discussed in Section 11.3.4. As noted, this 
is one of several equivalent forms of the test. The advantage of this form is that the 
covariance matrix will always be nonnegative definite.

Imbens and Wooldridge (2007) have argued that in spite of the practical 
considerations about the Hausman test in (11-44) and (11-45), the test should be based 
on robust covariance matrices that do not depend on the assumption of the null 
hypothesis (the random effects model).27 Their suggested approach amounts to the 
variable addition test described in the next section, with a robust covariance matrix.

11.5.7    EXTENDING THE UNOBSERVED EFFECTS MODEL: MUNDLAK’S APPROACH

Even with the Hausman test available, choosing between the fixed and random effects 
specifications presents a bit of a dilemma. Both specifications have unattractive 
shortcomings. The fixed effects approach is robust to correlation between the omitted 
heterogeneity and the regressors, but it proliferates parameters and cannot accommodate 
time-invariant regressors. The random effects model hinges on an unlikely assumption, 
that the omitted heterogeneity is uncorrelated with the regressors. Several authors have 
suggested modifications of the random effects model that would at least partly overcome 
its deficit. The failure of the random effects approach is that the mean independence 
assumption, E[ci � Xi] = 0, is untenable. Mundlak’s approach (1978) suggests the 
specification

E[ci � Xi] = xi.
=G.28

Substituting this in the random effects model, we obtain

 yit = zi
=A + xit

=B + ci + eit

 = zi
=A + xit

=B + xi.
=G + eit + (ci - E[ci � Xi])

 = zi
=A + xit

=B + xi.
=G + eit + ui. 	 (11-46)

This preserves the specification of the random effects model, but (one hopes) deals 
directly with the problem of correlation of the effects and the regressors. Note that the 

27That is, “It makes no sense to report a fully robust variance matrix for FE and RE but then to compute a 
Hausman test that maintains the full set of RE assumptions.”
28Other analyses, for example, Chamberlain (1982) and Wooldridge (2010), interpret the linear function as the 
projection of ci on the group means, rather than the conditional mean. The difference is that we need not make 
any particular assumptions about the conditional mean function while there always exists a linear projection. The 
conditional mean interpretation does impose an additional assumption on the model but brings considerable 
simplification. Several authors have analyzed the extension of the model to projection on the full set of individual 
observations rather than the means. The additional generality provides the bases of several other estimators 
including minimum distance [Chamberlain (1982)], GMM [Arellano and Bover (1995)], and constrained 
seemingly unrelated regressions and three-stage least squares [Wooldridge (2010)].
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additional terms in xi.
=  G will only include the time-varying variables—the time-invariant 

variables are already group means.
Mundlak’s approach is frequently used as a compromise between the fixed and 

random effects models. One side benefit of the specification is that it provides another 
convenient approach to the Hausman test. As the model is formulated above, the 
difference between the fixed effects model and the random effects model is the nonzero G. 
As such, a statistical test of the null hypothesis that G equals zero should provide an 
alternative approach to the two methods suggested earlier. Estimation of (11-46) can 
be based on either pooled OLS (with a robust covariance matrix) or random effects 
FGLS. It turns out the coefficient vectors for the two estimators are identical, though 
the asymptotic covariance matrices will not be. The pooled OLS estimator is fully 
robust and seems preferable. The test of the null hypothesis that the common effects 
are uncorrelated with the regressors is then based on a Wald test.

Example 11.12  �  Hausman and Variable Addition Tests for Fixed versus 
Random Effects

Using the results in Examples 11.7 (fixed effects) and 11.11 (random effects), we retrieved the 
coefficient vector and estimated robust asymptotic covariance matrix, bFE and VFE, from the 
fixed effects results and the nine elements of BnRE and VRE (excluding the constant term and 
the time-invariant variables) from the random effects results. The test statistic is

H = (bFE - BnRE)′[VFE - VRE]-1(bFE - BnRE),

The value of the test statistic is 739.374. The critical value from the chi-squared table is 16.919 so 
the null hypothesis of the random effects model is rejected. There is an additional subtle point to 
be checked. The difference of the covariance matrices, VFE - VRE, may not be positive definite. 
That might not prevent calculation of H if the analyst uses an ordinary inverse in the computation. 
In that case, a positive statistic might be obtained anyway. The statistic should not be used in this 
instance. However, that outcome should not lead one to conclude that the correct value for H is 
zero. The better response is to use the variable addition test we consider next. (For the example 
here, the smallest characteristic root of the difference matrix was, indeed positive.)

We conclude that the fixed effects model is the preferred specification for these data. This 
is an unfortunate turn of events, as the main object of the study is the impact of education, 
which is a time-invariant variable in this sample. We then used the variable addition test 
instead, based on the regression results in Table 11.12. We recovered the subvector of the 
estimates at the right in Table 11.12 corresponding to G, and the corresponding submatrix of 
the full covariance matrix. The test statistic is

H′ = Gn ′[Est.Asy.Var(Gn)]-1 Gn.

We obtained a value of 2267.32. This does not change the conclusion, so the null hypothesis 
of the random effects model is rejected. We conclude as before that the fixed effects estimator 
is the preferred specification for this model.

11.5.8  �  EXTENDING THE RANDOM AND FIXED EFFECTS MODELS: 
CHAMBERLAIN’S APPROACH

The linear unobserved effects model is

	 yit = ci + xit
=B + eit.	 (11-47)

The random effects model assumes that E[ci � Xi] = a, where the T rows of Xi are xit
= . 

As we saw in Section 11.5.1, this model can be estimated consistently by ordinary 
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least squares. Regardless of how eit is modeled, there is autocorrelation induced by 
the common, unobserved ci, so the generalized regression model applies. The random 
effects formulation is based on the assumption E[wiwi

= � Xi] = se
2IT + su

2ii′, where 
wit = (eit + ui). We developed the GLS and FGLS estimators for this formulation as 
well as a strategy for robust estimation of the OLS and LSDV covariance matrices. 
Among the implications of the development of Section 11.5 is that this formulation 
of the disturbance covariance matrix is more restrictive than necessary, given the 
information contained in the data. The assumption that E[EiEi

= � Xi] = se
2IT assumes 

that the correlation across periods is equal for all pairs of observations, and arises 
solely through the persistent ci. We found some contradictory empirical evidence 
in Example 11.11—the OLS covariances across periods in the Cornwell and Rupert 
model do not appear to conform to this specification. In Example 11.11, we estimated 
the equivalent model with an unrestricted covariance matrix, E[EiEi

= � Xi] = �. The 
implication is that the random effects treatment includes two restrictive assumptions, 
mean independence, E[ci � Xi] = a, and homoscedasticity, E[EiEi

= � Xi] = se
2IT. [We do 

note that dropping the second assumption will cost us the identification of su
2 as an 

estimable parameter. This makes sense—if the correlation across periods t and s can 
arise from either their common ui or from correlation of (eit, eis) then there is no way 
for us separately to estimate a variance for ui apart from the covariances of eit and eis.] 
It is useful to note, however, that the panel data model can be viewed and formulated 
as a seemingly unrelated regressions model with common coefficients in which each 
period constitutes an equation, Indeed, it is possible, albeit unnecessary, to impose the 
restriction E[wiwi

= � Xi] = se
2IT + su

2ii′.
The mean independence assumption is the major shortcoming of the random effects 

model. The central feature of the fixed effects model in Section 11.4 is the possibility that 

Pooled OLS Augmented Regression Group Means

Variable
Least Squares 

Estimate
Clustered  
Std. Error

Least Squares 
Estimates

Robust  
Std. Error

Least Squares 
Estimates

Robust  
Std. Error

R2 0.42861 0.57518

Constant 5.25112 0.12355 5.12143 0.20847 — —
Exp 0.00401 0.00408 0.11321 0.00406 -0.08131 0.00614
ExpSq -0.00067 0.00009 -0.00042 0.00008 -0.00015 0.00013
Wks 0.00422 0.00154 0.00084 0.00087 0.00835 0.00361
Occ -0.14001 0.02724 -0.02148 0.01902 -0.14614 0.03821
Ind 0.04679 0.02366 0.01921 0.02271 0.03871 0.03509
South -0.05564 0.02616 -0.00186 0.08943 -0.05519 0.09371
SMSA 0.15167 0.02410 -0.04247 0.02953 0.21824 0.03859
MS 0.04845 0.04094 -0.02973 0.02691 0.14451 0.05569
Union 0.09263 0.02367 0.03278 0.02510 0.07628 0.03828
Ed 0.05670 0.00556 0.05144 0.00588 — —
Fem -0.36779 0.04557 -0.31706 0.05122 — —
Blk -0.16694 0.04433 -0.15780 0.04367 — —

Table 11.12  Wage Equation Estimated by OLS and LSDV
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E[ci � Xi] is a nonconstant h(Xi). As such, least squares regression of yit on xit produces an 
inconsistent estimator of B. The dummy variable model considered in Section 11.4 is the 
natural alternative. The fixed effects approach has the advantage of dispensing with the 
unlikely assumption that ci and xit are uncorrelated. However, it has the shortcoming of 
requiring estimation of the n parameters, ai.

Chamberlain (1982, 1984) and Mundlak (1978) suggested alternative approaches 
that lie between these two. Their modifications of the fixed effects model augment 
it with the projections of ci on all the rows of Xi (Chamberlain) or the group means 
(Mundlak). (See Section 11.5.7.) Consider the first of these, and assume (as it requires) 
a balanced panel of T observations per group. For purposes of this development, we will 
assume T = 3. The generalization will be obvious at the conclusion. Then, the projection 
suggested by Chamberlain is

	 ci = a + xi1
=  G1 + xi2

=  G2 + xi3
=  G3 + ri,	 (11-48)

where now, by construction, ri is orthogonal to xit. 29 Insert (11-48) into (11-47) to obtain

yit = a + xi1
=  G1 + xi2

=  G2 + xi3
=  G3 + xit

=  B + eit + ri.

Estimation of the 1 + 3K + K parameters of this model presents a number of 
complications. [We do note that this approach has the potential to (wildly) proliferate 
parameters. For our quite small regional productivity model in Example 11.22. the 
original model with six main coefficients plus the treatment of the constants becomes a 
model with 1 + 6 + 17(6) = 109 parameters to be estimated.]

If only the n observations for period 1 are used, then the parameter vector,

	 U1 = a, (B + G1), G2, G3 = a, P1, G2, G3,	 (11-49)

can be estimated consistently, albeit inefficiently, by ordinary least squares. The model is

yi1 = zi1
= U1 + wi1, i = 1, c, n.

Collecting the n observations, we have

y1 = Z1U1 + w1.

If, instead, only the n observations from period 2 or period 3 are used, then OLS 
estimates, in turn,

U2 = A, G1, (B + G2), G3 = a, G1, P2, G3,

or

U3 = A, G1, G2, (B + G3) = a, G1, G2, P3.

29There are some fine points here that can only be resolved theoretically. If the projection in (11-48) is not the 
conditional mean, then we have E[ri * xit] = 0, t = 1, c, T but not E[ri � Xi] = 0. This does not affect the 
asymptotic properties of the FGLS estimator to be developed here, although it does have implications, for 
example, for unbiasedness. Consistency will hold regardless. The assumptions behind (11-48) do not include that 
Var[ri � Xi] is homoscedastic. It might not be. This could be investigated empirically. The implication here concerns 
efficiency, not consistency. The FGLS estimator to be developed here would remain consistent, but a GMM 
estimator would be more efficient—see Chapter 13. Moreover, without homoscedasticity, it is not certain that 
the FGLS estimator suggested here is more efficient than OLS (with a robust covariance matrix estimator). Our 
intent is to begin the investigation here. Further details can be found in Chamberlain (1984) and, for example, Im, 
Ahn, Schmidt, and Wooldridge (1999).
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It remains to reconcile the multiple estimates of the same parameter vectors. In terms 
of the preceding layouts above, we have the following:

OLS Estimates: a1, p1, c2,1, c3,1, a2 c1,2, p2, c3,2, a3, c1,3, c2,3, p3;
Estimated Parameters: a, (B + G1), G2, G3, a, G1, (B + G2), G3, a, G1, G2, (B + G3);
Structural Parameters: a, B, G1, G2, G3.
� (11-50)

Chamberlain suggested a minimum distance estimator (MDE). For this problem, the 
MDE is essentially a weighted average of the several estimators of each part of the 
parameter vector. We will examine the MDE for this application in more detail in 
Chapter 13. (For another simpler application of minimum distance estimation that shows 
the weighting procedure at work, see the reconciliation of four competing estimators of a 
single parameter at the end of Example 11.23.) There is an alternative way to formulate 
the estimator that is a bit more transparent. For the first period,

	 y1 = §y1,1

y2,1

f
yn,1

¥ = D 1 x1,1 x1,1 x1,2 x1,3

1 x2,1 x2,1 x2,2 x2,3

f f f f f
1 xn,1 xn,1 xn,2 xn,3

T • a

B

G1

G2

G3

µ + § r1,1

r2,1

f
rn,1

¥ = X∼1U + r1.	 (11-51)

We treat this as the first equation in a T equation seemingly unrelated regressions model. 
The second equation, for period 2, is the same (same coefficients), with the data from the 
second period appearing in the blocks, then likewise for period 3 (and periods 4, . . ., T 
in the general case). Stacking the data for the T equations (periods), we have

	 § y1

y2

f
yT

¥ = §X∼1

X∼2

f
X∼T

¥• a

B

G1

f
GT

µ + § r1

r2

f
rT

¥ = X∼U + r,	 (11-52)

where E[X∼′r] = 0 and (by assumption), E[rr′ � X∼] = � ⊗ In. With the homoscedasticity 
assumption for ri,t, this is precisely the application in Section 10.2.5. The parameters can 
be estimated by FGLS as shown in Section 10.2.5.

Example 11.13    Hospital Costs
Carey (1997) examined hospital costs for a sample of 1,733 hospitals observed in five years, 
1987–1991. The model estimated is

 ln (TC/P)it = ai + bD DISit + bO OPVit + b3 ALSit + b4 CMit

 + b5 DISit
2 + b6 DISit

3 + b7 OPV it
2 + b8 OPV it

3

 + b9 ALSit
2 + b10 ALSit

3 + b11DISit * OPVit

 + b12FAit + b13HIit + b14HTi + b15LTi + b16 Largei

 + b17 Smalli + b18 NonProfiti + b19 Profiti
 + eit,
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where

TC  = total cost,
P  = input price index,
DIS  = discharges
OPV  = outpatient visits,
ALS  = average length of stay,
CM  = case mix index,
FA  = fixed assets,
HI  = Hirfindahl index of market concentration at county level,
HT  = dummy variable for high teaching load hospital,
LT  = dummy variable for low teaching load hospital
Large  = dummy variable for large urban area
Small  = dummy variable for small urban area,
Nonprofit = dummy variable for nonprofit hospital,
Profit  = dummy variable for for@profit hospital.

We have used subscripts “D” and “O” for the coefficients on DIS and OPV as these will be 
isolated in the following discussion. The model employed in the study is that in (11-47) 
and (11-48). Initial OLS estimates are obtained for the full cost function in each year. 
SUR estimates are then obtained using a restricted version of the Chamberlain system. 
This second step involved a hybrid model that modified (11-49) so that in each period 
the coefficient vector was

Ut = [at, bDt(G), bOt(G), b3t(G), b4t(G), b5t, c, b19t],

where bDt(G) indicates that all five years of the variable (DISit) are included in the equation, and 
likewise, for bOt(G)(OPV), b3t(G)(ALS), and b4t(G)(CM). This is equivalent to using

ci = a + �t = 1987
1991  (DIS, OPV, ALS, CM)it=Gt + ri

in (11-48).
The unrestricted SUR system estimated at the second step provides multiple 

estimates of the various model parameters. For example, each of the five equations 
provides an estimate of (b5, c, b19). The author added one more layer to the model in 
allowing the coefficients on DISit and OPVit to vary over time. Therefore, the structural 
parameters of interest are (bD1, c, bD5), (gD1 c, gD5) (the coefficients on DIS) and 
(bO1, c, bO5), (gO1 c, gO5) (the coefficients on OPV). There are, altogether, 20 parameters 
of interest. The SUR estimates produce, in each year (equation), parameters on DIS for the 
five years and on OPV for the five years, so there is a total of 50 estimates. Reconciling 
all of them means imposing a total of 30 restrictions. Table 11.13 shows the relationships 
for the time-varying parameter on DISit in the five-equation model. The numerical values 
reported by the author are shown following the theoretical results. A similar table would 
apply for the coefficients on OPV, ALS, and CM. (In the latter two, the b coefficient was 
not assumed to be time varying.) It can be seen in the table, for example, that there are 
directly four different estimates of gD,87 in the second to fifth equations, and likewise for 
each of the other parameters. Combining the entries in Table 11.13 with the counterparts 
for the coefficients on OPV, we see 50 SUR/FGLS estimates to be used to estimate 20 
underlying parameters. The author used a minimum distance approach to reconcile the 
different estimates. We will return to this example in Example 13.6, where we will develop 
the MDE in more detail.
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11.6	 NONSPHERICAL DISTURBANCES AND ROBUST COVARIANCE 
MATRIX ESTIMATION

Because the models considered here are extensions of the classical regression model, 
we can treat heteroscedasticity in the same way that we did in Chapter 9. That is, we 
can compute the ordinary or feasible generalized least squares estimators and obtain 
an appropriate robust covariance matrix estimator, or we can impose some structure on 
the disturbance variances and use generalized least squares. In the panel data settings, 
there is greater flexibility for the second of these without making strong assumptions 
about the nature of the heteroscedasticity.

