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Maximum Likelihood Estimation

§
14.1	   INTRODUCTION

The generalized method of moments discussed in Chapter 13 and the semiparametric, 
nonparametric, and Bayesian estimators discussed in Chapters 12 and 16 are becoming 
widely used by model builders. Nonetheless, the maximum likelihood estimator discussed 
in this chapter remains the preferred estimator in many more settings than the others 
listed. As such, we focus our discussion of generally applied estimation methods on this 
technique. Sections 14.2 through 14.6 present basic statistical results for estimation and 
hypothesis testing based on the maximum likelihood principle. Sections 14.7 and 14.8 
present two extensions of the method, two-step estimation and pseudo maximum 
likelihood estimation. After establishing the general results for this method of estimation, 
we will then apply them to the more familiar setting of econometric models.  The 
applications presented in Sections 14.9 and 14.10 apply the maximum likelihood method 
to most of the models in the preceding chapters and several others that illustrate different 
uses of the technique.

14.2	   �THE LIKELIHOOD FUNCTION AND IDENTIFICATION 
OF THE PARAMETERS

The probability density function, or pdf, for a random variable, y, conditioned on a set 
of parameters, U, is denoted f(y �U).1 This function identifies the data-generating process 
that underlies an observed sample of data and, at the same time, provides a mathematical 
description of the data that the process will produce. The joint density of n independent 
and identically distributed (i.i.d.) observations from this process is the product of the 
individual densities,

	 f(y1, c, yn �U) = q
n

i = 1
f(yi �U) = L(U � y).	 (14-1)

This joint density is the likelihood function, defined as a function of the unknown 
parameter vector, U, where y is used to indicate the collection of sample data. Note that 
we write the joint density as a function of the data conditioned on the parameters whereas 
when we form the likelihood function, we will write this function in reverse, as a function 
of the parameters, conditioned on the data. Though the two functions are the same, it 
is to be emphasized that the likelihood function is written in this fashion to highlight 
our interest in the parameters and the information about them that is contained in the 

1Later we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that 
would complicate the notation without adding anything of substance to the discussion.
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538	 Part III  ✦   Estimation Methodology

observed data. However, it is understood that the likelihood function is not meant to 
represent a probability density for the parameters as it is in Chapter 16. In this classical 
estimation framework, the parameters are assumed to be fixed constants that we hope to 
learn about from the data.

It is usually simpler to work with the log of the likelihood function:

	 ln L(U � y) = a
n

i = 1
 ln f(yi �U).	 (14-2)

Again, to emphasize our interest in the parameters, given the observed data, we denote 
this function L(U � data) = L(U � y). The likelihood function and its logarithm, evaluated 
at U, are sometimes denoted simply L(U) and ln L(U), respectively, or, where no 
ambiguity can arise, just L or ln L.

It will usually be necessary to generalize the concept of the likelihood function to 
allow the density to depend on other conditioning variables. To jump immediately to 
one of our central applications, suppose the disturbance in the classical linear regression 
model is normally distributed. Then, conditioned on its specific xi, yi is normally 
distributed with mean mi = xi

=B and variance s2. That means that the observed random 
variables are not i.i.d.; they have different means. Nonetheless, the observations are 
independent, and as we will examine in closer detail,

	 ln L(U � y, X) = a
n

i = 1
ln f(yi � xi, U) = -

1
2

 a
n

i = 1
[ln s2 + ln(2p) + (yi - xi

=B)2/s2],	 (14-3)

where X is the n * K matrix of data with ith row equal to xi
=.

The rest of this chapter will be concerned with obtaining estimates of the parameters, 
U, and testing hypotheses about them and about the data-generating process. Before we 
begin that study, we consider the question of whether estimation of the parameters is 
possible at all—the question of identification. Identification is an issue related to the 
formulation of the model. The issue of identification must be resolved before estimation 
can even be considered. The question posed is essentially this: Suppose we had an 
infinitely large sample—that is, for current purposes, all the information there is to be 
had about the parameters. Could we uniquely determine the values of U from such a 
sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 14.1  Identification
The parameter vector U is identified (estimable) if for any other parameter vector, 
U* ≠ U, for some data y, L(U* � y) ≠ L(U � y).

This result will be crucial at several points in what follows. We consider two examples, 
the first of which will be very familiar to you by now.

Example 14.1    Identification of Parameters
For the regression model specified in (14-3), suppose that there is a nonzero vector a such 
that xi

=a = 0 for every xi. Then there is another parameter vector, G = B + a ≠ B such that 
xi
=B = xi

=G for every xi. You can see in (14-3) that if this is the case, then the log-likelihood is 
the same whether it is evaluated at B or at G. As such, it is not possible to consider estimation 
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of B in this model because B cannot be distinguished from G. This is the case of perfect 
collinearity in the regression model, which we ruled out when we first proposed the linear 
regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider 
a model in which identification is secured by the specification of the parameters in the 
model.  (We will study this model in detail in Chapter 17.) Consider a simple form of the 
regression model considered earlier, yi = b1 + b2xi + ei, where ei � xi has a normal distribution 
with zero mean and variance s2. To put the model in a context, consider a consumer’s 
purchase of a large commodity such as a car where xi is the consumer’s income and yi is 
the difference between what the consumer is willing to pay for the car, pi* (their reservation 
price) and the price tag on the car, pi. Suppose rather than observing pi* or pi, we observe 
only whether the consumer actually purchases the car, which, we assume, occurs when 
yi = pi* - pi is positive. Collecting this information, our model states that they will purchase 
the car if yi 7 0 and not purchase it if yi … 0. Let us form the likelihood function for the 
observed data, which are purchase (or not) and income. The random variable in this model 
is purchase or not purchase—there are only two outcomes. The probability of a purchase is

 Prob(purchase �b1, b2, s, xi) = Prob(yi 7 0 �b1, b2, s, xi)

 = Prob(b1 + b2xi + ei 7 0 �b1, b2, s, xi)

 = Prob[ei 7 - (b1 + b2xi) �b1, b2, s, xi]

 = Prob[ei/s 7 - (b1 + b2xi)/s �b1, b2, s, xi]

 = Prob[zi 7 - (b1 + b2xi)/s �b1, b2, s, xi],

where zi has a standard normal distribution. The probability of not purchase is just one minus 
this probability. The likelihood function is

q
i = purchased

 [Prob(purchase �b1, b2, s, xi)] q
i = not purchased

 [1 - Prob(purchase �b1, b2, s, xi)].

We need go no further to see that the parameters of this model are not identified. If b1, b2, 
and s are all multiplied by the same nonzero constant, regardless of what it is, then 
Prob(purchase) is unchanged, 1 - Prob(purchase) is also unchanged, and the likelihood 
function does not change. This model requires a normalization. The one usually used is 
s = 1, but some authors have used b1 = 1 or b2 = 1, instead.2

14.3	   EFFICIENT ESTIMATION: THE PRINCIPLE OF MAXIMUM LIKELIHOOD

The principle of maximum likelihood provides a means of choosing an asymptotically 
efficient estimator for a parameter or a set of parameters. The logic of the technique is 
easily illustrated in the setting of a discrete distribution. Consider a random sample of 
the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1. The 
density for each observation is

f(yi � u) =
e-uuyi

yi!
.

2For examples, see Horowitz (1993) and Lewbel (2014).
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540	 Part III  ✦   Estimation Methodology

Because the observations are independent, their joint density, which is the likelihood 
for this sample, is

f(y1, y2, c, y10 � u) = q
10

i = 1
f(yi � u) =

e-10uuΣ
10
i = 1yi

q 10
i = 1yi!

=
e-10uu20

207,360
.

The last result gives the probability of observing this particular sample, assuming that a 
Poisson distribution with as yet unknown parameter u generated the data. What value 
of u would make this sample most probable? Figure 14.1 plots this function for various 
values of u. It has a single mode at u = 2, which would be the maximum likelihood 
estimate, or MLE, of u.

Consider maximizing L(u � y) with respect to u. Because the log function is 
monotonically increasing and easier to work with, we usually maximize ln L(u � y) 
instead; in sampling from a Poisson population,

 ln L(u � y) = -nu + ln ua
n

i = 1
yi - a

n

i = 1
ln(yi!),

 
0 ln L(u � y)

0u
= -n +

1
ua

n

i = 1
yi = 0 1 unML = yn.

For the assumed sample of observations,

 ln L(u � y) = -10u + 20 ln u - 12.242,

 
d ln L(u � y)

du
= -10 +

20
u

= 0 1 un = 2,

FIGURE 14.1    Likelihood and Log-Likelihood Functions for a Poisson Distribution.
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and

d2 ln L(u � y)

du2 =
-20
u2 6 0 1 this is a maximum.

The solution is the same as before. Figure 14.1 also plots the log of L(u � y) to illustrate 
the result.

The reference to the probability of observing the given sample is not exact in a 
continuous distribution, because a particular sample has probability zero. Nonetheless, 
the principle is the same. The values of the parameters that maximize L(U � data) or its 
log are the maximum likelihood estimates, denoted Un. The logarithm is a monotonic 
function, so the values that maximize L(U � data) are the same as those that maximize 
ln L(U � data). The necessary condition for maximizing ln L(U � data) is

	
0 ln L(U � data)

0U
= 0.	 (14-4)

This is called the likelihood equation. The general result then is that the MLE is a root 
of the likelihood equation. The application to the parameters of the data-generating 
process for a discrete random variable are suggestive that maximum likelihood is a good 
use of the data. It remains to establish this as a general principle. We turn to that issue 
in the next section.

Example 14.2  �  Log-Likelihood Function and Likelihood Equations for the 
Normal Distribution

In sampling from a normal distribution with mean m and variance s2, the log-likelihood 
function and the likelihood equations for m and s2 are

	 ln L(m, s2) = -
1
2

 a
n

i = 1
J ln(2p) + ln s2 +

(yi - m)2

s2 R ,� (14-5)

	
0 ln L

0m
=

1
s2  a

n

i = 1
(yi - m) = 0,� (14-6)

	
0 ln L
0s2 = -

n
2s2 +

1
2s4  a

n

i = 1
(yi - m)2 = 0.� (14-7)

To solve the likelihood equations, multiply (14-6) by s2 and solve for mn , then insert this solution 
in (14-7) and solve for s2. The solutions are

2

	 mnML =
1
n

 a
n

i = 1
yi = yn and sn ML

2 =
1
n

 a
n

i = 1
(yi - yn).� (14-8)

14.4	   PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their large-
sample or asymptotic properties.
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542	 Part III  ✦   Estimation Methodology

If certain regularity conditions are met, the MLE will have these properties. The finite 
sample properties are sometimes less than optimal. For example, the MLE may be 
biased; the MLE of s2 in Example 14.2 is biased downward. The occasional statement 
that the properties of the MLE are only optimal in large samples is not true, however. 
It can be shown that when sampling is from an exponential family of distributions (see 
Definition 13.1), there will exist sufficient statistics. If so, MLEs will be functions of them, 
which means that when minimum variance unbiased estimators exist, they will be MLEs.4 
Most applications in econometrics do not involve exponential families, so the appeal of 
the MLE remains primarily based on its asymptotic properties.

We use the following notation: Un is the maximum likelihood estimator; U0 denotes 
the true value of the parameter vector; U denotes another possible value of the parameter 
vector, not the MLE and not necessarily the true values. Expectation based on the true 
values of the parameters is denoted E0[.]. If we assume that the regularity conditions 
discussed momentarily are met by f(x, U0), then we have the following theorem.

4See Stuart and Ord (1989).

THEOREM 14.1  Properties of an MLE
Under regularity, the MLE has the following asymptotic properties:

M1.	 Consistency: plim Un = U0.
M2.	� Asymptotic normality: Un ∼

a
N[U0, {I(U0)}-1], where

I(U0) = -E0[02 ln L/0U00U0
= ].

M3.	� Asymptotic efficiency: Un is asymptotically efficient and achieves the Cramér–
Rao lower bound for consistent estimators, given in M2 and Theorem C.2.

M4.	� Invariance: The maximum likelihood estimator of G0 = c(U0) is c(Un) if c(U0) 
is a continuous and continuously differentiable function.

DEFINITION 14.2  Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally 
distributed (CAN), and has an asymptotic covariance matrix that is not larger than 
the asymptotic covariance matrix of any other consistent, asymptotically normally 
distributed estimator.3

3Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that of 
the efficient estimator plus a nonnegative definite matrix.

14.4.1    REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability 
density functions. We assume that (y1, c, yn) is a random sample from the population 
with density function f(yi �U0) and that the following regularity conditions hold.5

5Our statement of these is informal. A more rigorous treatment may be found in Stuart and Ord (1989) or 
Davidson and MacKinnon (2004).

M14_GREE1366_08_SE_C14.indd   542 2/24/17   1:13 PM



	 CHAPTER 14  ✦  Maximum Likelihood Estimation	 543

With these regularity conditions, we will obtain the following fundamental 
characteristics of f(yi �U): D1 is simply a consequence of the definition of the likelihood 
function. D2 leads to the moment condition which defines the maximum likelihood 
estimator. On the one hand, the MLE is found as the maximizer of a function, which 
mandates finding the vector that equates the gradient to zero. On the other hand, D2 is 
a more fundamental relationship that places the MLE in the class of generalized method 
of moments estimators. D3 produces what is known as the information matrix equality. 
This relationship shows how to obtain the asymptotic covariance matrix of the MLE.

14.4.2    PROPERTIES OF REGULAR DENSITIES

Densities that are regular by Definition 14.3 have three properties that are used in 
establishing the properties of maximum likelihood estimators:

DEFINITION 14.3  Regularity Conditions

R1.	� The first three derivatives of ln f(yi �U) with respect to U are continuous and 
finite for almost all yi and for all U. This condition ensures the existence of a 
certain Taylor series approximation to and the finite variance of the deriva-
tives of ln L.

R2.	� The conditions necessary to obtain the expectations of the first and second 
derivatives of ln f(yi �U) are met.

R3. 	� For all values of U, � 03 ln f(yi �U)/0uj0uk0ul �  is less than a function that has a 
finite expectation. This condition will allow us to truncate the Taylor series.

THEOREM 14.2  Moments of the Derivatives of the Log Likelihood

D1.	� ln f(yi �U), gi = 0 ln f(yi �U)/0U, and Hi = 02 ln f(yi �U)/0U0U′, i = 1, c, n, 
are all random samples of random variables. This statement follows from 
our assumption of random sampling. The notation gi(U0) and Hi(U0) indicates 
the derivative evaluated at U0 . Condition D1 is simply a consequence of the 
definition of the density.

D2.	 E0[gi(U0)] = 0.
D3.	 Var[gi(U0)] = -E[Hi(U0)].

For the moment, we allow the range of yi to depend on the parameters; 
A(U0) … yi … B(U0). (Consider, for example, finding the maximum likelihood estimator 
of u0 for a continuous uniform distribution with range [0, u0].) (In the following, the 
single integral 1cdyi will be used to indicate the multiple integration over all the 
elements of a multivariate of yi if that is necessary.) By definition,

L
B(U0)

A(U0)
f(yi �U0) dyi = 1.
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544	 Part III  ✦   Estimation Methodology

Now, differentiate this expression with respect to U0. Leibnitz’s theorem gives

0L
B(U0)

A(U0)
f(yi �U0) dyi

0U0
= L

B(U0)

A(U0)
 
0f(yi�U0)

0U0
 dyi + f(B(U0)�U0) 

0B(U0)

0U0
- f(A(U0)�U0) 

0A(U0)

0U0
= 0.

If the second and third terms go to zero, then we may interchange the operations of 
differentiation and integration. The necessary condition is that limyiTA(U0) f(yi �U0) =
limyicB(U0) f(yi �U0) = 0. (Note: The uniform distribution suggested earlier violates this 
condition.) Sufficient conditions are that the range of the observed random variable, yi, 
does not depend on the parameters, which means that 0A(U0)/0U0 = 0B(U0)/0U0 = 0 or 
that the density is zero at the terminal points. This condition, then, is regularity condition 
R2. The latter is usually assumed, and we will assume it in what follows. So,

 
0L f(yi �U0) dyi

0U0
= L  

0f(yi �U0)

0U0
 dyi = L  

0 ln f(yi �U0)

0U0
 f(yi �U0) dyi

 = E0J 0 ln f(yi �U0)

0U0
R = 0.

This proves D2.
Because we may interchange the operations of integration and differentiation, we 

differentiate under the integral once again to obtain

L J 02 ln f(yi �U0)

0U00U0
=  f(yi �U0) +

0 ln f(yi �U0)

0U0
 
0f(yi �U0)

0U0
= Rdyi = 0.

But

0f(yi �U0)

0U0
= = f(yi �U0) 

0 ln f(yi �U0)

0U0
= ,

and the integral of a sum is the sum of integrals. Therefore,

- L J 02 ln f(yi �U0)

0U00U0
= R f(yi �U0)dyi = L J 0 ln f(yi �U0)

0U0
 
0 ln f(yi �U0)

0U0
= R f(yi �U0)dyi.

The left-hand side of the equation is the negative of the expected second derivatives 
matrix. The right-hand side is the expected square (outer product) of the first derivative 
vector. But because this vector has expected value 0 (we just showed this), the right-hand 
side is the variance of the first derivative vector, which proves D3,

Var0J 0 ln f(yi �U0)

0U0
R = E0J ¢ 0 ln f(yi �U0)

0U0
≤ ¢ 0 ln f(yi �U0)

0U0
= ≤ R = -EJ 02 ln f(yi �U0)

0U00U0
= R .

14.4.3    THE LIKELIHOOD EQUATION

The log-likelihood function is

ln L(U � y) = a
n

i = 1
ln f(yi �U).
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The first derivative vector, or score vector, is

	 g =
0 ln L(U � y)

0U
= a

n

i = 1
 
0 ln f(yi �U)

0U
= a

n

i = 1
gi.	 (14-9)

Because we are just adding terms, it follows from D1 and D2 that at U0,

	 E0J 0 ln L(U0 � y)

0U0
R = E0[g0] = 0,	 (14-10)

which is the likelihood equation mentioned earlier.

14.4.4    THE INFORMATION MATRIX EQUALITY

The Hessian of the log likelihood is

H =
02 ln L(U � y)

0U0U′
= a

n

i = 1
 
02 ln f(yi �U)

0U 0U′
= a

n

i = 1
Hi.

Evaluating once again at U0, by taking

E0[g0g0
= ] = E0Jan

i = 1
a
n

j = 1
g0ig0j

= R ,

and, because of D1, dropping terms with unequal subscripts, we obtain

E0[g0g0
= ] = E0Jan

i = 1
g0ig0i

= R = E0Jan
i = 1

(-H0i) R = -E0[H0],

so that

	 Var0J 0 ln L(U0 � y)

0U0
R = E0J ¢ 0 ln L(U0 � y)

0U0
≤ ¢ 0 ln L(U0 � y)

0U0
= ≤ R = -E0J 02 ln L(U0 � y)

0U00U0
= R .

� (14-11)

This very useful result is known as the information matrix equality. It states that the 
variance of the first derivative of ln L equals the negative of the second derivative.

14.4.5    ASYMPTOTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs 
of these results require some fairly intricate mathematics. Two widely cited derivations 
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise, 
we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and 
indicate where it will be necessary to extend the derivation if it were to be fully general.

14.4.5.a    Consistency

We assume that f(yi �U0) is a possibly multivariate density that at this point does not 
depend on covariates, xi. Thus, this is the i.i.d., random sampling case. Because Un is the 
MLE, in any finite sample, for any U ≠ Un (including the true U0) it must be true that

	 ln L(Un) Ú ln L(U).	 (14-12)

Consider, then, the random variable L(U)/L(U0). Because the log function is strictly 
concave, from Jensen’s Inequality (Theorem D.13.), we have
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546	 Part III  ✦   Estimation Methodology

	 E0J ln 
L(U)

L(U0)
R 6 ln E0J L(U)

L(U0)
R .	 (14-13)

The expectation on the right-hand side is exactly equal to one, as

	 E0J L(U)

L(U0)
R = L ¢ L(U)

L(U0)
≤L(U0)dy = 1	 (14-14)

is simply the integral of a joint density. So, the right-hand side of (14-13) equals zero. 
Divide the left-hand side of (14-13) by n to produce

E0[1/n ln L(U)] - E0[1/n ln L(U0)] 6 0.

This produces a central result:

In words, the expected value of the log likelihood is maximized at the true value of the 
parameters.

For any U, including Un,

[(1/n) ln L(U)] = (1/n)a
n

i = 1
ln f(yi �U)

is the sample mean of n i.i.d. random variables, with expectation E0[(1/n) ln L(U)]. 
Because the sampling is i.i.d. by the regularity conditions, we can invoke the Khinchine 
theorem, D.5; the sample mean converges in probability to the population mean. 
Using U = Un, it follows from Theorem 14.3 that as n S ∞ , lim Prob{[(1/n) ln L(Un)] 6  
[(1/n) ln L(U0)]} = 1 if Un ≠ U0. But Un is the MLE, so for every n, (1/n) ln L(Un) Ú (1/n) 
ln L(U0). The only way these can both be true is if (1 / n) times the sample log likelihood 
evaluated at the MLE converges to the population expectation of (1 /n) times the 
log likelihood evaluated at the true parameters. There remains one final step. Does 
(1/n) ln L( nU) S (1/n) ln L(U0) imply that Un S U0? If there is a single parameter and 
the likelihood function is one to one, then clearly so. For more general cases, this 
requires a further characterization of the likelihood function. If the likelihood is strictly 
continuous and twice differentiable, which we assumed in the regularity conditions, and 
if the parameters of the model are identified, which we assumed at the beginning of this 
discussion, then yes, it does, so we have the result.

This is a heuristic proof. As noted, formal presentations appear in more advanced 
treatises than this one. We should also note we have assumed at several points that 
sample means converge to their population expectations. This is likely to be true for 
the sorts of applications usually encountered in econometrics, but a fully general set 
of results would look more closely at this condition. Second, we have assumed i.i.d. 
sampling in the preceding—that is, the density for yi does not depend on any other 
variables, xi. This will almost never be true in practice. Assumptions about the behavior 

THEOREM 14.3  Likelihood Inequality

E0[(1/n) ln L(U0)] 7 E0[(1/n) ln L(U)] for any U ≠ U0 (including Un).
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of these variables will enter the proofs as well. For example, in assessing the large sample 
behavior of the least squares estimator, we have invoked an assumption that the data 
are well behaved. The same sort of consideration will apply here as well. We will return 
to this issue shortly. With all this in place, we have property M1, plim Un = U0.

14.4.5.b    Asymptotic Normality

At the maximum likelihood estimator, the gradient of the log likelihood equals zero (by 
definition), so g(Un) = 0. (This is the sample statistic, not the expectation.) Expand this 
set of equations in a Taylor series around the true parameters U0. We will use the mean 
value theorem to truncate the Taylor series for each element of g(Un) at the second term,

g(Un) = g(U0) + H(U)(Un - U0) = 0.

The K rows of the Hessian are each evaluated at a point Uk that is between Un and 
U0 [Uk = wkU

n + (1 - wk)U0 for some 0 6 wk 6 1]. (Although the vectors Uk are 
different, they all converge to U0.) We then rearrange this function and multiply the 
result by 2n to obtain 2n(Un - U0) = [-H(U)]-1[2ng(U0)].

Because plim(Un - U0) = 0, plim(Un - U) = 0 as well. The second derivatives are 
continuous functions. Therefore, if the limiting distribution exists, then2n(Un - U0) ¡d

[-H(U0)]-1[2ng(U0)].

By dividing H(U0) and g(U0) by n, we obtain

	 2n(Un - U0) ¡d c -
1
n

 H(U0) d
-1

[2ng(U0)].	 (14-15)

We may apply the Lindeberg–Levy central limit theorem (D.18) to [2ng(U0)], because it is 2n times the mean of a random sample; we have invoked D1 again. The limiting variance of

[2ng(U0)] is -E0[(1/n)H(U0)], so2ng(U0) ¡d
Nb0, -E0 c 1

n
 H(U0) d r .

By virtue of Theorem D.2, plim[-(1/n)H(U0)] = -E0[(1/n)H(U0)]. This result is a 
constant matrix, so we can combine results to obtain

c- 1
n

 H(U0)d
-12ng(U0) ¡d

NJ0, b-E0 c 1
n

 H(U0)d r-1b-E0 c1n  H(U0)dr b-E0 c1n  H(U0)dr-1R ,

or 2n(Un - U0) ¡d
NJ0, b -E0 c 1

n
 H(U0) d r -1 R ,

which gives the asymptotic distribution of the MLE,

Un ∼
a

N[U0, {I(U0)}-1].

This last step completes M2.
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Example 14.3    Information Matrix for the Normal Distribution
For the likelihood function in Example 14.2, the second derivatives are

 
02 ln L

0m2 =
-n
s2 ,

 
02 ln L
0(s2)2

=
n

2s4 -
1
s6  a

n

i = 1
(yi - m)2,

 
02 ln L
0m0s2 =

-1
s4  a

n

i = 1
(yi - m).

For the asymptotic variance of the maximum likelihood estimator, we need the expectations 
of these derivatives. The first is nonstochastic, and the third has expectation 0, as E[yi] = m. 
That leaves the second, which you can verify has expectation -n/(2s4) because each of the 
n terms (yi - m)2 has expected value s2. Collecting these in the information matrix, reversing 
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum 
likelihood estimators, b -E0J 02 ln L

0U0 0U0
= R r -1

= Js2/n 0
0 2s4/n

R .

14.4.5.c    Asymptotic Efficiency

Theorem C.2 provides the lower bound for the variance of an unbiased estimator. 
Because the asymptotic variance of the MLE achieves this bound, it seems natural to 
extend the result directly. There is, however, a loose end in that the MLE is almost never 
unbiased. As such, we need an asymptotic version of the bound, which was provided by 
Cramér (1948) and Rao (1945) (hence the name):

The asymptotic variance of the MLE is, in fact, equal to the Cramér–Rao lower bound 
for the variance of a consistent, asymptotically normally distributed estimator, so this 
completes the argument.6

14.4.5.d    Invariance

Last, the invariance property, M4, is a mathematical result of the method of computing 
MLEs; it is not a statistical result as such. More formally, the MLE is invariant to 

6A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that, in principle, there do 
exist CAN functions of the data with smaller variances than the MLE. But the finding is a narrow result with no 
practical implications. For practical purposes, the statement may be taken as given.

THEOREM 14.4  Cramér–Rao Lower Bound
Assuming that the density of yi satisfies the regularity conditions R1–R3, the 
asymptotic variance of a consistent and asymptotically normally distributed 
estimator of the parameter vector U0 will always be at least as large as

[I(U0)]-1 = ¢ -E0J 02 ln L(U0)

0U0 0U0
= R ≤-1

= ¢E0J ¢ 0 ln L(U0)

0U0
≤ ¢ 0 ln L(U0)

0U0
≤= R ≤-1

.
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one-to-one transformations of U. Any transformation that is not one to one either 
renders the model inestimable if it is one to many or imposes restrictions if it is many to 
one. Some theoretical aspects of this feature are discussed in Davidson and MacKinnon 
(2004, pp. 446, 539–540). For the practitioner, the result can be extremely useful. For 
example, when a parameter appears in a likelihood function in the form 1/uj, it is 
usually worthwhile to reparameterize the model in terms of gj = 1/uj. In an important 
application, Olsen (1978) used this result to great advantage.  (See Section 19.3.3.) 
Suppose that the normal log likelihood in Example 14.2 is parameterized in terms of 
the precision parameter, u2 = 1/s2. The log likelihood becomes

ln L(m, u2) = -(n/2) ln(2p) + (n/2) ln u2 -
u2

2
 a

n

i = 1
(yi - m)2.