11.6.1    HETEROSCEDASTICITY IN THE RANDOM EFFECTS MODEL

Because the random effects model is a generalized regression model with a known 
structure, OLS with a robust estimator of the asymptotic covariance matrix is not the 
best use of the data. The GLS estimator is efficient whereas the OLS estimator is not. If a 
perfectly general covariance structure is assumed, then one might simply use Arellano’s 
estimator, described in Section 11.4.3, with a single overall constant term rather than a set 
of fixed effects. But, within the setting of the random effects model, hit = eit + ui, allowing 
the disturbance variance to vary across groups would seem to be a useful extension.

The calculation in (11-33) has a type of heteroscedasticity due to the varying group 
sizes. The estimator there (and its feasible counterpart) would be the same if, instead 
of ui = 1 - se/(Tisu

2 + se
2)1/2, the disturbances were specifically heteroscedastic with 

E[eit
 2 � Xi] = sei

 2 and

ui = 1 -
sei2sei

2 + Tisu
2
.

Coefficient on Variable in the Equation

Equation DIS87 DIS88 DIS89 DIS90 DIS91

bD,87 + gD,87 gD,88 gD,89 gD,90 gD,91

SUR87 1.76 0.116 -0.0881 0.0570 -0.0617
gD,87 bD,88 + gD,88 gD,89 gD,90 gD,91

SUR88 0.254 1.61 -0.0934 0.0610 -0.0514
gD,87 gD,88 bD,89 + gD,89 gD,90 gD,91

SUR89 0.217 0.0846 1.51 0.0454 -0.0253
gD,87 gD,88 gD,89 bD,90 + gD,90 gD,91

SUR90 0.179 0.0822a 0.0295 1.57 0.0244
gD,87 gD,88 gD,89 gD,90 bD,91 + gD,91

SUR91 0.153 0.0363 -0.0422 0.0813 1.70

aThe value reported in the published paper is 8.22. The correct value is 0.0822. (Personal communication 
with the author.)

Table 11.13  Coefficient Estimates in SUR Model for Hospital Costs
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Therefore, for computing the appropriate feasible generalized least squares estimator, 
once again we need only devise consistent estimators for the variance components and 
then apply the GLS transformation shown earlier. One possible way to proceed is as 
follows: Because pooled OLS is still consistent, OLS provides a usable set of residuals. 
Using the OLS residuals for the specific groups, we would have, for each group,

sei
2 + ui

2 =
ei
=ei

T
.

The residuals from the dummy variable model are purged of the individual specific 
effect, ui, so sei

2  may be consistently (in T) estimated with

sei
2 =

ei
lsdv′ei

lsdv

T
,

where eit
lsdv = yit - xit

=blsdv - ai. Combining terms, then,

sn u
2 =

1
n a

n

i = 1
J ¢ ei

ols′ei
ols

T
≤ - ¢ ei

lsdv′ei
lsdv

T
≤ R =

1
n a

n

i = 1
(ui

2).

We can now compute the FGLS estimator as before.

11.6.2    AUTOCORRELATION IN PANEL DATA MODELS

As we saw in Section 11.3.2 and Example 11.4, autocorrelation—that is, correlation 
across the observations in the groups in a panel—is likely to be a substantive feature 
of the model. Our treatment of the effect there, however, was meant to accommodate 
autocorrelation in its broadest sense, that is, nonzero covariances across observations in 
a group. The results there would apply equally to clustered observations, as observed in 
Section 11.3.3. An important element of that specification was that with clustered data, 
there might be no obvious structure to the autocorrelation. When the panel data set 
consists explicitly of groups of time series, and especially if the time series are relatively 
long as in Example 11.9, one might want to begin to invoke the more detailed, structured 
time-series models which are discussed in Chapter 20.

11.7	 SPATIAL AUTOCORRELATION

The clustering effects suggested in Section 11.3.3 are motivated by an expectation that 
effects of neighboring locations would spill over into each other, creating a sort of 
correlation across space, rather than across time as we have focused on thus far. The 
effect should be common in cross-region studies, such as in agriculture, urban economics, 
and regional science. Studies of the phenomenon include Case’s (1991) study of 
expenditure patterns, Bell and Bockstael’s (2000) study of real estate prices, Baltagi and 
Li’s (2001) analysis of R&D spillovers, Fowler, Cover and Kleit’s (2014) study of fringe 
banking, Klier and McMillen’s (2012) analysis of clustering of auto parts suppliers, and 
Flores-Lagunes and Schnier’s (2012) model of cod fishing performance. Models of spatial 
regression and spatial autocorrelation are constructed to formalize this notion.30

30See Anselin (1988, 2001) for the canonical reference and Le Sage and Pace (2009) for a recent survey.
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A model with spatial autocorrelation can be formulated as follows: The regression 
model takes the familiar panel structure,

yit = xit
=B + eit + ui,i = 1, c, n; t = 1, c, T.

The common ui is the usual unit (e.g., country) effect. The correlation across space is 
implied by the spatial autocorrelation structure,

eit = la
n

j = 1
Wijejt + vt.

The scalar l is the spatial autocorrelation coefficient. The elements Wij are spatial (or 
contiguity) weights that are assumed known. The elements that appear in the sum above 
are a row of the spatial weight or contiguity matrix, W, so that for the n units, we have

Et = lWEt + vt, vt = vti.

The structure of the model is embodied in the symmetric weight matrix, W. Consider 
for an example counties or states arranged geographically on a grid or some linear scale 
such as a line from one coast of the country to another. Typically Wij will equal one for 
i,j pairs that are neighbors and zero otherwise. Alternatively, Wij may reflect distances 
across space, so that Wij decreases with increases in � i - j � . In Flores-Lagunes and 
Schnier’s (2012) study, the spatial weights were inversely proportional to the Euclidean 
distances between points in a grid. This would be similar to a temporal autocorrelation 
matrix. Assuming that �l �  is less than one, and that the elements of W are such that 
(I - lW) is nonsingular, we may write

Et = (In - lW)-1vt,

so for the n observations at time t,

yt = XtB + (In - lW)-1vt + u.

We further assume that ui and vi have zero means, variances su
2 and sv

2, and are 
independent across countries and of each other. It follows that a generalized regression 
model applies to the n observations at time t,

 E[yt � Xt] = Xt B,

 Var[yt � Xt] = (In - lW)-1[sv
2ii′](In - lW)-1 + su

2In.

At this point, estimation could proceed along the lines of Chapter 9, save for the need 
to estimate l. There is no natural residual-based estimator of l. Recent treatments of 
this model have added a normality assumption and employed maximum likelihood 
methods.31

A natural first step in the analysis is a test for spatial effects. The standard procedure 
for a cross section is Moran’s (1950) I statistic, which would be computed for each set 
of residuals, et, using

	 It =
na n

i = 1a n
j = 1Wij(eit - et)(ejt - et)¢ a n

i = 1a n
j = 1Wi, j≤a n

i = 1(eit - et)
2

.	 (11-53)

31The log-likelihood function for this model and numerous references appear in Baltagi (2005, p. 196). Extensive 
analysis of the estimation problem is given in Bell and Bockstael (2000).
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For a panel of T independent sets of observations, I =
1
T a T

t = 1It would use the full 

set of information. A large sample approximation to the variance of the statistic under 
the null hypothesis of no spatial autocorrelation is

	V 2 =
1
T

 

n2a n
i = 1a n

j = 1Wij
2 + 3¢ a n

i = 1a n
j = 1Wijb

2

- na n
i = 1¢ a n

j = 1Wij≤2

(n2 - 1)¢ a n
i = 1a n

j = 1Wij≤2
.	 (11-54)

The statistic I/V will converge to standard normality under the null hypothesis and can 
form the basis of the test. (The assumption of independence across time is likely to be 
dubious at best, however.) Baltagi, Song, and Koh (2003) identify a variety of LM tests 
based on the assumption of normality. Two that apply to cross-section analysis are32

LM(1) =
(e′We/s2)2

tr(W′W + W2)
for spatial autocorrelation and

LM(2) =
(e′Wy/s2)2

b′X′WMWXb/s2 + tr(W′W + W2)

for spatially lagged dependent variables, where e is the vector of OLS residuals, 
s2 = e′e/n, and M = I - X(X′X)-1X′. 33

Anselin (1988) identifies several possible extensions of the spatial model to dynamic 
regressions. A “pure space-recursive model” specifies that the autocorrelation pertains 
to neighbors in the previous period,

yit = g[Wyt - 1]i + xit
=B + eit.

A “time-space recursive model” specifies dependence that is purely autoregressive with 
respect to neighbors in the previous period,

yit = ryi,t - 1 + g[Wyt - 1]i + xit
=B + eit.

A “time-space simultaneous” model specifies that the spatial dependence is with respect 
to neighbors in the current period,

yit = ryi,t - 1 + l[Wyt]i + xit
=B + eit.

Finally, a “time-space dynamic model” specifies that autoregression depends on 
neighbors in both the current and last period,

yit = ryi,t - 1 + l[Wyt]i + g[Wyt - 1]i + xit
=B + eit.

Example 11.14    Spatial Autocorrelation in Real Estate Sales
Bell and Bockstael analyzed the problem of modeling spatial autocorrelation in large samples. 
This is a common problem with GIS (geographic information system) data sets. The central 
problem is maximization of a likelihood function that involves a sparse matrix, (I - lW). Direct 
approaches to the problem can encounter severe inaccuracies in evaluation of the inverse 

32See Bell and Bockstael (2000, p. 78).
33See Anselin and Hudak (1992).
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and determinant. Kelejian and Prucha (1999) have developed a moment-based estimator for 
l that helps alleviate the problem. Once the estimate of l is in hand, estimation of the spatial 
autocorrelation model is done by FGLS. The authors applied the method to analysis of a cross 
section of 1,000 residential sales in Anne Arundel County, Maryland, from 1993 to 1996. The 
parcels sold all involved houses built within one year prior to the sale. GIS software was used 
to measure attributes of interest.

The model is

	  + b2 In Lot size (LLT)
	  + b3 In Distance in km to Washington, DC (LDC)
	  + b4 In Distance in km to Baltimore (LBA)
	  + b5% land surrounding parcel in publicly owned space (POPN)
	  + b6% land surrounding parcel in natural privately owned space (PNAT)
	  + b7% land surrounding parcel in intensively developed use (PDEV)
	  + b8% land surrounding parcel in low density residential use (PLOW)
	  + b9 Public sewer service (1 if existing or planned, 0 if not)(PSEW)
	  + e.

(Land surrounding the parcel is all parcels in the GIS data whose centroids are within 
500 meters of the transacted parcel.) For the full model, the specification is

 y = XB + E,
 E = lWE + v.

The authors defined four contiguity matrices:

W1: Wij = 1/distance between i and j if distance 6 600 meters, 0 otherwise,
W2: Wij = 1 if distance between i and j 6 200 meters, 0 otherwise,
W3: Wij = 1 if distance between i and j 6 400 meters, 0 otherwise,
W4: Wij = 1 if distance between i and j 6 600 meters, 0 otherwise.

All contiguity matrices were row-standardized. That is, elements in each row are scaled so 
that the row sums to one. One of the objectives of the study was to examine the impact of 
row standardization on the estimation. It is done to improve the numerical stability of the 
optimization process. Because the estimates depend numerically on the normalization, it is 
not completely innocent.

Test statistics for spatial autocorrelation based on the OLS residuals are shown in 
Table 11.14. (These are taken from the authors’ Table 3.) The Moran statistics are distributed 
as standard normal while the LM statistics are distributed as chi-squared with one degree of 
freedom. All but the LM(2) statistic for W3 are larger than the 99 percent critical value from 
the respective table, so we would conclude that there is evidence of spatial autocorrelation. 
Estimates from some of the regressions are shown in Table 11.15. In the remaining results in 
the study, the authors find that the outcomes are somewhat sensitive to the specification of 
the spatial weight matrix, but not particularly so to the method of estimating l.

W1 W2 W3 W4

Moran’s I 7.89 9.67 13.66 6.88
LM(1) 49.95 84.93 156.48 36.46
LM(2) 7.40 17.22 2.33 7.42

Table 11.14  Test Statistics for Spatial Autocorrelation
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Example 11.15    Spatial Lags in Health Expenditures
Moscone, Knapp, and Tosetti (2007) investigated the determinants of mental health 
expenditure over six years in 148 British local authorities using two forms of the spatial 
correlation model to incorporate possible interaction among authorities as well as unobserved 
spatial heterogeneity. The models estimated, in addition to pooled regression and a random 
effects model, were as follows. The first is a model with spatial lags,

yt = gti + rWyt + XtB + u + Et,

where u is a 148 * 1 vector of random effects and i is a 148 * 1 column of ones. For each 
local authority,

yit = gt + r(wi
=yt) + xit

=B + ui + eit,

where wi
= is the ith row of the contiguity matrix, W. Contiguities were defined in W as one if 

the locality shared a border or vertex and zero otherwise. (The authors also experimented 
with other contiguity matrices based on “sociodemographic” differences.) The second model 
estimated is of spatial error correlation,

 yt = gti + XtB + u + Et,

 Et = l WEt + vt.

For each local authority, this model implies

yit = gt + xit
=B + ui + lΣ jwijejt + vit.

The authors use maximum likelihood to estimate the parameters of the model. To simplify 
the computations, they note that the maximization can be done using a two-step procedure. 
As we have seen in other applications, when � in a generalized regression model is known, 
the appropriate estimator is GLS. For both of these models, with known spatial autocorrelation 
parameter, a GLS transformation of the data produces a classical regression model. [See (9-11).] 
The method used is to iterate back and forth between simple OLS estimation of gt, B, and se

2 and 
maximization of the concentrated log-likelihood function which, given the other estimates, is a 
function of the spatial autocorrelation parameter, r or l, and the variance of the heterogeneity, su

2.

OLS FGLSa Spatial Based on 
W1 ML

Spatial Based on W1 
Gen. Moments

Parameter Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

a 4.7332 0.2047 4.7380 0.2048 5.1277 0.2204 5.0648 0.2169
b1 0.6926 0.0124 0.6924 0.0214 0.6537 0.0135 0.6638 0.0132
b2 0.0079 0.0052 0.0078 0.0052 0.0002 0.0052 0.0020 0.0053
b3 -0.1494 0.0195 -0.1501 0.0195 -0.1774 0.0245 -0.1691 0.0230
b4 -0.0453 0.0114 -0.0455 0.0114 -0.0169 0.0156 -0.0278 0.0143
b5 -0.0493 0.0408 -0.0484 0.0408 -0.0149 0.0414 -0.0269 0.0413
b6 0.0799 0.0177 0.0800 0.0177 0.0586 0.0213 0.0644 0.0204
b7 0.0677 0.0180 0.0680 0.0180 0.0253 0.0221 0.0394 0.0211
b8 -0.0166 0.0194 -0.0168 0.0194 -0.0374 0.0224 -0.0313 0.0215
b9 -0.1187 0.0173 -0.1192 0.0174 -0.0828 0.0180 -0.0939 0.0179
l — — — — 0.4582 0.0454 0.3517 —

aThe authors report using a heteroscedasticity model si
2 * f(LIVi, LIV i

2). The function f(.) is not identified.

Table 11.15  Estimated Spatial Regression Models
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The dependent variable in the models is the log of per capita mental health expenditures. 
The covariates are the percentage of males and of people under 20 in the area, average 
mortgage rates, numbers of unemployment claims, employment, average house price, 
median weekly wage, percent of single parent households, dummy variables for Labour 
party or Liberal Democrat party authorities, and the density of population (“to control for 
supply-side factors”). The estimated spatial autocorrelation coefficients for the two models 
are 0.1579 and 0.1220, both more than twice as large as the estimated standard error. 
Based on the simple Wald tests, the hypothesis of no spatial correlation would be rejected. 
The log-likelihood values for the two spatial models were +206.3 and +202.8, compared 
to -211.1 for the model with no spatial effects or region effects, so the results seem to 
favor the spatial models based on a chi-squared test statistic (with one degree of freedom) 
of twice the difference. However, there is an ambiguity in this result as the improved “fit” 
could be due to the region effects rather than the spatial effects. A simple random effects 
model shows a log-likelihood value of +202.3, which bears this out. Measured against 
this value, the spatial lag model seems the preferred specification, whereas the spatial 
autocorrelation model does not add significantly to the log-likelihood function compared 
to the basic random effects model.

11.8	 ENDOGENEITY

Recent panel data applications have relied heavily on the methods of instrumental 
variables. We will develop some of this methodology in detail in Chapter 13 where we 
consider generalized method of moments (GMM) estimation. At this point, we can 
examine three major building blocks in this set of methods, a panel data counterpart to 
two-stage least squares developed in Chapter 8, Hausman and Taylor’s (1981) estimator 
for the random effects model and Bhargava and Sargan’s (1983) proposals for estimating 
a dynamic panel data model. These tools play a significant role in the GMM estimators 
of dynamic panel models in Chapter 13.

11.8.1    INSTRUMENTAL VARIABLE ESTIMATION

The exogeneity assumption, E[xiteit] = 0, has been essential to the estimation strategies 
suggested thus far. For the generalized regression model (random effects), it was 
necessary to strengthen this to strict exogeneity, E[xiteis] = 0 for all t,s for given i. If 
these assumptions are not met, then xit is endogenous in the model, and typically an 
instrumental variable approach to consistent estimation would be called for.

The fixed effects case is simpler, and can be based entirely on results we have 
already obtained. The model is yit = ci + xit′B + eit. We assume there is a set of L Ú K 
instrumental variables, zit. The set of instrumental variables must be exogenous, that 
is, orthogonal to eit; the minimal assumption is E[ziteit] = 0. (It will turn out, at least 
initially, to be immaterial to estimation of B whether E[zitci] = 0, though one would 
expect it would be.) Then, the model in deviation form,

 yit - yi. = (xit - xi.)′B + (eit - ei.)

 y$ = x$it
=B + e

$
it,

is amenable to 2SLS. The IV estimator can be written

bIV,FE = (X
$

′Z
$
(Z

$
′Z

$
)-1Z

$
′X

$
)-1(X

$
′Z

$
(Z

$
′Z

$
)-1Z

$
′y$).
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We can see from this expression that this computation will break down if Z contains 
any time-invariant variables. Clearly if there are, then the corresponding columns in Z

$
 

will be zero. But, even if Z is not transformed, columns of X
$

′Z will still turn to zeros 
because X

$
′Z = X′Z

$
 (M0 is idempotent). Assuming, then, that Z is also transformed to 

deviations from group means, the 2SLS estimator is

 bIV,FE = Ja n
i = 1X

$
i
=Z
$

i(Z
$

i
=Z
$

i)
-1Z

$
i
=X
$

iR -1Ja n
i = 1X

$
i
=Z
$

i(Z
$

i
=Z
$

i)
-1Z

$
i
=y$iR

 = Ja n
i = 1X

$
n

i
=X
$
n

iR -1Ja n
i = 1X

$
n

i
=y$iR .�

(11-55)

For computing the asymptotic covariance matrix, without correction, we would use

Est.Asy.Var[bIV,FE] = sn e
2Ja n

i = 1X
$
n

i
=X
$
n

iR -1

	 sn e
2 =

Σi = 1
n Σt = 1

t (y
$

it - X
$

it
=bIV,FE)2

n(T - 1) - K
.� (11-56)

where

An asymptotic covariance matrix that is robust to heteroscedasticity and autocorrelation is

	 Est.Asy.Var[bIV,FE] = Ja n
i = 1X

$
n

i
=X
$
n

iR -1Ja n
i = 1¢X

$
n

i
=e$ i≤ ¢e$ i

=X
$
n

i≤R Ja n
i = 1X

$
n

i
=X
$
n

iR -1

.	 (11-57)

The procedure would be similar for the random effects model, but would (as before) 
require a first step to estimate the variances of e and u. The steps follow the earlier 
prescription:

1.	 Use pooled 2SLS to compute BnIV,Pooled and obtain residuals w. The estimator of 
se

2 + su
2 is w′w/(nT@K). Use FE 2SLS as described above to obtain bIV,FE, then use 

(11-56) to estimate se
 2. Use these two estimators to compute the estimator of su

 2, 
then �-1 = (1/se

2)[IT - (u(2 - u)/T)ii′]. [The result for �-1/2 is given in (11-33).]
2.	 Use IV for the generalized regression model,

	
BnIV,RE = Ja n

i = 1Xi
=�-1Zi(Zi

=�-1Zi)
-1Zi

=�-1Xi
=R -1Ja n

i = 1Xi
=�-1Zi(Zi

=�-1Zi)
-1Zi

=�-1yiR .

	�  (11-58)

3.	 The estimator for the asymptotic covariance matrix is the bracketed inverse. A 
robust covariance matrix is computed with

 Est.Asy.Var[BnIV,RE] =

   A-1Ja n
i = 1(Xi

=�n -1Zi(Zi
=�n -1Z)-1Zi

=�n -1En i)(Xi
=�n -1Zi(Zi

=�n -1Zi)
-1Zi

=�n -1En i)′ RA-1

   A = Ja n
i = 1Xi

=�n -1Zi(Zi
=�n -1Z1)

-1)Zi
=�n -1XiR .� (11-59)
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Example 11.16    Endogenous Income in a Health Production Model
In Example 10.8, we examined a health outcome, health satisfaction, in a two-equation model,

Health Satisfaction = a1 + g1ln Income + a2Female + a3Working + a4Public + a5AddOn
          +a6Age + eH,

ln Income    = b1 + g2Health Satisfaction + b2Female + b3Education + b4Married
          +b5HHKids + b6Age + eI.

The data are an unbalanced panel of 7,293 households. For simplicity, we will focus on the 
balanced panel of 887 households that were present for all 7 waves. The variable ln Income 
is endogenous in the health equation. There is also a time-invariant variable, Female, in 
the equation that will have to be dropped in this application as we are going to fit a fixed 
effects model. The instrumental variables are the constant, Working, Public, AddOn, Age, 
Education, Married, and HHKids. Table 11.16 presents the OLS, 2SLS, FE, RE, FE2SLS, and 
RE2SLS estimates for the health satisfaction equation. Robust standard errors are reported 
for each case. There is a clear pattern in the results; the instrumental variable estimates of 
the coefficient on ln Income are 7 to 10 times as large as the least squares estimates, and 
the estimated standard errors increase comparably.

11.8.2    HAUSMAN AND TAYLOR’S INSTRUMENTAL VARIABLES ESTIMATOR

Recall the original specification of the linear model for panel data in (11-1),

	 yit = xit
=B + zi

=A + eit.	 (11-60)

The random effects model is based on the assumption that the unobserved person-specific 
effects, zi, are uncorrelated with the included variables, xit. This assumption is a major 
shortcoming of the model. However, the random effects treatment does allow the model 
to contain observed time-invariant characteristics, such as demographic characteristics, 
while the fixed effects model does not—if present, they are simply absorbed into the fixed 
effects. Hausman and Taylor’s (1981) estimator for the random effects model suggests a 
way to overcome the first of these while accommodating the second.

Variable OLS 2SLS FE RE FE/2SLS RE/2SLS

Constant 9.17989 10.7061 — 9.69595 — 12.1185
(0.36704) (0.36931) — (0.28573) — (0.75062)

ln Income 0.18045 1.16373 0.13957 0.13001 0.99046 1.24378
(0.10931) (0.20863) (0.10246) (0.06970) (0.48337) (0.33140)

Working 0.63475 0.34196 0.12963 0.29491 -0.05739 0.00243
(0.12705) (0.09007) (0.11656) (0.07392) (0.15171) (0.12932)

Public -0.78176 -0.52551 -0.20282 -0.48854 -0.15991 -0.29334
(0.15438) (0.10963) (0.17409) (0.12775) (0.16779) (0.13964)

Add On 0.18664 -0.06131 -0.03252 0.04340 -0.01482 -0.02720
(0.29279) (0.24477) (0.17287) (0.21060) (0.16327) (0.15847)

Age -0.04606 -0.05523 -0.07178 -0.05926 -0.10419 -0.08409
(0.00583) (0.00369) (0.00900) (0.00468) (0.01992) (0.00882)

se 2.17305 2.21080 1.57382 2.47692 1.59032 2.57864
su — — — 1.49841 — 1.53728

Table 11.16  Estimated Health Satisfaction Equations (Robust standard errors in parentheses)
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Their model is of the form

yit = x1it
=  B1 + x2it

=  B2 + z1i
=  A1 + z2i

=  A2 + eit + ui,

where B = (B1
= , B2

=)′ and A = (A1
= , A2

=)′. In this formulation, all individual effects 
denoted zi are observed. As before, unobserved individual effects that are contained in 
zi
=A in (11-60) are contained in the person-specific random term, ui. Hausman and Taylor 

define four sets of observed variables in the model:

 x1it is K1 variables that are time varying and uncorrelated with ui,
 z1i is L1 variables that are time invariant and uncorrelated with ui,
 x2it is K2 variables that are time varying and are correlated with ui,
 z2i is L2 variables that are time invariant and are correlated with ui.

The assumptions about the random terms in the model are

E[ui � x1it, z1i] = 0 though E[ui � x2it, z2i] ≠ 0,

Var[ui � x1it, z1i, x2it, z2i] = su
2,

Cov[eit, ui � x1it, z1i, x2it, z2i] = 0,

Var[eit+ui � x1it, z1i, x2it, z2i] = s2 = se
2 + su

2,

Corr[eit + ui, eis + ui � x1it, z1i, x2it, z2i] = r = su
2/s2.

Note the crucial assumption that one can distinguish sets of variables x1 and z1 that 
are uncorrelated with ui from x2 and z2 which are not. The likely presence of x2 and z2 
is what complicates specification and estimation of the random effects model in the 
first place.

By construction, any OLS or GLS estimators of this model are inconsistent when 
the model contains variables that are correlated with the random effects. Hausman and 
Taylor have proposed an instrumental variables estimator that uses only the information 
within the model (i.e., as already stated). The strategy for estimation is based on the 
following logic: First, by taking deviations from group means, we find that

	 yit - yi. = (x1it - x1i.)′B1 + (x2it - x2i.)′B2 + eit - ei.,	 (11-61)

which implies that both parts of B can be consistently estimated by least squares, 
in spite of the correlation between x2 and u. This is the familiar, fixed effects, least 
squares dummy variable estimator—the transformation to deviations from group 
means removes from the model the part of the disturbance that is correlated with 
x2it. In the original model, Hausman and Taylor show that the group mean deviations 
can be used as (K1 + K2) instrumental variables for estimation of (B, A). That is the 
implication of (11-61). Because z1 is uncorrelated with the disturbances, it can likewise 
serve as a set of L1 instrumental variables. That leaves a necessity for L2 instrumental 
variables. The authors show that the group means for x1 can serve as these remaining 
instruments, and the model will be identified so long as K1 is greater than or equal 
to L2. For identification purposes, then, K1 must be at least as large as L2. As usual, 
feasible GLS is better than OLS, and available. Likewise, FGLS is an improvement 
over simple instrumental variable estimation of the model, which is consistent but 
inefficient.
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The authors propose the following set of steps for consistent and efficient estimation:

Step 1. Obtain the LSDV (fixed effects) estimator of B = (B1
= , B2

=)′ based on x1 and x2. 
The residual variance estimator from this step is a consistent estimator of se

2.

Step 2. Form the within-groups residuals, eit, from the LSDV regression at step 1. 
Stack the group means of these residuals in a full-sample-length data vector. Thus, 

eit
* = ei. =

1
T a

T

t = 1
(yit - xit

=bw), t = 1, c, T, i = 1, c, n. (The individual constant term, 

ai, is not included in eit
*.) (Note, from (11-16b), eit

* = ei. is ai, the ith constant term.) These 
group means are used as the dependent variable in an instrumental variable regression 
on z1 and z2 with instrumental variables z1 and x1. (Note the identification requirement 
that K1, the number of variables in x1, be at least as large as L2, the number of variables 
in z2.) The time-invariant variables are each repeated T times in the data matrices in this 
regression. This provides a consistent estimator of A.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of 
s*

2 = su
2 + se

2/T. From this estimator and the estimator of se
2 in step 1, we deduce an 

estimator of su
2 = s*

2 - se
2/T. We then form the weight for feasible GLS in this model 

by forming the estimate of

u = 1 - A se
2

se
2 + Tsu

2
.

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of 
variables in the model be

wit
= = (x1it

= , x2it
= , z1i

= , z2i
= ).

Collect these nT observations in the rows of data matrix W. The transformed variables 
for GLS are, as before when we first fit the random effects model,

wit
*′ = wit

= - unwi
=. and yit

* = yit - unyi.,

where un denotes the sample estimate of u. The transformed data are collected in the rows 
data matrix W* and in column vector y*. Note in the case of the time-invariant variables 
in wit, the group mean is the original variable, and the transformation just multiplies the 
variable by 1 - un. The instrumental variables are

vit
= = [(x1it - x1i.)′, (x2it - x2i.)′, z1i

=  x1i.].

These are stacked in the rows of the nT * (K1 + K2 + L1 + K1) matrix V. Note for the 
third and fourth sets of instruments, the time-invariant variables and group means are 
repeated for each member of the group. The instrumental variable estimator would be

	 (Bn ′, An ′)IV
= = [(W*′V)(V′V)-1(V′W*)]-1[(W*′V)(V′V)-1(V′y*)].34� (11-62)

The instrumental variable estimator is consistent if the data are not weighted, that is, 
if W rather than W* is used in the computation. But this is inefficient, in the same way 
that OLS is consistent but inefficient in estimation of the simpler random effects model.

34Note that the FGLS random effects estimator would be (Bn ′, An ′)RE
= = [W*′W*]-1W*′y*.
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Example 11.17    The Returns to Schooling
The economic returns to schooling have been a frequent topic of study by econometricians. 
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage 
(or log wage) equations, it is clear that the economic benefits of schooling are correlated 
with latent, unmeasured characteristics of the individual such as innate ability, intelligence, 
drive, or perseverance. As such, there is little question that simple random effects models 
based on panel data will suffer from the effects noted earlier. The fixed effects model is the 
obvious alternative, but these rich data sets contain many useful variables, such as race, 
union membership, and marital status, which are generally time invariant. Worse yet, the 
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor (1981) 
proposed the estimator described here as a solution to these problems. The authors studied 
the effect of schooling on (the log of) wages using a random sample from the PSID of 750 
men aged 25 to 55, observed in two years, 1968 and 1972. The two years were chosen so 
as to minimize the effect of serial correlation apart from the persistent unmeasured individual 
effects. The variables used in their model were as follows:

Experience  = age - years of schooling - 5,
Years of schooling = continuous variable
Bad Health  = a dummy variable indicating general health,
Race  = adummy variable indicating nonwhite (70 of 750 observations),
Union  = a dummy variable indicating union membership,
Unemployed  = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a period indicator.35

The primary focus of the study is the coefficient on schooling in the log wage equation. 
Because Schooling and, probably, Experience and Unemployed, are correlated with the 
latent effect, there is likely to be serious bias in conventional estimates of this equation. 
Table 11.17 reports some of their reported results. The OLS and random effects GLS results 
in the first two columns provide the benchmark for the rest of the study. The schooling 
coefficient is estimated at 0.0669, a value which the authors suspected was far too small. 
As we saw earlier, even in the presence of correlation between measured and latent effects, 
in this model, the LSDV estimator provides a consistent estimator of the coefficients on 
the time-varying variables. Therefore, we can use it in the Hausman specification test for 
correlation between the included variables and the latent heterogeneity. The calculations 
are shown in Section 11.5.5, result (11-44). Because there are three variables remaining in 
the LSDV equation, the chi-squared statistic has three degrees of freedom. The reported 
value of 20.2 is far larger than the 95% critical value of 7.81, so the results suggest that the 
random effects model is misspecified.

Hausman and Taylor proceeded to reestimate the log wage equation using their proposed 
estimator. The fourth and fifth sets of results in Table 11.17 present the instrumental variable 
estimates. The specification test given with the fourth set of results suggests that the 
procedure has produced the expected result. The hypothesis of the modified random effects 
model is now not rejected; the chi-squared value of 2.24 is much smaller than the critical 
value. The schooling variable is treated as endogenous (correlated with ui) in both cases. The 
difference between the two is the treatment of Unemployed and Experience. In the preferred 
equation, they are included in x2 rather than x1. The end result of the exercise is, again, the 
coefficient on schooling, which has risen from 0.0669 in the worst specification (OLS) to 
0.2169 in the last one, an increase of over 200 %. As the authors note, at the same time, the 
measured effect of race nearly vanishes.