The MLE for m is clearly still x. But the likelihood equation for u2 is now

0 ln L(m, u2)/0u2 =
1
2

 Jn/u2 - a
n

i = 1
(yi - m)2 R = 0,

which has solution un2 = n/a
n

i = 1
(yi - mn )2 = 1/sn 2, as expected. There is a second 

implication. If it is desired to analyze a function of an MLE, then the function of Un will, 
itself, be the MLE.

14.4.5.e    Conclusion

These four properties explain the prevalence of the maximum likelihood technique in 
econometrics. The second greatly facilitates hypothesis testing and the construction of 
interval estimates. The third is a particularly powerful result. The MLE has the minimum 
variance achievable by a consistent and asymptotically normally distributed estimator.

14.4.6  �  ESTIMATING THE ASYMPTOTIC VARIANCE OF THE MAXIMUM 
LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix of 
parameters that must be estimated (i.e., it is a function of the U0 that is being estimated). 
If the form of the expected values of the second derivatives of the log likelihood is 
known, then

	 [I(U0)]-1 = b -E0J 02 ln L(U0)

0U0 0U0
= R r -1

	 (14-16)

can be evaluated at Un to estimate the covariance matrix for the MLE. This estimator 
will rarely be available. The second derivatives of the log likelihood will almost always 
be complicated nonlinear functions of the data whose exact expected values will be 
unknown. There are, however, two alternatives. A second estimator is

	 [In(Un)]-1 = ¢ -
02 ln L(Un)

0Un 0Un′
≤-1

.	 (14-17)

This estimator is computed simply by evaluating the actual (not expected) second 
derivatives matrix of the log-likelihood function at the maximum likelihood estimates. It 
is straightforward to show that this amounts to estimating the expected second derivatives 
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of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can 
be used to justify the computation. The only shortcoming of this estimator is that the 
second derivatives can be complicated to derive and program for a computer. A third 
estimator based on result D3 in Theorem 14.2, that the expected second derivatives 
matrix is the covariance matrix of the first derivatives vector, is

	 [In
n

(Un)]-1 = Jan
i = 1

gn ign i
= R -1

= [Gn ′Gn ]-1,	 (14-18)

where gn i =
0 ln f(xi, Un)

0Un
, and Gn = [gn1, gn2, c, gnn]′ is an n * K matrix with ith row equal 

to the transpose of the ith vector of derivatives in the terms of the log-likelihood 
function. For a single parameter, this estimator is just the reciprocal of the sum of 
squares of the first derivatives. This estimator is extremely convenient, in most cases, 
because it does not require any computations beyond those required to solve the 
likelihood equation. It has the added virtue that it is always nonnegative definite. For 
some extremely complicated log-likelihood functions, sometimes because of rounding 
error, the observed Hessian can be indefinite, even at the maximum of the function. The 
estimator in (14-18) is known as the BHHH estimator7 and the outer product of 
gradients estimator (OPG).

None of the three estimators given here is preferable to the others on statistical 
grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will be 
the easiest to compute. One caution is in order. As the following example illustrates, 
these estimators can give different results in a finite sample. This is an unavoidable finite 
sample problem that can, in some cases, lead to different statistical conclusions. The 
example is a case in point. Using the usual procedures, we would reject the hypothesis 
that b = 0 if either of the first two variance estimators were used, but not if the third 
were used. The estimator in (14-16) is usually unavailable, as the exact expectation of 
the Hessian is rarely known. Available evidence suggests that in small or moderate-sized 
samples, (14-17) (the Hessian) is preferable.

Example 14.4    Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

f(yi, xi /b) =
1

b + xi
 e-yi/(b + xi),

where y = income and x = education. To find the maximum likelihood estimate of b, we 
maximize

ln L(b) = - a
n

i = 1
ln(b + xi) - a

n

i = 1
 

yi

b + xi

.

The likelihood equation is

	
0 ln L(b)

0b
= - a

n

i = 1
 

1
b + xi

+ a
n

i = 1
 

yi

(b + xi)2
= 0,� (14-19)

7It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).
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which has the solution bn = 15.602727. To compute the asymptotic variance of the MLE, we 
require

	
02 ln L(b)

0b2 = a
n

i = 1
 

1
(b + xi)2

- 2a
n

i = 1
 

yi

(b + xi)3
.� (14-20)

Because the function E(yi) = b + xi is known, the exact form of the expected value in (14-20) 
is known. Inserting bn + xi for yi in (14-20) and taking the negative of the reciprocal yields the 
first variance estimate, 44.2546. Simply inserting bn = 15.602727 in (14-20) and taking 
the negative of the reciprocal gives the second estimate, 46.16337. Finally, by computing 
the reciprocal of the sum of squares of first derivatives of the densities evaluated at bn,

[In
n

(Bn )]-1 =
1

a n
i = 1[-1/(bn + xi) + yi/(bn + xi)2]2

,

we obtain the BHHH estimate, 100.5116.

14.5	   CONDITIONAL LIKELIHOODS AND ECONOMETRIC MODELS

All of the preceding results form the statistical underpinnings of the technique of 
maximum likelihood estimation. But, for our purposes, a crucial element is missing. 
We have done the analysis in terms of the density of an observed random variable 
and a vector of parameters, f(yi �A). But econometric models will involve exogenous or 
predetermined variables, xi, so the results must be extended. A workable approach is to 
treat this modeling framework the same as the one in Chapter 4, where we considered 
the large sample properties of the linear regression model. Thus, we will allow xi to 
denote a mix of random variables and constants that enter the conditional density of yi. 
By partitioning the joint density of yi and xi into the product of the conditional and the 
marginal, the log-likelihood function may be written

ln L(A � data) = a
n

i = 1
ln f(yi, xi �A) = a

n

i = 1
ln f(yi � xi, A) + a

n

i = 1
ln g(xi �A),

where any nonstochastic elements in xi such as a time trend or dummy variable are being 
carried as constants. To proceed, we will assume as we did before that the process generating 
xi takes place outside the model of interest. For present purposes, that means that the 
parameters that appear in g(xi �A) do not overlap with those that appear in f(yi � xi, A). 
Thus, we partition A into [U, D] so that the log-likelihood function may be written

ln L(U, D � data) = a
n

i = 1
ln f(yi, xi �A) = a

n

i = 1
ln f(yi � xi, U) + a

n

i = 1
ln g(xi �D).

As long as U and D have no elements in common and no restrictions connect them (such 
as u + d = 1), then the two parts of the log likelihood may be analyzed separately. In 
most cases, the marginal distribution of xi will be of secondary (or no) interest.

Asymptotic results for the maximum conditional likelihood estimator must now 
account for the presence of xi in the functions and derivatives of ln f(yi � xi, U). We will 
proceed under the assumption of well-behaved data so that sample averages such as

(1/n) ln L(U � y, X) =
1
n

 a
n

i = 1
ln f(yi � xi, U)
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and its gradient with respect to U will converge in probability to their population 
expectations. We will also need to invoke central limit theorems to establish the 
asymptotic normality of the gradient of the log likelihood, so as to be able to characterize 
the MLE itself. We will leave it to more advanced treatises such as Amemiya (1985) and 
Newey and McFadden (1994) to establish specific conditions and fine points that must 
be assumed to claim the “usual” properties for maximum likelihood estimators. For 
present purposes (and the vast bulk of empirical applications), the following minimal 
assumptions should suffice:

●● Parameter space. Parameter spaces that have gaps and nonconvexities in them will 
generally disable these procedures. An estimation problem that produces this failure 
is that of “estimating” a parameter that can take only one among a discrete set of 
values. For example, this set of procedures does not include “estimating” the timing 
of a structural change in a model. The likelihood function must be a continuous 
function of a convex parameter space. We allow unbounded parameter spaces, such 
as s 7 0 in the regression model, for example.

●● Identifiability. Estimation must be feasible. This is the subject of Definition 14.1 
concerning identification and the surrounding discussion.

●● Well-behaved data. Laws of large numbers apply to sample means involving the data 
and some form of central limit theorem (generally Lyapounov) can be applied to 
the gradient. Ergodic stationarity is broad enough to encompass any situation that is 
likely to arise in practice, though it is probably more general than we need for most 
applications, because we will not encounter dependent observations specifically 
until later in the book. The definitions in Chapter 4 are assumed to hold generally.

With these in place, analysis is essentially the same in character as that we used in the 
linear regression model in Chapter 4 and follows precisely along the lines of Section 12.5.

14.6	   HYPOTHESIS AND SPECIFICATION TESTS AND FIT MEASURES

The next several sections will discuss the most commonly used test procedures: the 
likelihood ratio, Wald, and Lagrange multiplier tests.8 We consider maximum likelihood 
estimation of a parameter u and a test of the hypothesis H0: c(u) = 0. The logic of the 
tests can be seen in Figure 14.2.9 The figure plots the log-likelihood function ln L(u), its 
derivative with respect to u, d ln L(u)/du, and the constraint c(u). There are three 
approaches to testing the hypothesis suggested in the figure:

●● Likelihood ratio test. If the restriction c(u) = 0 is valid, then imposing it should not 
lead to a large reduction in the log-likelihood function. Therefore, we base the test 
on the difference, ln LU - ln LR, where LU is the value of the likelihood function 
at the unconstrained value of u and LR is the value of the likelihood function at the 
restricted estimate.

8Extensive discussion of these procedures is given in Godfrey (1988).
9See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points of 
intersection have no significance.
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●● Wald test. If the restriction is valid, then c(unMLe) should be close to zero because the 
MLE is consistent. Therefore, the test is based on c(unMLe). We reject the hypothesis 
if this value is significantly different from zero.

●● Lagrange multiplier test. If the restriction is valid, then the restricted estimator 
should be near the point that maximizes the log likelihood. Therefore, the slope of 
the log-likelihood function should be near zero at the restricted estimator. The test is 
based on the slope of the log likelihood at the point where the function is maximized 
subject to the restriction.

FIGURE 14.2    Three Bases for Hypothesis Tests.

Wald
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multiplier

0 u

ln LR

ûR ûMLE

ln L(u)

d ln L(u)|du
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These three tests are asymptotically equivalent under the null hypothesis, but they 
can behave rather differently in a small sample. Unfortunately, their small-sample 
properties are unknown, except in a few special cases. As a consequence, the choice 
among them is typically made on the basis of ease of computation. The likelihood 
ratio test requires calculation of both restricted and unrestricted estimators. If both 
are simple to compute, then this way to proceed is convenient. The Wald test requires 
only the unrestricted estimator, and the Lagrange multiplier test requires only the 
restricted estimator. In some problems, one of these estimators may be much easier 
to compute than the other. For example, a linear model is simple to estimate but 
becomes nonlinear and cumbersome if a nonlinear constraint is imposed. In this case, 
the Wald statistic might be preferable. Alternatively, restrictions sometimes amount 
to the removal of nonlinearities, which would make the Lagrange multiplier test the 
simpler procedure.

14.6.1    THE LIKELIHOOD RATIO TEST

Let U be a vector of parameters to be estimated, and let H0 specify some sort of restriction 
on these parameters. Let UnU be the maximum likelihood estimator of U obtained without 
regard to the constraints, and let UnR be the constrained maximum likelihood estimator. 
If LnU and LnR are the likelihood functions evaluated at these two estimates, then the 
likelihood ratio is

	 l =
LnR

LnU

.	 (14-21)

This function must be between zero and one. Both likelihoods are positive, and LnR 
cannot be larger than LnU. (A restricted optimum is never superior to an unrestricted 
one.) If l is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps fix these ideas. In estimating from a 
sample of 10 from a Poisson population at the beginning of Section 14.3, we found the 
MLE of the parameter u to be 2. At this value, the likelihood, which is the probability 
of observing the sample we did, is 0.104 * 10-7. Are these data consistent with 
H0: u = 1.8? LR = 0.936 * 10-8, which is, as expected, smaller. This particular sample 
is somewhat less probable under the hypothesis.

The formal test procedure is based on the following result.

The null hypothesis is rejected if this value exceeds the appropriate critical value 
from the chi-squared tables. Thus, for the Poisson example,

-2 ln l = -2 lna 0.0936
0.104

b = 0.21072.

THEOREM 14.5  Limiting Distribution of the Likelihood Ratio Test Statistic
Under regularity and under H0, the limiting distribution of -2 ln l is chi squared, 
with degrees of freedom equal to the number of restrictions imposed.
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This chi-squared statistic with one degree of freedom is not significant at any 
conventional level, so we would not reject the hypothesis that u = 1.8 on the basis of 
this test.10

It is tempting to use the likelihood ratio test to test a simple null hypothesis against a 
simple alternative. For example, we might be interested in the Poisson setting in testing 
H0: u = 1.8 against H1: u = 2.2. But the test cannot be used in this fashion. The degrees of 
freedom of the chi-squared statistic for the likelihood ratio test equals the reduction in the 
number of dimensions in the parameter space that results from imposing the restrictions. In 
testing a simple null hypothesis against a simple alternative, this value is zero.11 Second, one 
sometimes encounters an attempt to test one distributional assumption against another with 
a likelihood ratio test; for example, a certain model will be estimated assuming a normal 
distribution and then assuming a t distribution. The ratio of the two likelihoods is then 
compared to determine which distribution is preferred. This comparison is also inappropriate. 
The parameter spaces, and hence the likelihood functions of the two cases, are unrelated.

14.6.2    THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation 
of both the restricted and unrestricted parameter vectors. In complex models, one or 
the other of these estimates may be very difficult to compute. Fortunately, there are 
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that 
circumvent this problem. Both tests are based on an estimator that is asymptotically 
normally distributed.

These two tests are based on the distribution of the full rank quadratic form 
considered in Section B.11.6. Specifically,

	 if x ∼ NJ[M, �], then (x - M)′�-1(x - M) ∼ chi@squared[J].	 (14-22)

In the setting of a hypothesis test, under the hypothesis that E(x) = M, the quadratic 
form has the chi-squared distribution. If the hypothesis that E(x) = M is false, however, 
then the quadratic form just given will, on average, be larger than it would be if the 
hypothesis were true.12 This condition forms the basis for the test statistics discussed in 
this and the next section.

Let Un be the vector of parameter estimates obtained without restrictions. We 
hypothesize a set of restrictions,

H0: c(U) = q.

If the restrictions are valid, then at least approximately Un should satisfy them. If the hypothesis 
is erroneous, however, then c(Un) - q should be farther from 0 than would be explained by 
sampling variability alone. The device we use to formalize this idea is the Wald test.

10Of course, our use of the large-sample result in a sample of 10 might be questionable.
11Note that because both likelihoods are restricted in this instance, there is nothing to prevent -2 ln l from being 
negative.
12If the mean is not m, then the statistic in (14-22) will have a noncentral chi-squared distribution. This distribution 
has the same basic shape as the central chi-squared distribution, with the same degrees of freedom, but lies to the 
right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be larger than a random 
observation from the central distribution.
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This test is analogous to the chi-squared statistic in (14-22) if c(Un) - q is normally 
distributed with the hypothesized mean of 0. A large value of W leads to rejection of the 
hypothesis. Note, finally, that W only requires computation of the unrestricted model. 
One must still compute the covariance matrix appearing in the preceding quadratic 
form. This result is the variance of a possibly nonlinear function, which we treated earlier.

 est.asy.Var[c(Un) - q] = Cn  est.asy.Var[Un]Cn ′,

 Cn = c 0c(Un)

0Un′
d . � (14-23)

That is, C is the J * K matrix whose jth row is the derivatives of the jth constraint with 
respect to the K elements of U. A common application occurs in testing a set of linear 
restrictions.

For testing a set of linear restrictions RU = q, the Wald test would be based on

H0: c(U) - q = RU - q = 0,

	 Cn = c 0c(Un)

0Un′
d = R,	 (14-24)

est.asy.Var[c(Un) - q] = R est.asy.Var[Un]R,

and

W = [RUn - q]′[R est.asy.Var(Un)R′]-1[RUn - q].

The degrees of freedom is the number of rows in R.
If c(U) = q is a single restriction, then the Wald test will be the same as the test 

based on the confidence interval developed previously. If the test is

H0: u = u0 versus H1: u ≠ u0,

then the earlier test is based on

	 z =
� un - u0 �

s(un)
,	 (14-25)

where s(un) is the estimated asymptotic standard error. The test statistic is compared to 
the appropriate value from the standard normal table. The Wald test will be based on

THEOREM 14.6  Limiting Distribution of the Wald Test Statistic
The Wald statistic is

W = [c(Un) - q]′(asy.Var[c(Un) - q])-1[c(Un) - q].

Under H0, W has a limiting chi-squared distribution with degrees of freedom equal 
to the number of restrictions [i.e., the number of equations in c(Un) - q = 0]. 
A derivation of the limiting distribution of the Wald statistic appears in Theorem 5.1.
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	 W = [(un - u0) - 0](asy.Var[(un - u0) - 0])-1[(un - u0) - 0] =
(un - u0)

2

asy.Var[un]
= z2.

� (14-26)

Here W has a limiting chi-squared distribution with one degree of freedom, which is the 
distribution of the square of the standard normal test statistic in (14-25).

To summarize, the Wald test is based on measuring the extent to which the unrestricted 
estimates fail to satisfy the hypothesized restrictions. There are two shortcomings of the 
Wald test. First, it is a pure significance test against the null hypothesis, not necessarily 
for a specific alternative hypothesis. As such, its power may be limited in some settings. 
In fact, the test statistic tends to be rather large in applications. The second shortcoming 
is not shared by either of the other test statistics discussed here. The Wald statistic is not 
invariant to the formulation of the restrictions. For example, for a test of the hypothesis 
that a function u = b/(1 - g) equals a specific value q there are two approaches one 
might choose. A Wald test based directly on u - q = 0 would use a statistic based on the 
variance of this nonlinear function. An alternative approach would be to analyze the linear 
restriction b - q(1 - g) = 0, which is an equivalent, but linear, restriction. The Wald 
statistics for these two tests could be different and might lead to different inferences. These 
two shortcomings have been widely viewed as compelling arguments against use of the 
Wald test. But, in its favor, the Wald test does not rely on a strong distributional assumption, 
as do the likelihood ratio and Lagrange multiplier tests. The recent econometrics literature is 
replete with applications that are based on distribution free estimation procedures, such as 
the GMM method. As such, in recent years, the Wald test has enjoyed a redemption of sorts.

14.6.3    THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score) 
test. It is based on the restricted model instead of the unrestricted model. Suppose that 
we maximize the log likelihood subject to the set of constraints c(U) - q = 0. Let L be 
a vector of Lagrange multipliers and define the Lagrangean function

ln L*(U) = ln L(U) + L′(c(U) - q).

The solution to the constrained maximization problem is the joint solution of

 
0 ln L*

0U
=

0 ln L(U)

0U
+ C′L = 0,

 
0 ln L*

0L
= c(U) - q = 0, � (14-27)

where C′ is the transpose of the derivatives matrix in the second line of (14-23). If the 
restrictions are valid, then imposing them will not lead to a significant difference in the 
maximized value of the likelihood function. In the first-order conditions, the meaning is 
that the second term in the derivative vector will be small. In particular, L will be small. 
We could test this directly, that is, test H0: L = 0, which leads to the Lagrange multiplier 
test. There is an equivalent simpler formulation, however. At the restricted maximum, 
the derivatives of the log-likelihood function are

	
0 ln L(UnR)

0UnR

= -C′Ln = gnR.	 (14-28)
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If the restrictions are valid, at least within of sampling variability, then gnR = 0. That is, 
the derivatives of the log likelihood evaluated at the restricted parameter vector will 
be approximately zero. The vector of first derivatives of the log likelihood is the vector 
of efficient scores. Because the test is based on this vector, it is called the score test as 
well as the Lagrange multiplier test. The variance of the first derivative vector is the 
information matrix, which we have used to compute the asymptotic covariance matrix 
of the MLE. The test statistic is based on reasoning analogous to that underlying the 
Wald test statistic.

The LM statistic has a useful form. Let gn iR denote the ith term in the gradient of 

the log-likelihood function. Then gnR = a
n

i = 1
gn iR = Gn R

= i, where Gn R is the n * K matrix 

with ith row equal to gn iR
=  and i is a column of 1s. If we use the BHHH (outer product of 

gradients) estimator in (14-18) to estimate the Hessian, then [In(Un)]-1 = [Gn R
= Gn R]-1, and

LM = i′Gn R[Gn R
= Gn R]-1Gn R

= i.

Now, because i′i equals n, LM = n(i′Gn R[Gn R
= Gn R]-1Gn R

= i/n) = nRi
2, which is n times the 

uncentered squared multiple correlation coefficient in a linear regression of a column of 
1s on the derivatives of the log-likelihood function computed at the restricted estimator. 
We will encounter this result in various forms at several points in the book.

14.6.4    AN APPLICATION OF THE LIKELIHOOD-BASED TEST PROCEDURES

Consider, again, the data in Example C.1. In Example 14.4, the parameter b in the model

	 f(yi � xi, b) =
1

b + xi
 e-yi/(b + xi)	 (14-29)

was estimated by maximum likelihood. For convenience, let ai = 1/(b + xi). This 
exponential density is a restricted form of a more general gamma distribution,

	 f(yi � xi, b, r) =
ai
r

Γ(r)
 yi
r - 1e-yiai.	 (14-30)

THEOREM 14.7  Limiting Distribution of the Lagrange Multiplier Statistic
The Lagrange multiplier test statistic is

LM = ¢ 0 ln L(UnR)

0UnR

≤=[I(UnR)]-1¢ 0 ln L(UnR)

0UnR

≤.

Under the null hypothesis, LM has a limiting chi-squared distribution with 
degrees of freedom equal to the number of restrictions. All terms are computed at 
the restricted estimator.
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The restriction is r = 1.13 We consider testing the hypothesis

H0: r = 1 versus H1: r ≠ 1

using the various procedures described previously. The log likelihood and its derivatives are

ln L(b, r) = ra
n

i = 1
ln ai - n ln Γ(r) + (r - 1)a

n

i = 1
 ln yi - a

n

i = 1
yiai,

	
0 ln L

0b
= -ra

n

i = 1
ai + a

n

i = 1
yiai

2,  
0 ln L

0r
= a

n

i = 1
ln ai - nΨ(r) + a

n

i = 1
ln yi,	 (14-31)

02 ln L
0b2 = ra

n

i = 1
ai

2 - 2a
n

i = 1
yiai

3,  
02 ln L

0r2 = -nΨ′(r), 
02 ln L
0b0r

= - a
n

i = 1
ai.

[Recall that Ψ(r) = d ln Γ(r)/dr and Ψ′(r) = d2 ln Γ(r)/dr2.] Unrestricted maximum 
likelihood estimates of b and r are obtained by equating the two first derivatives to 
zero. The restricted maximum likelihood estimate of b is obtained by equating 0 ln L/0b 
to zero while fixing r at one. The results are shown in Table 14.1. Three estimators are 
available for the asymptotic covariance matrix of the estimators of U = (b, r)′. Using 
the actual Hessian as in (14-17), we compute V = [- Σi02 ln f(yi � xi, b, r)/0U0U′]-1 at the 
maximum likelihood estimates. For this model, it is easy to show that E[yi � xi] = r(b + xi) 
(either by direct integration or, more simply, by using the result that E[0 ln L/0b] = 0 
to deduce it). Therefore, we can also use the expected Hessian as in (14-16) to compute 
VE = {- ΣiE[02 ln f(yi � xi, b, r)/0U0U′]}-1. Finally, by using the sums of squares and 
cross products of the first derivatives, we obtain the BHHH estimator in (14-18), 
VB = [Σi(0 ln f(yi � xi, b, r)/0U)(0 ln f(yi � xi, b, r)/0U′)]-1. Results in Table 14.1 are based 
on V.

The three estimators of the asymptotic covariance matrix produce notably different 
results:

V = J 5.499 -1.653
-1.653 0.6309

R ,  VE = J 4.900 -1.473
-1.473 0.5768

R ,  VB = J 13.370 -4.322
-4.322 1.537

R .

13The gamma function Γ(r) and the gamma distribution are described in Sections B.4.5 and E2.3.

Quantity Unrestricted Estimatea Restricted Estimate

b -4.7185 (2.345) 15.6027 (6.794)
r 3.1509 (0.794) 1.0000 (0.000)
ln L -82.91605 -88.4363
0 ln L/0b 0.0000 0.0000
0 ln L/0r 0.0000 7.9145

02 ln L/0b2 -0.8557 -0.0217

02 ln L/0r2 -7.4592 -32.8987

02 ln L/0b0r -2.2420 -0.66891

aEstimated asymptotic standard errors based on V are given in parentheses.

TABLE 14.1  Maximum Likelihood Estimates

M14_GREE1366_08_SE_C14.indd   559 2/24/17   1:14 PM



560	 Part III  ✦   Estimation Methodology

Given the small sample size, the differences are to be expected. Nonetheless, the striking 
difference of the BHHH estimator is typical of its erratic performance in small samples.

●● Confidence interval test: A 95% confidence interval for r based on the unrestricted 
estimates is 3.1509 { 1.9620.6309 = [1.5941, 4.7076]. This interval does not 
contain r = 1, so the hypothesis is rejected.

●● Likelihood ratio test: The LR statistic is l = -2[-88.43626 - (-82.91604)] =
11.0404. The table value for the test, with one degree of freedom, is 3.842. The 
computed value is larger than this critical value, so the hypothesis is again rejected.

●● Wald test: The Wald test is based on the unrestricted estimates. For this restriction, 
c(U) - q = r - 1, dc(rn)/drn = 1, est.asy.Var[c(rn) - q] = est.asy.Var[rn] = 0.6309, 
so W = (3.1517 - 1)2/[0.6309] = 7.3384. The critical value is the same as the 
previous one. Hence, H0 is once again rejected. Note that the Wald statistic is the 
square of the corresponding test statistic that would be used in the confidence 
interval test, � 3.1509 - 1 � /20.6309 = 2.73335.

●● Lagrange multiplier test: The Lagrange multiplier test is based on the restricted 
estimators. The estimated asymptotic covariance matrix of the derivatives used 
to compute the statistic can be any of the three estimators discussed earlier. The 
BHHH estimator, VB, is the empirical estimator of the variance of the gradient and 
is the one usually used in practice. This computation produces

LM = [0.0000 7.9145]J0.00995  0.26776
0.26776 11.199

R -1J0.0000
7.9145

R = 15.687.

The conclusion is the same as before. Note that the same computation done using V 
rather than VB produces a value of 5.1162. As before, we observe substantial small-
sample variation produced by the different estimators.

The latter three test statistics have substantially different values. It is possible to 
reach different conclusions, depending on which one is used. For example, if the test had 
been carried out at the 1% level of significance instead of 5% and LM had been 
computed using V, then the critical value from the chi-squared statistic would have been 
6.635 and the hypothesis would not have been rejected by the LM test. Asymptotically, 
all three tests are equivalent. But, in a finite sample such as this one, differences are to 
be expected.14 Unfortunately, there is no clear rule for how to proceed in such a case, 
which highlights the problem of relying on a particular significance level and drawing a 
firm reject or accept conclusion based on sample evidence.