35The coding of the latter is not given, but any two distinct values, including 0 for 1968 and 1 for 1972, would 
produce identical results. (Why?)
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Variables OLS GLS/RE LSDV HT/IV-GLS HT/IV-GLS

x1 Experience 0.0132 0.0133 0.0241 0.0217
(0.0011)a (0.0017) (0.0042) (0.0031)

Bad health -0.0843 -0.0300 -0.0388 -0.0278 -0.0388
(0.0412) (0.0363) (0.0460) (0.0307) (0.0348)

Unemployed -0.0015 -0.0402 -0.0560 -0.0559
Last Year (0.0267) (0.0207) (0.0295) (0.0246)
Time NRb NR NR NR NR

x2 Experience 0.0241
(0.0045)

Unemployed -0.0560
(0.0279)

z1 Race -0.0853 -0.0878 -0.0278 -0.0175
(0.0328) (0.0518) (0.0752) (0.0764)

Union 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)

Schooling 0.0669 0.0676
(0.0033) (0.0052)

Constant NR NR NR NR NR
z2 Schooling 0.1246 0.2169

(0.0434) (0.0979)
se 0.321 0.192 0.160 0.190 0.629
r = su

2 /(su
2 + se

2) 0.632 0.661 0.817

Spec. Test [3] 20.2 2.24 0.00

aEstimated asymptotic standard errors are given in parentheses.
bNR indicates that the coefficient estimate was not reported in the study.

Table 11.17  Estimated Log Wage Equations

Example 11.18    The Returns to Schooling
In Example 11.17, Hausman and Taylor find that the estimated effect of education in a wage 
equation increases substantially (nearly doubles from 0.0676 to 0.1246) when it is treated 
as endogenous in a random effects model, then increases again by 75% to 0.2169 when 
experience and unemployment status are also treated as endogenous. In this exercise, we 
will examine whether these results reappear in Cornwell and Rupert’s application. (We do not 
have the unemployment indicator.) Three sets of least squares results, ordinary, fixed effects, 
and feasible GLS random effects, appear at the left of Table 11.18. The education effect in 
the RE model is about 11%. (Time-invariant education falls out of the fixed effects model.) 
The effect increases by 29% to 13.8% when education is treated as endogenous, which is 
similar to Hausman and Taylor’s 12.5%. When experience is treated as exogenous, instead, 
the education effect rises again by 72%. (The second such increase in the Hausman/Taylor 
results resulted from treating experience as endogenous, not exogenous.)

11.8.3  �  CONSISTENT ESTIMATION OF DYNAMIC PANEL DATA MODELS: 
ANDERSON AND HSIAO’S IV ESTIMATOR

Consider a heterogeneous dynamic panel data model,

	 yit = gyi,t - 1 + xit
=B + ci + eit,	 (11-63)
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where ci is, as in the preceding sections of this chapter, individual unmeasured 
heterogeneity, that may or may not be correlated with xit. We consider methods of 
estimation for this model when T is fixed and relatively small, and n may be large and 
increasing.

Pooled OLS is obviously inconsistent. Rewrite (11-63) as

yit = gyi,t - 1 + xit
=B + wit.

The disturbance in this pooled regression may be correlated with xit, but either way, it is 
surely correlated with yi,t - 1. By substitution,

Cov[yi,t - 1, (ci + eit)] = sc
2 + g Cov[yi,t - 2, (ci + eit)],

and so on. By repeated substitution, it can be seen that for �g � 6 1 and moderately 
large T,

	 Cov[yi,t - 1, (ci + eit)] ≈ sc
2/(1 - g).	 (11-64)

[It is useful to obtain this result from a different direction. If the stochastic process that is 
generating (yit, ci) is stationary, then Cov[yi,t - 1, ci] = Cov[yi,t - 2, ci], from which we would 
obtain (11-64) directly. The assumption �g � 6 1 would be required for stationarity.] 

OLS LGLS/RE FE HT-RE/FGLS

x1 = Exogenous Time Varying

OCC -0.14001 -0.04322 -0.02148 -0.02004 -0.02070 -0.01445
South -0.05564 -0.00825 -0.00186 0.00821 0.00746 0.01512
SMSA 0.15167 -0.02840 -0.04247 -0.04227 -0.04183 -0.05219
IND 0.04679 0.00378 0.01921 0.01392 0.01359 0.01971
Exp 0.04010 0.08748 0.11321 0.10919
Expsq -0.00067 -0.00076 -0.00042 -0.00048

x2 = Endogenous Time Varying

Exp 0.11313 0.11313
ExpSq -0.00042 -0.00042
WKS 0.00422 0.00096 0.00084 0.00084 0.00084 0.00080
MS 0.04845 -0.07090 -0.02973 -0.02980 -0.02985 -0.03850
Union 0.09263 0.05835 0.03278 0.03293 0.03277 0.03773

f1 = Exogenous Time Invariant

Constant 5.25112 4.04144 2.82907 2.91273 1.74978
FEM -0.36779 -0.30938 -0.13209 -0.13093 -0.18008
Blk -0.16694 -0.21950 -0.27726 -0.28575 -0.13633
Education 0.05670 0.10707 0.14440

f2 = Endogenous Time Invariant

Education 0.13794 0.23726
se 0.34936 0.15206 0.15206 0.15199 0.15199 0.15199
su — 0.31453 0.94179 0.94180 0.99443

Table 11.18  Hausman–Taylor Estimates of Wage Equation
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Consequently, OLS and GLS are inconsistent. The fixed effects approach does not solve 
the problem either. Taking deviations from individual means, we have

yit - yi. = (xit - xi.)′B + g(yi,t - 1 - yi.) + (eit - ei.).

Anderson and Hsiao (1981, 1982) show that

 Cov[(yit - yi.), (eit - ei.)] ≈
-se

2

T(1 - g)2 J (T - 1) - Tg + gT

T
R

	  =
-se

2

T(1 - g)2 J(1 - g) -
1 - gT

T
R .

This does converge to zero as T increases, but, again, we are considering cases in which 
T is small or moderate, say 5 to 15, in which case the bias in the OLS estimator could 
be 15% to 60%. The implication is that the “within” transformation does not produce a 
consistent estimator.

It is easy to see that taking first differences is likewise ineffective. The first differences 
of the observations are

	 yit - yi,t - 1 = (xit - xi,t - 1)′B + g(yi,t - 1 - yi,t - 2) + (eit - ei,t - 1).	 (11-65)

As before, the correlation between the last regressor and the disturbance persists, so 
OLS or GLS based on first differences would also be inconsistent. There is another 
approach. Write the regression in differenced form as

∆yit = ∆xit
=  B + g ∆yi,t - 1 + ∆eit,

or, defining xit
* = [∆xit, ∆yi,t - 1], eit

* = ∆eit and U = [B′, g]′,

yit
* = xit

*′U + eit
*.

For the pooled sample, beginning with t = 3, write this as

y* = X*U + E*.

The least squares estimator based on the first differenced data is

 Un = c 1
n(T - 3)

 X*′X* d
-1

a 1
n(T - 3)

X*′y*b

	  = U + c 1
n(T - 3)

 X*′X* d
-1

a 1
n(T - 3)

X*′E*b .

Assuming that the inverse matrix in brackets converges to a positive definite 
matrix—that remains to be shown—the inconsistency in this estimator arises 
because the vector in parentheses does not converge to zero. The last element is 
plimnS ∞[1/(n(T - 3))]Σi = 1

n Σt = 3
T (yi,t - 1 - yi,t - 2)(eit - ei,t - 1), which is not zero.

Suppose there were a variable z* such that plim [1/(n(T - 3))]z*′E* = 0 (exogenous) 
and plim[1/(n(T - 3))]z*′X* ≠ 0 (relevant). Let Z = [∆X, z*]; zit

* replaces ∆yi,t - 1 in xit
*. 

By this construction, it appears we have a consistent estimator. Consider

 UnIV = (Z′X*)-1Z′y*.

	  = (Z′X*)-1Z′(X*U + E*)

	  = U + (Z′X*)-1Z′E*.
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Then, after multiplying throughout by 1/(n(T - 3)) as before, we find

Plim UnIV = U + plim{[1/(n(T - 3))](Z′X*)}-1 * 0,

which seems to solve the problem of consistent estimation.
The variable z* is an instrumental variable, and the estimator is an instrumental 

variable estimator (hence the subscript on the preceding estimator). Finding suitable, 
valid instruments, that is, variables that satisfy the necessary assumptions, for models in 
which the right-hand variables are correlated with omitted factors is often challenging. 
In this setting, there is a natural candidate—in fact, there are several. From (11-65), we 
have at period t = 3,

yi3 - yi2 = (xi3 - xi2)′B + g(yi2 - yi1) + (ei3 - ei2).

We could use yi1 as the needed variable because it is not correlated ei3 - ei2. Continuing in 
this fashion, we see that for t = 3, 4, c, T, yi,t - 2 satisfies our requirements. Alternatively, 
beginning from period t = 4, we can see that zit = (yi,t - 2 - yi,t - 3) once again satisfies 
our requirements. This is Anderson and Hsiao’s (1981) result for instrumental variable 
estimation of the dynamic panel data model. It now becomes a question of which 
approach, levels (yi,t - 2, t = 3, c, T), or differences (yi,t - 2 - yi,t - 3, t = 4, c, T) is a 
preferable approach. Arellano (1989) and Kiviet (1995) obtain results that suggest that 
the estimator based on levels is more efficient.

11.8.4  �  EFFICIENT ESTIMATION OF DYNAMIC PANEL DATA MODELS: 
THE ARELLANO/BOND ESTIMATORS

A leading application of the methods of this chapter is the dynamic panel data model, 
which we now write as

yit = xit
=B + dyi,t - 1 + ci + eit.

Several applications are described in Example 11.21. The basic assumptions of the model are

1.	 Strict exogeneity: E[eit � Xi, ci] = 0,
2.	 Homoscedasticity and Nonautocorrelation:

E[eiteis � Xi, ci] = se
2 if i = j and t = s and = 0 if i ≠ j or t ≠ s,

3.	 Common effects: The rows of the T * K data matrix Xi are xit
= . We will not assume 

mean independence. The “effects” may be fixed or random, so we allow

E[ci � Xi] = h(Xi).

(See Section 11.2.1.) We will also assume a fixed number of periods, T, for convenience. 
The treatment here (and in the literature) can be modified to accommodate unbalanced 
panels, but it is a bit inconvenient. (It involves the placement of zeros at various places 
in the data matrices defined below and changing the terminal indexes in summations 
from 1 to T.)

The presence of the lagged dependent variable in this model presents a 
considerable obstacle to estimation. Consider, first, the straightforward application 
of Assumption A.I3 in Section 8.2. The compound disturbance in the model is 
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(ci + eit). The correlation between yi,t - 1 and (ci + ei,t) is obviously nonzero because 
yi,t - 1 = xi,t - 1

= B + dyi,t - 2 + ci + ei,t - 1,

Cov[yi,t - 1, (ci + eit)] = sc
2 + d Cov[yi,t - 2, (ci + eit)].

If T is large and 0 6 d 6 1, then this covariance will be approximately sc
2/(1 - d). The 

large T assumption is not going to be met in most cases. But because d will generally be 
positive, we can expect that this covariance will be at least larger than sc

2. The implication 
is that both (pooled) OLS and GLS in this model will be inconsistent. Unlike the case for 
the static model (d = 0), the fixed effects treatment does not solve the problem. Taking 
group mean differences, we obtain

yi,t - yi. = (xi,t - xi.)′B + d(yi,t - 1 - yi.) + (ei,t - ei.).

As shown in Anderson and Hsiao (1981, 1982),

Cov[(yi,t - 1 - yi.), (ei,t - ei.)] ≈
-se

2

T 2  
(T - 1) - Td + dT

(1 - d)2
.

This result is O(1/T), which would generally be no problem if the asymptotics in the 
model were with respect to increasing T. But, in this panel data model, T is assumed to 
be fixed and relatively small. For conventional values of T, say 5 to 15, the proportional 
bias in estimation of d could be on the order of, say, 15 to 60 percent.

Neither OLS nor GLS are useful as estimators. There are, however, instrumental 
variables available within the structure of the model. Anderson and Hsiao (1981, 1982) 
proposed an approach based on first differences rather than differences from group 
means,

yit - yi,t - 1 = (xit - xi,t - 1)′B + d(yi,t - 1 - yi,t - 2) + eit - ei,t - 1.

For the first full observation,

	 yi3 - yi2 = (xi3 - xi2)′B + d(yi2 - yi1) + ei3 - ei2,	 (11-66)

the variable yi1 (assuming initial point t = 0 is where our data-generating process begins) 
satisfies the requirements, because ei1 is predetermined with respect to (ei3 - ei2). 
[That is, if we used only the data from periods 1 to 3 constructed as in (11-66), then the 
instrumental variables for (yi2 - yi1) would be zi(3) where zi(3) = (y1,1, y2,1, c, yn,1) for 
the n observations.] For the next observation,

yi4 - yi3 = (xi4 - xi3)′B + d(yi3 - yi2) + ei4 - ei3,

variables yi2 and (yi2 - yi1) are both available.
Based on the preceding paragraph, one might begin to suspect that there is, in fact, 

rather than a paucity of instruments, a large surplus. In this limited development, we 
have a choice between differences and levels. Indeed, we could use both and, moreover, 
in any period after the fourth, not only is yi2 available as an instrument, but so also is yi1, 
and so on. This is the essential observation behind the Arellano, Bover, and Bond (1991, 
1995) estimators, which are based on the very large number of candidates for instrumental 
variables in this panel data model. To begin, with the model in first differences form, for 
yi3 - yi2, variable yi1 is available. For yi4 - yi3, yi1 and yi2 are both available; for yi5 - yi4, 
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we have yi1, yi2, and yi3, and so on. Consider, as well, that we have not used the exogenous 
variables. With strictly exogenous regressors, not only are all lagged values of yis for s 
previous to t - 1, but all values of xit are also available as instruments. For example, for 
yi4 - yi3, the candidates are yi1, yi2 and (xi1

= , xi2
= , c, xiT

= ) for all T periods. The number 
of candidates for instruments is, in fact, potentially huge.36 If the exogenous variables are 
only predetermined, rather than strictly exogenous, then only E[eit � xi,t, xi,t - 1, c, xi1] = 0, 
and only vectors xis from 1 to t - 1 will be valid instruments in the differenced equation 
that contains eit - ei,t - 1.37 This is hardly a limitation, given that in the end, for a moderate 
sized model, we may be considering potentially hundreds or thousands of instrumental 
variables for estimation of what is usually a small handful of parameters.

We now formulate the model in a more familiar form, so we can apply the 
instrumental variable estimator. In terms of the differenced data, the basic equation is

yit - yi,t - 1 = (xit - xi,t - 1)′B + d(yi,t - 1 - yi,t - 2) + eit - ei,t - 1,

	 ∆yit = (∆xit)′B + d(∆yi,t - 1) + ∆eit,�
(11-67)or

where ∆ is the first difference operator, ∆at = at - at - 1 for any time-series variable (or 
vector) at. (It should be noted that a constant term and any time-invariant variables in 
xit will fall out of the first differences. We will recover these below after we develop the 
estimator for B.) The parameters of the model to be estimated are U = (B′, d)′ and se

2. 
For convenience, write the model as

y∼it = x∼it
=U + e∼it.

We are going to define an instrumental variable estimator along the lines of (8-9) and 
(8-10). Because our data set is a panel, the counterpart to

	 Z′X∼ = a
n

i = 1
zix∼i

=	 (11-68)

in the cross-section case would seem to be

	 Z′X∼ = a
n

i = 1
a
T

t = 3
zitx∼it

= = a
n

i = 1
Zi

=X∼i
=,	 (11-69)

y∼i = D ∆yi3

∆yi4

f
∆yiTi

T , X∼i = D ∆xi3
= ∆yi2

∆xi4
= ∆yi3

g
∆xiT

= ∆yi,T - 1

T ,

where there are (T - 2) observations (rows) and K + 1 columns in X∼i. There is a 
complication, however, in that the number of instruments we have defined may 
vary by period, so the matrix computation in (11-69) appears to sum matrices of 
different sizes.

36See Ahn and Schmidt (1995) for a very detailed analysis.
37See Baltagi and Levin (1986) for an application.
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Consider an alternative approach. If we used only the first full observations defined 
in (11-67), then the cross-section version would apply, and the set of instruments Z in 
(11-68) with strictly exogenous variables would be the n * (1 + KT) matrix,

Z(3) = D y1,1, x1,1
= , x1,2

= , gx1,T
=

y2,1, x2,1
= , x2,2

= , gx2,T
=

f
yn,1, xn,1

= , xn,2
= , gxn,T

=

T ,

and the instrumental variable estimator of (8-9) would be based on

X∼(3) = D x1,3
= - x1,2

= y1,4 - y1,3

x2,3
= - x2,2

= y2,4 - y2,3

f f
xn,3
= - xn,2

= yn,4 - yn,3

T  and y∼(3) = D y1,3 - y1,2

y2,3 - y2,2

f
yn,3 - yn,2

T .

The subscript “(3)” indicates the first observation used for the left-hand side of the 
equation. Neglecting the other observations, then, we could use these data to form the 
IV estimator in (8-9), which we label for the moment UnIV(3). Now, repeat the construction 
using the next (fourth) observation as the first, and, again, using only a single year of the 
panel. The data matrices are now

	 X∼(4) = D x1,4
= - x1,3

= y1,3 - y1,2

x2,4
= - x2,3

= y2,3 - y2,2

f f
xn,4
= - xn,3

= yn,3 - yn,2

T , y∼(4) = D y1,4 - y1,3

y2,4 - y2,3

f
yn,4 - yn,3

T , and	

(11-70)

Z(4) = D y1,1, y1,2, x1,1
= , x1,2

= , gx1,T
=

y2,1, y2,2, x2,1
= , x2,2

= , gx2,T
=

f
yn,1, yn,2, xn,1

= , xn,2
= , gxn,T

T ,

and we have a second IV estimator, UnIV(4), also based on n observations, but, now, 
2 + KT instruments. And so on.