14.6.5    COMPARING MODELS AND COMPUTING MODEL FIT

The test statistics described in Sections 14.6.1–14.6.3 are available for assessing the 
validity of restrictions on the parameters in a model. When the models are nested, 
any of the three mentioned testing procedures can be used. For nonnested models, the 
computation is a comparison of one model to another based on an estimation criterion 
to discern which is to be preferred. Two common measures that are based on the same 
logic as the adjusted R-squared for the linear model are

14For further discussion of this problem, see Berndt and Savin (1977).
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 Akaike information criterion (AIC)    = -2 ln L + 2K,
 Bayes (Schwarz) information criterion (BIC) = -2 ln L + K ln n, 

where K is the number of parameters in the model. Choosing a model based on the 
lowest AIC is logically the same as using R2 in the linear model, nonstatistical, albeit 
widely accepted.

The AIC and BIC are information criteria, not fit measures as such. This does leave 
open the question of how to assess the “fit” of the model. Only the case of a linear least 
squares regression in a model with a constant term produces an R2, which measures the 
proportion of variation explained by the regression. The ambiguity in R2 as a fit measure 
arose immediately when we moved from the linear regression model to the generalized 
regression model in Chapter 9. The problem is yet more acute in the context of the 
models we consider in this chapter. For example, the estimators of the models for count 
data in Example 14.10 make no use of the “variation” in the dependent variable and 
there is no obvious measure of “explained variation.”

A measure of fit that was originally proposed for discrete choice models in 
McFadden (1974), but surprisingly has gained wide currency throughout the empirical 
literature is the likelihood ratio index, which has come to be known as the Pseudo R2. 
It is computed as

Pseudo R2 = 1 - (ln L)/(ln L0),

where ln L is the log likelihood for the model estimated and ln L0 is the log likelihood 
for the same model with only a constant term. The statistic does resemble the R2 in a 
linear regression. The choice of name for this statistic is unfortunate, however, because 
even in the discrete choice context for which it was proposed, it has no connection to the 
fit of the model to the data. In discrete choice settings in which log likelihoods must be 
negative, the pseudo R2 must be between zero and one and rises as variables are added 
to the model. It can obviously be zero, but is usually bounded below one. In the linear 
model with normally distributed disturbances, the maximized log likelihood is

ln L = (-n/2)[1 + ln 2p + ln(e′e/n)].

With a small amount of manipulation, we find that the pseudo R2 for the linear regression 
model is

Pseudo R2 =
- ln(1 - R2)

1 + ln 2p + ln sy
2
,

while the true R2 is 1 - e′e/e0
=e0. Because sy

2 can vary independently of R2—multiplying 
y by any scalar, A, leaves R2 unchanged but multiplies sy

2 by A2—although the upper 
limit is one, there is no lower limit on this measure. It can even be negative. This same 
problem arises in any model that uses information on the scale of a dependent variable, 
such as the tobit model (Chapter 19). The computation makes even less sense as a fit 
measure in multinomial models such as the ordered probit model (Chapter 18) or the 
multinomial logit model. For discrete choice models, a variety of such measures 
are discussed in Chapter 17. For limited dependent variable and many loglinear models, 
some other measure that is related to a correlation between a prediction and the actual 
value would be more useable. Nonetheless, the measure has gained currency in the 
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contemporary literature.15 Notwithstanding the general contempt for the likelihood ratio 
index, practitioners are often interested in comparing models based on some idea of the 
fit of the model the data. Constructing such a measure will be specific to the context, so 
we will return to the issue in the discussion of specific applications such as the binary 
choice in Chapter 17.  

14.6.6    VUONG’S TEST AND THE KULLBACK–LEIBLER INFORMATION CRITERION

Vuong’s (1989) approach to testing nonnested models is also based on the likelihood 
ratio statistic. The logic of the test is similar to that which motivates the likelihood 
ratio test in general. Suppose that f(yi � Zi, U) and g(yi � Zi, G) are two competing models 
for the density of the random variable yi, with f being the null model, H0, and g being 
the alternative, H1. For instance, in Example 5.7, both densities are (by assumption 
now) normal, yi is consumption, Ct, Zi is [1, Yt, Yt - 1, Ct - 1], U is (b1, b2, b3, 0, s2), G 
is (g1, g2, 0, g3, v

2), and s2 and v2 are the respective conditional variances of the 
disturbances, e0t and e1t. The crucial element of Vuong’s analysis is that it need not be 
the case that either competing model is true; they may both be incorrect. What we want 
to do is attempt to use the data to determine which competitor is closer to the truth, that 
is, closer to the correct (unknown) model.

We assume that observations in the sample (disturbances) are conditionally 
independent. Let Li,0 denote the ith contribution to the likelihood function under the 
null hypothesis. Thus, the log-likelihood function under the null hypothesis is Σi ln Li,0. 
Define Li,1 likewise for the alternative model. Now, let mi equal ln Li,1 - ln Li,0. If we 
were using the familiar likelihood ratio test, then, the likelihood ratio statistic would be 
simply LR = 2Σimi = 2nm when Li,0 and Li,1 are computed at the respective maximum 
likelihood estimators. When the competing models are nested—H0 is a restriction on 
H1—we know that Σimi Ú 0. The restrictions of the null hypothesis will never increase 
the likelihood function. (In the linear regression model with normally distributed 
disturbances that we have examined so far, the log likelihood and these results are 
all based on the sum of squared residuals. And, as we have seen, imposing restrictions 
never reduces the sum of squares.) The limiting distribution of the LR statistic under 
the assumption of the null hypothesis is chi squared with degrees of freedom equal to 
the reduction in the number of dimensions of the parameter space of the alternative 
hypothesis that results from imposing the restrictions.

Vuong’s analysis is concerned with nonnested models for which Σi mi need not be 
positive. Formalizing the test requires us to look more closely at what is meant by the 
right model (and provides a convenient departure point for the discussion in the next 
two sections). In the context of nonnested models, Vuong allows for the possibility that 
neither model is true in the absolute sense. We maintain the classical assumption that there 
does exist a true model, h(yi � Zi, A) where A is the true parameter vector, but possibly 
neither hypothesized model is that true model. The Kullback–Leibler Information 
Criterion (KLIC) measures the distance between the true model (distribution) and a 

15The software package Stata reports the pseudo R2 with every model fit by MLE, but at the same time, 
admonishes its users not to interpret it as anything meaningful. See, for example, www.stata.com/support/faqs/
stat/pseudor2.html. Cameron and Trivedi (2005) document the pseudo R2 at length and then give similar cautions 
about it and urge their readers to seek a more meaningful measure of the correlation between model predictions 
and the outcome variable of interest. Wooldridge (2010, p. 575) dismisses it summarily, and argues that partial 
effects are more important.
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hypothesized model in terms of the likelihood function. Loosely, the KLIC is the log-
likelihood function under the hypothesis of the true model minus the log-likelihood 
function for the (misspecified) hypothesized model under the assumption of the true 
model. Formally, for the model of the null hypothesis,

kLiC = E[ln h(yi � Zi, A) � h is true] - E[ln f(yi � Zi, U) � h is true].

The first term on the right-hand side is what we would estimate with (1/n) ln L if we 
maximized the log likelihood for the true model, h(yi � Zi, A). The second term is what 
is estimated by (1/n) ln L assuming (incorrectly) that f(yi � Zi, U) is the correct model. 
Notice that f(yi � Zi, U) is written in terms of a parameter vector, U. Because A is the true 
parameter vector, it is perhaps ambiguous what is meant by the parameterization, U. 
Vuong (p. 310) calls this the “pseudotrue” parameter vector. It is the vector of constants 
that the estimator converges to when one uses the estimator implied by f(yi � Zi, U). 
In Example 5.7, if H0 gives the correct model, this formulation assumes that the least 
squares estimator in H1 would converge to some vector of pseudo-true parameters. But 
these are not the parameters of the correct model—they would be the slopes in the 
population linear projection of Ct on [1, Yt, Ct - 1].

Suppose the true model is y = XB + E, with normally distributed disturbances 
and y = ZD + w is the proposed competing model. The KLIC would be the expected 
log-likelihood function for the true model minus the expected log-likelihood function 
for the second model, still assuming that the first one is the truth. By construction, the 
KLIC is positive. We will now say that one model is better than another if it is closer to 
the truth based on the KLIC. If we take the difference of the two KLICs for two models, 
the true log-likelihood function falls out, and we are left with

kLiC1 - kLiC0 = E[ln f(yi � Zi, U) � h is true] - E[ln g(yi � Zi, G) � h is true].

To compute this using a sample, we would simply compute the likelihood ratio statistic, 
nm (without multiplying by 2) again. Thus, this provides an interpretation of the 
LR statistic. But, in this context, the statistic can be negative—we don’t know which 
competing model is closer to the truth.

Vuong’s general result for nonnested models (his Theorem 5.1) describes the 
behavior of the statistic

V =
2n¢ 1

n
 a n

i = 1mi≤A 1
n

 a n
i = 1(mi - m)2

= 2n(m/sm), mi = ln Li,1 - ln Li,0.

He finds:

1.	 Under the hypothesis that the models are “equivalent,” V ¡D
N[0,1].

2.	 Under the hypothesis that f(yi � Zi, U) is “better,” V ¡A.S.
 + ∞ .

3.	 Under the hypothesis that g(yi � Zi, G) is “better,” V ¡A.S.
 - ∞ .

This test is directional. Large positive values favor the null model while large negative 
values favor the alternative. The intermediate values (e.g., between -1.96 and +1.96 for 
95% significance) are an inconclusive region. An application appears in Example 14.8.
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14.7	   TWO-STEP MAXIMUM LIKELIHOOD ESTIMATION

The applied literature contains a large and increasing number of applications in which 
elements of one model are embedded in another, which produces what are known as 
“two-step” estimation problems.16 There are two parameter vectors, U1 and U2. The first 
appears in the second model, but the second does not appear in the first model. In such 
a situation, there are two ways to proceed. Full information maximum likelihood (FIML) 
estimation would involve forming the joint distribution f(y1, y2 � x1, x2, U1, U2) of the two 
random variables and then maximizing the full log-likelihood function,  

ln L(U1, U2) = a
n

i = 1
ln f(yi1, yi2 � xi1, xi2, U1, U2).

A two-step procedure for this kind of model could be used by estimating the parameters 
of model 1 first by maximizing

ln L1(U1) = a
n

i = 1
ln f1(yi1 � xi1, U1)

and then maximizing the marginal likelihood function for y2 while embedding the 
consistent estimator of U1, treating it as given. The second step involves maximizing

ln L2(Un1, U2) = a
n

i = 1
ln f2(yi2 � xi1, xi2, Un1, U2).

There are at least two reasons one might proceed in this fashion. First, it may be 
straightforward to formulate the two separate log likelihoods, but very complicated to 
derive the joint distribution. This situation frequently arises when the two variables 
being modeled are from different kinds of populations, such as one discrete and one 
continuous (which is a very common case in this framework). The second reason is that 
maximizing the separate log likelihoods may be fairly straightforward, but maximizing 
the joint log likelihood may be numerically complicated or difficult.17 The results given 
here can be found in an important reference on the subject, Murphy and Topel (2002, 
first published in 1985).  

Suppose, then, that our model consists of the two marginal distributions, f1(y1 � x1, U1) 
and f2(y2 � x1, x2, U1, U2). Estimation proceeds in two steps.

1.	 Estimate U1 by maximum likelihood in model 1. Let Vn1 be n times any of the 
estimators of the asymptotic covariance matrix of this estimator that were discussed 
in Section 14.4.6.

2.	 Estimate U2 by maximum likelihood in model 2, with Un1 inserted in place of U1 as 
if it were known. Let Vn2 be n times any appropriate estimator of the asymptotic 
covariance matrix of Un2.

16Among the best known of these is Heckman’s (1979) model of sample selection discussed in Example 1.1 and in 
Chapter 19.
17There is a third possible motivation. If either model is misspecified, then the FIML estimates of both models will 
be inconsistent. But if only the second is misspecified, at least the first will be estimated consistently. Of course, 
this result is only “half a loaf,” but it may be better than none.
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The argument for consistency of Un2 is essentially that if U1 were known, then all our results 
for MLEs would apply for estimation of U2, and because plim Un1 = U1, asymptotically, 
this line of reasoning is correct. (See point 3 of Theorem D.16.) But the same line of 
reasoning is not sufficient to justify using (1/n)V2 as the estimator of the asymptotic 
covariance matrix of Un2. Some correction is necessary to account for an estimate of U1 
being used in estimation of U2. The essential result is the following:

THEOREM 14.8  �Asymptotic Distribution of the Two-Step MLE [Murphy 
and Topel (2002)]

If the standard regularity conditions are met for both log-likelihood functions, then 
the second-step maximum likelihood estimator of U2 is consistent and asymptoti-
cally normally distributed with asymptotic covariance matrix

V2* =
1
n

 [V2 + V2[CV1C′ - RV1C′ - CV1R′]V2],

where

V1 = asy.Var[2n(Un1 - U1)] based on ln L1,

V2 = asy.Var[2n(Un2 - U2)] based on ln L2 �U1,

C = EJ 1
n

 ¢ 0 ln L2

0U2
≤ ¢ 0 ln L2

0U1
= ≤ R , R = EJ 1

n
 ¢ 0 ln L2

0U2
≤ ¢ 0 ln L1

0U1
= ≤ R .

The correction of the asymptotic covariance matrix at the second step requires 
some additional computation. Matrices V1 and V2 are estimated by the respective 
uncorrected covariance matrices. Typically, the BHHH estimators,

 Vn1 = c 1
n

 a
n

i = 1
¢ 0 ln fi1

0Un1

≤ ¢ 0 ln fi1

0Un1
=

≤ R -1

and

 Vn2 = J 1
n

 a
n

i = 1
¢ 0 ln fi2

0Un2

≤ ¢ 0 ln fi2

0Un2
=

≤ R -1

are used. The matrices R and C are obtained by summing the individual observa-
tions on the cross products of the derivatives. These are estimated with

Cn =
1
n

 a
n

i = 1
¢ 0 ln fi2

0Un2

≤ ¢ 0 ln fi2

0Un1
=

≤
and

Rn =
1
n

 a
n

i = 1
¢ 0 ln fi2

0Un2

≤ ¢ 0 ln fi1

0Un1
=

≤.
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A derivation of this useful result is instructive. We will rely on (14-11) and the results 
of Section 14.4.5.B where the asymptotic normality of the maximum likelihood estimator 
is developed. The first-step MLE of U1 is defined by

 
1
n

 
0 ln L1(Un1)

Un1

=
1
n

 a
n

i = 1
 
0 ln f1(yi1 � xi1, Un1)

0Un1

 =
1
n

 a
n

i = 1
gi1(Un1) = g1(Un1) = 0. 

Using the results in that section, we obtained the asymptotic distribution from (14-15),2n(Un1 - U1) ¡d
[ - H11

(1)(u1)]-12ng1(u1),

where the expression means that the limiting distribution of the two random vectors is 
the same,

and

H11
(1) = EJ 1

n
 
02 ln L1(U1)

0U10U1
= R .

The second-step MLE of U2 is defined by

 
1
n

 
0 ln L2(Un1, Un2)

0Un2

=
1
n

 a
n

i = 1
 
0 ln f2(yi2 � xi1, xi2, Un1, Un2)

0Un2

 =
1
n

 a
n

i = 1
gi2(Un1, Un2) = gn2(Un1, Un2) = 0.

Expand the derivative vector, g2(Un1, Un2), in a linear Taylor series as usual, and use the 
results in Section 14.4.5.b once again,

g2(Un1, Un2) = g2(U1, U2) + 3H22
(2)(U1, U2)4(Un2 - U2) + 3H21

(2)(U1, U2)4(Un1 - U1) + o(1/n) = 0,

where

H21
(2)(U1, U2) = E c 1

n
 
02 ln L2(U1, U2)

0U20U1
= d  and H22

(2)(U1, U2) = EJ 1
n

 
02 ln L2(U1, U2)

0U20U2
= R .

To obtain the asymptotic distribution, we use the same device as before,2n(Un2 - U2) ¡d 3 -H22
(2)(U1, U2)4 -12ng2(U1, u2)

+ 3 -H22
(2)(U1, U2)4 -13H21

(2)(U1, U2)42n(Un1 - U1).

For convenience, denote H22
(2) = H22

(2)(U1, U2), H21
(2) = H21

(2)(U1, U2) and H11
(1) = H11

(1)(U1). 
Now substitute the first-step estimator of U1 in this expression to obtain2n(Un2 - U2) ¡d 3 -H22

(2)4 -12ng2(U1, U2) + 3 -H22
(2)4 -13H21

(2)4 3 -H11
(1)4 -12ng1(U1).

Consistency and asymptotic normality of the two estimators follow from our earlier 
results. To obtain the asymptotic covariance matrix for Un2 we will obtain the limiting 
variance of the random vector in the preceding expression. The joint normal distribution 
of the two first derivative vectors has zero means and
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VarJ2ng1 (U1)2ng2 (U2, U1)
R = J�11 �12

�21 �22
R .

Then, the asymptotic covariance matrix we seek is

Var32n(Un2 - U2)4 = 3 -H22
(2)4 -1�223 -H22

(2)4 -1

+ 3 -H22
(2)4 -13H21

(2)4 3 -H11
(1)4 -1�113 -H11

(1)4 -13H21
(2)4= 3 -H22

(2)4 -1

+ 3 -H22
(2)4 -1�213 -H11

(1)4 -13H21
(2)4=3 -H22

(2)4 -1

+ 3 -H22
(2)4 -13H(2)

21 4 3 -H11
(1)4 -1�123 -H22

(2)4 -1.

As we found earlier, the variance of the first derivative vector of the log likelihood is the 
negative of the expected second derivative matrix [see (14-11)]. Therefore �22 = [-H22

(2)] 
and �11 = [-H11

(1)]. Making the substitution we obtain

Var32n(Un2 - U2)4 = 3 -H22
(2)4 -1 + 3 -H22

(2)4 -13H21
(2)4 3 -H11

(1)4 -13H21
(2)4=3 -H22

(2)4 -1

+ 3 -H22
(2)4 -1�213 -H11

(1)4 -13H21
(2)4=3 -H22

(2)4 -1

+ 3 -H22
(2)4 -13H21

(2)4 3 -H11
(1)4 -1�123 -H22

(2)4 -1.

From (14-15), [-H11
(1)]-1 and [-H22

(2)]-1 are the V1 and V2 that appear in Theorem 14.8, 
which further reduces the expression to

Var[2n(Un2 - U2)]

= V2 + V23H21
(2)4  V13H21

(2)4= V2 - V2�21V13H21
(2)4= V2 - V23H21

(2)4  V1�12V2.

Two remaining terms are H21
(2), which is the E[02 ln L2(U1, U2)/0U20U1

= ], which is being 
estimated by -C in the statement of the theorem [note (14-11) again for the change of 
sign] and �21, which is the covariance of the two first derivative vectors. This is being 
estimated by R in Theorem 14.8. Making these last two substitutions produces

Var32n(Un2 - U2)4 = V2 + V2CV1C′V2 - V2RV1C′V2 - V2CV1R′V2,

which completes the derivation.

Example 14.5    Two-Step ML Estimation
A common application of the two-step method is accounting for the variation in a constructed 
regressor in a second-step model. In this instance, the constructed variable is often an estimate 
of an expected value of a variable that is likely to be endogenous in the second-step model. 
In this example, we will construct a rudimentary model that illustrates the computations.

In Riphahn, Wambach, and Million (RWM, 2003), the authors studied whether individuals’ 
use of the German health care system was at least partly explained by whether or not they 
had purchased a particular type of supplementary health insurance. We have used their data 
set, German Socioeconomic Panel (GSOEP), at several points. (See, Example 7.6.) One of the 
variables of interest in the study is DocVis, the number of times an individual visits the doctor 
during the survey year. RWM considered the possibility that the presence of supplementary 
(Addon) insurance had an influence on the number of visits. Our simple model is as follows: 
The model for the number of visits is a Poisson regression (see Section 18.4.1). This is a 
loglinear model that we will specify as

E[DocVis �x2, PAddon] = m(x2
=B, g, x1

=A) = exp[x2
=B + gΛ(x1

=A)].
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The model contains the dummy variable equal to 1 if the individual has Addon insurance and 0 
otherwise, which is likely to be endogenous in this equation. But, an estimate of E[Addon � x1] 
from a logistic probability model  (see Section 17.2) for whether the individual has insurance,

Λ(x1
=A) =

exp(x1
=A)

1 + exp(x1
=A)

= Prob[Individual has purchased Addon insurance � x1].

For purposes of the exercise, we will specify

(y1 = Addon) x1 = (constant, Age, Education, Married, Kids),

(y2 = DocVis) x2 = (constant, Age, Education, Income, Female).

As before, to sidestep issues related to the panel data nature of the data set, we will use 
the 4,483 observations in the 1988 wave of the data set, and drop the two observations for 
which Income is zero.

The log likelihood for the logistic probability model is

ln L1(A) = � i{(1 - yi1) ln[1 - Λ(xi1
= A)] + yi1 ln Λ(xi1

= A)}.

The derivatives of this log likelihood are

gi1(A) = 0 ln f1(yi1 � xi1, A)/0A = [yi1 - Λ(xi1
= A)]xi1.

We will maximize this log likelihood with respect to A and then compute V1 using the BHHH 
estimator, as in Theorem 14.8. We will also use gi1(A) in computing R.

The log likelihood for the Poisson regression model is

ln L2 = Σ i[-m(xi2
= b, g, xi1

= A) + yi2 ln m(xi2
= b, g, xi1

= A) - ln yi2
= ].

The derivatives of this log likelihood are

gi2
(2)(B, g, A) = 0 ln f2(yi2, xi1, xi2, B, g, A)/0(B′, g)′ = [yi2 - m(xi2

= B, g, xi1
= A)][xi2

= , Λ(xi1
= A)]′

gi1
(2)(B, g, A) = 0 ln f2(yi2, xi1, xi2, B, g, A)/0A = [yi2 - m(xi2

= b, g, xi1
= A)]g Λ(xi1

= A)[1 - Λ(xi1
= A)]xi1.

We will use gi2
(2) for computing V2 and in computing R and C and gi1

(2) in computing C. In 
particular,

 V1 = [(1/n)� igi1(A)gi1(A)′]-1,

 V2 = [(1/n)� igi2
(2)(B, g, A)gi2

(2)(B, g, A)′]-1,

 C = [(1/n)� igi2
(2)(B, g, A)gi1

(2)(B, g, A)′],

 R = [(1/n)� igi2
(2)(B, g, A)gi1(A)′].

Table 14.2 presents the two-step maximum likelihood estimates of the model parameters and 
estimated standard errors. For the first-step logistic model, the standard errors marked H1 vs. 
V1 compares the values computed using the negative inverse of the second derivatives matrix 
(H1) vs. the outer products of the first derivatives (V1). As expected with a sample this large, the 
difference is minor. The latter were used in computing the corrected covariance matrix at the 
second step. In the Poisson model, the comparison of V2 to V2* shows distinctly that accounting 
for the presence of An  in the constructed regressor has a substantial impact on the standard 
errors, even in this relatively large sample. Note that the effect of the correction is to double the 
standard errors on the coefficients for the variables that the equations have in common, but it is 
quite minor for Income and Female, which are unique to the second-step model.
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The covariance of the two gradients, R, may converge to zero in a particular 
application. When the first- and second-step estimates are based on different samples, 
R is exactly zero. For example, in our earlier application, R is based on two residuals,

gi1 = {Addoni - E[Addoni � xi1]} and gi2
(2) = {DocVisi - E[DocVisi � xi2, �i1]}.

The two residuals may well be uncorrelated. This assumption would be checked on a 
model-by-model basis, but in such an instance, the third and fourth terms in V2 vanish 
asymptotically and what remains is the simpler alternative, V2** = (1/n)[V2 + V2CV1C′V2]. 
(In our application, the sample correlation between gi1 and gi2

(2) is only 0.015658 and the 
elements of the estimate of R are only about 0.01 times the corresponding elements of 
C—essentially about 99 percent of the correction in V2* is accounted for by C.)

It has been suggested that this set of procedures might be more complicated than 
necessary.18 There are two alternative approaches one might take. First, under general 
circumstances, the asymptotic covariance matrix of the second-step estimator could 
be approximated using the bootstrapping procedure  that will be discussed in 
Section 15.4. We would note, however, if this approach is taken, then it is essential 
that both steps be “bootstrapped.” Otherwise, taking Un1 as given and fixed, we will end 
up estimating (1/n)V2, not the appropriate covariance matrix. The point of the exercise 
is to account for the variation in Un1. The second possibility is to fit the full model at 
once. That is, use a one-step, full information maximum likelihood estimator and 
estimate U1 and U2 simultaneously. Of course, this is usually the procedure we sought 
to avoid in the first place. And with modern software, this two-step method is often 
quite straightforward. Nonetheless, this is occasionally a possibility. Once again, 
Heckman’s (1979) famous sample selection model provides an illuminating case.The 
two-step and full information estimators for Heckman’s model are developed in 
Section 19.4.3.  

18For example, Cameron and Trivedi (2005, p. 202).

Logistic Model for Addon Poisson Model for DocVis

Coefficient Standard 
Error (H1)

Standard 
Error (V1)

Coefficient Standard 
Error (V2)

Standard 
Error (V 2

*)

Constant -6.19246 0.60228 0.58287 0.77808 0.04884 0.09319
Age 0.01486 0.00912 0.00924 0.01752 0.00044 0.00111
Education 0.16091 0.03003 0.03326 -0.03858 0.00462 0.00980
Married 0.22206 0.23584 0.23523
Kids -0.10822 0.21591 0.21993
Income -0.80298 0.02339 0.02719
Female 0.16409 0.00601 0.00770
Λ(x1

=A) 3.91140 0.77283 1.87014

TABLE 14.2  Estimated Logistic and Poisson Models
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14.8	   �PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION AND ROBUST 
ASYMPTOTIC COVARIANCE MATRICES

Maximum likelihood estimation requires complete specification of the distribution of 
the observed random variable(s). If the correct distribution is something other than what 
we assume, then the likelihood function is misspecified and the desirable properties of 
the MLE might not hold. This section considers a set of results on an estimation approach 
that is robust to some kinds of model misspecification. For example, we have found that 
if the conditional mean function is E[y � x] = x′B, then certain estimators, such as least 
squares, are “robust” to specifying the wrong distribution of the disturbances. That is, LS 
is MLE if the disturbances are normally distributed, but we can still claim some desirable 
properties for LS, including consistency, even if the disturbances are not normally 
distributed. This section will discuss some results that relate to what happens if we 
maximize the wrong log-likelihood function, and for those cases in which the estimator 
is consistent despite this, how to compute an appropriate asymptotic covariance matrix 
for it.19

14.8.1    A ROBUST COVARIANCE MATRIX ESTIMATOR FOR THE MLE

A heteroscedasticity robust covariance matrix for the least squares estimator  was 
considered in Section 4.5.2. Based on the general result

	 b - B = (X′X)-1 Σi xiei,	 (14-32)

a robust estimator of the asymptotic covariance matrix for b would be the White 
estimator,

est.asy.Var[b] = (X′X)-1 [Σi (xiei)(xiei)′](X′X)-1.

If Var[ei � xi] = s2 and Cov[ei, ej � X] = 0, then we can simplify the calculation to 
est.asy.Var[b] = s2(X′X)-1. But the first form is appropriate in either case—it 
is robust, at least, to heteroscedasticity. This estimator is not robust to correlation 
across observations, as in a time series (considered in Chapter 20) or to clustered data 
(considered in the next section). The variance estimator is robust to omitted variables 
in the sense that b estimates something consistently, G, though generally not B, and the 
variance estimator appropriately estimates the asymptotic variance of b around G. The 
variance estimator might be similarly robust to endogeneity of one or more variables in 
X, though, again, the estimator, b, itself does not estimate B. This point is important for 
the present context. The variance estimator may still be appropriate for the asymptotic 
covariance matrix for b, but b estimates something other than B.

Similar considerations arise in maximum likelihood estimation. The properties of 
the maximum likelihood estimator are derived from (14-15). The empirical counterpart 
to (14-32) is

	 UnMLE - U0 ≈ J -
1
n

 a
n

i = 1
 Hi(U0) R -1¢ 1

n
 a

n

i = 1
 gi(U0)≤,	 (14-33)

19Important references on this subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); 
and Amemiya (1985). A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000).
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where gi(U0) = 0 ln fi/0U0, Hi(U0) = 02 ln fi/0U00U0
=  and U0 = plim UnMLE. Note that U0 is 

the parameter vector that is estimated by maximizing ln L(U), though it might not be 
the target parameters of the model if the log likelihood is misspecified, the MLE may 

be inconsistent. Assuming that plim 
1
n

 a
n

i = 1
 Hi(U0) = H, and the conditions needed for 2ng = 2na 1

n
 a

n

i = 1
 gi(U0)b  to obey a central limit theorem are met, the appropriate 

estimator for the variance of the MLE around U0 would be

	 asy.Var3UnMLE4 = 3 -H4 -1 {asy.Var[g]}3 -H4 -1.	 (14-34)

The missing element is what to use for the asymptotic variance of g. If the information 
matrix equality (Property D3 in Theorem 14.2) holds, then asy.Var[g] = (-1/n)H, 

and we get the familiar result asy.Var3UnMLE4 =
1
n

 3 -H4 -1. However, (14-34) applies 

whether or not the information matrix equality holds. We can estimate the variance of 

g with

	 est.asy.Var[g] =
1
n

 J 1
n

 a
n

i = 1
gi1UnMLE2gi1UnMLE2 =R .	 (14-35)

The variance estimator for the MLE is then

est.asy.Var3UnMLE4
= c -

1
n

 a
n

i = 1
Hi1UnMLE2 d

-1

e 1
n

 J 1
n

 a
n

i = 1
 gi1UnMLE2gi1UnMLE2 = R r J -

1
n

 a
n

i = 1
 Hi1UnMLE2 R -1

.

� (14-36)

This is a robust covariance matrix for the maximum likelihood estimator.
If ln L(U0 � y, X) is the appropriate conditional log likelihood, then the MLE is a 

consistent estimator of U0 and, because of the information matrix equality, the asymptotic 
variance of the MLE is (1/n) times the bracketed term in (14-33). The issue of robustness 
would relate to the behavior of the estimator of U0 if the likelihood were misspecified. 
We assume that the function we are maximizing (we would now call it the pseudo-log 
likelihood) is regular enough that the maximizer that we compute converges to a 
parameter vector, B. Then, by the results above, the asymptotic variance of the estimator 
is obtained without use of the information matrix equality. As in the case of least squares, 
there are two levels of robustness to be considered. To argue that the estimator, itself, is 
robust in this context, it must first be argued that the estimator is consistent for something 
that we want to estimate and that maximizing the wrong log likelihood nonetheless 
estimates the right parameter(s). If the model is not linear, this will generally be much 
more complicated to establish. For example, in the leading case, for a binary choice 
model, if one assumes that the probit model applies, and some other model applies, then 
the estimator is not robust to any of heteroscedasticity, omitted variables, autocorrelation, 
endogeneity, fixed or random effects, or the wrong distribution. (It is difficult to think 
of a model failure that the MLE is robust to.) Once the estimator, itself, is validated, then 
the robustness of the asymptotic covariance matrix is considered.20

20There is a trend in the current literature routinely to report “robust standard errors,” based on (14-36) regardless 
of the likelihood function (which defines the model).
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Example 14.6    A Regression with NonNormal Disturbances
If one believed that the regression disturbances were more widely dispersed than implied 
by the normal distribution, then the logistic or t distribution might provide an alternative 
specification. We consider the logistic. The model is

y = x′B + e, f(e) =
1
s

 
exp(e/s)

[1 + exp(e/s)]2
=

1
s

 
exp(w)

[1 + exp(w)]2 =
1
s

 Λ(w)[1 - Λ(w)],

where ¿ (w) is the logistic CDF. The logistic distribution is symmetric, as is the normal, but 
has a greater variance, (p2/3)s2 compared to s2 for the normal, and greater kurtosis (tail 
thickness), 4.2 compared to 3.0 for the normal. Overall, the logistic distribution resembles 
a t distribution with 8 degrees of freedom, which has kurtosis 4.5 and variance (4/3)s2. The 
three densities for the standardized variable are shown in Figure 14.3.

The log-likelihood function is

	 ln L(B, s) = a
n

i = 1
 {- ln s + wi - 2 ln[1 + exp(wi)]}, wi = (yi - xi

=B)/s.� (14-37)

The terms in the gradient and Hessian are

 gi =
-(1 - 2Λ(wi))

s
 ¢ xi

wi
≤ -

1
s

 ¢0
1
≤ ,

 Hi =
-2Λ(wi)(1 - Λ(wi))

s2  ¢ xi

wi
≤ ¢ xi

wi
≤= +

(1 - 2Λ(wi))

s2  J 0 xi

xi
= 2wi

R +
1

s2 J 0 0
0′ 1

R .

The conventional estimator of the asymptotic covariance matrix of ¢Bn
sn
≤ would be J - a

n

i = 1
Hn iR -1

. 

The robust estimator would be

FIGURE 14.3    Standardized Normal, Logistic, and t[8] Densities.
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est.asy.VarJBn
sn
R = J - a

n

i = 1
Hn iR -1Jan

i = 1
gn ign i

= R J - a
n

i = 1
Hn iR -1

.

The data in Appendix F14.1 are a panel of 247 dairy farms in Northern Spain, observed for 6 
years, 1993–1998. The model is a simple Cobb–Douglas production function,

ln yit = b0 + b1 lnx1,it + b2 lnx2,it + b3 lnx3,it + b4 lnx4,it + eit,

where yit is the log of milk production, x1,it is number of cows, x2,it is land in hectares, x3,it 
is labor, and x4,it is feed. The four inputs are transformed to logs, then to deviations from 
the means of the logs. We then estimated B and s by maximizing the log likelihood for the 
logistic distribution. Results are shown in Table 14.3. Standard errors are computed using 
3 - ΣiΣtHn it4 -1. The robust standard errors shown in column (4) are based on (14-36). They 
are nearly identical to the uncorrected standard errors, which suggests that the departure of 
the logistic distribution from the true underlying model or the influence of heteroscedasticity 
are minor. Column (5) reports the cluster robust standard errors based on (14-38) discussed 
in the next section.

The departure of the data from the logistic distribution assumed in the likelihood function 
seems to be minor. The log likelihood does favor the logistic distribution; however, the models 
cannot be compared on this basis, because the test would have zero degrees of freedom—
the models are not nested. The Vuong test examined in Section 14.6.6 might be helpful. The 
individual terms in the log likelihood are computed using (14-37). For the normal distribution, 
the term in the log likelihood would be ln fit = -(1/2)[ln2p + lns2 + (yit - x it′b)2/s2] where 
s2 = e′e/n. Using dit = (ln fit � logistic - ln fit � normal), the test statistic is V = 2nd/sd = 1.682. 
This slightly favors the logistic distribution, but is in the inconclusive region. We conclude that 
for these data, the normal and logistic models are essentially indistinguishable.

14.8.2    CLUSTER ESTIMATORS

Micro-level, or individual, data are often grouped or clustered. A model of production or 
economic success at the firm level might be based on a group of industries, with multiple 

(1) (2) (3) (4) (5)

Estimate
Least 

Squares
MLE 

Logistic
Standard 

Error
Robust Std.

Error
Clustered 
Std.Error

b0 11.5775 11.5826 0.00353 0.00364 0.00751
b1 0.59518 0.58696 0.01944 0.02124 0.03697
b2 0.02305 0.02753 0.01086 0.01104 0.01924
b3 0.02319 0.01858 0.01248 0.01226 0.02325
b4 0.45176 0.45671 0.01069 0.01160 0.02071
s 0.14012a 0.07807 0.00169 0.00164 0.00299

R2 0.92555 0.95253b

ln L 809.676 821.197

aMLE of s2 = e′e/n.
bR2 is computed as the squared correlation between predicted and actual values.

Table 14.3  Maximum Likelihood Estimates of a Production Function

M14_GREE1366_08_SE_C14.indd   573 2/24/17   1:14 PM



574	 Part III  ✦   Estimation Methodology

firms in each industry. Analyses of student educational attainment might be based on 
samples of entire classes, or schools, or statewide averages of schools within school 
districts. And, of course, such “clustering” is the defining feature of a panel data set. We 
considered several of these types of applications in Section 4.5.3 and in our analysis of 
panel data in Chapter 11. The recent literature contains many studies of clustered data 
in which the analyst has estimated a pooled model but sought to accommodate the 
expected correlation across observations with a correction to the asymptotic covariance 
matrix. We used this approach in computing a robust covariance matrix for the pooled 
least squares estimator in a panel data model [see (11-3) and Examples 11.7 and 11.11].

For the normal linear regression model, the log likelihood that we maximize with 
the pooled least squares estimator is

ln L = a
n

i = 1
a
Ti

t = 1
J -

1
2

 ln 2p -
1
2

 ln s2 -
1
2

 
(yit - xit

=B)2

s2 R .

By multiplying and dividing by (s2)2, the “cluster-robust” estimator in (11-3) can be 
written

 W = ¢ an
i = 1

Xi
=Xi≤-1Jan

i = 1
(Xi

=ei)(ei
=Xi) R ¢ an

i = 1
Xi

=Xi≤-1

 = ¢ -
1
sn 2 a

n

i = 1
a
Ti

t = 1
xitxit

= ≤-1Jan
i = 1

¢ aTi

t = 1
 
1
sn 2 xiteit≤ ¢ aTi

t = 1
 
1
sn 2 eitxit

= ≤ R ¢ -
1
sn 2 a

n

i = 1
a
Ti

t = 1
xitxit

= ≤-1

.

The terms in the second line are the first and second derivatives of ln fit for the normal 
distribution mean xit

=B and variance s2 shown in (14-3). A general form of the result is

	W = ¢ an
i = 1

a
Ti

t = 1
 
02 ln fit(Un)

0Un0Un′
≤-1Jan

i = 1
¢ aTi

t = 1
 
0 ln fit(Un)

0Un
≤ ¢ aTi

t = 1
 
0 ln fit(Un)

0Un′
≤ R ¢ an

i = 1
a
Ti

t = 1
 
02 ln fit(Un)

0Un0Un′
≤-1

.

	�  (14-38)

This form of the correction would account for unspecified correlation across the 
observations (the derivatives) within the groups. [The finite population correction in 
(11-4) is sometimes applied.]

Example 14.7    Cluster Robust Standard Errors
The dairy farm data used in Example 14.6 are a panel of 247 farms observed in 6 consecutive 
years. A correction of the standard errors for possible group effects would be natural. 
Column (5) of Table 14.3 shows the standard errors computed using (14-38). The corrected 
standard errors are nearly double the values in column (5). This suggests that although the 
distributional specification is reasonable, there does appear to be substantial correlation 
across the observations.We will examine this feature of the data further in Section 19.2.4 in 
the discussion of the stochastic production frontier model.

Consider the specification error that the estimator is intended to accommodate for 
the normal linear regression. Suppose that the observations in group i were multivariate 
normally distributed with disturbance mean vector zero and unrestricted Ti * Ti 
covariance matrix, �i. Then, the appropriate log-likelihood function would be

ln L = a
n

i = 1
(-Ti/2 ln 2p -

1
2

 ln � �i � -
1
2

 Ei
=�i

-1Ei),
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where Ei is the Ti * 1 vector of disturbances for individual i. Therefore, by using pooled 
least squares, we have maximized the wrong likelihood function. Indeed, the B that 
maximizes this log-likelihood function is the GLS estimator (see Chapter 9), not the OLS 
estimator. But OLS and the cluster corrected estimator given earlier “work” in the sense 
that (1) the least squares estimator is consistent in spite of the misspecification and (2) the 
robust estimator does, indeed, estimate the appropriate asymptotic covariance matrix.

Now, consider the more general case. Suppose the data set consists of n multivariate 
observations, [yi,1, c, yi,Ti

], i = 1, c, n. Each cluster is a draw from joint density 
fi(yi � Xi, U). Once again, to preserve the generality of the result, we will allow the cluster 
sizes to differ. The appropriate log likelihood for the sample is

ln L = a
n

i = 1
ln fi(yi � Xi, U).

Instead of maximizing ln L, we maximize a pseudo-log likelihood

ln LP = a
n

i = 1
a
Ti

t = 1
ln g(yit � xit, U),

where we make the possibly unreasonable assumption that the same parameter vector, 
U, enters the pseudo-log likelihood as enters the correct one. Using our familiar first-
order asymptotics, the pseudo-maximum likelihood estimator (MLE) will satisfy

 (UnP,ML - U) ≈ £ -1

a n
i = 1Ti

 a
n

i = 1
a
Ti

t = 1
 
02 ln fit

0U0U′
≥-1£ -1

a n
i = 1Ti

 a
n

i = 1
a
Ti

t = 1
 
0 ln fit

0U
≥ + (U - B)

 = £ -1

a n
i = 1Ti

 a
n

i = 1
a
Ti

t = 1
Hit≥-1¢ an

i = 1
aigi≤ + (U - B),

where ai = Ti/a
n

i = 1
Ti and gi = (1/Ti)a Ti

t = 10 ln fit/0U. The trailing term in the expression 

is included to allow for the possibility that plim UnP,ML = B, which may not equal U.21 
Taking the expected outer product of this expression to estimate the asymptotic mean 
squared deviation will produce two terms—the cross term vanishes. The first will be the 
cluster-corrected matrix that is ubiquitous in the current literature. The second will be 
the squared error that may persist as n increases because the pseudo-MLE need not 
estimate the parameters of the model of interest.

We draw two conclusions. We can justify the cluster estimator based on this 
approximation. In general, it will estimate the expected squared variation of the pseudo-
MLE around its probability limit. Whether it measures the variation around the appropriate 
parameters of the model hangs on whether the second term equals zero. In words, perhaps 
not surprisingly, this apparatus only works if the pseudo-MLE is consistent. Is that likely? 
Certainly not if the pooled model is ignoring unobservable fixed effects. Moreover, it will 
be inconsistent in most cases in which the misspecification is to ignore latent random 
effects as well. The pseudo-MLE is only consistent for random effects in a few special 

21Note, for example, Cameron and Trivedi (2005, p. 842) specifically assume consistency in the generic model they 
describe.
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cases, such as the linear model and Poisson and negative binomial models discussed in 
Chapter 18. It is not consistent in the probit and logit models in which this approach is 
often used. In the end, the cases in which the estimator are consistent are rarely, if ever, 
enumerated. The upshot is stated succinctly by Freedman (2006, p. 302): “The sandwich 
algorithm, under stringent regularity conditions, yields variances for the MLE that are 
asymptotically correct even when the specification—and hence the likelihood function—
are incorrect. However, it is quite another thing to ignore bias. It remains unclear why 
applied workers should care about the variance of an estimator for the wrong parameter.”

14.9	   MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR REGRESSION MODELS

We will now examine several applications of the MLE. We begin by developing the 
ML counterparts to most of the estimators for the classical and generalized regression 
models  in Chapters 4 through 11. (Generally, the development for dynamic models 
becomes more involved than we are able to pursue here. The one exception we will 
consider is the standard model of autocorrelation.) We emphasize, in each of these cases, 
that we have already developed an efficient, generalized method of moments estimator 
that has the same asymptotic properties as the MLE under the assumption of normality. In 
more general cases, we will sometimes find that the GMM estimator is actually preferred 
to the MLE because of its robustness to failures of the distributional assumptions or its 
freedom from the necessity to make those assumptions in the first place. However, for the 
extensions of the classical model based on generalized least sqaures that are treated here, 
that is not the case. It might be argued that in these cases, the MLE is superfluous. There 
are occasions when the MLE will be preferred for other reasons, such as its invariance to 
transformation in nonlinear models and, possibly, its small sample behavior (although that 
is usually not the case). And, we will examine some nonlinear models in which there is no 
linear method of moments counterpart, so the MLE is the natural estimator. Finally, in 
each case, we will find some useful aspect of the estimator itself, including the development 
of algorithms such as Newton’s method and the EM method for latent class models.

14.9.1    LINEAR REGRESSION MODEL WITH NORMALLY DISTRIBUTED DISTURBANCES

The linear regression model is

yi = xi
=B + ei.

The likelihood function for a sample of n independent, identically, and normally 
distributed disturbances is

L = (2ps2)-n/2e-e′e/(2s2).

The transformation from ei to yi is ei = yi - xi
=B, so the Jacobian for each observation, 

� 0ei/0yi � , is one.22 Making the transformation, we find that the likelihood function for the 
n observations on the observed random variables is

L = (2ps2)-n/2e(-1/(2s2))(y - XB)′(y - XB).

22See (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we will 
leave this aspect of the model implicit in the results. As noted earlier, we assume that the data-generating process 
for X does not involve B or s2 and that the data are well behaved as discussed in Chapter 4.
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To maximize this function with respect to B, it will be necessary to maximize the 
exponent or minimize the familiar sum of squares. Taking logs, we obtain the log-
likelihood function for the classical regression model,

 ln L = -
n
2

 ln 2p -
n
2

 ln s2 -
(y - XB)′(y - XB)

2s2

 = -
1
2

 a
n

i = 1
3 ln 2p + ln s2 + (yi - xi

=B)2/s24 . 	 (14-39)

The necessary conditions for maximizing this log likelihood areD 0 ln L
0B

0 ln L
0s2

T = D X′(y - XB)

s2

-n

2s2 +
(y - XB)′(y - XB)

2s4

T = J0
0
R .

The values that satisfy these equations are

BnML = (X′X)-1X′y = b and sn ML
2 =

e′e
n

.

The slope estimator is the familiar one, whereas the variance estimator differs from the 
least squares value by the divisor of n instead of n - K.23

The Cramér–Rao bound for the variance of an unbiased estimator is the negative 
inverse of the expectation ofD 02 ln L

0B0B′
02 ln L
0B0s2

02 ln L
0s20B′

02 ln L
0(s2)2

T = D -
X′X
s2 -

X′E
s4

-
E′X
s4

n

2s4 -
E′E
s6

T .

In taking expected values, the off-diagonal term vanishes, leaving

[I(B, s2)]-1 = Js2(X′X)-1 0
0′ 2s4/n

R .

The least squares slope estimator is the maximum likelihood estimator for this model. 
Therefore, it inherits all the desirable asymptotic properties of maximum likelihood 
estimators.

We showed earlier that s2 = e′e/(n - K) is an unbiased estimator of s2. Therefore, 
the maximum likelihood estimator is biased toward zero,

	 E3sn ML
2 4 =

n - K
n

 s2 = ¢1 -
K
n
bs2 6 s2.	 (14-40)

Despite its small-sample bias, the maximum likelihood estimator of s2 has the same desirable 
asymptotic properties. We see in (14-40) that s2 and sn 2 differ only by a factor -K/n, which 

23As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.
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vanishes in large samples. It is instructive to formalize the asymptotic equivalence of the 
two. From (14-40), we know that2n(sn ML

2 - s2) ¡d
N[0, 2s4].

It follows that

zn = a1 -
K
n
b2n1sn ML

2 - s22 +
K2n

 s2 ¡d a1 -
K
n
bN[0, 2s4] +

K2n
 s2.

But K/2n and K/n vanish as n S ∞ , so the limiting distribution of zn is also N[0, 2s4]. 
Because zn = 2n(s2 - s2), we have shown that the asymptotic distribution of s2 is the 
same as that of the maximum likelihood estimator.

14.9.2    SOME LINEAR MODELS WITH NONNORMAL DISTURBANCES

The log-likelihood function for a linear regression model with normally distributed 
disturbances is

 ln LN(B, s) = a
n

i = 1
{- ln s - (1/2) ln 2p - (1/2)wi

2},

 wi = (yi - xi
=B)/s, s 7 0. �

(14-41)

Example 14.6 considers maximum likelihood estimation of a linear regression model 
with logistically distributed disturbances. The appeal of the logistic distribution is its 
greater degree of kurtosis—its tails are thicker than those of the normal distribution. 
The log-likelihood function is

 ln LL(B, s) = a
n

i = 1
 {- ln s + wi - 2 ln[1 + exp(wi)]},

 wi = (yi - xi
=B)/s, s 7 0. �

(14-42)

The logistic specification fixes the shape of the distribution, as suggested earlier, similar 
to a t[8] distribution. The t distribution with an unrestricted degrees of freedom parameter 
(a special case of the generalized hyperbolic distribution) allows greater flexibility in 
this regard. The t distribution arises as the distribution of a sum of d squares of normally 
distributed variables. But the degrees of freedom parameter need not be integer valued. 
We allow d to be a free parameter, though greater than 4 for the first four moments to 
be finite. The density of a standardized t distributed random variable with degrees of 
freedom parameter d is

f(w � d, s) =
Γ[(d + 1)/2]

Γ(d/2)Γ(1/2)2pd
 
1
s

 J1 +
w2

d
R -(d + 1)/2

.

The log-likelihood function is

 ln Lt(B, s, d) = a
n

i = 1
 £ - ln s + ln Γ[(d + 1)/2] - ln Γ(d/2)

- ln Γ(1/2)] - (1/2) ln p - (1/2) ln d
-[(d + 1)/2] ln(1 + wi

2/d)
≥,

 wi = (yi - xi
=B)/s, s 7 0, d 7 4. 	

(14-43)

M14_GREE1366_08_SE_C14.indd   578 2/24/17   1:14 PM



	 CHAPTER 14  ✦  Maximum Likelihood Estimation	 579

The centerpiece of the stochastic frontier model (Example 12.2 and Section 19.2.4) is a 
skewed distribution, the skew normal distribution,

f(w �l, s) =
2

s22p
 exp[-(1/2)w2]Φ(-lw), l Ú 0,

where Φ(z) is the CDF of the standard normal distribution. If the skewness parameter, l, 
equals zero, this returns the standard normal distribution. The skew normal distribution 
arises as the distribution of e = svvi - su � ui � , where vi and ui are standard normal 
variables, l = su/sv and s2 = sv

2 + su
2. [Note that s2 is not the variance of e. The 

variance � ui �  is (p - 2)/p, not 1.] The log-likelihood function is

ln LSN(B, s, l) = a
n

i = 1
{- ln s - (1/2) ln(p/2) - (1/2)wi

2 + ln Φ(-lwi)}, wi = (yi - xi
=B)/s.

� (14-44)

Example 14.8    Logistic, t, and Skew Normal Disturbances
Table 14.4 shows the maximum likelihood estimates for the four models. There are only small 
differences in the slope estimators, as might be expected, at least for the first three, because 
the differences are in the spread of the distribution, not its shape. The skew normal density 
has a nonzero mean, E[su � ui � ) = (2/p)1/2su, so the constant term has been adjusted. As noted, 
it is not possible directly to test the normal as a restriction on the logistic, as they have the 
same number of parameters. The Vuong test does not distinguish them. The t distribution 
would seem to be amenable to a direct specification test; however, the “restriction” on the 
t distribution that produces the normal is d S ∞  which is not useable. However, we can exploit 
the invariance of the maximum likelihood estimator (property M4 in Table 14.1). The maximum 
likelihood estimator of 1/d is 1/dnMLE = 0.101797 = gn. We can use the delta method to obtain 
a standard error. The estimated standard error will be (1/dnMLE)2(2.54296) = 0.026342. A Wald 
test of H0: gn = 0 would test the normal versus the t distribution. The result is 
[(0.101797 - 0)/0.026342]2 = 14.934, which is larger than the critical value of 3.84, so the 
hypothesis of normality is rejected. [There is a subtle problem with this test. The value g = 0 
is on the boundary of the parameter space, not the interior. As such, the chi-squared statistic 
does not have its usual properties. This issue is explored in Kodde and Palm (1988) and Coelli 
(1995), who suggest that an appropriate critical value for a single restriction would be 2.706, 
rather than 3.84.24 The same consideration applies to the test of l = 0 below.] We note, 
because the log-likelihood function could have been parameterized in terms of g to begin 
with, we should be able to use a likelihood ratio test to test the same hypothesis. By the 
invariance result, the log likelihood in terms of g would not change, so the test statistic will 
be lLR = -2(809.676 - 822.192) = 25.032. This produces the same conclusion. The normal 
distribution is nested within the skew normal, by l = 0 or su = 0. We can test the first of 
these with a likelihood ratio test; lLR = -2(809.676 - 822.688) = 26.024. The Wald statistic 
based on the derived estimate of su would be (0.15573/0.00279)2 = 3115.56.25 The conclusion 
is the same for both cases. As noted, the t and logistic are essentially indistinguishable. The 

24The critical value is found by solving for c in .05 = (1/2)Prob(x2[1] Ú c]. For a chi-squared variable with one 
degree of freedom, the 90th percentile is 2.706.
25Greene and McKenzie (2015) show that for the stochastic frontier model examined here, the LM test for the 
hypothesis that su = 0 can be based on the OLS residuals; the chi-squared statistic with one degree of freedom 
is (n/6)(m3/s

3)2 where m3 is the third moment of the residuals and s2 equals e′e/n. The value for this data set is 
21.665.

M14_GREE1366_08_SE_C14.indd   579 2/24/17   1:14 PM



580	 Part III  ✦   Estimation Methodology

remaining question, then, is whether the respecification of the model favors skewness or 
kurtosis. We do not have a direct statistical test available. The OLS estimator of B is consistent 
regardless, so some information might be contained in the residuals. Figure 14.4 compares 
the OLS residuals to the normal distribution with the same mean (zero) and standard deviation 
(0.14012). The figure does suggest the presence of skewness, not excess spread. Given the 
nature of the production function application, skewness is central to this model, so the 
findings so far might be expected. The development of the stochastic production frontier 
model is continued in Section 19.2.4.

14.9.3    Hypothesis Tests for Regression Models

The standard test statistic for assessing the validity of a set of linear restrictions, 
RB - q = 0, the linear model with normally distributed disturbances is the F ratio,

	 F[J, n - K] =
(Rb - q)′[Rs2(X′X)-1R′]-1(Rb - q)

J
.	 (14-45)

(Estimated standard errors in parentheses)
Estimate OLS/MLE MLE MLE MLE

Normal Logistic t Frac. D.F. Skew Normal

b0 11.5775 11.5826 11.5813 11.6966c

(0.00365) (0.00353) (0.00363) (0.00447)
b1 0.59518 0.58696 0.59042 0.58369

(0.01958) (0.01944) (0.01803) (0.01887)
b2 0.02305 0.02753 0.02576 0.03555

(0.01122) (0.01086) (0.01096) (0.01113)
b3 0.02319 0.01858 0.01971 0.02256

(0.01303) (0.01248) (0.01299) (0.01281)
b4 0.45176 0.45671 0.45220 0.44948

(0.01078) (0.01069) (0.00989) (0.01035)
s 0.14012a 0.07807 0.12519 0.13988d

(0.00275) (0.00169) (0.00404) (0.00279)
d 9.82350

(2.54296)
l 1.50164

(0.08748)
su 0.15573e

(0.00279)

R2 0.92555 0.95253b 0.95254b 0.95250b

ln L 809.676 821.197 822.192 822.688

aMLE of s = e′e/n.
bR2 is computed as the squared correlation between predicted and actual values.
cNonzero mean disturbance. Adjustment to b0 is su(2/p)1/2 = -0.04447.
dReported se = [sv

2 + su
2(p - 2)/p]1/2. Estimated sv = 0.10371 (0.00418).

esu is derived. su = sl/(1 + l2)1/2. est.Cov(sn , ln) = 2.3853e -  7. Standard error is computed using the 
delta method.