We now need to reconcile the T - 2 estimators of U that we have constructed, 
UnIV(3), UnIV(4), c, UnIV(T). We faced this problem in Section 11.5.8 where we examined 
Chamberlain’s formulation of the fixed effects model. The minimum distance estimator 
suggested there and used in Carey’s (1997) study of hospital costs in Example 11.13 
provides a means of efficiently “averaging” the multiple estimators of the parameter 
vector.We will return to the MDE in Chapter 13. For the present, we consider, instead, 
Arellano and Bond’s approach (1991)38 to this problem. We will collect the full set of 
estimators in a counterpart to (11-56) and (11-57). First, combine the sets of instruments 
in a single matrix, Z, where for each individual, we obtain the (T - 2) * L matrix Zi. 
The definition of the rows of Zi depend on whether the regressors are assumed to be 
strictly exogenous or predetermined. For strictly exogenous variables,

38And Arellano and Bover’s (1995).
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	Zi = Dyi,1, xi,1
= , xi,2

= , c x=
i,T 0 c 0

0 yi,1, yi,2, xi,1
= , xi,2

= , cxi,T
= c 0

c c c c
0 0 c yi,1, yi,2, c, yi,T - 2, xi,1

= , xi,2
= , cxi,T

=

T ,	

(11.71a)

and L = a T - 2
i = 1 (i + TK) = (T - 2)(T - 1)/2 + (T - 2)TK. For only predetermined 

variables, the matrix of instrumental variables is

Zi = Dyi,1, xi,1
= , xi,2

= 0 c 0
0 yi,1,yi,2, xi,1

= , xi,2
= , xi,3

= c 0
c c c c
0 0 c yi,1, yi,2, c, yi,T - 2, xi,1

= , xi,2
= , cxi,T - 1

=

T ,

� (11.71b)

and L = Σi = 1
T - 2 (i(K + 1) + K) = [(T - 2)(T - 1)/2](1 + K) + (T - 2)K. This construc

tion does proliferate instruments (moment conditions, as we will see in Chapter 13). In 
the application in Example 11.18, we have a small panel with only T = 7 periods, and 
we fit a model with only K = 4 regressors in xit, plus the lagged dependent variable. The 
strict exogeneity assumption produces a Zi matrix that is (5 * 135) for this case. With 
only the assumption of predetermined xit, Zi collapses slightly to (5 * 95). For purposes 
of the illustration, we have used only the two previous observations on xit. This further 
reduces the matrix to

	 Zi = Dyi,1, xi,1
= , xi,2

= 0 c 0
0 yi,1, yi,2, xi,2, xi,3

= c 0
c c c c
0 0 c yi,1, yi,2, c, yi,T - 2, xi,T - 2

= ,xi,T - 1
=

T ,

(11.71c)

which, with T = 7 and K = 4, will be (5 * 55).39

Now, we can compute the two-stage least squares estimator in (11-55) using our 
definitions of the data matrices Zi, X

∼
i, and y∼i and (11-69). This will be

 UnIV = J ¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Zi

=Zi≤-1¢ an
i = 1

Zi
=X∼i≤ R -1

	  * J ¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Zi

=Zi≤-1¢ an
i = 1

Zi
=y∼i≤ R .�

(11-72)

The natural estimator of the asymptotic covariance matrix for the estimator would be

	 Est.Asy.Var[UnIV] = sn ∆e
2 J ¢ an

i = 1
X∼i

=Zi≤ ¢ an
i = 1

Zi
=Zi≤-1¢ an

i = 1
Zi

=X∼i≤ R -1

,	 (11-73)

39Baltagi (2005, Chapter 8) presents some alternative configurations of Zi that allow for mixtures of strictly 
exogenous and predetermined variables.
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where

	 sn ∆e
2 = a n

i = 1a T
t = 3[(yit - yi,t - 1) - (xit - xi,t - 1)′Bn - dn(yi,t - 1 - yi,t - 2)]2

n(T - 2)
 .	 (11-74)

However, this variance estimator is likely to understate the true asymptotic 
variance because the observations are autocorrelated for one period. Because 
(yit - yi,t - 1) = x∼it

=U + (eit - ei,t - 1) = x∼it
=U + vit, Cov[vit, vi,t - 1] = Cov[vit, vi,t + 1] = -se

2. 
Covariances at longer lags or leads are zero. In the differenced model, though the 
disturbance covariance matrix is not sv

2I, it does take a particularly simple form,

	 Cov • ei,3 - ei,2

ei,4 - ei,3

ei,5 - ei,4

g
ei,T - ei,T - 1

µ = se
2 E 2 -1 0 c 0

-1 2 -1 c 0
0 -1 2 c 0
c c -1 c -1
0 0 c -1 2

U = se
2�i.	 (11-75)

The implication is that the estimator in (11-74) estimates not se
2 but 2se

2. However, 
simply dividing the estimator by two does not produce the correct asymptotic covariance 
matrix because the observations themselves are autocorrelated. As such, the matrix in 
(11-73) is inappropriate. A robust correction can be based on the counterpart to the 
White estimator that we developed in (11-3). For simplicity, let

An = J ¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Zi

=Zi≤-1¢ an
i = 1

Zi
=X∼i≤ R -1

.

Then, a robust covariance matrix that accounts for the autocorrelation would be

	 An J ¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Zi

=Zi≤-1¢ an
i = 1

Zi
=vnivn i

=Zi≤ ¢ an
i = 1

Zi
=Zi≤-1¢ an

i = 1
Zi

=X∼i≤ RAn .	 (11-76)

[One could also replace the vnivn i
= in (11-76) with sn e

2�i in (11-75) because this is the known 
expectation.]

It will be useful to digress briefly and examine the estimator in (11-72). The 
computations are less formidable than it might appear. Note that the rows of Zi in 

(11-71a,b,c) are orthogonal. It follows that the matrix F = a
n

i = 1
Zi

=Zi in (11-72) is block-

diagonal with T - 2 blocks. The specific blocks in F are Ft = a
n

i = 1
zitzit

= = Z(t)
= Z(t), for 

t = 3, c, T. Because the number of instruments is different in each period—see (11-
71)—these blocks are of different sizes, say, (Lt * Lt). The same construction shows that 
the matrix a n

i = 1X
∼

i
=Zi is actually a partitioned matrix of the form

a
n

i = 1
X∼i

=Zi = JX∼(3)
= Z(3) X∼(4)

= Z(4) c X∼(T)
= Z(T) R ,

where, again, the matrices are of different sizes; there are T - 2 rows in each but the 
number of columns differs. It follows that the inverse matrix, 1a n

i = 1Zi
=Zi2 -1, is also 

block-diagonal, and that the matrix quadratic form in (11-72) can be written
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 ¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Z∼i

=Zi≤-1¢ an
i = 1

Zi
=X∼i≤ = a

T

t = 3
(X∼(t)

= Z(t))(Z(t)
= Z(t))

-1(Z(t)
= X∼(t))

 = a
T

t = 3
¢X∼n (t)

= X∼n (t)≤
 = a

T

t = 3
W(t),

[see (8-9) and the preceding result]. Continuing in this fashion, we find¢ an
i = 1

X∼i
=Zi≤ ¢ an

i = 1
Z∼i

=Zi≤-1¢ an
i = 1

Zi
=y∼i≤ = a

T

t = 3
X∼n (t)

= y(t).

From (8-10), we can see that

 X∼n (t)
= y(t) = ¢X∼n (t)

= X∼n (t)≤UnIV(t)

 = W(t)U
n

IV(t).

Combining the terms constructed thus far, we find that the estimator in (11-72) can be 
written in the form

 UnIV = ¢ aT
t = 3

W(t)≤-1¢ aT
t = 3

W(t)U
n

IV(t)≤
 = a

T

t = 3
R(t)U

n

IV(t),

where

R(t) = ¢ aT
t = 3

W(t)≤-1

W(t) and a
T

t = 3
R(t) = I.

In words, we find that, as might be expected, the Arellano and Bond estimator of the 
parameter vector is a matrix weighted average of the T - 2 period-specific two-stage 
least squares estimators, where the instruments used in each period may differ. Because 
the estimator is an average of estimators, a question arises, is it an efficient average—
are the weights chosen to produce an efficient estimator? Perhaps not surprisingly, the 
answer for this Un is no; there is a more efficient set of weights that can be constructed 
for this model. We will assemble them when we examine the generalized method of 
moments estimator in Chapter 13.

There remains a loose end in the preceding. After (11-67), it was noted that this 
treatment discards a constant term and any time-invariant variables that appear in 
the model. The Hausman and Taylor (1981) approach developed in the preceding 
section suggests a means by which the model could be completed to accommodate this 
possibility. Expand the basic formulation to include the time-invariant effects, as

yit = xit
=B + dyi,t - 1 + A + f i

=G + ci + eit,

where fi is the set of time-invariant variables and G is the parameter vector yet to 
be estimated. This model is consistent with the entire preceding development, as the 
component a + f i

=G would have fallen out of the differenced equation along with ci at 
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the first step at (11-63). Having developed a consistent estimator for U = (B′, d)′, we 
now turn to estimation of (a, G′)′. The residuals from the IV regression (11-72),

wit = xit
=BnIV - dnIVyi,t - 1,

are pointwise consistent estimators of

vit = a + f i
=G + ci + eit.

Thus, the group means of the residuals can form the basis of a second-step regression,

	 wi = a + f i
=G + ci + ei + hi,	 (11-77)

where hi = (wi. - vi.) is the estimation error that converges to zero as Un converges 
to U. The implication would seem to be that we can now linearly regress these group 
mean residuals on a constant and the time-invariant variables fi to estimate a and G. 
The flaw in the strategy, however, is that the initial assumptions of the model do not 
state that ci is uncorrelated with the other variables in the model, including the implicit 
time-invariant terms, fi. Therefore, least squares is not a usable estimator here unless the 
random effects model is assumed, which we specifically sought to avoid at the outset. 
As in Hausman and Taylor’s treatment, there is a workable strategy if it can be assumed 
that there are some variables in the model, including possibly some among the fi as well 
as others among xit that are uncorrelated with ci and eit. These are the z1 and x1 in the 
Hausman and Taylor estimator (see step 2 in the development of the preceding section). 
Assuming that these variables are available—this is an identification assumption that 
must be added to the model—then we do have a usable instrumental variable estimator, 
using as instruments the constant term (1), any variables in fi that are uncorrelated with 
the latent effects or the disturbances (call this fi1), and the group means of any variables 
in xit that are also exogenous. There must be enough of these to provide a sufficiently 
large set of instruments to fit all the parameters in (11-77). This is, once again, the same 
identification we saw in step 2 of the Hausman and Taylor estimator, K1, the number 
of exogenous variables in xit must be at least as large as L2, which is the number of 
endogenous variables in fi. With all this in place, we then have the instrumental variable 
estimator in which the dependent variable is wi., the right-hand-side variables are (1, fi), 
and the instrumental variables are (1, fi1, xi1.).

There is yet another direction that we might extend this estimation method. In (11-76), 
we have implicitly allowed a more general covariance matrix to govern the generation of 
the disturbances eit and computed a robust covariance matrix for the simple IV estimator. 
We could take this a step further and look for a more efficient estimator. As a library of 
recent studies has shown, panel data sets are rich in information that allows the analyst 
to specify highly general models and to exploit the implied relationships among the 
variables to construct much more efficient generalized method of moments (GMM) 
estimators.40 We will return to this development in Chapter 13.

Example 11.19    Dynamic Labor Supply Equation
In Example 8.5, we used instrumental variables to fit a labor supply equation,

Wksit = g1 + g2 ln Wageit + g3 Edi + g4 Unionit + g5 Femi + uit.

40See, in particular, Arellano and Bover (1995) and Blundell and Bond (1998).
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To illustrate the computations of this section, we will extend this model as follows,

 Wksit = b1 In Wageit + b2 Unionit + b3 Occit + b4 Expit + d Wksi,t - 1

 + a + g1 Edi + g2 Femi + ci + eit.

(We have rearranged the variables and parameter names to conform to the notation in this 
section.) We note, in theoretical terms, as suggested in the earlier example, it may not be 
appropriate to treat ln Wageit as uncorrelated with eit or ci. However, we will be analyzing the 
model in first differences. It may well be appropriate to treat changes in wages as exogenous. 
That would depend on the theoretical underpinnings of the model. We will treat the variable 
as predetermined here, and proceed. There are two time-invariant variables in the model, 
Femi, which is clearly exogenous, and Edi, which might be endogenous. The identification 
requirement for estimation of (a, g1, g2) is met by the presence of three exogenous variables, 
Unionit, Occit, and Expit (K1 = 3 and L2 = 1).

The differenced equation analyzed at the first step is

∆Wksit = b1∆ In Wageit + b2∆Unionit + b3∆Occit + b4∆Expit + d∆Wksi,t - 1 + ∆eit.

We estimated the parameters and the asymptotic covariance matrix according to (11-73) and 
(11-76). For specification of the instrumental variables, we used the one previous observation on 
xit, as shown in the text. Table 11.19 presents the computations with several other inconsistent 
estimators.

The various estimates are quite far apart. In the absence of the common effects (and 
autocorrelation of the disturbances), all five estimators shown would be consistent. Given 
the very wide disparities, one might suspect that common effects are an important feature 

(Estimated standard errors in parentheses)

Variable
OLS Full 
Equation

OLS 
Differenced IV Differenced

Random 
Effects

Fixed 
Effects

ln Wage 0.2966 -0.1100 -1.1402 0.2281 0.5886
(0.2052) (0.4565) (0.2639) [0.8768] (0.2405) (0.4790)

Union -1.2945 1.1640 2.7089 -1.4104 0.1444
(0.1713) (0.4222) (0.3684) [0.8676] (0.2199) (0.4369)

Occ 0.4163 0.8142 2.2808 0.5191 1.0064
(0.2005) (0.3924) (1.3105) [0.7220] (2.2484) (0.4030)

Exp -0.0295 -0.0742 -0.0208 -0.0353 -0.1683
(0.0073) (0.0975) (0.1126) [0.1104] (0.0102) (0.0595)

Wkst - 1 0.3804 -0.3527 0.1304 0.2100 0.0148
(0.0148) (0.0161) (0.0476) [0.0213] (0.0151) (0.0171)

Constant 28.918 — -0.4110 37.4610 —
(1.4490) — (0.3364) (1.6778) —

Ed -0.0690 — 0.0321 -0.0657 —
(0.0370) — (0.0259) (0.0499) —

Fem -0.8607 — -0.0122 -1.1463 —
(0.2544) — (0.1554) (0.3513) —

Sample t = 2 to 7 t = 3 to 7 t = 3 to 7 t = 2 to 7 t = 2 to 7
Observations 595 595 595, Means used t = 7 595 595

TABLE 11.19  Estimated Dynamic Panel Data Model Using Arellano and Bond Estimator
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of the data. The second standard errors given in brackets with the IV estimates are based on 
the uncorrected matrix in (11-73) with sn ∆e

2  in (11-74) divided by two. We found the estimator 
to be quite volatile, as can be seen in the table. The estimator is also very sensitive to the 
choice of instruments that comprise Zi. Using (11-71a) instead of (11-71b) produces wild 
swings in the estimates and, in fact, produces implausible results. One possible explanation 
in this particular example is that the instrumental variables we are using are dummy variables 
that have relatively little variation over time.

11.8.5    NONSTATIONARY DATA AND PANEL DATA MODELS

Some of the discussion thus far (and to follow) focuses on “small T” statistical results. 
Panels are taken to contain a fixed and small T observations on a large n individual units. 
Recent research using cross-country data sets such as the Penn World Tables (http://
cid.econ.ucdavis.edu/pwt.html), which now include data on over 150 countries for well 
over 50 years, have begun to analyze panels with T sufficiently large that the time-series 
properties of the data become an important consideration. In particular, the recognition 
and accommodation of nonstationarity that is now a standard part of single time-series 
analyses (as in Chapter 21) are now seen to be appropriate for large-scale cross-country 
studies, such as income growth studies based on the Penn World Tables, cross-country 
studies of health care expenditure, and analyses of purchasing power parity.