TABLE 14.4  Maximum Likelihood Estimates
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With normally distributed disturbances, the F test is valid in any sample size. The more 
general form of the statistic,

	 F[J, n - K] =
(e*

=e* - e′e)/J

e′e/(n - K)
,	 (14-46)

is useable in large samples when the disturbances are homoscedastic even if the 
disturbances are not normally distributed and with nonlinear restrictions of the general 
form c(B) = 0. In the linear regression setting with linear restrictions, the Wald statistic, 
c(b)′{asy.Var[c(b)]}-1c(b), equals J * F[J, n - K], so the large-sample validity extends 
beyond normal linear model. (See Sections 5.3.1 and 5.3.2.)

In this section, we will reconsider the Wald statistic and examine two related 
statistics, the likelihood ratio and Lagrange multiplier statistics. These statistics are both 
based on the likelihood function and, like the Wald statistic, are generally valid only 
asymptotically. No simplicity is gained by restricting ourselves to linear restrictions at 
this point, so we will consider general hypotheses of the form

 H0: c(B) = 0,

 H1: c(B) ≠ 0.

The Wald statistic for testing this hypothesis and its limiting distribution under H0 
would be

W = c(b)′{G(b)[sn 2(X′X)-1]G(b)′}-1c(b) ¡d
x2[J],

where G(b) = [0c(b)/0b′].

FIGURE 14.4    Distribution of Least Squares Residuals.
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The Wald statistic is based on the asymptotic distribution of the estimator. The 
covariance matrix can be replaced with any valid estimator of the asymptotic covariance. 
Also, for the same reason, the same distributional result applies to estimators based on 
the nonnormal distributions in Example 14.7, and indeed, for any estimator in any model 
setting in which Bn ¡a

N[B, V]. The general result, then, is

	 W = c(Bn)′{G(Bn)[asy.Var(Bn)]G(Bn)′}-1c(Bn) ¡d
x2[J].	 (14-47)

The Wald statistic is robust in that it relies on the large sample distribution of the 
estimator, not on the specific distribution that underlies the likelihood function. The 
Wald test will be the statistic of choice in a variety of settings, not only the likelihood-
based one considered here.

The likelihood ratio (LR) test is carried out by comparing the values of the log-
likelihood function with and without the restrictions imposed. We leave aside for the 
present how the restricted estimator b* is computed (except for the linear model, which 
we saw earlier). The test statistic and its limiting distribution under H0 are

	 LR = -2[ln L* - ln L] ¡d
x2[J].	 (14-48)

This result is general for any nested models fit by maximum likelihood. The log likelihood 
for the normal/linear regression model is given in (14-39). The first-order conditions 
imply that regardless of how the slopes are computed, the estimator of s2 without 
restrictions on B will be sn 2 = (y - Xb)′(y - Xb)/n and likewise for a restricted 
estimator sn *

2 = (y - Xb*)′(y - Xb*)/n = e*
=e*/n. Evaluated at the maximum likelihood 

estimator, the concentrated log likelihood26 will be

ln Lc = -
n
2

 [1 + ln 2p + ln(e′e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we 
obtain

	 LR = n ln[e*
=e*/e′e] = n(ln sn *

2 - ln sn 2) = n ln(sn *
2/sn 2).	 (14-49)

(Note, this is a specific result that applies to the linear or nonlinear regression model 
with normally distributed disturbances.)

The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood 
function. The principle of the test is that if the hypothesis is valid, then at the restricted 
estimator, the derivatives of the log-likelihood function should be close to zero. There 
are two ways to carry out the LM test. The log-likelihood function can be maximized 
subject to a set of restrictions by using

ln LLM = -
n
2

 c ln 2p + ln s2 +
[(y - XB)′(y - XB)]/n

s2 d + L′c(B).

26See Section E4.3.
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The first-order conditions for a solution are

	 F 0 ln LLM

0B
0 ln LLM

0s2

0 ln LLM

0L

V = F X′(y - XB)

s2 + G(B)′L

-n

2s2 +
(y - XB)′(y - XB)

2s4

c(B)

V = C0
0
0
S .	 (14-50)

The solutions to these equations give the restricted least squares estimator, b*; the usual 
variance estimator, now e*

=e*/n; and the Lagrange multipliers. There are now two ways 
to compute the test statistic. In the setting of the classical linear regression model, when 
we actually compute the Lagrange multipliers, a convenient way to proceed is to test 
the hypothesis that the multipliers equal zero. For this model, the solution for L* is 
L* = [G(X′X)-1G′]-1(Gb - q). This equation is a linear function of the unrestricted 
least squares estimator. If we carry out a Wald test of the hypothesis that L* equals 0, 
then the statistic will be

	 LM = L*
= {est.Var[L*]}

-1 L* = (Gb - q)′[Gs*
2(X′X)-1G′]-1(Gb - q).	 (14-51)

The disturbance variance estimator, s*
2, based on the restricted slopes is e*

=e*/n.
An alternative way to compute the LM statistic for the linear regression model 

produces an interesting result. In most situations, we maximize the log-likelihood 
function without actually computing the vector of Lagrange multipliers. (The restrictions 
are usually imposed some other way.) An alternative way to compute the statistic is 
based on the (general) result that under the hypothesis being tested,

E[0 ln L/0B] = E[(1/s2)X′E] = 0

and

	 asy.Var[0 ln L/0B] = -E[02 ln L/0B 0B′]-1 = s2(X′X)-1.27	 (14-52)

We can test the hypothesis that at the restricted estimator, the derivatives are equal to 
zero. The statistic would be

	 LM =
e*
=X(X′X)-1X′e*

e*
=e*/n

= nR*
2.	 (14-53)

In this form, the LM statistic is n times the coefficient of determination in a regression 
of the residuals ei* = (yi - xi

=b*) on the full set of regressors. Finally, for more general 
models and contexts, the same principle for the LM test produces

 LM = 3g1UnR2 4 =3est.asy.Var1g1UnR2 2 4 -13g1UnR2 4
 = J 1

n
 a

n

i = 1
gi1UnR2 R =J 1

n
 b 1

n
 a

n

i = 1
gi1UnR2gi1UnR2 = r R -1J 1

n
 a

n

i = 1
gi1UnR2 R

 = i′Gn (Gn ′Gn )-1Gn ′i, � (14-54)

where gi1UnR2 =
0 ln fi1UnR2

0UnR

, i is a column of ones, and gi(UnR)′ is the ith row of Gn .

27This makes use of the fact that the Hessian is block diagonal.
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There is evidence that the asymptotic results for these statistics are problematic in 
small or moderately sized samples.28 The true distributions of all three statistics involve 
the data and the unknown parameters and, as suggested by the algebra, converge to the 
F distribution from above. The implication is that the critical values from the chi-squared 
distribution are likely to be too small; that is, using the limiting chi-squared distribution 
in small samples is likely to exaggerate the significance of empirical results. Thus, in 
applications, the more conservative F statistic (or t for one restriction) may be preferable 
unless one’s data are plentiful.

Example 14.9    Testing for Constant Returns to Scale
The Cobb–Douglas production function estimated in Examples 14.6 and 14.7 has returns 
to scale parameter g = Σk 0lny/0 ln xk = b1 + b2 + b3 + b4. The hypothesis of constant 
returns to scale, g = 1, is routinely tested in this setting. We will carry out this test using the 
three procedures defined earlier. The estimation results are shown in Table 14.5. For the 
likelihood ratio test, the chi-squared statistic equals -2(794.624 - 822.688) = 56.129. 
The critical value for a test statistic with one degree of freedom is 3.84, so the hypothesis 
will be rejected on this basis. For the Wald statistic, based on the unrestricted results, 
c(B) = [(b1 + b2 + b3 + b4) - 1] and G = [1, 1, 1, 1]. The part of the asymptotic covariance 
matrix needed for the test is shown with Table 4.5. The statistic is

W = c′(BnU)[GVG′]-1c(BnU) = 57.312.

28See, for example, Davidson and MacKinnon (2004, pp. 424–428).

(Estimated standard errors in parentheses)
Estimate Stochastic Frontier  

Unrestricted
Stochastic Frontier  

Constant Returns to Scale

b0
a 11.7014 (0.00447) 11.7022a (.00457)

b1 0.58369 (0.01887) 0.55979 (.01903)
b2 0.03555 (0.01113) 0.00812 (.01075)
b3 0.02256 (0.01281) -0.04367 (.00959)
b4 0.44948 (0.01035) 0.47575 (.00997)
sb 0.13988 (0.00279) 0.18962 (.00011)
l 1.50164 (0.08748) 1.47082 (.08576)
su

c 0.15573d (0.00279) 0.15681 (0.00289)
ln L 822.688 794.624

a Unadjusted for nonzero mean of e.
b Reported se = [sv

2 + su
2(p - 2)/p]1/2. Estimated sv = 0.10371 (0.00418).

c su is derived. su = sl/(1 + l2)1/2. est.Cov(sn , ln) = 2.3853e -  7.  
Standard error is computed using the delta method.

Estimated Asy.Var[b1,b2,b3,b4] (e -  n = times 10-n.)
0.0003562
-0.0001079 0.0001238
-5.576e -  5 9.193e -  6 0.0001642
-0.0001542 1.810e -  5 -1.235e -  5 0.0001071

TABLE 14.5  Testing for Constant Returns to Scale in a Production Function
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For the LM test, we need the derivatives of the log-likelihood function. For the particular terms,

 gb = 0lnfi/0(xi
=B) = (1/s)[wi + lAi], Ai = f(-lwi)/Φ(-lwi),

 gs = 0lnfi/0s   = (1/s)[-1 + wi
2 + lwiAi],

 gl = 0lnfi/0l   = -wiAi.

The calculation is in (14-48); LM = 56.398. The test results are nearly identical for the three 
approaches.

14.10	  THE GENERALIZED REGRESSION MODEL

For the generalized regression model of Section 9.1,

 yi = xi
=B + ei, i = 1, c, n,

 E[E � X] = 0,

 E[EE′ � X] = s2�,

and as before, we first assume that � is a matrix of known constants. If the disturbances 
are multivariate normally distributed, then the log-likelihood function for the sample is

	 ln L = -
n
2

 ln(2p) -
n
2

 ln s2 -
1

2s2 (y - XB)′�-1(y - XB) -
1
2

 ln � � � .	 (14-55)

It might seem that simply using OLS and a heteroscedasticity robust covariance 
matrix  (see Section 4.5) would be a preferred approach that does not rely on an 
assumption of normality. There are at least two situations in which GLS, and possibly 
MLE, might be justified. First, if there is known information about the disturbance 
variances, this simplicity is a minor virtue that wastes sample information. The grouped 
data application in Example 14.11 is such a case. Second, there are settings in which the 
variance itself is of interest, such as models of production risk [Asche and Tvertas (1999)] 
and in the heteroscedastic stochastic frontier model, which is generally based on the 
model in Section 14.10.3.29

14.10.1    GLS With Known �

Because � is a matrix of known constants, the maximum likelihood estimator of B is the 
vector that minimizes the generalized sum of squares, S*(B) = (y - XB)′�-1(y - XB) 
(hence the name generalized least squares). The necessary conditions for maximizing L are

 
0 ln L

0B
=

X′�-1(y - XB)

s2 =
X*

=(y* - X*B)

s2 = 0,

 
0 ln L

0s2 = -
n

2s2 +
1

2s4 (y-XB)′�-1(y - XB)

=
n

2s2 J (y* - X*B)′(y* - X*B)

ns2 - 1R = 0,� (14-56)

29Just and Pope (1978, 1979).
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where X* = �-1/2X and y* = �-1/2y. The solutions are the OLS estimators using the 
transformed data,

 BnML = (X*
=X*)

-1X*
=y*     = (X′�-1X)-1X′�-1y,  

 sn ML
2 =

(y* - X*B
n)′(y* - X*B

n)
n

=
(y - XBn)′�-1(y - XBn)

n
,
	 (14-57)

which implies that with normally distributed disturbances, generalized least squares 
is also maximum likelihood. The maximum likelihood estimator of s2 is biased. An 
unbiased estimator is the one in (9-20). The conclusion is that when � is known, the 
maximum likelihood estimator is generalized least squares.

14.10.2    Iterated Feasible GLS With Estimated �

When � is unknown and must be estimated, then it is necessary to maximize the log 
likelihood in (14-55) with respect to the full set of parameters [B, s2, �] simultaneously. 
Because an unrestricted � contains n(n + 1)/2 - 1 free parameters, it is clear that some 
restriction will have to be placed on the structure of � for estimation to proceed. We 
will examine applications in which � = �(U) for some smaller vector of parameters in 
the next several sections. We note only a few general results at this point.

1.	 For a given value of U the estimator of B would be GLS and the estimator of s2 
would be the estimator in (14-57).

2.	 The likelihood equations for U will generally be complicated functions of B and s2, 
so joint estimation will be necessary. However, in many cases, for given values of B 
and s2, the estimator of U is straightforward. For example, in the model of (9-21), the 
iterated estimator of u when B and s2 and a prior value of U are given is the prior 
value plus the slope in the regression of (ei

2/sn i
2 - 1) on zi.

The second step suggests a sort of back-and-forth iteration for this model that will work 
in many situations—starting with, say, OLS, iterating back and forth between 1 and 2 
until convergence will produce the joint maximum likelihood estimator. Oberhofer and 
Kmenta (1974) showed that under some fairly weak requirements, most importantly 
that U not involve s2 or any of the parameters in B, this procedure would produce the 
maximum likelihood estimator. The asymptotic covariance matrix of this estimator is 
the same as the GLS estimator. This is the same whether � is known or estimated, 
which means that if U and B have no parameters in common, then exact knowledge of 
� brings no gain in asymptotic efficiency in the estimation of B over estimation of B 
with a consistent estimator of �.

14.10.3    Multiplicative Heteroscedasticity

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general 
model that includes many useful formulations as special cases. The general formulation is

	 si
2 = s2 exp(zi

=A).	 (14-58)

A model with heteroscedasticity of the form si
2 = s2 q

M

m = 1
zim
am results if the logs of the 

variables are placed in zi. The groupwise heteroscedasticity model described in Section 9.7.2  
is produced by making zi a set of group dummy variables (one must be omitted). In this 
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case, s2 is the disturbance variance for the base group whereas for the other groups 
sg

2 = s2 exp(ag).
Let zi include a constant term so that zi

= = [1, qi
=], where qi is the original set of variables, 

and let G′ = [ln s2, A′]. Then, the model is simply si
2 = exp(zi

=G). Once the full parameter 
vector is estimated, exp(g1) provides the estimator of s2. (This estimator uses the invariance 
result for maximum likelihood estimation. See Section 14.4.5.D) The log likelihood is

 ln L = -
1
2

 a
n

i = 1
J ln si

2 + ln(2p) -
ei

2

si
2 R

 = -
1
2

 a
n

i = 1
Jzi

=G + ln(2p) +
ei

2

exp(zi
=G)

R .

	 (14-59)

The likelihood equations are

 
0 ln L

0B
= a

n

i = 1
xi 

ei

exp(zi
=G)

,

 
0 ln L

0G
=

1
2

 a
n

i = 1
zi¢ ei

2

exp(zi
=G)

- 1≤ = 0.

	 (14-60)

14.10.4    The Method of Scoring

For this model, the method of scoring turns out to be a particularly convenient way to 
maximize the log-likelihood function. The terms in the Hessian are

	
02 ln L

0¢B
G
≤0¢B

G
≤= = - a

n

i = 1
 

1
exp(zi

=G)
 ¢ xi

eizi
≤ ¢ xi

eizi
≤=.	 (14-61)

The expected value of 02 ln L/0B0G′ is 0 because E[ei � xi, zi] = 0. The expected value of 
the fraction in 02 ln L/0G0G′ is E[ei

2/si
2 � xi, zi] = 1. Let D = [B, G]. Then

	 -E¢ 02 ln L
0D 0D′

≤ = JX′�-1X 0
0′ 1

2 Z′Z
R = -H.	 (14-62)

The method of scoring is an algorithm for finding an iterative solution to the likelihood 
equations. The iteration is

Dt + 1 = Dt - H-1gt,

where Dt (i.e., Bt, Gt, and �t) is the estimate at iteration t, gt is the two-part vector of 
first derivatives [0 ln L/0Bt

=, 0 ln L/0Gt
=]′, and H is partitioned likewise. [Newton’s method 

uses the actual second derivatives in (14-61) rather than their expectations in (14-62). 
The scoring method exploits the convenience of the zero expectation of the off-diagonal 
block (cross derivative) in (14-62).] Because H is block diagonal, the iteration can be 
written as separate equations,

 Bt + 1 = Bt + (X�t
-1X)-1(X′�t

-1Et)

 = Bt + (X′�t
-1X)-1X′�t

-1(y - XBt)

 = (X′�t
-1X)-1X′�t

-1y (of course).

	 (14-63)
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Therefore, the updated coefficient vector Bt + 1 is computed by FGLS using the previously 
computed estimate of G to compute �. We use the same approach for G:

 Gt + 1 = Gt + [2(Z′Z)-1]J1
2 a

n

i = 1
zi¢ ei(t)

2

exp(zi
=Gt)

- 1≤ R
 = Gt + (Z′Z)-1Z′ht.

	 (14-64)

The 2 and 1
2 cancel. The updated value of G is computed by adding the vector of 

coefficients in the least squares regression of [ei
2/exp(zi

=G) - 1] on zi to the old one. Note 
that the correction is 2(Z′Z)-1Z′(0 ln L/0G), so convergence occurs when the derivative 
is zero.

The remaining detail is to determine the starting value for the iteration. Any 
consistent estimator will do. The simplest procedure is to use OLS for B and the slopes 
in a regression of the logs of the squares of the least squares residuals on zi for G. Harvey 
(1976) shows that this method will produce an inconsistent estimator of g1 = ln s2, 
but the inconsistency can be corrected just by adding 1.2704 to the value obtained. 
Thereafter, the iteration is simply:

1.	 Estimate the disturbance variance si
2 with exp(zi

=G).
2.	 Compute Bt + 1 by FGLS.30

3.	 Update Gt using the regression described in the preceding paragraph.
4.	 Compute dt + 1 = [Bt + 1, Gt + 1] - [Bt, Gt]. If dt + 1 is large, then return to step 1.

If dt + 1 at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance 
matrix is simply -H-1, which is block diagonal with blocks

 asy.Var[BnML] = (X′�-1X)-1,

 asy.Var[GML] = 2(Z′Z)-1.
	 (14-65)

If desired, then sn 2 = exp(gn1) can be computed. The asymptotic variance would be 
[exp(g1)]2(asy.Var[gn1, ML]).

Testing the null hypothesis of homoscedasticity in this model,

h0: A = 0

in (14-58), is particularly simple. The Wald test will be carried out by testing the 
hypothesis that the last M elements of G are zero. Thus, the statistic will be

lWALD = An ′b [0 I][2(Z′Z)]-1J0′
I
R r -1

An .

Because the first column in Z is a constant term, this reduces to

lWALD =
1
2

 An ′(Z1
=M0Z1)

-1An ,

where Z1 is the last M columns of Z, not including the column of ones, and M0 creates 
deviations from means. The likelihood ratio statistic is computed based on (14-59). 

30The two-step estimator obtained by stopping here would be fully efficient if the starting value for g were 
consistent, but it would not be the maximum likelihood estimator.
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Under both the null hypothesis (homoscedastic—using OLS) and the alternative 
(heteroscedastic—using MLE), the third term in ln L reduces to -n/2. Therefore, the 
statistic is simply

lLR = 2(ln L1 - ln L0) = a
n

i = 1
J ln s2 - ln sn i

2 R = a
n

i = 1
ln¢ s2

sn i
2 ≤,

where s2 = e′e/n using the OLS residuals. To compute the LM statistic, we will use 
the expected Hessian in (14-62). Under the null hypothesis, the part of the derivative 
vector in (14-60) that corresponds to B is (1/s2)X′e = 0. Therefore, using (14-60), the 
LM statistic is

lLM = J1
2 a

n

i = 1
¢ ei

2

s2 - 1≤ ¢ 1
zi1

≤ R ′
c 1
2

 (Z′Z) d
-1J1

2 a
n

i = 1
¢ ei

2

s2 - 1b ¢ 1
zi1

≤ R .

The first element in the derivative vector is zero because a iei
2 = ns2. Therefore, the 

expression reduces to

lLM =
1
2

 Jan
i = 1

¢ ei
2

s2 - 1≤zi1 R =

(Z1
=M0Z1)

-1Jan
i = 1

¢ ei
2

s2 - 1≤zi1 R .

This is one-half times the explained sum of squares in the linear regression of the 
variable hi = (ei

2/s2 - 1) on Z, which is the Breusch–Pagan/Godfrey LM statistic from 
Section 9.5.2.

Example 14.10    Multiplicative Heteroscedasticity
In Example 6.4, we fit a cost function for the U.S. airline industry of the form

ln Cit = b1 + b2 ln Qit + b3[ln Qit]2 + b4 ln Pfuel,i,t + b5 Loadfactori,t + ei,t,

where Cit is total cost, Qit is output, and Pfuel,i,t is the price of fuel, and the 90 observations in 
the data set are for six firms observed for 15 years. (The model also included dummy variables 
for firm and year, which we will omit for simplicity.) In Example 9.4, we fit a revised model 
in which the load factor appears in the variance of ei,t rather than in the regression function. 
The model is

si,t
2 = s2 exp(a Loadfactori,t) = exp(g1 + g2 Loadfactori,t).

Estimates were obtained by iterating the weighted least squares procedure using weights 
Wi,t = exp(-c1 - c2 Loadfactori,t). The estimates of g1 and g2 were obtained at each 
iteration by regressing the logs of the squared residuals on a constant and Loadfactorit. 
It was noted at the end of the example [and is evident in (14-61)] that these would be the 
wrong weights to use for iterated weighted least squares if we wish to compute the MLE. 
Table 14.6 reproduces the results from Example 9.4 and adds the MLEs produced using 
Harvey’s method. The MLE of g2 is substantially different from the earlier result. The Wald 
statistic for testing the homoscedasticity restriction (a = 0) is (9.78076/2.839)2 = 11.869, 
which is greater than 3.84, so the null hypothesis would be rejected. The likelihood ratio 
statistic is -2(54.2747 - 57.3122) = 6.075, which produces the same conclusion. However, 
the LM statistic is 2.96, which conflicts. This is a finite sample result that is not uncommon. 
Figure 14.5 shows the pattern of load factors over the period observed. The variances of 
log costs would vary correspondingly. The increasing load factors in this period would have 
been a mixed benefit.
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Constant ln Q ln2 Q ln Pf R2a

Sum of 
Squares

OLSb 9.13823 0.92615 0.02915 0.41006 0.986167 1.57748

  Std. Error (0.24507) (0.03231) (0.01230) (0.01881)
  Het. Robust S.E. (0.22595) (0.03013) (0.01135) (0.01752)
  Cluster Robust  
    S.E.

(0.33493) (0.10235) (0.04084) (0.02477)

Two-step 9.2463 0.92136 0.02445 0.40352 0.9861187 1.612938
  Std. Error (0.21896) (0.03303) (0.01141) (0.01697)
Iteratedc 9.2774 0.91609 0.02164 0.40174 0.9860708 1.645693
  Std. Error (0.20977) (0.03299) (0.01102) (0.01633)
MLEd 9.2611 0.91931 0.02328 0.40266 0.9860099 1.626301
  Std. Error (0.2099) (0.03229) (0.01099) (0.01630)

aSquared correlation between actual and fitted values.
bln LOLS = 54.2747, ln LML = 57.3122.
cValues of c2 by iteration: 8.25434, 11.6225, 11.7070, 11.7106, 11.7110,
dEstimate of g2 is 9.78076 (2.83945).

TABLE 14.6  Multiplicative Heteroscedasticity Model

FIGURE 14.5    Load Factors for Six Airlines, 1970–1984.
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Example 14.11    Maximum Likelihood Estimation of Gasoline Demand
In Example 9.3, we examined a two-step FGLS estimator for the OECD gasoline demand. 
The model is a groupwise heteroscedastic specification. In (14-58), zit would be a set of 
country specific dummy variables. The results from Example 9.3 are shown in Table 14.7 
in results (1)  and (2). The maximum likelihood estimates are shown in column (3). The 
parameter estimates are similar, as might be expected. It appears that the standard errors of 
the coefficients are quite a bit smaller using MLE compared to the two-step FGLS. However, 
the two estimators are essentially the same. They differ numerically, as expected. However, the 
asymptotic properties of the two estimators are the same.
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14.11	  �NONLINEAR REGRESSION MODELS AND QUASI-MAXIMUM 
LIKELIHOOD ESTIMATION

In Chapter 7, we considered nonlinear regression models in which the nonlinearity in 
the parameters appeared entirely on the right-hand side of the equation. Maximum 
likelihood is often used when the disturbance in a regression, or the dependent variable, 
more generally, is not normally distributed. If the distribution departs from normality, a 
likelihood-based approach may provide a useful, efficient way to proceed with estimation 
and inference. The exponential regression model provides an application.

Example 14.12    Identification in a Loglinear Regression Model
In Example 7.6, we estimated an exponential regression model, of the form

E [Income � Age, Education, Female] = exp(G1* + G2 Age + G3 Education + G4 Female).

This loglinear conditional mean is consistent with several different distributions, including the 
lognormal, Weibull, gamma, and exponential models. In each of these cases, the conditional 
mean function is of the form

 E [Income � x] = g(u) exp(g1 + x′G2)

 = exp(g1* + x′G2),

where u is an additional parameter of the distribution and g1* = ln g(u) + g1. Two implications 
are:

1.	 Nonlinear least squares (NLS) is robust at least to some failures of the distributional 
assumption. The nonlinear least squares estimator of G2 will be consistent and 
asymptotically normally distributed in all cases for which E[Income � x] = exp(g1* + x′G2).

2.	 The NLS estimator cannot produce a consistent estimator of g1; plim c1 = G1*, which varies 
depending on the correct distribution. In the conditional mean function, any pair of values (u, g1) 
for which g1* = ln g(u) + g1 is the same will lead to the same sum of squares. This is a form of 
multicollinearity; the pseudoregressor for u is 0E[Income � x]/0u = exp(G1* + x′G2)[g′(u)/g(u)] 
while that for g1 is 0E[Income � x]/0G1 = exp(G1* + x′G2). The first is a constant multiple 
of the second. NLS cannot provide separate estimates of u and G1 while MLE can—see 
the example to follow. Second, NLS might be less efficient than MLE because it does 
not use the information about the distribution of the dependent variable. This second 
consideration is uncertain. For estimation of G2, the NLS estimator is less efficient for not 
using the distributional information. However, that shortcoming might be offset because 
the NLS estimator does not attempt to compute an independent estimator of the additional 
parameter, u.

(1) (2) (3)
OLS FGLS MLE

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

ln Income 0.66225 0.07277 0.57507 0.02927 0.45404 0.02211
ln Price -0.32170 0.07277 -0.27967 0.03519 -0.30461 0.02578
ln Cars/Cap -0.64048 0.03876 -0.56540 0.01613 -0.47002 0.01275

TABLE 14.7  Estimated Gasoline Consumption Equations

M14_GREE1366_08_SE_C14.indd   591 2/24/17   1:14 PM



592	 Part III  ✦   Estimation Methodology

To illustrate, we reconsider the estimator in Example 7.6. The gamma regression model 
specifies

f(y � x) =
1

Γ(u)m(x)u
 exp[-y/m(x)]yu - 1, y 7 0, u 7 0, m(x) = exp(g1 + x′G2).

The conditional mean function for this model is

E [y � x] = u/m(x) = u exp(g1 + x′g2) = exp(g1* + x′g2).

Table 14.8 presents estimates of u and (g1, G2). Estimated standard errors appear in 
parentheses. The estimates in columns (1), (2), and (4) are all computed using nonlinear 
least squares. In (1), an attempt was made to estimate u and g1 separately. The estimator 
converged on two values. However, the estimated standard errors are essentially infinite. 
The convergence to anything at all is due to rounding error in the computer. The results 
in column (2) are for g1* and g2. The sums of squares for these two estimates as well 
as for those in (4) are all 112.19688, indicating that the three results merely show three 
different sets of results for which g1* is the same. The full maximum likelihood estimates are 
presented in column (3). Note that an estimate of u is obtained here because the assumed 
gamma distribution provides another independent moment equation for this parameter; 
0 ln L/0u = -n ln Ψ(u) + Σ i(ln yi - ln m(x)) = 0, while the normal equations for the sum of 
squares provide the same equations for u and g1.

14.11.1    Maximum Likelihood Estimation

The standard approach to modeling counts of events begins with the Poisson regression 
model,

Prob[Y = yi � xi] =
exp(-li)li

yi

yi!
, li = exp(xi

=B), yi = 0, 1, c,

which has loglinear conditional mean function E[yi � xi] = li. (The Poisson regression model 
and other specifications for data on counts are discussed at length in Chapter 18. We 

(1)  
NLS

(2)  
Constrained 

NLS

(3)  
MLE

(4)  
NLS/MLE

Constant 1.22468 -1.69331 -3.36826 -3.36380
(47722.5)a (0.04408) (0.05048) (0.04408)

Age 0.00207 0.00207 0.00153 0.00207
(0.00061)b (0.00061) (0.00061) (0.00061)

Education 0.04792 0.04792 0.04975 0.04792
(0.00247)b (0.00247) (0.00286) (0.00247)

Female -0.00658 -0.00658 0.00696 -0.00658
(0.01373)b (0.01373) (0.01322) (0.08677)

u 0.62699 — 5.31474 5.31474c

(29921.3)a — (0.10894) (0.00000)

aReported value is not meaningful; this is rounding error. See text for description.
bStandard errors are the same as in column (2).
cFixed at this value.

TABLE 14.8  Estimated Gamma Regression Model
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introduce the topic here to begin development of the MLE in a fairly straightforward, typical 
nonlinear setting.) Appendix Table F7.1 presents the Riphahn et al. (2003) data, which we 
will use to analyze a count variable, DocVis, the number of visits to physicans in the survey 
year. We are using the 1988 wave of the panel, with 4,483 observations. The histogram in 
Figure 14.6 shows a distinct spike at zero followed by rapidly declining frequencies. While 
the Poisson distribution, which is typically hump shaped, can accommodate this configuration 
if li is less than one, the shape is nonetheless somewhat “non-Poisson.”31

The geometric distribution,

f(yi � xi) = ui(1 - ui)
yi, ui = 1/(1 + li), li = exp(xi

=B), yi = 0, 1, c,

is a convenient specification that produces the effect shown in Figure 14.4. (Note that, 
formally, the specification is used to model the number of failures before the first 
success in successive independent trials each with success probability ui, so in fact, it 
is misspecified as a model for counts. The model does provide a convenient and useful 
illustration, however. Moreover, it will turn out that the specification can deliver a 
consistent estimator of the parameters of interest even if the Poisson is the right model.) 
The conditional mean function is also E[yi � xi] = li. The partial effects in the model are 
0 E[yi � xi]/0xi = liB, so this is a distinctly nonlinear regression model. We will construct 
a maximum likelihood estimator, then compare the MLE to the nonlinear least squares 
and (mis-specified) linear least squares estimates.

The log-likelihood function is

ln L = a
n

i = 1
 ln f(yi � xi, B) = a

n

i = 1
ln ui + yi ln(1 - ui).

31So-called Hurdle and Zero Inflation models (discussed in Chapter 18) are often used for this situation.

FIGURE 14.6    Histogram for Doctor Visits.
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The likelihood equations are

0 ln L
0B

= a
n

i = 1
¢ 1
ui

-
yi

1 - ui
≤  

dui

dli
 
0li

0B
= 0.

Because

dui

dli
 
0li

0B
= ¢ -1

(1 + li)
2 ≤lixi = -ui(1 - ui)xi,

the likelihood equations simplify to

 
0 ln L

0B
= a

n

i = 1
(uiyi - (1 - ui))xi

 = a
n

i = 1
(ui(1 + yi) - 1)xi.

To estimate the asymptotic covariance matrix, we can use any of the estimators of 
asy.Var[BnMLe] discussed earlier. The BHHH estimator would be

 est.asy.VarBhhh[BnMLe] = Jan
i = 1

¢ 0 ln f(yi � xi, Bn)

0Bn
≤ ¢ 0 ln f(yi, � xi, Bn)

0Bn
≤= R -1

 = Jan
i = 1

(uni(1 + yi) - 1)2xixi
= R

 = [Gn ′Gn ]-1.

The negative inverse of the second derivatives matrix evaluated at the MLE isJ -
02 ln L

0 Bn  0 Bn ′
R -1

= Jan
i = 1

(1 + yi)uni(1 - uni)xixi
= R -1

= [-Hn ]-1.

As noted earlier, E[yi � xi] = li = (1 - ui)/ui is known, so we can also use the negative 
inverse of the expected second derivatives matrix,J -E¢ 02 ln L

0 Bn  0 Bn
≤ R -1

= Jan
i = 1

(1 - uni)xixi
= R -1

= {-E[Hn ]}-1.

Finally, although we are confident in the form of the conditional mean function, but 
uncertain about the distribution, it might make sense to use the robust estimator in 
(14-36),

est.asy.Var[Bn] = [-Hn ]-1[Gn ′Gn ][-Hn ]-1.

To compute the estimates of the parameters, either Newton’s method, Bn t + 1 =
Bn t - [Hn t]-1gn t, or the method of scoring, Bn t + 1 = Bn t - {E[Hn t]}-1gn t, can be used, where H 
and g are the second and first derivatives that will be evaluated at the current estimates 
of the parameters. Like many models of this sort, there is a convenient set of starting 
values, assuming the model contains a constant term. Because E[yi � xi] = li, if we start 
the slope parameters at zero, then a natural starting value for the constant term is the 
log of y.
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14.11.2    Quasi-Maximum Likelihood Estimation

If one is confident in the form of the conditional mean function (and that is the function 
of interest), but less sure about the appropriate distribution, one might seek a robust 
approach. That is precisely the situation that arose in the preceding example. Given that 
DocVis is a nonnegative count, the exponential mean function makes sense. But we gave 
equal plausibility to a Poisson model, a geometric model, and a semiparametric approach 
based on nonlinear least squares. The conditional mean function is correctly specified, 
but each of these three approaches has a significant shortcoming. The Poisson model 
imposes an “equidispersion” (variance equal to the mean) that is likely to be transparently 
inconsistent with the data; the geometric model is manifestly an inappropriate 
specification, and the nonlinear least squares estimator ignores all information in the 
sample save for the form of the conditional mean function. A quasi-MLE(QMLE) 
approach based on linear exponential forms provides a somewhat robust approach in 
this sort of circumstance.

The exponential family of distributions is defined in Definition 13.1. For a random 
variable, y with density f(y �U), the exponential family of distributions is

ln f(y �U) = a(y) + b(U) + Σkck(y)sk(U).

Many familiar distributions are in this class, including the normal, logistic, Bernoulli, 
Poisson, gamma, exponential, Weibull, and others. Based on this framework, Gourieroux, 
Monfort, and Trognon (1984) proposed the class of conditional linear exponential families,

ln f(y �m(x, B)) = a(y) + b(m(x, B)) + ys(m(x, B)),

where the conditional mean function is E[y � x, B] = m(x, B). The usefulness of this class 
of specifications is that maximizing the implied log likelihood produces a consistent 
estimator of B even if the true distribution of y � x is not f(y �m(x, B)), so long as the 
mean is correctly specified.

Example 14.13 examines a count variable, DocVis = the number of doctor visits. The 
assumed conditional mean function is E[yi � xi] = li = exp(xi

=B), but we are uncertain of 
the distribution. Two candidates are considered, geometric with f(yi � xi, B) = ui(1 - ui)

y
i 

with ui = 1/(1 + li), and Poisson with f(yi �xi,B) = exp(-li)li
 y

i /Γ(yi + 1). Both of these 
distributions are in the LEF family; for the geometric, ln f(yi�xi,B) = ln[ui/(1 - ui)] + yi ln ui,  
and for the Poisson, ln f(yi � xi, B) = -li + yi ln li - ln Γ(yi + 1). Because both are 
LEFs involving the same mean function, either log likelihood will produce a consistent 
estimator of the same B.

The conditional variance is unspecified so far. In the two cases considered, the variance 
is a simple function of the mean. For the geometric distribution, Var[y � x] = l(1 + l); 
for the Poisson, Var[y � x] = E[y � x] = l. This relationship will hold in general for linear 
exponential families. For another example, the Bernoulli distribution for a binary or 
fractional variable, f(y � x) = Pi

 y
i  (1 - Pi)

11 - y2i , where Pi = li/(1 + li) has conditional 
variance, li/[1 + li]

2 = Pi(1 - Pi). The other models examined below, gamma, Weibull, 
and negative binomial, all behave likewise. The conventional estimator of the asymptotic 
variance based on the information matrix, (14-16) or (14-17), would apply if the 
distribution of the LEF were the actual distribution of yi. However, because the variance 
has not actually been specified, this may not be the case. Thus, the heteroscedasticity 
makes the robust variance matrix estimator in (14-36) a logical choice.
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An apparently minor extension is needed to accommodate distributions that have 
an additional parameter, typically a shape parameter, such as the Weibull distribution,

f(yi � xi) =
u

li
 ¢ yi

li
≤u - 1

 expJ- ¢ yi

li
≤u R ,

for which E[yi � xi] = li Γ(1 + 1/u), or the gamma distribution,

f(yi � xi) =
yi
u - 1

li
uΓ(u)

 exp¢-
yi

li
≤,

for which E[yi � xi] = liu. These random variables satisfy the assumptions of the LEF 
models, but the more detailed specifications create complications both for estimation 
and inference. First, for these models, the mean, li, is no longer correctly specified. 
In the cases shown, there is a scaling parameter. If li = exp(xi

=B) as is typical, and B 
contains a constant term, then the constant term is offset by the log of that scaling 
term. For the Weibull model, the constant term is offset by ln Γ(1 + 1/u) while for the 
gamma model, the offset is ln u. These would seem to be innocuous; however, if the 
conditional mean itself or partial effects of the mean are the objects of estimation, this 
is a potentially serious shortcoming. These two models noted are, like the candidates 
noted earlier, also heteroscedastic; for the gamma, Var[y � x] = ul2, while for the Weibull, 
Var[y � x] = l{Γ(1 + 2/u) - Γ2(1 + 1/u)}. The robust estimator of the asymptotic 
covariance matrix in (14-36) for the QMLEs would still be preferred.

These four distributions noted and the others listed below are all members of the 
LEF, which would suggest that any of them could form the basis of a quasi-MLE for 
(y � x). The distributions listed are, in principle, for binary (Bernoulli), count (Poisson, 
geometric), and continuous (gamma, Weibull, normal) random variables. The LEF 
approach should work best if the random variable studied is of the type that is natural 
for the form of the distribution used, or at least closest to it. Thus, in the example below, 
we have modeled the count variable using the geometric and Poisson. One could use 
the Bernoulli framework for a binary or fractional variable as the basis for the quasi-
MLE. Given the results thus far, the Bernoulli LEF could also be used for a continuous 
variable, but the gamma or Weibull distribution would be a better choice. In general, 
the support of the observed variable should match that of the variable that underlies 
the candidate distribution, for example, the nonnegative integers in Example 14.13. 
[Continuity is not essential; the Poisson (exponential) LEF would work for a continuous 
(discrete) nonnegative variable.]

If interest centers on estimation of B, our results would seem to imply that several 
of these distributions would suffice as the vehicle for estimation in a given situation. But 
intuition should suggest (no doubt correctly) that some choices should be better than 
others. On the other hand, why not just use nonlinear least squares (GMM) in all cases if 
only the conditional mean has been specified? The argument so far does not distinguish 
any of these estimators; they are all consistent. The criterion function chosen implies a 
weighting of the observations, and it would seem that some weighting schemes would 
be better (more efficient) than others, based on the same logic that makes generalized 
least squares better than ordinary least squares.

The preceding efficiency argument is somewhat ambiguous. It remains a question why 
one would use this approach instead of nonlinear least squares. The leading application 
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of these methods [and the focus of Gourieroux et al. (1984) who developed them] is 
about modeling counts such as our doctor visits variable, in the presence of unmeasured 
heterogeneity. Consider that in the canonical model for counts, the Poisson regression, there 
is no explicit place in the specification for unmeasured heterogeneity. The entire specification  
builds off the conditional mean, li = exp(xi

=B), and the marginal Poisson distribution. 
A natural way to extend the Poisson regression specification is li � ei = exp(xi

=B + ei). 
The conditional mean function is Λi = e[exp(ei)]li. If the model contains a constant term, 
then nothing is lost by assuming that e[exp(ei)] = 1, so Λi = li. Left unspecified are the 
variance of yi � xi and the distribution of ei. We assume that ei is a conventional disturbance, 
exogenous to the rest of the model. Thus, the conditional (on x) mean is correctly specified 
by li which implies that the Poisson QMLE is a robust estimator for this model with only 
vaguely specified heterogeneity—it is exogenous and has mean 1.

The marginal distribution is f(yi � xi) = Lei

f(yi � xi, ei)g(ei)dei. If exp(ei) has a gamma 

distribution with mean 1, G(u, u), this produces the negative binomial type 2 regression 
model,

f(yi � xi) =
Γ(yi + u)

Γ(yi + 1)Γ(u)
 ¢ li

li + u
≤yi¢ u

li + u
≤u, yi = 0, 1, c.

This random variable has mean li and variance = li[1 + li/u]. The negative binomial 
density is a member of the LEF. The advantage of this formulation for count data is that 
the Poisson quasi-log likelihood will produce a consistent estimator of B regardless of 
the distribution of ei as long as ei is exogenous, homoscedastic (with respect to xi), and 
is parameterized free of B.

To conclude, the QMLE would seem to be a competitor to the GMM estimator for 
certain kinds of models. In the leading application, it is a robust estimator that follows 
the form of the random variable while nonlinear least squares does not.

Example 14.13    Geometric Regression Model for Doctor Visits
In Example 7.6, we considered nonlinear least squares estimation of a loglinear model for the 
number of doctor visits variable shown in Figure 14.6. (41 observations for which DocVis 7 50 
out of 27,326 in total are omitted from the figure). The data are drawn from the Riphahn et al. 
(2003) data set in Appendix Table F7.1. We will continue that analysis here by fitting a more 
detailed model for the count variable DocVis. The conditional mean analyzed here is

ln E[DocVisit � xit] = b1 + b2 Ageit + b3 Educit + b4 Incomeit + b5 Kidsit.

(This differs slightly from the model in Example 11.16.) For this exercise, with an eye toward 
the fixed effects model in Example 14.13, we have specified a model that does not contain 
any time-invariant variables, such as Female. (Also, for this application, we will use the entire 
sample.) Sample means for the variables in the model are given in Table 14.9. Note, these 
data are a panel. In this exercise, we are ignoring that fact, and fitting a pooled model. We will 
turn to panel data treatments in the next section, and revisit this application.

We used Newton’s method for the optimization, with starting values as suggested earlier. 
The five iterations are shown in Table 14.9.

Convergence based on the LM criterion, g′H-1g, is achieved after the fourth iteration. 
Note that the derivatives at this point are extremely small, albeit not absolutely zero. Table 
14.10 presents the quasi-maximum likelihood estimates of the parameters. Several sets 
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Start values: 0.11580e+1 0.00000 0.00000 0.00000 0.00000
1st derivatives 0.00000 -0.61777e+5 0.73202e+4 0.42575e+4 0.16464e+4
Parameters: 0.11580e+1 0.00000 0.00000 0.00000 0.00000
Iteration 1 F = 0.6287e+5 g′H-1g = 0.1907e+4
1st derivatives 0.48616e+3 -0.22449e+5 0.57162e+4 -0.17112e+3 -0.16521e+3
Parameters: 0.11186e+1 0.1762e-1 -0.50263e-1 -0.46274e-1 -0.15609
Iteration 2 F = 0.6192e+5 g′H-1g = 0.1258e+2
1st derivatives -0.31284e+1 -0.15595e+3 -0.37197e+2 -0.10630e+1 -0.77186
Parameters: 0.10922e+1 0.17981e-1 -0.47303e-1 -0.46739e-1 -0.15683
Iteration 3 F = 0.6192e+5 g′H-1g = 0.6759e-3
1st derivatives -0.18417e-3 -0.99368e-2 -0.21992e-2 -0.59354e-4 -0.25994e-4
Parameters: 0.10918e+1 0.17988e-1 -0.47274e-1 -0.46751e-1 -0.15686
Iteration 4 F = 0.6192e+5 g′H-1g = 0.1831e-8
1st derivatives -0.35727e-11 0.86745e-10 -0.26302e-10 -0.61006e-11 -0.15620e-11
Parameters: 0.10918e+1 0.17988e-1 -0.47274e-1 -0.46751e-1 -0.15686
Iteration 5 F = 0.6192e+5 g′H-1g = 0.177e-12

Table 14.9  Newton Iterations

of standard errors are presented. The three sets based on different estimators of the 
information matrix are presented first. The fourth set is based on the cluster corrected 
covariance matrix discussed in Section 14.8.4. Because this is actually an (unbalanced) 
panel data set, we anticipate correlation across observations. Not surprisingly, the standard 
errors rise substantially. The partial effects listed next are computed in two ways. The 
average partial effect is computed by averaging liB across the individuals in the sample. 
The partial effect is computed for the average individual by computing l at the means 
of the data. The next-to-last column contains the ordinary least squares coefficients. In 
this model, there is no reason to expect ordinary least squares to provide a consistent 
estimator of B. The question might arise, What does ordinary least squares estimate? The 
answer is the slopes of the linear projection of DocVis on xit. The resemblance of the OLS 
coefficients to the estimated partial effects is more than coincidental, and suggests an 
answer to the question.

The analysis in Table 14.11 suggests three competing approaches to modeling DocVis. 
The results for the geometric regression model are given first in Table 14.10. At the beginning 
of this section, we noted that the more conventional approach to modeling a count variable 
such as DocVis is with the Poisson regression model. The quasi-log-likelihood function and 
its derivatives are even simpler than the geometric model

 ln L = a
n

i = 1
yi lnli - li - ln yi!,

 0 ln L/0B = a
n

i = 1
(yi - li)xi,

 02 ln L/0B0B′ = a
n

i = 1
- lixixi

=.

A third approach might be a semiparametric, nonlinear regression model,

yit = exp(xit
=B) + eit.
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Without the distributional assumption, nonlinear least squares is robust, but inefficient 
compared to the QMLE. But the distributional assumption can be dropped altogether, and 
the model fit as a simple exponential regression. Note the similarity of the Poisson QMLE and 
the NLS estimator. For the QMLE, the likelihood equations, Σi = 1

n (yi - li)xi = 0, imply that 
at the solution, the residuals, (yi - li), are orthogonal to the actual regressors, xi. The NLS 
normal equations, Σi = 1

n (yi - li)lixi = Σi = 1
n (yi - li)xi

0 = 0 will imply that at the solutions, the 
residuals are orthogonal to the pseudo-regressors, lixi.

Table 14.11 presents the three sets of estimates. It is not obvious how to choose among 
the alternatives. Of the three, the Poisson model is used most often by far. The Poisson and 
geometric models are not nested, so we cannot use a simple parametric test to choose 
between them. However, these two models will surely fit the conditions for the Vuong test 
described in Section 14.6.6. To implement the test, we first computed

Vit = ln fit � geometric - ln fit � Poisson

using the respective QMLEs of the parameters. The test statistic given in Section 14.6.6 is 
then

V =
(2n)V

sV

.

This statistic converges to standard normal under the underlying assumptions. A large 
positive value favors the geometric model. The computed sample value is 37.885, which 
strongly favors the geometric model over the Poisson. Figure 14.6 suggests an explanation 

Std. Err. Std. Err. Std. Err. Std. Err. PE Var.

Variable Estimate H E[H] BHHH Cluster APE Mean OLS Mean

Constant 1.0918 0.0524 0.0524 0.0354 0.1083 — — 2.656
Age 0.0180 0.0007 0.0007 0.0005 0.0013 0.0572 0.057 0.061 43.52
Education -0.0473 0.0033 0.0033 0.0023 0.0067 -0.150 -0.144 -0.121 11.32
Income -0.4684 0.0411 0.0423 0.0278 0.0727 -1.490 -1.424 -1.621 0.352
Kids -0.1569 0.0156 0.0155 0.0103 0.0306 -0.487 -0.477 -0.517 0.403

TABLE 14.10  �Estimated Geometric Regression Model Dependent Variable: DocVis: 
Mean = 3.18352, Standard Deviation = 5.68969, n = 27,326

Geometric Model Poisson Model Nonlinear Reg.

Variable Estimate Std. Err. APE Estimate Std. Err. APE Estimate Std. Err. APE

Constant 1.0918 0.1083 0.10480 0.1137 0.9802 0.1814
Age 0.0180 0.0013 0.057 0.0184 0.0013 0.060 0.0187 0.0020 0.060
Education -0.0473 0.0067 -0.150 -0.0433 0.0070 -0.138 -0.0361 0.0123 -0.115
Income -0.4684 0.0727 -1.490 -0.5207 0.0822 -1.658 -0.5919 0.1283 -1.884
Kids -0.1569 0.0306 -0.487 -0.1609 0.0312 -0.500 -0.1693 0.0488 -0.539

TABLE 14.11  Estimates of Three Models for DocVis
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for this finding. The very large mass at DocVis = 0 is distinctly non-Poisson. This would 
motivate an extended model such as the negative binomial model, or more likely a two-part 
model such as the hurdle model examined in Section 18.4.8. The geometric model would 
likely provide a better fit to a data set such as this one. The three approaches do display 
a substantive difference. The average partial effects in Table 14.11 differ noticeably for the 
three specifications.

14.12	  SYSTEMS OF REGRESSION EQUATIONS

The general form of the seemingly unrelated regression (SUR) model is given in (10-1) 
through (10-3),

 yi = XiBi + Ei, i = 1, c, M,

 E[Ei � X1, c, XM] = 0,

 E[EiEj
= � X1, c, XM] = sijI.

	 (14-66)

FGLS estimation of this model is examined in detail in Section 10.2.3. We will now 
add the assumption of normally distributed disturbances to the model and develop 
the maximum likelihood estimators. This suggests a general approach for multiple 
equation systems. Given the covariance structure defined in (14-66), the joint normality 
assumption applies to the vector of M disturbances observed at time t, which we write as

	 Et � X1, c, XM ∼ n[0, �], t = 1, c, T.	 (14-67)

14.12.1    The Pooled Model

The pooled model, in which all coefficient vectors are equal, provides a convenient starting 
point. With the assumption of equal coefficient vectors, the regression model becomes

 yit = xit
=B + eit, i = 1, c, M, t = 1, c, T,

 E[Eit � X1, c, XM] = 0,

 E[eitejs � X1, c, XM] = sij if t = s, and 0 if t ≠ s.

	 (14-68)

This is a model of heteroscedasticity and cross-sectional correlation. With multivariate 
normality, the log likelihood is

	 ln L = a
T

t = 1
J -

M
2

 ln 2p -
1
2

 ln � � � -
1
2

 E=t�-1EtR .	 (14-69)

As we saw earlier, the efficient estimator for this model is GLS, as shown in (10-22). 
Because the elements of � must be estimated, the FGLS estimator based on (10-23) 
and (10-13) is used.

The maximum likelihood estimator of B, given �, is GLS, based on (10-22). The 
maximum likelihood estimator of � is

	 snij =
(yi

= - XiB
n

n

ML)′(yj - XjB
n

n

ML)

T
=

En i
=En j

T
,	 (14-70)

based on the MLE of B. If each MLE requires the other, how can we proceed to obtain 
both? The answer is provided by Oberhofer and Kmenta (1974), who show that for certain 
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models, including this one, one can iterate back and forth between the two estimators. 
Thus, the MLEs are obtained by iterating to convergence between (14-70) and

	 Bn
n = [X′�n -1X]-1[X′�n -1y].	 (14-71)

The process may begin with the (consistent) ordinary least squares estimator, then (14-70), 
and so on. The computations are simple, using basic matrix algebra. Hypothesis tests about 
B may be done using the familiar Wald statistic. The appropriate estimator of the 
asymptotic covariance matrix is the inverse matrix in brackets in (10-22).

For testing the hypothesis that the off-diagonal elements of � are zero—that is, that 
there is no correlation across groups—there are three approaches. The likelihood ratio 
test is based on the statistic

	 lLR = T(ln � �n heteroscedastic � - ln � �n general � ) = T¢ aM
i = 1

ln sn i
2 - ln � �n � ≤,	 (14-72)

where sn i
2 are the estimates of si

2 obtained from the maximum likelihood estimates of 
the groupwise heteroscedastic model and �n  is the maximum likelihood estimator in the 
unrestricted model.32 The large-sample distribution of the statistic is chi squared with 
M(M - 1)/2 degrees of freedom. The Lagrange multiplier test developed by Breusch 
and Pagan (1980) provides an alternative. The general form of the statistic is

	 lLM = Ta
m

i = 2
a
i - 1

j = 1
r ij

2,	 (14-73)

where r i j
2  is the ijth residual correlation coefficient. If every equation had a different 

parameter vector, then equation-specific ordinary least squares would be efficient 
(and ML) and we would compute ri j from the OLS residuals (assuming that there are 
sufficient observations for the computation). Here, however, we are assuming only a 
single-parameter vector. Therefore, the appropriate basis for computing the correlations 
is the residuals from the iterated estimator in the groupwise heteroscedastic model, that 
is, the same residuals used to compute sn i

2. (An asymptotically valid approximation to 
the test can be based on the FGLS residuals instead.) Note that this is not a procedure 
for testing all the way down to the homoscedastic regression model. That case involves 
different LM and LR statistics based on the groupwise heteroscedasticity model. If 
either the LR statistic in (14-72) or the LM statistic in (14-73) is smaller than the critical 
value from the table, the conclusion, based on this test, is that the appropriate model is 
the groupwise heteroscedastic model.