The analysis of long panels, such as in the growth and convergence literature, 
typically involves dynamic models, such as

	 yit = ai + giyi,t - 1 + xit
=Bi + eit.	 (11-78)

In single time-series analysis involving low-frequency macroeconomic flow data such 
as income, consumption, investment, the current account deficit, and so on, it has long 
been recognized that estimated regression relations can be distorted by nonstationarity 
in the data. What appear to be persistent and strong regression relationships can be 
entirely spurious and due to underlying characteristics of the time-series processes 
rather than actual connections among the variables. Hypothesis tests about long-run 
effects will be considerably distorted by unit roots in the data. It has become evident 
that the same influences, with the same deletarious effects, will be found in long panel 
data sets. The panel data application is further complicated by the possible heterogeneity 
of the parameters. The coefficients of interest in many cross-country studies are the 
lagged effects, such as gi in (11-78), and it is precisely here that the received results on 
nonstationary data have revealed the problems of estimation and inference. Valid tests 
for unit roots in panel data have been proposed in many studies. Three that are frequently 
cited are Levin and Lin (1992), Im, Pesaran, and Shin (2003), and Maddala and Wu (1999).

There have been numerous empirical applications of time-series methods for 
nonstationary data in panel data settings, including Frankel and Rose’s (1996) and 
Pedroni’s (2001) studies of purchasing power parity, Fleissig and Strauss (1997) on real 
wage stationarity, Culver and Papell (1997) on inflation, Wu (2000) on the current account 
balance, McCoskey and Selden (1998) on health care expenditure, Sala-i-Martin (1996) 
on growth and convergence, McCoskey and Kao (1999) on urbanization and production, 
and Coakely et al. (1996) on savings and investment. An extensive enumeration appears 
in Baltagi (2005, Chapter 12).

A subtle problem arises in obtaining results useful for characterizing the properties 
of estimators of the model in (11-78). The asymptotic results based on large n and large 
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T are not necessarily obtainable simultaneously, and great care is needed in deriving 
the asymptotic behavior of useful statistics. Phillips and Moon (1999, 2000) are standard 
references on the subject.

We will return to the topic of nonstationary data in Chapter 21. This is an emerging 
literature, most of which is beyond the level of this text. We will rely on the several 
detailed received surveys, such as Bannerjee (1999), Smith (2000), and Baltagi and Kao 
(2000), to fill in the details.

11.9	 NONLINEAR REGRESSION WITH PANEL DATA

The extension of the panel data models to the nonlinear regression case is, perhaps 
surprisingly, not at all straightforward. Thus far, to accommodate the nonlinear model, 
we have generally applied familiar results to the linearized regression. This approach will 
carry forward to the case of clustered data. (See Section 11.3.3.) Unfortunately, this will 
not work with the standard panel data methods. The nonlinear regression will be the first 
of numerous panel data applications that we will consider in which the wisdom of the 
linear regression model cannot be extended to the more general framework.

11.9.1    A ROBUST COVARIANCE MATRIX FOR NONLINEAR LEAST SQUARES

The counterpart to (11-3) or (11-4) would simply replace Xi with Xn i
0 where the rows 

are the pseudo regressors for cluster i as defined in (7-12) and “ ¿” indicates that it is 
computed using the nonlinear least squares estimates of the parameters.

Example 11.20    Health Care Utilization
The recent literature in health economics includes many studies of health care utilization. A 
common measure of the dependent variable of interest is a count of the number of encounters 
with the health care system, either through visits to a physician or to a hospital. These counts of 
occurrences are usually studied with the Poisson regression model described in Section 18.4. 
The nonlinear regression model is

E[yi � xi] = exp(xi
=B).

A recent study in this genre is “Incentive Effects in the Demand for Health Care: A Bivariate 
Panel Count Data Estimation” by Riphahn, Wambach, and Million (2003). The authors were 
interested in counts of physician visits and hospital visits. In this application, they were 
particularly interested in the impact of the presence of private insurance on the utilization 
counts of interest, that is, whether the data contain evidence of moral hazard.

The raw data are published on the Journal of Applied Econometrics data archive Web site, 
The URL for the data file is http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-
million/. The variables in the data file are listed in Appendix Table F7.1. The sample is an 
unbalanced panel of 7,293 households, the German Socioeconomic Panel data set. The 
number of observations varies from one to seven (1,525; 1,079; 825; 926; 1,311; 1,000; 887), 
with a total number of observations of 27,326. We will use these data in several examples 
here and later in the book.

The following model uses a simple specification for the count of number of visits to the 
physican in the observation year,

xit = (1, ageit, educit, incomeit, kidsit).

Table 11.20 details the nonlinear least squares iterations and the results. The convergence 
criterion for the iterations is e0= X0 (X0= X0)-1 X0=e0 6 10-10. Although this requires 11 iterations, 

M11_GREE1366_08_SE_C11.indd   446 2/24/17   2:41 PM



	 CHAPTER 11  ✦  Models For Panel Data  	447

the function actually reaches the minimum in 7. The estimates of the asymptotic standard 
errors are computed using the conventional method, s2(Xn0′Xn0)-1, and then by the cluster 
correction in (11-4). The corrected standard errors are considerably larger, as might be 
expected given that these are a panel data set.

11.9.2    FIXED EFFECTS IN NONLINEAR REGRESSION MODELS

The nonlinear panel data regression model would appear as

yit = h(xit, B) + eit, t = 1, c, Ti, i = 1, c, n.

Consider a model with latent heterogeneity, ci. An ambiguity immediately emerges; how 
should heterogeneity enter the model? Building on the linear model, an additive term 
might seem natural, as in

	 yit = h(xit, B) + ci + eit, t = 1, c, Ti, i = 1, c, n.	 (11-79)

But we can see in the previous application that this is likely to be inappropriate. The 
loglinear model of the previous section is constrained to ensure that E[yit � xit] is positive. 
But an additive random term ci as in (11-79) could subvert this; unless the range of ci 
is restricted, the conditional mean could be negative. The most common application of 
nonlinear models is the index function model,

yit = h(xit
=B + ci) + eit.

This is the natural extension of the linear model, but only in the appearance of the 
conditional mean. Neither the fixed effects nor the random effects model can be 
estimated as they were in the linear case.

Begin NLSQ iterations. Linearized regression.

Iteration = 1; Sum of squares = 1014865.00; Gradient = 156281.794
Iteration = 2; Sum of squares = 8995221.17; Gradient = 8131951.67

Iteration = 3; Sum of squares = 1757006.18; Gradient = 897066.012
Iteration = 4; Sum of squares = 930876.806; Gradient = 73036.2457
Iteration = 5; Sum of squares = 860068.332; Gradient = 2430.80472
Iteration = 6; Sum of squares = 857614.333; Gradient = 12.8270683
Iteration = 7; Sum of squares = 857600.927; Gradient = 0.411851239E@01
Iteration = 8; Sum of squares = 857600.883; Gradient = 0.190628165E@03
Iteration = 9; Sum of squares = 857600.883; Gradient = 0.904650588E@06
Iteration = 10; Sum of squares = 857600.883; Gradient = 0.430441193E@08
Iteration = 11; Sum of squares = 857600.883; Gradient = 0.204875467E@10
Convergence achieved

Variable Estimate Std. Error Robust Std. Error

Constant 0.9801 0.08927 0.12522
Age 0.0187 0.00105 0.00142
Education -0.0361 0.00573 0.00780
Income -0.5911 0.07173 0.09702
Kids -0.1692 0.02642 0.03330

Table 11.20  Nonlinear Least Squares Estimates of a Health Care Utilization Equation
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Consider the fixed effects model first. We would write this as

	 yit = h(xit
=B + ai) + eit,	 (11-80)

where the parameters to be estimated are B and ai, i = 1, c, n. Transforming the data to 
deviations from group means does not remove the fixed effects from the model. For example,

yit - yi. = h(xit
=B + ai) -

1
Ti

 a
Ti

s = 1
h(xis

= B + ai),

which does not simplify things at all. Transforming the regressors to deviations is likewise 
pointless. To estimate the parameters, it is necessary to minimize the sum of squares with 
respect to all n + K parameters simultaneously. Because the number of dummy variable 
coefficients can be huge—the preceding example is based on a data set with 7,293 
groups—this can be a difficult or impractical computation. A method of maximizing a 
function (such as the negative of the sum of squares) that contains an unlimited number 
of dummy variable coefficients is shown in Chapter 17. As we will examine later in 
the book, the difficulty with nonlinear models that contain large numbers of dummy 
variable coefficients is not necessarily the practical one of computing the estimates. 
That is generally a solvable problem. The difficulty with such models is an intriguing 
phenomenon known as the incidental parameters problem. (See footnote 12.) In most 
(not all, as we shall find) nonlinear panel data models that contain n dummy variable 
coefficients, such as the one in (11-80), as a consequence of the fact that the number of 
parameters increases with the number of individuals in the sample, the estimator of B 
is biased and inconsistent, to a degree that is O(1/T). Because T is only 7 or less in our 
application, this would seem to be a case in point.

Example 11.21    Exponential Model with Fixed Effects
The exponential model of the preceding example is actually one of a small handful of known 
special cases in which it is possible to “condition” out the dummy variables. Consider the 
sum of squared residuals,

Sn =
1
2 a

n

i = 1
 a

Ti

t = 1
[yit - exp(xit

=B + ai)]2.

The first-order condition for minimizing Sn with respect to ai is

	
0Sn

0ai
= a

Ti

t = 1
- [yit - exp(xit

=B + ai)] exp(xit
=B + ai) = 0.� (11-81)

Let gi = exp(ai). Then, an equivalent necessary condition would be

0Sn

0gi
= a

Ti

t = 1
- [yit - gi exp(xit

=B)][gi exp(xit
=B)] = 0,

or

gia
Ti

t = 1
[yit exp(xit

=B)] = gi
2a

Ti

t = 1
[exp(xit

=B)]2.

Obviously, if we can solve the equation for gi, we can obtain ai = In gi. The preceding 
equation can, indeed, be solved for gi, at least conditionally. At the minimum of the sum of 
squares, it will be true that

	 gn i = a Ti

t = 1yit exp(xit
=Bn )

a Ti

t = 1[exp(xit
=Bn )]2

.� (11-82)
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We can now insert (11-82) into (11-81) to eliminate ai. (This is a counterpart to taking deviations 
from means in the linear case. As noted, this is possible only for a very few special models—this 
happens to be one of them. The process is also known as “concentrating out” the parameters gi. 
Note that at the solution, gn i is obtained as the slope in a regression without a constant term of 
yit on zn it = exp(xit

=Bn ) using Ti observations.) The result in (11-82) must hold at the solution. Thus, 
(11-82) inserted in (11-81) restricts the search for B to those values that satisfy the restrictions 
in (11-82). The resulting sum of squares function is now a function only of the data and B, and 
can be minimized with respect to this vector of K parameters. With the estimate of B in hand, 
ai can be estimated using the log of the result in (11-82) (which is positive by construction).

The preceding example presents a mixed picture for the fixed effects model. In 
nonlinear cases, two problems emerge that were not present earlier, the practical one 
of actually computing the dummy variable parameters and the theoretical incidental 
parameters problem that we have yet to investigate, but which promises to be a 
significant shortcoming of the fixed effects model. We also note we have focused on a 
particular form of the model, the single index function, in which the conditional mean is 
a nonlinear function of a linear function. In more general cases, it may be unclear how 
the unobserved heterogeneity should enter the regression function.

11.9.3    RANDOM EFFECTS

The random effects nonlinear model also presents complications both for specification 
and for estimation. We might begin with a general model,

yit = h(xit, B, ui) + eit.

The “random effects” assumption would be, as usual, mean independence,

E[ui � Xi] = 0.

Unlike the linear model, the nonlinear regression cannot be consistently estimated by 
(nonlinear) least squares. In practical terms, we can see why in (7-28) through (7-30). In 
the linearized regression, the conditional mean at the expansion point B0 [see (7-28)] as 
well as the pseudoregressors are both functions of the unobserved ui. This is true in the 
general case as well as the simpler case of a single index model,

	 yit = h(x=
itB + ui) + eit.	 (11-83)

Thus, it is not possible to compute the iterations for nonlinear least squares. As in the 
fixed effects case, neither deviations from group means nor first differences solves the 
problem. Ignoring the problem—that is, simply computing the nonlinear least squares 
estimator without accounting for heterogeneity—does not produce a consistent 
estimator, for the same reasons. In general, the benign effect of latent heterogeneity 
(random effects) that we observe in the linear model only carries over to a very few 
nonlinear models and, unfortunately, this is not one of them.

The problem of computing partial effects in a random effects model such as (11-83) 
is that when E[yit � xit, ui] is given by (11-83), then

0E[yit � xit
=B + ui]

0xit
= [h′(xit

=B + ui)]B

is a function of the unobservable ui. Two ways to proceed from here are the fixed 
effects approach of the previous section and a random effects approach. The fixed 
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effects approach is feasible but may be hindered by the incidental parameters problem 
noted earlier. A random effects approach might be preferable, but comes at the price 
of assuming that xit and ui are uncorrelated, which may be unreasonable. Papke and 
Wooldridge (2008) examined several cases and proposed the Mundlak approach of 
projecting ui on the group means of xit. The working specification of the model is then

E*[yit � xit, xi, vi] = h(xit
=B + a + xi

=U + vi).

This leaves the practical problem of how to compute the estimates of the parameters 
and how to compute the partial effects. Papke and Wooldridge (2008) suggest a useful 
result if it can be assumed that vi is normally distributed with mean zero and variance 
sv

2. In that case,

E[yit � xit, x] = Evi
E[yit � xit, x, vi] = h¢ xit

=B + a + xi
=U21 + sv

2
≤ = h(xit

=Bv + av + xi
=Uv).

The implication is that nonlinear least squares regression will estimate the scaled 
coefficients, after which the average partial effect can be estimated for a particular value 
of the covariates, x0, with

∆n (x0) =
1
n a

n

i = 1
h′(x0

=Bnv + an v + xi
=Unv)Bnv.

They applied the technique to a case of test pass rates, which are a fraction bounded by 
zero and one. Loudermilk (2007) is another application with an extension to a dynamic 
model.

11.10	 PARAMETER HETEROGENEITY

The treatment so far has assumed that the slope parameters of the model are fixed 
constants, and the intercept varies randomly from group to group. An equivalent 
formulation of the pooled, fixed, and random effects models is

yit = (a + ui) + xit
=B + eit,

where ui is a person-specific random variable with conditional variance zero in the pooled 
model, positive in the others, and conditional mean dependent on Xi in the fixed effects 
model and constant in the random effects model. By any of these, the heterogeneity in 
the model shows up as variation in the constant terms in the regression model. There 
is ample evidence in many studies—we will examine two later—that suggests that the 
other parameters in the model also vary across individuals. In the dynamic model we 
consider in Section 11.10.3, cross-country variation in the slope parameter in a production 
function is the central focus of the analysis. This section will consider several approaches 
to analyzing parameter heterogeneity in panel data models.

11.10.1    A RANDOM COEFFICIENTS MODEL

Parameter heterogeneity across individuals or groups can be modeled as stochastic 
variation.41 Suppose that we write

41The most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975), and Chow 
(1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995, 2001) and Hsiao 
(2003). The model bears some resemblance to the Bayesian approach of Chapter 16. But the similarity is only 
superficial. We are maintaining the classical approach to estimation throughout.
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yi = XiBi + ei,

E[Ei � Xi] = 0,
E[EiEi

= � Xi] = se
2IT,

	 (11-84)

where

	 Bi = B + ui	 (11-85)

and

	
E[ui � Xi] = 0,

E[uiui
=, � Xi] = �.

	 (11-86)

(Note that if only the constant term in B is random in this fashion and the other 
parameters are fixed as before, then this reproduces the random effects model we studied 
in Section 11.5.) Assume for now that there is no autocorrelation or cross-section 
correlation in Ei. We also assume for now that T 7 K, so that, when desired, it is possible 
to compute the linear regression of yi on Xi for each group. Thus, the Bi that applies to 
a particular cross-sectional unit is the outcome of a random process with mean vector 
B and covariance matrix �.42 By inserting (11-85) into (11-84) and expanding the result, 
we obtain a generalized regression model for each block of observations,

yi = XiB + (Ei + Xiui),

so

�ii = E[(yi - XiB)(yi - XiB)′ � Xi] = se
2IT + Xi�Xi

=.

For the system as a whole, the disturbance covariance matrix is block diagonal, with 
T * T diagonal block �ii. We can write the GLS estimator as a matrix weighted average 
of the group-specific OLS estimators,

	 Bn = (X′�-1X)-1X′�-1y = a
n

i = 1
Wibi,	 (11-87)

where

Wi = Jan
i = 1

¢� + se
2(Xi

=Xi)
-1≤-1 R -1¢� + se

2(Xi
=Xi)

-1≤-1

.

Empirical implementation of this model requires an estimator of �. One approach43 is 
to use the empirical variance of the set of n least squares estimates, bi minus the average 
value of si

2(Xi
=Xi)

-1,

	 G = [1/(n - 1)][Σibibi
= - nb b′] - (1/N)ΣiVi,	 (11-88)

where

b = (1/n)Σibi

and

Vi = si
2(Xi

=Xi)
-1.

42Swamy and Tavlas (2001) label this the “first-generation random coefficients model” (RCM). We will examine 
the “second generation” (the current generation) of random coefficients models in the next section.
43See, for example, Swamy (1971).
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This matrix may not be positive definite, however, in which case [as Baltagi (2005) 
suggests], one might drop the second term.

A chi-squared test of the random coefficients model against the alternative of the 
classical regression44 (no randomness of the coefficients) can be based on

C = Σi(bi - b*)′Vi
-1(bi - b*),

where

b* = [ΣiVi
-1]-1ΣiVi

-1bi.

Under the null hypothesis of homogeneity, C has a limiting chi-squared distribution with 
(n - 1)K degrees of freedom. The best linear unbiased individual predictors of the 
group-specific coefficient vectors are matrix weighted averages of the GLS estimator, 
Bn , and the group-specific OLS estimates, bi,45

	 Bni = QiB
n + [I - Qi]bi,	 (11-89)

where

Qi = [(1/si
2)Xi

=Xi + G-1]-1G-1.

Example 11.22    Random Coefficients Model
In Examples 10.1 and 11.9, we examined Munell’s production model for gross state product,

ln gspit = b1 + b2 ln pcit + b3 ln hwyit + b4 ln waterit
+ b5 ln utilit + b6 ln empit + b7 unempit + eit, i = 1, c, 48; t = 1, c, 17.

The panel consists of state-level data for 17 years. The model in Example 10.1 (and Munnell’s) 
provides no means for parameter heterogeneity save for the constant term. We have 
reestimated the model using the Hildreth and Houck approach. The OLS and Feasible GLS 
estimates are given in Table 11.21. The chi-squared statistic for testing the null hypothesis of 
parameter homogeneity is 25,556.26, with 7(47) = 329 degrees of freedom. The critical value 
from the table is 372.299, so the hypothesis would be rejected.

44See Swamy (1971).
45See Hsiao (2003, pp. 144–149).

Least Squares Feasible GLS

Variable Estimate Standard Error Estimate Std. Error Popn. Std. Deviation

Constant 1.9260 0.05250 1.6533 1.08331 7.0782
ln pc 0.3120 0.01109 0.09409 0.05152 0.3036
ln hwy 0.05888 0.01541 0.1050 0.1736 1.1112
ln water 0.1186 0.01236 0.07672 0.06743 0.4340
ln util 0.00856 0.01235 -0.01489 0.09886 0.6322
ln emp 0.5497 0.01554 0.9190 0.1044 0.6595
unemp -0.00727 0.00138 -0.00471 0.00207 0.01266
se 0.08542 0.2129
ln L 853.13720

Table 11.21  Estimated Random Coefficients Models
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Unlike the other cases we have examined in this chapter, the FGLS estimates are very 
different from OLS in these estimates, in spite of the fact that both estimators are consistent 
and the sample is fairly large. The underlying standard deviations are computed using G as 
the covariance matrix. [For these data, subtracting the second matrix rendered G not positive 
definite, so in the table, the standard deviations are based on the estimates using only the 
first term in (11-88).] The increase in the standard errors is striking. This suggests that there is 
considerable variation in the parameters across states. We have used (11-89) to compute the 
estimates of the state-specific coefficients. Figure 11.1 shows a histogram for the coefficient 
on private capital. As suggested, there is a wide variation in the estimates.

11.10.2    A HIERARCHICAL LINEAR MODEL

Many researchers have employed a two-step approach to estimate two-level models. In 
a common form of the application, a panel data set is employed to estimate the model,

 yit = xit
=  Bi + eit, i = 1, cn, t = 1, c, T,

 bi,k = zi
=Ak + ui,k, i = 1, c, n.

Assuming the panel is long enough, the first equation is estimated n times, once for each 
individual i, and then the estimated coefficient on xitk in each regression forms an 
observation for the second-step regression.46 [This is the approach we took in (11-16) in 
Section 11.4; each ai is computed by a linear regression of yi - XibLSDV on a column of 
ones.]

Example 11.23    Fannie Mae’s Pass Through
Fannie Mae is the popular name for the Federal National Mortgage Corporation. Fannie 
Mae is the secondary provider for mortgage money for nearly all the small- and moderate-
sized home mortgages in the United States. Loans in the study described here are termed 
“small” if they are for less than $100,000. A loan is termed as conforming in the language 

46An extension of the model in which “ui” is heteroscedastic is developed at length in Saxonhouse (1976) and 
revisited by Achen (2005).

FIGURE 11.1    Estimates of Coefficient on Private Capital.

–0.246
0

2

4

Fr
eq

ue
nc
y

6

–0.074 0.098 0.270 0.442

M11_GREE1366_08_SE_C11.indd   453 2/24/17   2:42 PM



454	 Part II  ✦   Generalized Regression Model and Equation Systems

of the literature on this market if (as of 2016), it is for no more than $417,000. A larger than 
conforming loan is called a jumbo mortgage. Fannie Mae provides the capital for nearly 
all conforming loans and no nonconforming loans. (See Exercise 6.14 for another study 
of Fannie Mae and Freddie Mac.) The question pursued in the study described here was 
whether the clearly observable spread between the rates on jumbo loans and conforming 
loans reflects the cost of raising the capital in the market. Fannie Mae is a government 
sponsored enterprice (GSE). It was created by the U.S. Congress, but it is not an arm of the 
government; it is a private corporation. In spite of, or perhaps because of, this ambiguous 
relationship to the government, apparently, capital markets believe that there is some benefit 
to Fannie Mae in raising capital. Purchasers of the GSE’s debt securities seem to believe 
that the debt is implicitly backed by the government—this in spite of the fact that Fannie 
Mae explicitly states otherwise in its publications. This emerges as a funding advantage 
(GFA) estimated by the authors of the study of about 16 basis points (hundredths of one 
percent). In a study of the residential mortgage market, Passmore (2005) and Passmore, 
Sherlund, and Burgess (2005) sought to determine whether this implicit subsidy to the GSE 
was passed on to the mortgagees or was, instead, passed on to the stockholders. Their 
approach utilitized a very large data set and a two-level, two-step estimation procedure. 
The first step equation estimated was a mortgage rate equation using a sample of roughly 
1 million closed mortgages. All were conventional 30-year, fixed-rate loans closed between 
April 1997 and May 2003. The dependent variable of interest is the rate on the mortgage, 
RMit. The first-level equation is

RMit = b1i + b2,i Jit + terms for “loan to value ratio,” “new home dummy variable,”
“small mortgage”

+  terms for “fees charged” and whether the mortgage was originated
by a mortgage company + eit.

The main variable of interest in this model is Jit, which is a dummy variable for whether the 
loan is a jumbo mortgage. The “i” in this setting is a (state, time) pair for California, New 
Jersey, Maryland, Virginia, and all other states, and months from April 1997 to May 2003. 
There were 370 groups in total. The regression model was estimated for each group. At the 
second step, the coefficient of interest is b2,i. On overall average, the spread between jumbo 
and conforming loans at the time was roughly 16 basis points. The second-level equation is

 b2,i = a1 + a2 GFAi

	  + a3 one@year treasury rate
	  + a4 10@year treasury rate

	  + a5 credit risk
	  + a6 prepayment risk

	  + measures of maturity mismatch risk
	  + quarter and state fixed effects

	  + mortgage market capacity
	  + mortgage market development

 + ui.

The result ultimately of interest is the coefficient on GFA, a2, which is interpreted as the 
fraction of the GSE funding advantage that is passed through to the mortgage holders. 
Four different estimates of a2 were obtained, based on four different measures of corporate 
debt liquidity; the estimated values were (an 2

1, an 2
2, an 2

3, an 2
4) = (0.07, 0.31, 0.17, 0.10). The four 
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estimates were averaged using a minimum distance estimator (MDE). Let �n  denote the 
estimated 4 * 4 asymptotic covariance matrix for the estimators. Denote the distance vector

d = (an 2
1 - a2, an 2

2 - a2, an 2
3 - a2, an 2

4 - a2)=.

The minimum distance estimator is the value for a2 that minimizes d′�n -1d. For this study, �n  
is a diagonal matrix. It is straightforward to show that in this case, the MDE is

an 2 = a
4

j = 1
an 2

j ¢ 1/vn j

Σm = 1
4 1/vn m

≤.

The final answer is roughly 16%. By implication, then, the authors estimated that 
100 - 16 = 84 percent of the GSE funding advantage was kept within the company or 
passed through to stockholders.

11.10.3    PARAMETER HETEROGENEITY AND DYNAMIC PANEL DATA MODELS

The analysis in this section has involved static models and relatively straightforward 
estimation problems. We have seen as this section has progressed that parameter 
heterogeneity introduces a fair degree of complexity to the treatment. Dynamic effects 
in the model, with or without heterogeneity, also raise complex new issues in estimation 
and inference. There are numerous cases in which dynamic effects and parameter 
heterogeneity coincide in panel data models. This section will explore a few of the 
specifications and some applications. The familiar estimation techniques (OLS, FGLS, 
etc.) are not effective in these cases. The proposed solutions are developed in Chapter 8 
where we present the technique of instrumental variables and in Chapter 13 where we 
present the GMM estimator and its application to dynamic panel data models.

Example 11.24    Dynamic Panel Data Models
The antecedent of much of the current research on panel data is Balestra and Nerlove’s (1966) 
study of the natural gas market.47 The model is a stock-flow description of the derived demand 
for fuel for gas using appliances. The central equation is a model for total demand,

Git = Git
* + (1 - r)Gi,t - 1,

where Git is current total demand. Current demand consists of new demand, Git
*, that is 

created by additions to the stock of appliances plus old demand, which is a proportion of 
the previous period’s demand, r being the depreciation rate for gas using appliances. New 
demand is due to net increases in the stock of gas using appliances, which is modeled as

Git
* = b0 + b1Priceit + b2∆Popit + b3Popit + b4∆Incomeit + b5Incomeit + eit,

where ∆ is the first difference (change) operator, ∆Xt = Xt - Xt - 1. The reduced form of the 
model is a dynamic equation,

Git = b0 + b1Priceit + b2∆Popit + b3Popit + b4∆Incomeit + b5Incomeit + gGi,t - 1 + eit.

The authors analyzed a panel of 36 states over a six-year period (1957–1962). Both fixed 
effects and random effects approaches were considered.

An equilibrium model for steady-state growth has been used by numerous authors [e.g., 
Robertson and Symons (1992), Pesaran and Smith (1995), Lee, Pesaran, and Smith (1997), 

47See, also, Nerlove (2002, Chapter 2).
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Pesaran, Shin, and Smith (1999), Nerlove (2002) and Hsiao, Pesaran, and Tahmiscioglu (2002)] 
for cross-industry or -country comparisons. Robertson and Symons modeled real wages in 
13 OECD countries over the period 1958–1986 with a wage equation

Wit = ai + b1ikit + b2i∆ wedgeit + giWi,t - 1 + eit,

where Wit is the real product wage for country i in year t, kit is the capital-labor ratio, and 
wedge is the “tax and import price wedge.”

Lee, Pesaran, and Smith (1997) compared income growth across countries with a steady-
state income growth model of the form

ln yit = ai + uit + li In yi,t - 1 + eit,

where ui = (1 - li)di, di is the technological growth rate for country i, and li is the convergence 
parameter. The rate of convergence to a steady state is 1 - li.

Pesaran and Smith (1995) analyzed employment in a panel of 38 UK industries observed 
over 29 years, 1956–1984. The main estimating equation was

 ln eit = ai + b1it + b2i ln yit + b3i ln yi,t - 1 + b4i ln yt + b5i ln yt - 1

 + b6i ln wit + b7i ln wi,t - 1 + g1i ln ei,t - 1 + g2i ln ei,t - 2 + eit,

where yit is industry output, yt is total (not average) output, and wit is real wages.

In the growth models, a quantity of interest is the long-run multiplier or long-run 
elasticity. Long-run effects are derived through the following conceptual experiment. 
The essential feature of the models above is a dynamic equation of the form

yt = a + bxt + gyt - 1.

Suppose at time t, xt is fixed from that point forward at x. The value of yt at that time 
will then be a + bx + gyt - 1, given the previous value. If this process continues, and if 
�g � 6 1, then eventually ys will reach an equilibrium at a value such that ys = ys - 1 = y. 
If so, then y = a + bx + gy, from which we can deduce that y = (a + x)/(1 - g). The 
path to this equilibrium from time t into the future is governed by the adjustment equation

ys - y = (yt - y)gs - t, s Ú t.

The experiment, then, is to ask: What is the impact on the equilibrium of a change in the 
input, x? The result is 0y/0x = b/(1 - g). This is the long-run multiplier, or equilibrium 
multiplier, in the model. In the preceding Pesaran and Smith model, the inputs are in 
logarithms, so the multipliers are long-run elasticities. For example, with two lags of ln eit 
in Pesaran and Smith’s model, the long-run effects for wages are

fi = (b6i + b7i)/(1 - g1i - g2i).

In this setting, in contrast to the preceding treatments, the number of units, n, is 
generally taken to be fixed, though often it will be fairly large. The Penn World Tables 
(http://cid.econ.ucdavis.edu/pwt.html) that provide the database for many of these 
analyses now contain information on more than 150 countries for well more than 50 
years. Asymptotic results for the estimators are with respect to increasing T, though we 
will consider, in general, cases in which T is small. Surprisingly, increasing T and n at the 
same time need not simplify the derivations.

The parameter of interest in many studies is the average long-run effect, say 
f = (1/n)Σifi, in the Pesaran and Smith example. Because n is taken to be fixed, the 
“parameter” f is a definable object of estimation—that is, with n fixed, we can speak 
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of f as a parameter rather than as an estimator of a parameter. There are numerous 
approaches one might take. For estimation purposes, pooling, fixed effects, random 
effects, group means, or separate regressions are all possibilities. (Unfortunately, nearly 
all are inconsistent.) In addition, there is a choice to be made whether to compute the 
average of long-run effects or to compute the long-run effect from averages of the 
parameters. The choice of the average of functions, f versus the function of averages,

f* =
1
n a n

i = 1(b
n

6i + bn7i)

1 - 1
n a n

i = 1(gn1i + gn2i)
,

turns out to be of substance. For their UK industry study, Pesaran and Smith report 
estimates of -0.33 for f and -0.45 for f*. (The authors do not express a preference for 
one over the other.)

The development to this point is implicitly based on estimation of separate models 
for each unit (country, industry, etc.). There are also a variety of other estimation 
strategies one might consider. We will assume for the moment that the data series 
are stationary in the dimension of T. (See Chapter 21.) This is a transparently false 
assumption, as revealed by a simple look at the trends in macroeconomic data, but 
maintaining it for the moment allows us to proceed. We will reconsider it later.

We consider the generic, dynamic panel data model,

	 yit = ai + bixit + giyi,t - 1 + eit.	 (11-90)

Assume that T is large enough that the individual regressions can be computed. In the 
absence of autocorrelation in eit, it has been shown48 that the OLS estimator of gi is 
biased downward, but consistent in T. Thus, E[gn i - gi] = ui/T for some ui. The implication 
for the individual estimator of the long-run multiplier, fi = bi/(1 - gi), is unclear in this 
case, however. The denominator is overestimated. But it is not clear whether the 
estimator of bi is overestimated or underestimated. It is true that whatever bias there is 
is O(1/T). For this application, T is fixed and possibly quite small. The end result is that 
it is unlikely that the individual estimator of fi is unbiased, and by construction, it is 
inconsistent, because T cannot be assumed to be increasing. If that is the case, then fQn  
is likewise inconsistent for f. We are averaging n estimators, each of which has bias and 
variance that are O(1/T). The variance of the mean is, therefore, O(1/nT) which goes to 
zero, but the bias remains O(1/T). It follows that the average of the n means is not 
converging to f; it is converging to the average of whatever these biased estimators are 
estimating. The problem vanishes with large T, but that is not relevant to the current 
context. However, in the Pesaran and Smith study, T was 29, which is large enough that 
these effects are probably moderate. For macroeconomic cross-country studies such as 
those based on the Penn World Tables, the data series may be even longer than this.

One might consider aggregating the data to improve the results. Pesaran and Smith 
(1995) suggest an average based on country means. Averaging the observations over T 
in (11-90) produces

	 yi. = ai + bixi. + giy-1,i + ei..	 (11-91)

A linear regression using the n observations would be inconsistent for two reasons: First, ei. 
and y-1,i must be correlated. Second, because of the parameter heterogeneity, it is not clear 

48For example, Griliches (1961), Maddala and Rao (1973).

48 For example, Griliches (1961) and Maddala and Rao (1973). 
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without further assumptions what the OLS slopes estimate under the false assumption 
that all coefficients are equal. But yi. and y-1,i differ by only the first and last observations; 
y-1,i = yi. - (yiT - yi0)/T = yi. - [∆T(y)/T]. Inserting this in (11-91) produces

 yi. = ai + bixi. + giyi. - gi[∆T(y)/T] + ei.

 =
ai

1 - gi
+

bi

1 - gi
xi. -

gi

1 - gi
[∆T(y)/T] + ei.