14.12.2    The Sur Model

The Oberhofer–Kmenta (1974) conditions are met for the seemingly unrelated 
regressions model, so maximum likelihood estimates can be obtained by iterating the 
FGLS procedure.We note, once again, that this procedure presumes the use of (10-11) 
for estimation of si j at each iteration. Maximum likelihood enjoys no advantages over 
FGLS in its asymptotic properties.33 Whether it would be preferable in a small sample 
is an open question whose answer will depend on the particular data set.

32Note: The excess variation produced by the restrictive model is used to construct the test.
33Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the 
estimator that allows for the possibility that the normality assumption might be violated.
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Example 14.14  �  ML Estimates of a Seemingly Unrelated Regressions 
Model

Although a bit dated, the Grunfeld data used in Application 11.2 have withstood the test of 
time and are still a standard data set used to demonstrate the SUR model. The data in 
Appendix Table F10.4 are for 10 firms and 20 years (1935–1954). For the purpose of this 
illustration, we will use the first four firms.34

The model is an investment equation,

Iit = b1i + b2iFit + b3iCit + eit, t = 1, c, 20, i = 1, c, 10,

where

Iit = real gross investment for firm i in year t,
Fit = real value of the firm-shares outstanding,
Cit = real value of the capital stock.

The OLS estimates for the four equations are shown in the left panel of Table 14.12. The 
correlation matrix for the four OLS residual vectors is

Re = D    1 -0.261   0.279  -0.273
-0.261   1   0.428   0.338
  0.279   0.428    1 -0.0679
-0.273  0.338 -0.0679    1

T .

Before turning to the FGLS and MLE estimates, we carry out the LM test against the null 
hypothesis that the regressions are actually unrelated. We leave as an exercise to show that 
the LM statistic in (14-73) can be computed as

lLM = (T/2)[trace(Re
= Re) - M] = 10.451.

The 95% critical value from the chi-squared distribution with 6 degrees of freedom is 12.59, 
so at this point, it appears that the null hypothesis is not rejected. We will proceed in spite 
of this finding.

34The data are downloaded from the Web site for Baltagi (2005) at www.wiley.com/legacy/wileychi/baltagi/supp/
Grunfeld.fil. See also Kleiber and Zeileis (2010).

OLS FGLS MLE

Firm Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant -149.78 97.58 -160.68 90.41 - 179.41 86.66
1 F   0.1192   0.02382   0.1205   0.02187   0.1248   0.02086

C   0.3714   0.03418   0.3800   0.03311   0.3802   0.03266
Constant -49.19 136.52 21.16 116.18 36.46 106.18

2 F   0.1749   0.06841   0.1304   0.05737   0.1244   0.05191
C   0.3896   0.1312   0.4485   0.1225   0.4367   0.1171
Constant -9.956 28.92 -19.72 26.58 -24.10 25.80

3 F 0.02655 0.01435 0.03464 0.01279 0.03808 0.01217
C 0.1517 0.02370 0.1368 0.02249 0.1311 0.02223
Constant -6.190 12.45 0.9366 11.59 2.581 11.54

4 F 0.07795 0.01841 0.06785 0.01705 0.06564 0.01698
C 0.3157 0.02656 0.3146 0.02606 0.3137 0.02617

TABLE 14.12  Estimated Investment Equations

Re = D1 -0.261 0.279 -0.273
-0.261 1 0.428 0.338
0.279 0.428 1 -0.0679
-0.273 0.338 -0.0679 1

T .

Re = D    1 -0.261   0.279  -0.273
-0.261   1   0.428   0.338
  0.279   0.428    1 -0.0679
-0.273  0.338 -0.0679    1

T .
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The next step is to compute the covariance matrix for the OLS residuals using

W = (1/T) E′E = D 7160.29 -1967.05 607.533 -282.756
-1967.05 7904.66 978.45 367.84
607.533 978.45 660.829 -21.3757

-282.756 367.84 -21.3757 149.872

T ,

where E is the 20 * 4 matrix of OLS residuals. Stacking the data in the partitioned matrices,

X = DX1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 X4

T  and  y = Dy1

y2

y3

y4

T ,

we now compute �n = W ⊗ I20 and the FGLS estimates,

Bn = [X′�n -1X]-1X′�n -1y.

The estimated asymptotic covariance matrix for the FGLS estimates is the bracketed inverse 
matrix. These results are shown in the center panel in Table 14.12. To compute the MLE, we 
will take advantage of the Oberhofer and Kmenta (1974) result and iterate the FGLS estimator. 
Using the FGLS coefficient vector, we recompute the residuals, then recompute W, then 
reestimate B. The iteration is repeated until the estimated parameter vector converges. We 
use as our convergence measure the following criterion based on the change in the estimated 
parameter from iteration (s - 1) to iteration (s):

d = [Bn (s) - Bn (s - 1)]′[X′[�n (s)]-1X][Bn (s) - Bn (s - 1)].

The sequence of values of this criterion function are: 0.21922, 0.16318, 0.00662, 0.00037, 
0.00002367825, 0.000001563348, 0.1041980 * 10-6. We exit the iterations after iteration 7. 
The ML estimates are shown in the right panel of Table 14.12. We then carry out the likelihood 
ratio test of the null hypothesis of a diagonal covariance matrix. The maximum likelihood 
estimate of � is

�n = D 7235.46 -2455.13 615.167 -325.413
-2455.13 8146.41 1288.66 427.011
 615.167 1288.66 702.268 2.51786
-325.413 427.011 2.51786 153.889

T .

The estimate for the constrained model is the diagonal matrix formed from the diagonals of 
W shown earlier for the OLS results. (The estimates are shown in boldface in the preceding 
matrix, W.) The test statistic is then

LR = T(ln � diag(W) � - ln � �n � ) = 18.55.

Recall that the critical value is 12.59. The results contradict the LM statistic. The hypothesis 
of diagonal covariance matrix is now rejected.
Note that aside from the constants, the four sets of coefficient estimates are fairly similar. 
Because of the constants, there seems little doubt that the pooling restriction will be rejected. 
To find out, we compute the Wald statistic based on the MLE results. For testing

H0: B1 = B2 = B3 = B4,
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we can formulate the hypothesis as

H0: B1 - B4 = 0, B2 - B4 = 0, B3 - B4 = 0.

The Wald statistic is

lW = (RBn - q)′[RVR′]-1(RBn - q) = 2190.96,

where R = C I3 0 0 - I3
0 I3 0 - I3
0 0 I3 - I3

S , q = C0
0
0
S , and V = [X′�n -1X]-1. Under the null hypothesis, 

the Wald statistic has a limiting chi-squared distribution with 9 degrees of freedom. The 
critical value is 16.92, so, as expected, the hypothesis is rejected. It may be that the difference 
is due to the different constant terms. To test the hypothesis that the four pairs of slope 
coefficients are equal, we replaced the I3 in R with [[0, I2]], the 0's with 2 * 3 zero matrices, 
and q with a 6 * 1 zero vector. The resulting chi-squared statistic equals 229.005. The critical 
value is 12.59, so this hypothesis is rejected as well.

14.13	  SIMULTANEOUS EQUATIONS MODELS

In Chapter 10, we noted two approaches to maximum likelihood estimation of the 
equation
system,

 yt
=� + xt

=B = Et
=,

 Et � X ∼ n[0, �]:	 (14-73)

full information maximum likelihood (FIML) and limited information maximum 
likelihood (LIML). The FIML approach simultaneously estimates all model parameters. 
The FIML estimator for a linear equation system is extremely complicated both 
theoretically and practically. However, its asymptotic properties are identical to three-
stage least squares (3SLS), which is straightforward and a standard feature of modern 
econometric software. (See Section 10.4.5.) Thus, the additional assumption of normality 
in the system brings no theoretical or practical advantage.

The LIML estimator is a single-equation approach that estimates the parameters of 
the model one equation at a time. We examined two approaches to computing the LIML 
estimator, both straightforward, when the equations are linear. The least variance ratio 
approach shown in Section 10.4.4 is based on some basic matrix algebra calculations—
the only unconventional calculation involves the characteristic roots of an asymmetric 
matrix (or obtaining the matrix square root of a symmetric matrix). The more direct 
approach in Section (8.4.3) provides some useful results for interpreting the model.

The leading application of LIML estimation is for an equation that contains one 
endogenous variable. (This is the application in most of Chapter 8.) Let that be the first 
equation in (14-73),

y1g11 + y2g21 + x1′b1 = e1.

Normalize the equation, so the coefficient on y1 is 1 and the other variables apprear on 
the right-hand side. Then,
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	 y1 = y2d1 + x1′B1 + w1.	 (14-74)

This is the structural form for the first equation that contains a single included endogenous 
variable. The reduced form for the entire system is y′ = x′(-B�-1) + v′.  [See 
Section 10.4.2 and (10-36).] The second equation in the reduced form is

	 y2 = x′P2 + u2.	 (14-75)

Note that the structural equation for y1 involves only some of the exogenous variables in 
the system while the reduced form involves all of them including at least one that is not 
contained in x1. As we developed in Section 10.4.3, there must be exogenous variables 
in the system that are excluded from the y1 equation—this is the order condition for 
identification. The disturbances in the two equations are linear functions of the disturbances 
in (14-73), so with normality, the disturbances in (14-74) and (14-75) are joint normal.

The two-equation system (14-74,14-75) is precisely the same as the one we examined 
in Section 8.4.3,

	 y = x1′B + x2l + e	 (14-76)

	 x2 = z′G + u, 	 (14-77)

where y2 in (14-74) is the x2 in (14-76) and z = (x1, c). Equation (14-77) is the reduced 
form equation for y2. This formalizes the results for an equation in a simultaneous 
equations model that contains one endogenous variable. The estimator is actually 
based on two equations, the structural equation of interest and the reduced form for the 
endogenous variable that appears in that equation. The log-likelihood function for the 
LIML estimator for this (actually) two-equation system is shown in (8-17). In the typical 
equation, (14-76) and (14-77) might well be the recursive structure. This construction of 
the model underscores the point that in a model that contains an endogenous variable, 
there is a second equation that “explains” the endogeneity.

For the practitioner, a useful result is that the asymptotic variance of the two-stage 
least squares (2SLS) estimator is the same as that of the LIML estimator. This would 
generally render the LIML estimator, with its additional normality assumption, moot. The 
exception would be the invariance of the LIML estimator to normalization of the equation 
(i.e., which variable appears on the left of the equals sign). This turns out to be useful in the 
context of analysis in the presence of weak instruments. (See Section 8.7.) More generally, 
the LIML and FIML estimators have been supplanted in the literature by much simpler 
GMM estimators, 2SLS, 3SLS, and extensions that accommodate heteroscedasticity. 
Interest remains in these estimators, but largely as a component of the ongoing theoretical 
research.

14.14	  PANEL DATA APPLICATIONS

Application of panel data methods to the linear panel data models we have considered 
so far is a fairly marginal extension. For the random effects linear model, considered in 
the following Section 14.14.1, the MLE of B is, as always, FGLS given the MLEs of the 
variance parameters. The latter produce a fairly substantial complication, as we shall 
see. This extension does provide a convenient, interesting application to see the payoff 
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to the invariance property of the MLE—we will reparameterize a fairly complicated 
log-likelihood function to turn it into a simple one. Where the method of maximum 
likelihood becomes essential is in analysis of fixed and random effects in nonlinear 
models. We will develop two general methods for handling these situations in generic 
terms in Sections 14.14.3 and 14.14.4, then apply them in several models later in the book.

14.14.1    ML Estimation of the Linear Random Effects Model

The contribution of the ith individual to the log likelihood for the random effects 
model [(11-28) to (11-32)] with normally distributed disturbances is

 ln Li(B, se
2, su

2) = -
1
2

 [Ti ln 2p + ln � �i � + (yi - XiB)′�i
-1(yi - XiB)]

 = -
1
2

 [Ti ln 2p + ln � �i � + Ei
=�i

-1Ei],
	 (14-78)

where

�i = se
2ITi + su

2ii′,

and i denotes a Ti * 1 column of ones. Note that the �i varies over i because it is 
Ti * Ti. Baltagi (2013) presents a convenient and compact estimator for this model 
that involves iteration between an estimator of f2 = [se

2/(se
2 + Tsu

2)], based on sums 
of squared residuals, and (a, B, se

2) (a is the constant term) using FGLS. Unfortunately, 
the convenience and compactness come unraveled in the unbalanced case. We consider, 
instead, what Baltagi labels a “brute force” approach, that is, direct maximization of the 
log-likelihood function in (14-78). (See, Baltagi, pp. 169–170.)

Using (A-66), we find that

�i
-1 =

1
se

2 JITi
-

su
2

se
2 + Tisu

2  ii′ R .

We will also need the determinant of �i. To obtain this, we will use the product of its 
characteristic roots. First, write

� �i � = (se
2)Ti � I + gii′ � ,

where g = su
2/se

2. To find the characteristic roots of the matrix, use the definition

[I + gii′]c = lc,

where c is a characteristic vector and l is the associated characteristic root. The equation 
implies that gii′c = (l - 1)c. Premultiply by i′ to obtain g(i′i)(i′c) = (l - 1)(i′c). Any 
vector c with elements that sum to zero will satisfy this equality. There will be Ti - 1 
such vectors and the associated characteristic roots will be (l - 1) = 0 or l = 1. For 
the remaining root, divide by the nonzero (i′c) and note that i′i = Ti, so the last root is 
Tig = l - 1 or l = (1 + Tig).35 It follows that the log of the determinant is  

ln � �i � = Ti ln se
2 + ln(1 + Tig).

35By this derivation, we have established a useful general result. The characteristic roots of a T * T matrix of the 
form A = (I + abb=) are 1 with multiplicity (T - 1) and ab′b with multiplicity 1. The proof follows precisely 
along the lines of our earlier derivation.
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Expanding the parts and multiplying out the third term gives the log-likelihood function

 ln L = a
n

i = 1
ln Li

 = -
1
2

 J(ln 2p + ln se
2)a

n

i = 1
Ti + a

n

i = 1
ln(1 + Tig) R -

1
2se

2 a
n

i = 1
JEi

=Ei -
su

2(Tiei)
2

se
2 + Tisu

2 R . 

Note that in the third term, we can write se
2 + Tisu

2 = se
2(1 + Tig) and su

2 = se
2g. After 

inserting these, two appearances of se
2 in the square brackets will cancel, leaving

ln L = -
1
2 a

n

i = 1
¢Ti(ln 2p + ln se

2) + ln(1 + Tig) +
1
se

2 JEi
=Ei -

g(Tiei)
2

1 + Tig
R ≤.

Now, let u = 1/se
2, Ri = 1 + Tig, and Qi = g/Ri. The individual contribution to the log 

likelihood becomes

ln Li = -
1
2

 [u(Ei
=Ei - Qi(Tiei)

2) + ln Ri - Ti ln u + Ti ln 2p].

The likelihood equations are

 
0 ln Li

0B
= uJaTi

t = 1
xiteitR - uJQi¢ aTi

t = 1
xit≤ ¢ aTi

t = 1
eit≤ R ,

 
0 ln Li

0u
= -

1
2

 J ¢ aTi

t = 1
eit

2≤ - Qi¢ aTi

t = 1
eit≤2

-
Ti

u
R ,

 
0 ln Li

0g
=

1
2

 Ju¢ 1
Ri

2 ¢ aTi

t = 1
eit≤2≤ -

Ti

Ri
R .

These will be sufficient for programming an optimization algorithm such as DFP or 
BFGS. (See Section E3.3.) We could continue to derive the second derivatives for 
computing the asymptotic covariance matrix, but this is unnecessary. For BnMLe, we 
know that because this is a generalized regression model, the appropriate asymptotic 
covariance matrix is

asy.Var[BnMLe] = Jan
i = 1

Xi
=�n i

-1XiR -1

.

(See Section 11.5.2.) We also know that the MLEs of the variance components estimators 
will be asymptotically uncorrelated with the MLE of B. In principle, we could continue 
to estimate the asymptotic variances of the MLEs of se

2 and su
2. It would be necessary to 

derive these from the estimators of u and g, which one would typically do in any event. 
However, statistical inference about the disturbance variance, se

2, in a regression model, 
is typically of no interest. On the other hand, one might want to test the hypothesis that 
su

2 equals zero, or g = 0. Breusch and Pagan’s (1979) LM statistic in (11-42) extended 
to the unbalanced panel case considered here would be
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 LM =
¢ aN

i = 1Ti≤2J2aN
i = 1Ti(Ti - 1) R  D aN

i = 1(Tiei)
2

aN
i = 1a Ti

t = 1eit
2

- 1T 2

 =
¢ aN

i = 1Ti≤2J2aN
i = 1Ti(Ti - 1) R  D aN

i = 1[(Tiei)
2 - ei

=ei]

aN
i = 1ei

=ei

T 2

.

Example 14.15  �  Maximum Likelihood and FGLS Estimates of A Wage 
Equation

Example 11.11 presented FGLS estimates of a wage equation using Cornwell and Rupert’s 
panel data. We have reestimated the wage equation using maximum likelihood instead of 
FGLS. The parameter estimates appear in Table 14.13, with the FGLS and pooled OLS 
estimates. The estimates of the variance components are shown in the table as well. The 
similarity of the MLEs and FGLS slope estimates is to be expected given the large sample 
size. The difference in the estimates of su is perhaps surprising. The estimator is not based 
on a simple sum of squares, however, so this kind of variation is common. The LM statistic for 
testing for the presence of the common effects is 3,497.02, which is far larger than the critical 
value of 3.84. With the MLE, we can also use an LR test to test for random effects against 
the null hypothesis of no effects. The chi-squared statistic based on the two log likelihoods 
is 3,662.25, which leads to the same conclusion.

Variable
Least Squares 

Estimate
Clustered Std.

Error
Random 

Effects FGLS
Standard 

Error
Random 

Effects MLE
Standard 

Error

Constant 5.25112 0.12355 4.04144 0.08330 3.12622 0.17761
Exp 0. 04010 0.00408 0.08748 0.00225 0.10721 0.00248
ExpSq -0.00067 0.00009 -0.00076 0.00005 -0.00051 0.00005
Wks 0.00422 0.00154 0.00096 0.00059 0.00084 0.00060
Occ -0.14001 0.02724 -0.04322 0.01299 -0.02512 0.01378
Ind 0.04679 0.02366 0.00378 0.01373 0.01380 0.01529
South -0.05564 0.02616 -0.00825 0.02246 0.00577 0.03159
SMSA 0.15167 0.02410 -0.02840 0.01616 -0.04748 0.01896
MS 0.04845 0.04094 -0.07090 0.01793 -0.04138 0.01899
Union 0.09263 0.02367 0.05835 0.01350 0.03873 0.01481
Ed 0.05670 0.00556 0.10707 0.00511 0.13562 0.01267
Fem -0.36779 0.04557 -0.30938 0.04554 -0.17562 0.11310
Blk -0.16694 0.04433 -0.21950 0.05252 -0.26121 0.13747
u 42.5265
g 29.9705
se 0.34936 0.15206 0.15335
su 0.00000 0.31453 0.83949

TABLE 14.13  Wage Equation Estimated by FGLS and MLE
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14.14.2    NESTED RANDOM EFFECTS

Consider a data set on test scores for multiple school districts in a state. To establish a 
notation for this complex model, we define a four-level unbalanced structure,

 Zijkt = test score for student t, teacher k, school j, district i,

 L = school districts, i = 1, c, L,

 Mi = schools in each district, j = 1, c, Mi,

 Nij = teachers in each school, k = 1, c, Nij,

 Tijk = students in each class, t = 1, c, Tijk.

Thus, from the outset, we allow the model to be unbalanced at all levels. In general terms, 
then, the random effects regression model would be

yijkt = xijkt
= B + uijk + vij + wi + eijkt.

Strict exogeneity of the regressors is assumed at all levels. All parts of the disturbance are 
also assumed to be uncorrelated. (A normality assumption will be added later as well.) 
From the structure of the disturbances, we can see that the overall covariance matrix, �, 
is block diagonal over i, with each diagonal block itself block diagonal in turn over j, each 
of these is block diagonal over k, and, at the lowest level, the blocks, for example, for the 
class in our example, have the form for the random effects model that we saw earlier.

Generalized least squares has been well worked out for the balanced case.36 Define 
the following to be constructed from the variance components, se

2, su
2, sv

2, and sw
2 :

 s1
2 = Tsu

2 + se
2,

 s2
2 = NTsv

2 + Tsu
2 + se

2 = s1
2 + NTsv

2,

 s3
2 = MNTsw

2 + NTsv
2 + Tsu

2 + se
2 = s2

2 + MNTsw
2 .

Then, full generalized least squares is equivalent to OLS regression of

y∼ijkt = yijkt - ¢1 -
se

s1
≤ yijk. - ¢se

s1
-

se

s2
≤ yij.. - ¢se

s2
-

se

s3
≤ yi c

on the same transformation of xijkt. FGLS estimates are obtained by three groupwise 
between estimators and the within estimator for the innermost grouping.

The counterparts for the unbalanced case can be derived, but the degree of 
complexity rises dramatically.37 As Antwiler (2001) shows, however, if one is willing to 
assume normality of the distributions, then the log likelihood is very tractable. (We note 
an intersection of practicality with nonrobustness.) Define the variance ratios

ru =
su

2

se
2
, rv =

sv
2

se
2
, rw =

sw
2

se
2
.

Construct the following intermediate results

uijk = 1 + Tijkru, fij = a
Nij

k = 1

Tijk

uijk
, uij = 1 + fijrv, fi = a

Mi

j = 1

fij

uij
, ui = 1 + rwfi

36See, for example, Baltagi, Song, and Jung (2001), who also provide results for the three-level unbalanced case.
37See Baltagi et al. (2001).
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and sums of squares of the disturbances eijkt = yijkt - xijkt
= B,

 Aijk = a
Tijk

t = 1
eijkt

2 ,

 Bijk = a
Tijk

t = 1
eijkt, Bij = a

Nij

k = 1

Bijk

uijk

, Bi = a
Mi

j = 1

Bij

uij

.

The log likelihood is

ln L = -
1
2

 H ln(2pse
2) -

1
2

 JaL
i = 1

b ln ui + a
Mi

j = 1
b ln uij + a

Nij

k = 1
′b ln uijk +

Aijk

se
2 -

ru

uijk
 
Bijk

2

se
2 r -

rv

uij
 
Bij

2

se
2 r -

rw

ui
 
Bi

2

se
2 r R ,

where H is the total number of observations. (For three levels, L = 1 and rw = 0.) 
Antwiler (2001) provides the first derivatives of the log-likelihood function needed to 
maximize ln L. However, he does suggest that the complexity of the results might make 
numerical differentiation attractive. On the other hand, he finds the second derivatives 
of the function intractable and resorts to numerical second derivatives in his application. 
The complex part of the Hessian is the cross derivatives between B and the variance 
parameters, and the lower-right part for the variance parameters themselves. However, 
these are not needed. As in any generalized regression model, the variance estimators 
and the slope estimators are asymptotically uncorrelated. As such, one need only invert 
the part of the matrix with respect to B to get the appropriate asymptotic covariance 
matrix. The relevant block is

 -
02 ln L
0B0B′

=
1
se

2 a
L

i = 1
a
Mi

j = 1
a
Nij

k = 1
a
Tijk

t = 1
xijktxijkt

= -
rw

se
2 a

L

i = 1
a
Mi

j = 1
a
Nij

k = 1

1
uijk

 ¢ aTijk

t = 1
xijkt≤ ¢ aTijk

t = 1
xijkt
= ≤

-
rv

se
2 a

L

i = 1
a
Mi

j = 1

1
uij

 ¢ a
Nij

k = 1

1
uijk

 ¢ aTijk

t = 1
xijkt≤ ≤ ¢ a

Nij

k = 1

1
uijk

 ¢ aTijk

t = 1
xijkt
= ≤ ≤

-
ru

se
2 a

L

i = 1
¢ aMi

j = 1

1
uij

 ¢ a
Nij

k = 1

1
uijk

 ¢ aTijk

t = 1
xijkt≤ ≤ ≤ ¢ aMi

j = 1

1
uij

 ¢ a
Nij

k = 1

1
uijk

 ¢ aTijk

t = 1
xijkt
= ≤ ≤ ≤.�

(14-79)

The maximum likelihood estimator of B is FGLS based on the maximum likelihood 
estimators of the variance parameters. Thus, expression (14-79) provides the appropriate 
covariance matrix for the GLS or maximum likelihood estimator. The difference will be in 
how the variance components are computed. Baltagi et al. (2001) suggest a variety of methods 
for the three-level model. For more than three levels, the MLE becomes more attractive.

Eample 14.16    Statewide Productivity
Munnell (1990) analyzed the productivity of public capital at the state level using a Cobb–
Douglas production function. We will use the data from that study to estimate a three-level 
log linear regression model,

 ln gspjkt = a + b1 ln pcjkt + b2 ln hwyjkt + b3 ln waterjkt

 +  b4 ln utiljkt + b5 ln empjkt + b6 unempjkt + ejkt + ujk + vj,

 j = 1, c, 9; t = 1, c, 17, k = 1, c, Nj,

M14_GREE1366_08_SE_C14.indd   610 2/24/17   1:15 PM



	 CHAPTER 14  ✦  Maximum Likelihood Estimation	 611

where the variables in the model are

gsp = gross state product,
p_cap = public capital = hwy + water + util,

hwy = highway capital,
water = water utility capital,

util = utility capital,
pc = private capital,

emp = employment (labor),
unemp = unemployment rate,

and we have defined M = 9 regions each consisting of a group of the 48 contiguous states:

Gulf = AL, FL, LA, MS,
Midwest = IL, IN, KY, MI, MN, OH, WI,

Mid Atlantic = DE, MD, NJ, NY, PA, VA,
Mountain = CO, ID, MT, ND, SD, WY,

New England = CT, ME, MA, NH, RI, VT,
South = GA, NC, SC, TN, WV,

Southwest = AZ, NV, NM, TX, UT,
Tornado Alley = AR, IA, KS, MO, NE, OK

West Coast = CA, OR, WA.

We have 17 years of data, 1970 to 1986, for each state."38 The two- and three-level random 
effects models were estimated by maximum likelihood. The two-level model was also fit by 
FGLS, using the methods developed in Section 11.5.3.

Table 14.14 presents the estimates of the production function using pooled OLS, OLS for 
the fixed effects model, and both FGLS and maximum likelihood for the random effects 
models. Overall, the estimates are similar, though the OLS estimates do stand somewhat 
apart. This suggests, as one might suspect, that there are omitted effects in the pooled model. 
The F statistic for testing the significance of the fixed effects is 76.712 with 47 and 762 degrees 
of freedom. The critical value from the table is 1.379, so on this basis, one would reject the 
hypothesis of no common effects. Note, as well, the extremely large differences between the 
conventional OLS standard errors and the robust (cluster) corrected values. The three- or four-
fold differences strongly suggest that there are latent effects at least at the regional level. It 
remains to consider which approach, fixed or random effects, is preferred. The Hausman test 
for fixed vs. random effects produces a chi-squared value of 18.987. The critical value is 
12.592. This would imply that the fixed effects model would be the preferred specification. 
When we repeat the calculation of the Hausman statistic using the three-level estimates in the 
last column of Table 14.14, the statistic falls slightly to 15.327. Finally, note the similarity of all 
three sets of random effects estimates. In fact, under the hypothesis of mean independence, 
all three are consistent estimators. It is tempting at this point to carry out a likelihood ratio test 
of the hypothesis of the two-level model against the broader alternative three-level model. The 
test statistic would be twice the difference of the log-likelihoods, which is 2.46. For one degree 
of freedom, the critical chi squared with one degree of freedom is 3.84, so on this basis, we 
would not reject the hypothesis of the two-level model. We note, however, that there is a 
problem with this testing procedure. The hypothesis that a variance is zero is not well defined 
for the likelihood ratio test—the parameter under the null hypothesis is on the boundary of the 
parameter space (sv

2 Ú 0). In this instance, the familiar distribution theory does not apply. The 
results of Kodde and Palm (1988) in Example 14.8 can be used instead of the standard test.