	  = di + fixi. + ti[∆T(y)/T] + ei.. �

(11-92)

We still seek to estimate f. The form in (11-92) does not solve the estimation problem, 
because the regression suggested using the group means is still heterogeneous. If it could 
be assumed that the individual long-run coefficients differ randomly from the averages 
in the fashion of the random parameters model of Section 11.10.1, so di = d + ud,i and 
likewise for the other parameters, then the model could be written

 yi. = d + fxi. + t[∆T(y)/T]i + ei. + {ud,i + uf,ixi + ut,i[∆T(y)/T]i}

 = d + fxi. + t[∆T(y)/T]i + ei + wi.

At this point, the equation appears to be a heteroscedastic regression amenable to least 
squares estimation, but for one loose end. Consistency follows if the terms [∆T(y)/T]i and 
ei are uncorrelated. Because the first is a rate of change and the second is in levels, this 
should generally be the case. Another interpretation that serves the same purpose is that 
the rates of change in [∆T(y)/T]i should be uncorrelated with the levels in xi., in which 
case, the regression can be partitioned, and simple linear regression of the country means 
of yit on the country means of xit and a constant produces consistent estimates of f and d.

Alternatively, consider a time-series approach. We average the observation in (11-90) 
across countries at each time period rather than across time within countries. In this case, 
we have

y.t = a +
1
n a

n

i = 1
bixit +

1
n a

n

i = 1
giyi,t - 1 +

1
n a

n

i = 1
eit.

Let g = 1
n a n

i = 1gi so that gi = g + (gi - g) and bi = b + (bi - b). Then,

 y.t = a + bx.t + g y-1,t + [e.t + (bi - b)x.t + (gi - g)y-1,t]

 = a + bx.t + g y-1,t + e.t + w.t.

Unfortunately, the regressor, g y-1,t is surely correlated with w.t, so neither OLS or GLS will 
provide a consistent estimator for this model. (One might consider an instrumental variable 
estimator; however, there is no natural instrument available in the model as constructed.) 
Another possibility is to pool the entire data set, possibly with random or fixed effects for 
the constant terms. Because pooling, even with country-specific constant terms, imposes 
homogeneity on the other parameters, the same problems we have just observed persist.

Finally, returning to (11-90), one might treat it as a formal random parameters model,

 yit = ai + bixit + giyi,t - 1 + eit,
 ai = a + ua,i,
 bi = b + ub,i,

	  gi = g + ug,i. 	
(11-93)
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The assumptions needed to formulate the model in this fashion are those of the 
previous section. As Pesaran and Smith (1995) observe, this model can be estimated 
using the Swamy (1971) estimator, which is the matrix weighted average of the least 
squares estimators discussed in Section 11.11.1. The estimator requires that T be large 
enough to fit each country regression by least squares. That has been the case for 
the received applications. Indeed, for the applications we have examined, both n 
and T are relatively large. If not, then one could still use the mixed models approach 
developed in Chapter 15. A compromise that appears to work well for panels with 
moderate sized n and T is the “mixed-fixed” model suggested in Hsiao (1986, 2003) 
and Weinhold (1999). The dynamic model in (11-92) is formulated as a partial fixed 
effects model,

 yit = aidit + bi xit + gidityi,t - 1 + eit,

 bi = b + ub,i,

where dit is a dummy variable that equals one for country i in every period and zero 
otherwise (i.e., the usual fixed effects approach). Note that dit also appears with yi,t - 1. 
As stated, the model has “fixed effects,” one random coefficient, and a total of 2n + 1 
coefficients to estimate, in addition to the two variance components, se

2 and su
2. The model 

could be estimated inefficiently by using ordinary least squares—the random coefficient 
induces heteroscedasticity (see Section 11.10.1)—by using the Hildreth–Houck–Swamy 
approach, or with the mixed linear model approach developed in Chapter 15.

Example 11.25    A Mixed Fixed Growth Model for Developing Countries
Weinhold (1996) and Nair–Reichert and Weinhold (2001) analyzed growth and development 
in a panel of 24 developing countries observed for 25 years, 1971–1995. The model they 
employed was a variant of the mixed-fixed model proposed by Hsiao (1986, 2003). In their 
specification,

 GGDPi,t = aidit + giditGGDPi,t - 1

 + b1iGGDIi,t - 1 + b2iGFDIi,t - 1 + b3iGEXPi,t - 1 + b4INFLi,t - 1 + eit,

where

GGDP = Growth rate of gross domestic product,
GGDI  = Growth rate of gross domestic investment,
GFDI  = Growthrate of foreign direct investment (inflows),
GEXP  = Growth rate of exports of goods and services,
INFL  = Inflation rate.

11.11	 SUMMARY AND CONCLUSIONS

This chapter has shown a few of the extensions of the classical model that can be obtained 
when panel data are available. In principle, any of the models we have examined before 
this chapter and all those we will consider later, including the multiple equation models, 
can be extended in the same way. The main advantage, as we noted at the outset, is that 
with panel data, one can formally model dynamic effects and the heterogeneity across 
groups that are typical in microeconomic data.
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Exercises

1.	 The following is a panel of data on investment (y) and profit (x) for n = 3 firms 
over T = 10 periods.

i = 1 i = 2 i = 3

t y x y x y x

1 13.32 12.85 20.30 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 5.48 9.31 9.16 3.87 1.47
4 14.94 13.79 18.01 18.73 24.19 24.91
5 15.80 15.41 7.63 11.31 3.99 5.01
6 12.20 12.59 19.84 21.15 5.73 8.34
7 14.93 16.64 13.76 16.13 26.68 22.70
8 29.82 26.45 10.00 11.61 11.49 8.36
9 20.32 19.64 19.51 19.55 18.49 15.44
10 4.77 5.43 18.32 17.06 20.84 17.87

a.	 Pool the data and compute the least squares regression coefficients of the model

yit = a + bxit + eit.

b.	 Estimate the fixed effects model of (11-11), and then test the hypothesis that the 
constant term is the same for all three firms.

c.	 Estimate the random effects model of (11-28), and then carry out the Lagrange 
multiplier test of the hypothesis that the classical model without the common 
effect applies.

d.	 Carry out Hausman’s specification test for the random versus the fixed effect 
model.

Key Terms and Concepts

•	Adjustment equation
•	Arellano and Bond’s 

estimator
•	Balanced panel
•	Between groups
•	Contiguity
•	Contiguity matrix
•	Contrasts
•	Dynamic panel data model
•	Equilibrium multiplier
•	Error components model
•	Estimator
•	Feasible GLS
•	First difference
•	Fixed effects
•	Fixed panel
•	Group means

•	Group means estimator
•	Hausman specification test
•	Heterogeneity
•	Hierarchical model
•	Incidental parameters 

problem
•	Index function model
•	Individual effect
•	Instrumental variable
•	Instrumental variable 

estimator
•	Lagrange multiplier test
•	Least squares dummy 

variable model (LSDV)
•	Long run elasticity
•	Long run multiplier
•	Longitudinal data set

•	Matrix weighted average
•	Mundlak’s approach
•	Panel data
•	Partial effects
•	Pooled model
•	Projections
•	Rotating panel
•	Spatial autocorrelation
•	Spatial autoregression 

coefficient
•	Spatial error correlation
•	Spatial lags
•	Specification test
•	Strict exogeneity
•	Time invariant
•	Unbalanced panel
•	Within groups
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2.	 Suppose that the fixed effects model is formulated with an overall constant term 
and n - 1 dummy variables (dropping, say, the last one). Investigate the effect 
that this supposition has on the set of dummy variable coefficients and on the least 
squares estimates of the slopes, compared to (11-13).

3.	 Unbalanced design for random effects. Suppose that the random effects model of 
Section 11.5 is to be estimated with a panel in which the groups have different 
numbers of observations. Let Ti be the number of observations in group i.
a.	 Show that the pooled least squares estimator is unbiased and consistent despite 

this complication.
b.	 Show that the estimator in (11-40) based on the pooled least squares estimator 

of B (or, for that matter, any consistent estimator of B) is a consistent 
estimator of se

2.
4.	 What are the probability limits of (1/n) LM, where LM is defined in (11-42) under 

the null hypothesis that su
2 = 0 and under the alternative that su

2 ≠ 0?
5.	 A two-way fixed effects model. Suppose that the fixed effects model is modified to 

include a time-specific dummy variable as well as an individual-specific variable. 
Then yit = ai + gt + xit

=B + eit. At every observation, the individual- and time-
specific dummy variables sum to 1, so there are some redundant coefficients. The 
discussion in Section 11.4.4 shows that one way to remove the redundancy is to 
include an overall constant and drop one of the time-specific and one of the time 
dummy variables. The model is, thus,

yit = m + (ai - a1) + (gt - g1) + xit
=B + eit.

(Note that the respective time- or individual-specific variable is zero when t or i 
equals one.) Ordinary least squares estimates of B are then obtained by regression 
of yit - yi. - y.t + y on xit - xi. - x.t + x. Then (ai - a1) and (gt - g1) are 
estimated using the expressions in (11-25). Using the following data, estimate the 
full set of coefficients for the least squares dummy variable model:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

i = 1
y 21.7 10.9 33.5 22.0 17.6 16.1 19.0 18.1 14.9 23.2
x1 26.4 17.3 23.8 17.6 26.2 21.1 17.5 22.9 22.9 14.9
x2   5.79   2.60   8.36   5.50   5.26   1.03   3.11   4.87   3.79   7.24

i = 2
y 21.8 21.0 33.8 18.0 12.2 30.0 21.7 24.9 21.9 23.6
x1 19.6 22.8 27.8 14.0 11.4 16.0 28.8 16.8 11.8 18.6
x2 3.36 1.59 6.19 3.75 1.59 9.87 1.31 5.42 6.32 5.35

i = 3
y 25.2 41.9 31.3 27.8 13.2 27.9 33.3 20.5 16.7 20.7
x1 13.4 29.7 21.6 25.1 14.1 24.1 10.5 22.1 17.0 20.5
x2 9.57 9.62 6.61 7.24 1.64 5.99 9.00 1.75 1.74 1.82

i = 4
y 15.3 25.9 21.9 15.5 16.7 26.1 34.8 22.6 29.0 37.1
x1 14.2 18.0 29.9 14.1 18.4 20.1 27.6 27.4 28.5 28.6
x2 4.09 9.56 2.18 5.43 6.33 8.27 9.16 5.24 7.92 9.63
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Test the hypotheses that (1) the period effects are all zero, (2) the group effects 
are all zero, and (3) both period and group effects are zero. Use an F test in each 
case.

6.	 Two-way random effects model. We modify the random effects model by the 
addition of a time-specific disturbance. Thus,

yit = a + xit
=B + eit + ui + vt,

where

 E[eit � X] = E[ui � X] = E[vt � X] = 0,

	  E[eituj � X] = E[eitvs � X] = E[uivt � X] = 0 for all i, j, t, s,

	  Var[eit � X] = se
2, Cov[eit, ejs � X] = 0 for all i, j, t, s,

	  Var[ui � X] = su
2, Cov[ui, uj � X] = 0 for all i, j,

	  Var[vt � X] = sv
2, Cov[vt, vs � X] = 0 for all t, s.

Write out the full disturbance covariance matrix for a data set with n = 2 and T = 2.
7.	 In Section 11.4.5, we found that the group means of the time-varying variables 

would work as a control function in estimation of the fixed effects model. That 
is, although regression of y on X is inconsistent for B, the Mundlak estimator, 
regression of y on X and X = PDX = (I - MD)X is a consistent estimator. 
Would the deviations from group means, X

$
= MDX = (X - X), also be useable 

as a control function estimator. That is, does regression of y on (X, X
$
) produce a 

consistent estimator of B?
8.	 Prove plim (1/nT)X′MDE = 0.
9.	 If the panel has T = 2 periods, the LSDV (within groups) estimator gives the same 

results as first differences. Prove this claim.

Applications

The following applications require econometric software.
1.	 Several applications in this and previous chapters have examined the returns 

to education in panel data sets. Specifically, we applied Hausman and Taylor’s 
approach in Examples 11.17 and 11.18. Example 11.18 used Cornwell and Rupert’s 
data for the analysis. Koop and Tobias’s (2004) study that we used in Chapters 3 
and 5 provides yet another application that we can use to continue this analysis. 
The data may be downloaded from the Journal of Applied Econometrics data 
archive at http://qed.econ.queensu.ca/jae/2004-vl9.7/koop-tobias/. The data file 
is in two parts. The first file contains the full panel of 17,919 observations on 
variables:

Column 1; Person id (ranging from 1 to 2,178),
Column 2; Education,
Column 3; Log of hourly wage,
Column 4; Potential experience,
Column 5; Time trend.
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Columns 2 through 5 contain time-varying variables. The second part of the data set 
contains time-invariant variables for the 2,178 households. These are:

Column 1; Ability,
Column 2; Mother’s education,
Column 3; Father’s education,
Column 4; Dummy variable for residence in a broken home,
Column 5; Number of siblings.

To create the data set for this exercise, it is necessary to merge these two data 
files. The ith observation in the second file will be replicated Ti times for the set of 
Ti observations in the first file. The person id variable indicates which rows must 
contain the data from the second file. (How this preparation is carried out will vary 
from one computer package to another.) The panel is quite unbalanced; the number 
of observations by group size is:
	 Value of Ti

1:83, 2:104, 3:102, 4:116
5:148, 6:165, 7:201, 8:202
9:200, 10:202, 11:182, 12:148

13:136, 14:96, 15:93

a.	 Using these data, fit fixed and random effects models for log wage and examine 
the result for the return to education.

b.	 For a Hausman–Taylor specification, consider the following:

 x1 = potential experience, ability
 x2 = education
 f1 = constant, number of siblings, broken home
 f2 = mother’s education, father’s education

Based on this specification, what is the estimated return to education? (Note: 
you may need the average value of 1/Ti for your calculations. This is 0.1854.)

c.	 It might seem natural to include ability with education in x2. What becomes of 
the Hausman and Taylor estimator if you do so?

d.	 Using a different specification, compute an estimate of the return to education 
using the instrumental variables method.

e.	 Compare your results in parts b and d to the results in Examples 11.17 and 11.18. 
The estimated return to education is surprisingly stable.

2.	 The data in Appendix Table F10.4 were used by Grunfeld (1958) and dozens of 
researchers since, including Zellner (1962, 1963) and Zellner and Huang (1962), to 
study different estimators for panel data and linear regression systems. [See Kleiber 
and Zeileis (2010).] The model is an investment equation,

Iit = b1 + b2Fit + b3Cit + eit, t = 1, c, 20, i = 1, c, 10,

where
 Iit = real gross investment for firm i in year t,
 Fit = real value of the firm:shares outstanding,
 Cit = real value of the capital stock.
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For present purposes, this is a balanced panel data set.
a.	 Fit the pooled regression model.
b.	 Referring to the results in part a, is there evidence of within-groups correlation? 

Compute the robust standard errors for your pooled OLS estimator and compare 
them to the conventional ones.

c.	 Compute the fixed effects estimator for these data. Then, using an F test, test the 
hypothesis that the constants for the 10 firms are all the same.

d.	 Use a Lagrange multiplier statistic to test for the presence of common effects 
in the data.

e.	 Compute the one-way random effects estimator and report all estimation results. 
Explain the difference between this specification and the one in part c.

f.	 Use a Hausman test to determine whether a fixed or random effects specification 
is preferred for these data.

3.	 The data in Appendix Table F6.1 are an unbalanced panel on 25 U.S. airlines in the 
pre-deregulation days of the 1970s and 1980s. The group sizes range from 2 to 15. 
Data in the file are the following variables. (Variable names contained in the data 
file are constructed to indicate the variable contents.)

Total cost,
Expenditures on Capital, Labor, Fuel, Materials, Property, and Equipment,
Price measures for the six inputs,
Quantity measures for the six inputs,
Output measured in revenue passenger miles, converted to an index number 
for the airline,
Load factor = the average percentage capacity utilization of the airline’s fleet,
Stage = the average flight (stage) length in miles,
Points = the number of points served by the airline,
Year = the calendar year,
T Year = 1969,
TI = the number of observations for the airline, repeated for each year.

Use these data to build a cost model for airline service. Allow for cross-airline 
heterogeneity in the constants in the model. Use both random and fixed effects 
specifications, and use available statistical tests to determine which is the preferred 
model. An appropriate cost model to begin the analysis with would be

ln costit = ai + a
6

k = 1
bk ln Pricek,it + g ln Outputit + eit.

It is necessary to impose linear homogeneity in the input prices on the cost function, 
which you would do by dividing five of the six prices and the total cost by the sixth 
price (choose any one), then using ln(cost/P6) and ln(Pk/P6) in the regression. You 
might also generalize the cost function by including a quadratic term in the log of 
output in the function. A translog model would include the unique squares and 
cross products of the input prices and products of log output with the logs of the 
prices. The data include three additional factors that may influence costs, stage 
length, load factor, and number of points served. Include them in your model, and 
use the appropriate test statistic to test whether they are, indeed, relevant to the 
determination of (log) total cost.
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