38The data were downloaded from the Web site for Baltagi (2005) at www.wiley.com/legacy/wileychi/baltagi3e/. 
See Appendix Table F10.1.
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14.14.3    CLUSTERING OVER MORE THAN ONE LEVEL

Given the complexity of (14-79), one might prefer simply to use OLS in spite of its 
inefficiency. As might be expected, the standard errors will be biased owing to the 
correlation across observations; there is evidence that the bias is downward.39 In that 
event, the robust estimator in (11-4) would be the natural alternative. In the example 
given earlier, the nesting structure was obvious. In other cases, such as our application in 
Example 11.16, that might not be true. In Example 14.16 and in the application in Baltagi 
(2013), statewide observations are grouped into regions based on intuition. The impact 
of an incorrect grouping is unclear. Both OLS and FGLS would remain consistent—both 
are equivalent to GLS with the wrong weights, which we considered earlier. However, 
the impact on the asymptotic covariance matrix for the estimator remains to be analyzed.

The nested structure of the data would call the clustering computation in (11-4) into 
question. If the grouping is done only on the innermost level (on teachers in our 
example), then the assumption that the clusters are independent is incorrect (teachers 
in the same school in our example). A two- or more level grouping might be called for 
in this case. For two levels, as in clusters within stratified data (such as panels on firms 
within industries) or panel data on individuals within neighborhoods), a reasonably 

39See Moulton (1986).

Fixed  
Effects

Random 
Effects FGLS

Random 
Effects ML

Nested Random 
Effects

OLS Estimate  
(Std. Err.)

Estimate  
(Std. Err.)

Estimate  
(Std. Err.)

Estimate  
(Std. Err.)Estimate Std. Err.a

a 1.9260 0.05250 2.1608 2.1759 2.1348
(0.2143) (0.1380) (0.1477) (0.1514)

b1 0.3120 0.01109 0.2350 0.2755 0.2703 0.2724
(0.04678) (0.02621) (0.01972) (0.02110) (0.02141)

b2 0.05888 0.01541 0.07675 0.06167 0.06268 0.06645
(0.05078) (0.03124) (0.02168) (0.02269) (0.02287)

b3 0.1186 0.01236 0.0786 0.07572 0.07545 0.07392
(0.03450) (0.0150) (0.01381) (0.01397) (0.01399)

b4 0.00856 0.01235 -0.11478 -0.09672 -0.1004 -0.1004
(0.04062) (0.01814) (0.01683) (0.01730) (0.01698)

b5 0.5497 0.01554 0.8011 0.7450 0.7542 0.7539
(0.06770) (0.02976) (0.02482) (0.02664) (0.02613)

b6 -0.00727 0.001384 -0.005179 -0.005963 -0.005809 -0.005878
(0.002946) (0.000980) (0.0008814) (0.0009014) (0.0009002)

se 0.085422 0.03676493 0.0367649 0.0366974 0.0366964
su 0.0771064 0.0875682 0.0791243
sv 0.0386299
ln L 853.1372 1565.501 1429.075 1430.30576

aRobust (cluster) standard errors in parentheses. The covariance matrix is multiplied by a degrees of freedom 
correction, nT/(nT - k) = 816/810.

TABLE 14.14  Estimated Statewide Production Function
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compact procedure can be constructed. [See, e.g., Cameron and Miller (2015).] The 
pseudo-log-likelihood function is

	 ln L = a
S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1
 ln f(yics � xics, U),	 (14-80)

where there are S strata, s = 1, c, S, Cs clusters in stratum s, c = 1, c, Cs and Ncs 
individual observations in cluster c in stratum s, i = 1, c, Ncs. We emphasize, this is 
not the true log likelihood for the sample; the assumed clustering and stratification of 
the data imply that observations are correlated. Let

 gics =
0 ln f(yics � xics, U)

0U
, gcs = a

Ncs

i = 1
gics, gs = a

Cs

c = 1
gcs,

 Gs = ¢ a
Cs

c = 1
gcsgcs

= ≤ -
1
Cs

gsgs
=,  G = a

S

s = 1
Gs,

 H = a
S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1

02 ln f(yics � xics, U)

0U0U′
= a

S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1
Hics.	 (14-81)

Then, the corrected covariance matrix for the pseudo-MLE would be

	 est.asy.Var[Un] = [-Hn ]-1[Gn ][-Hn ]-1	 (14-82)

For a linear model estimated using least squares, we would use gics = (eics/s
2)xics and 

Hics = (1/s2)xicsxics
= . The appearances of s2 would cancel out in the final result. One last 

consideration concerns some finite population corrections. The terms in G might be 
weighted by a factor ws = (1 - Cs/C*) if stratum s consists of a finite set of C* clusters 
of which Cs is a significant proportion, times the within cluster correction, Cs/(Cs - 1), 
that appears in (11-4), and finally, times (n - 1)/(n - K), where n is the full sample size 
and K is the number of parameters estimated.

14.14.4    RANDOM EFFECTS IN NONLINEAR MODELS: MLE USING QUADRATURE

Example 14.13 describes a nonlinear model for panel data, the geometric regression model,

 Prob[Yit = yit � xit] = uit(1 - uit)
yit, yit = 0, 1, c, i = 1, c, n, t = 1, c, Ti,

 uit = 1/(1 + lit), lit = exp(xit
=B).  

As noted, this is a panel data model, although as stated, it has none of the features we 
have used for the panel data in the linear case. It is a regression model,

E[yit � xit] = lit,

which implies that

yit = lit + eit.

This is simply a tautology that defines the deviation of yit from its conditional mean. It 
might seem natural at this point to introduce a common fixed or random effect, as we 
did earlier in the linear case, as in

yit = lit + eit + ci.
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However, the difficulty in this specification is that whereas eit is defined residually just as 
the difference between yit and its mean, ci is a freely varying random variable. Without 
extremely complex constraints on how ci varies, the model as stated cannot prevent yit 
from being negative. When building the specification for a nonlinear model, greater 
care must be taken to preserve the internal consistency of the specification. A frequent 
approach in index function models such as this one is to introduce the common effect 
in the conditional mean function. The random effects geometric regression model, for 
example, might appear

 Prob[Yit = yit � xit] = uit(1 - uit)
yit, yit = 0, 1, c; i = 1, c, n, t = 1, c, Ti,

 uit = 1/(1 + lit), lit = exp(xit
=B + ui),

f(ui) = the specification of the distribution of random effects over individuals.

By this specification, it is now appropriate to state the model specification as

Prob[Yit = yit, � xit, ui] = uit(1 - uit)
yi t.

That is, our statement of the probability is now conditioned on both the observed data 
and the unobserved random effect. The random common effect can then vary freely and 
the inherent characteristics of the model are preserved.

Two questions now arise:

●● How does one obtain maximum likelihood estimates of the parameters of the 
model? We will pursue that question now.

●● If we ignore the individual heterogeneity and simply estimate the pooled model, will 
we obtain consistent estimators of the model parameters? The answer is sometimes, 
but usually not. The favorable cases are the simple loglinear models such as the 
geometric and Poisson models that we consider in this chapter. The unfavorable 
cases are most of the other common applications in the literature, including, notably, 
models for binary choice, censored regressions, two-part models, sample selection, 
and, generally, nonlinear models that do not have simple exponential means.40

We will now develop a maximum likelihood estimator for a nonlinear random 
effects model. To set up the methodology for applications later in the book, we will do 
this in a generic specification, then return to the specific application of the geometric 
regression model in Example 14.13. Assume, then, that the panel data model defines the 
probability distribution of a random variable, yit, conditioned on a data vector, xit, and 
an unobserved common random effect, ui. As always, there are Ti observations in the 
group, and the data on xit and now ui are assumed to be strictly exogenously determined. 
Our model for one individual is, then,

p(yit � xit, ui) = f(yit � xit, ui, U),

where p(yit � xit, ui) indicates that we are defining a conditional density while f(yit � xit, ui, u) 
defines the functional form and emphasizes the vector of parameters to be estimated. 
We are also going to assume that, but for the common ui, observations within a group 
would be independent—the dependence of observations in the group arises through the 

40Note: This is the crucial issue in the consideration of robust covariance matrix estimation in Section 14.8. See, as 
well, Freedman (2006).
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presence of the common ui. The joint density of the Ti observations on yit given ui under 
these assumptions would be

p(yi1, yi2, c, yi,Ti
� Xi, ui) = q

Ti

t = 1
f(yit � xit, ui, U),

because conditioned on ui, the observations are independent. But because ui is part of the 
observation on the group, to construct the log likelihood, we will require the joint density,

p(yi1, yi2, c, yi,Ti
, ui, � Xi) = JqTi

t = 1
f(yit, � xit, ui, U) R f(ui).

The likelihood function is the joint density for the observed random variables. Because 
ui is an unobserved random effect, to construct the likelihood function, we will then have 
to integrate it out of the joint density. Thus,

p(yi1, yi2, c, yi,Ti
� Xi) = Lui

JqTi

t = 1
f(yit � xit, ui, U) R f(ui)dui.

The contribution to the log-likelihood function of group i is, then,

ln Li = ln L
ui 

JqTi

t = 1
f(yit � xit, ui, U) R f(ui)dui.

There are two practical problems to be solved to implement this estimator. First, it 
will be rare that the integral will exist in closed form. (It does when the density of yit is 
normal with linear conditional mean and the random effect is normal, because, as we 
have seen, this is the random effects linear model.) As such, the practical complication 
that arises is how the integrals are to be computed. Second, it remains to specify the 
distribution of ui over which the integration is taken. The distribution of the common 
effect is part of the model specification. Several approaches for this model have now 
appeared in the literature. The one we will develop here extends the random effects 
model with normally distributed effects that we have analyzed in the previous section. 
The technique is Butler and Moffitt’s method (1982). It was originally proposed for 
extending the random effects model to a binary choice setting (see Chapter 17), but, 
as we shall see presently, it is straightforward to extend it to a wide range of other 
models. The computations center on a technique for approximating integrals known as 
Gauss–Hermite quadrature.

We assume that ui is normally distributed with mean zero and variance su
2. Thus,

f(ui) =
122psu

2
 exp¢ -

ui
2

2su
2 ≤.

With this assumption, the ith term in the log likelihood is

ln Li = lnL
∞

-∞
JqTi

t = 1
f(yit � xit, ui, U) R 122psu

2
 exp¢ -

ui
2

2su
2 ≤dui.

To put this function in a form that will be convenient for us later, we now let 
wi = ui/(su22) so that ui = su22wi = fwi and the Jacobian of the transformation 
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from ui to wi is dui = fdwi. Now, we make the change of variable in the integral to 
produce the function

ln Li = ln 
12pL

∞

-∞
JqTi

t = 1
f(yit � xit, fwi, U) R  exp (-wi

2)dwi.

For the moment, let

g(wi) = q
Ti

t = 1
f(yit � xit, fwi, U).

Then, the function we are manipulating is

ln Li = ln 
12pL

∞

-∞
g(wi) exp (-wi

2)dwi.

The payoff to all this manipulation is that integrals of this form can be computed very 
accurately by Gauss–Hermite quadrature. Gauss–Hermite quadrature replaces the 
integration with a weighted sum of the functions evaluated at a specific set of points. 
For the general case, this is

L
∞

-∞
g(wi) exp (-wi

2)dwi ≈ a
H

h = 1
zhg(vh),

where zh is the weight and vh is the node. Tables of the nodes and weights are found 
in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and 
weights for a four-point quadrature are

 vh = {0.52464762327529002 and {1.6506801238857849,

 zh = 0.80491409000549996  and 0.081312835447250001.

In practice, it is common to use eight or more points, up to a practical limit of about 96. 
Assembling all of the parts, we obtain the approximation to the contribution to the log 
likelihood,

ln Li = ln 
12p

 a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, U) R .

The Hermite approximation to the log-likelihood function is

	 ln L = a
n

i = 1
 ln 

12p
 a

H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, U) R .	 (14-83)

This function is now to be maximized with respect to U and f. Maximization is a complex 
problem. However, it has been automated in contemporary software for some models, 
notably the binary choice models mentioned earlier, and is in fact quite straightforward 
to implement in many other models as well. The first and second derivatives of the log-
likelihood function are correspondingly complex but still computable using quadrature. 
The estimate of su and an appropriate standard error are obtained from fn  using the 
result f = su22. The hypothesis of no cross-period correlation can be tested with a 
likelihood ratio test.
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Example 14.17    Random Effects Geometric Regression Model
We will use the preceding to construct a random effects model for the DocVis count variable 
analyzed in Example 14.10. Using (14-90), the approximate log-likelihood function will be

 ln LH = a
n

i = 1
ln 

12p
 a

H

 
h = 1

zhJqTi

t = 1
uit(1 - uit)yit R ,

 uit = 1/(1 + lit), lit = exp(xit
=B + fvh).

The derivatives of the log likelihood are approximated as well. The following is the general 
result—development is left as an exercise:

 
0 log L

0¢b
f
≤ = a

n

i = 1

1
Li

 
0 Li

0¢b
f
≤

 ≈ a
n

i = 1

d 12p
a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, B) R D a

Ti

t = 1

0 In f(yit � xit, fvh, B)

0¢b
f
≤ T tb 12p

a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, B) R r .

It remains only to specialize this to our geometric regression model. For this case, the density 
is given earlier. The missing components of the preceding derivatives are the partial derivatives 
with respect to B and f that were obtained in Section 14.14.4. The necessary result is

0 ln f(yit � xit, fvh, B)

0¢b
f
≤ = [uit(1 + yit) - 1]¢xit

vh
≤.

Maximum likelihood estimates of the parameters of the random effects geometric regression 
model are given in Example 14.13 with the fixed effects estimates for this model.

14.14.5    FIXED EFFECTS IN NONLINEAR MODELS: THE INCIDENTAL PARAMETERS PROBLEM

Using the same modeling framework that we used in the previous section, we now define 
a fixed effects model as an index function model with a group-specific constant term. As 
before, the model is the assumed density for a random variable,

p(yit � dit, xit) = f(yit �aidit + xit
=B),

where dit is a dummy variable that takes the value one in every period for individual i 
and zero otherwise. (In more involved models, such as the censored regression model 
we examine in Chapter 19, there might be other parameters, such as a variance. For now, 
it is convenient to omit them—the development can be extended to add them later.) For 
convenience, we have redefined xit to be the nonconstant variables in the model.41 The 

41In estimating a fixed effects linear regression model in Section 11.4, we found that it was not possible to analyze 
models with time-invariant variables. The same limitation applies in the nonlinear case, for essentially the same 
reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns of the derivatives 
matrix corresponding to time-invariant variables will be transformed to columns of zeros when we compute 
derivatives of the log-likelihood function.

M14_GREE1366_08_SE_C14.indd   617 2/24/17   1:15 PM



618	 Part III  ✦   Estimation Methodology

parameters to be estimated are the K elements of B and the n individual constant terms, 
ai. The log-likelihood function for the fixed effects model is

ln L = a
n

i = 1
a
Ti

t = 1
ln f(yit �ai + xit

=B),

where f(.) is the probability density function of the observed outcome, for example, the 
geometric regression model that we used in our previous example. It will be convenient to let

zit = ai + xit
=B so that p(yit � dit, xit) = f(yit � zit).

In the fixed effects linear regression case, we found that estimation of the parameters 
was made possible by a transformation of the data to deviations from group means that 
eliminated the person-specific constants from the equation. (See Section 11.4.1.) In a 
few cases of nonlinear models, it is also possible to eliminate the fixed effects from the 
likelihood function, although in general not by taking deviations from means. One example 
is the exponential regression model that is used in duration modeling, for example for 
lifetimes of electronic components and electrical equipment such as light bulbs,

f(yit �ai + xit
=B) = uit exp(-uityit), uit = exp(ai + xit

=B), yit Ú 0.

It will be convenient to write uit = gi exp(xit
=B) = gi∆it . We are exploiting the invariance 

property of the MLE—estimating gi = exp(ai) is the same as estimating ai. The log 
likelihood is

 ln L = a
n

i = 1
a
Ti

t = 1
 ln uit - uityit

 = a
n

i = 1
a
Ti

t = 1
ln(gi∆it) - (gi∆it)yit.

	 (14-84)

The MLE will be found by equating the n + K partial derivatives with respect to gi and 
B to zero. For each constant term,

0 ln L
0gi

= a
Ti

t = 1
¢ 1
gi

- ∆ityit≤.

Equating this to zero provides a solution for gi in terms of the data and B,

	 gi =
Ti

a Ti

t = 1∆ityit

.	 (14-85)

[Note the analogous result for the linear model in (11-16b).] Inserting this solution back 
in the log-likelihood function in (14-84), we obtain the concentrated log likelihood,

	 ln LC = a
n

i = 1
a
Ti

t = 1
C ln£ Ti∆it

a Ti

s = 1∆isyis

≥ - £ Ti∆it

a Ti

s = 1∆isyis

≥yitS ,	 (14-86)

which is now only a function of B. This function can now be maximized with respect 
to B alone. The MLEs for ai are then found as the logs of the results of (14-92). Note, 
once again, we have eliminated the constants from the estimation problem, but not by 
computing deviations from group means. That is specific to the linear model.
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The concentrated log likelihood is only obtainable in only a small handful of cases, 
including the linear model, the exponential model (as just shown), the Poisson regression 
model, and a few others. Lancaster (2000) lists some of these and discusses the underlying 
methodological issues. In most cases, if one desires to estimate the parameters of a fixed 
effects model, it will be necessary to actually compute the possibly huge number of 
constant terms, ai, at the same time as the main parameters, B. This has widely been 
viewed as a practical obstacle to estimation of this model because of the need to invert 
a potentially large second derivatives matrix, but this is a misconception.42 The likelihood 
equations for the general fixed effects, index function model are

 
0 ln L

0ai
= a

Ti

t = 1

0 ln f(yit � zit)

0zit
 
0zit

0ai
= a

Ti

t = 1
git = gi. = 0,

and

 
0 ln L

0B
= a

n

i = 1
a
Ti

t = 1

0 ln f(yit � zit)

0zit
 
0zit

0B
= a

n

i = 1
a
Ti

t = 1
gitxit = 0.

The second derivatives matrix is

 
02 ln L

0ai
2 = a

Ti

t = 1

02 ln f(yit � zit)

0zit
2 = a

Ti

t = 1
hit = hi. 6 0,

 
02 ln L
0B0ai

= a
Ti

t = 1
hitxit,

 
02 ln L
0B0B′

= a
n

i = 1
a
Ti

t = 1
hitxitxit

= = HBB′,

where HBB′ is a negative definite matrix. The likelihood equations are a large system, 
but the solution turns out to be surprisingly straightforward.43

By using the formula for the partitioned inverse, we find that the K * K submatrix 
of the inverse of the Hessian that corresponds to B, which would provide the asymptotic 
covariance matrix for the MLE, is

 HBB′ = b a
n

i = 1
JaTi

t = 1
hitxitxit

= -
1
hi.

¢ aTi

t = 1
hitxit≤ ¢ aTi

t = 1
hitxit

= ≤ R r -1

,

 = b a
n

i = 1
JaTi

t = 1
hit(xit - xi)(xit - xi)′ R r -1

, where xi = a Ti

t = 1hitxit

hi.

.

Note the striking similarity to the result we had in (11-4) for the fixed effects model in 
the linear case.44 By assembling the Hessian as a partitioned matrix for B and the full 
vector of constant terms, then using (A-66b) and the preceding definitions to isolate one 
diagonal element, we find

Haiai =
1
hi.

+ xi
=HBB′xi.

42See, for example, Maddala (1987), p. 317.
43See Greene (2004a).
44A similar result is noted briefly in Chamberlain (1984).
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Once again, the result has the same format as its counterpart in the linear model. In 
principle, the negatives of these would be the estimators of the asymptotic variances 
of the maximum likelihood estimators. (Asymptotic properties in this model are 
problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand, 
so that in fact, practical estimation of the model is not really the obstacle. [This must 
be qualified, however. Consider the likelihood equation for one of the constants in the 
geometric regression model. This would be

a
Ti

t = 1
[uit(1 + yit) - 1] = 0.

Suppose yit equals zero in every period for individual i. Then, the solution occurs where 
�i(uit - 1) = 0. But uit is between zero and one, so the sum must be negative and cannot 
equal zero. The likelihood equation has no solution with finite coefficients. Such groups 
would have to be removed from the sample to fit this model.]

It is shown in Greene (2004a) that, in spite of the potentially large number of 
parameters in the model, Newton’s method can be used with the following iteration, 
which uses only the K * K matrix computed earlier and a few K * 1 vectors:

 Bn(s + 1) = Bn(s) - b a
n

i = 1
JaTi

t = 1
hit(xit - xi)(xit - xi)′ R r -1b a

n

i = 1
JaTi

t = 1
git(xit - xi) R r

 = Bn(s) + 
b
(s),

and

an l
(s + 1) = an l

(s) - [(gi./hi.) + xi
=
B

(s)].45

This is a large amount of computation involving many summations, but it is linear in the 
number of parameters and does not involve any n * n matrices.

In addition to the theoretical virtues and shortcomings (yet to be addressed) of this 
model, we note the practical aspect of estimation of what are possibly a huge number of 
parameters, n + K. In the fixed effects case, n is not limited, and could be in the thousands 
in a typical application. In Examples 14.15 and 14.16, n is 7,293. Two large applications 
of the method described here are Kingdon and Cassen’s (2007) study, in which they fit 
a fixed effects probit model with well over 140,000 dummy variable coefficients, and 
Fernandez-Val’s (2009) study, which analyzes a model with 500,000 groups.

The problems with the fixed effects estimator are statistical, not practical.46 The 
estimator relies on Ti increasing for the constant terms to be consistent—in essence, each 
ai is estimated with Ti observations. In this setting, not only is Ti fixed, it is also likely to 
be quite small. As such, the estimators of the constant terms are not consistent (not 
because they converge to something other than what they are trying to estimate, but 
because they do not converge at all). There is, as well, a small sample (small Ti) bias in 
the slope estimators. This is the incidental parameters problem.47 The source of the 

45Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973) and Chamberlain (1980, 
1984).
46See Vytlacil, Aakvik, and Heckman (2005), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano (1997), 
Chen (1998), and Fernandez-Val (2009) for some extensions of parametric and semiparametric forms of the 
binary choice models with fixed effects.
47See Neyman and Scott (1948) and Lancaster (2000).
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problem appears to arise from estimating n + K parameters with n multivariate 
observations—the number of parameters estimated grows with the sample size. The 
precise implication of the incidental parameters problem differs from one model to the 
next. In general, the slope estimators in the fixed effects model do converge to a parameter 
vector, but not to B. In the most familiar cases, binary choice models such as probit and 
logit, the small T bias in the coefficient estimators appears to be proportional (e.g., 100% 
when T = 2), and away from zero, and to diminish monotonically with T, becoming 
essentially negligible as T reaches 15 or 20. In other cases involving continuous variables, 
the slope coefficients appear not to be biased at all, but the impact is on variance and 
scale parameters. The linear fixed effects model noted in Footnote 12 in Chapter 11 is an 
example; the stochastic frontier model (Section 19.2) is another. Yet, in models for 
truncated variables (Section 19.2), the incidental parameters bias appears to affect both 
the slopes (biased toward zero) and the variance parameters (also attenuated). We will 
examine the incidental parameters problem in more detail in Section 15.5.2.

Example 14.18    Fixed and Random Effects Geometric Regression
Example 14.13 presents pooled estimates for a geometric regression model,

f(yit � xit) = uit(1 - uit)yit, uit = 1/(1 + lit), lit = exp(ci + xit
=B), yit = 0, 1, c.  

We will now reestimate the model under the assumptions of the random and fixed effects 
specifications. The methods of the preceding two sections are applied directly—no modification 
of the procedures was required. Table 14.15 presents the three sets of maximum likelihood 
estimates. The estimates vary considerably. The average group size is about five. This implies 
that the fixed effects estimator may well be subject to a small sample bias. Save for the 
coefficient on Kids, the fixed effects and random effects estimates are quite similar. On the 
other hand, the two panel models give similar results to the pooled model except for the Income 
coefficient. On this basis, it is difficult to see, based solely on the results, which should be 
the preferred model. The model is nonlinear to begin with, so the pooled model, which might 
otherwise be preferred on the basis of computational ease, now has no redeeming virtues. 
None of the three models is robust to misspecification. Unlike the linear model, in this and other 
nonlinear models, the fixed effects estimator is inconsistent when T is small in both random 
and fixed effects cases. The random effects estimator is consistent in the random effects 
model, but, as usual, not in the fixed effects model. The pooled estimator is inconsistent in both 
random and fixed effects cases (which calls into question the virtue of the robust covariance 
matrix). It might be tempting to use a Hausman specification test (see Section 11.5.5); however, 
the conditions that underlie the test are not met—unlike the linear model where the fixed effects 
estimator is consistent in both cases, here it is inconsistent in both cases. For better or worse, 
that leaves the analyst with the need to choose the model based on the underlying theory.

Pooled Random Effectsa Fixed Effects

Variable Estimate Std. Err.b Estimate Std. Err. Estimate Std. Err.

Constant 1.09189 0.10828 0.39936 0.09530
Age 0.01799 0.00130 0.02209 0.00122 0.04845 0.00351
Education -0.04725 0.00671 -0.04506 0.00626 -0.05434 0.03721
Income -0.46836 0.07265 -0.19569 0.06106 -0.18760 0.09134
Kids -0.15684 0.03055 -0.12434 0.02336 -0.00253 0.03687

aEstimated su = 0.95441.
bStandard errors corrected for clusters in the panel.

TABLE 14.15  Panel Data Estimates of a Geometric Regression for DOCVIS
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14.15	  LATENT CLASS AND FINITE MIXTURE MODELS

In this final application of maximum likelihood estimation, rather than explore a 
particular model, we will develop a technique that has been used in many different 
settings. The latent class modeling framework specifies that the distribution of the 
observed data is a mixture of a finite number of underlying populations. The model can 
be motivated in several ways:

●● In the classic application of the technique, the observed data are drawn from a 
mixture of distinct underlying populations. Consider, for example, a historical or 
fossilized record of the intersection (or collision) of two populations.48 The 
anthropological record consists of measurements on some variable that would differ 
imperfectly, but substantively, between the populations. However, the analyst has no 
definitive marker for which subpopulation an observation is drawn from. Given a 
sample of observations, they are interested in two statistical problems: (1) estimate 
the parameters of the underlying populations (models) and (2) classify the 
observations in hand as having originated in which population. The technique has 
seen a number of recent applications in health econometrics. For example, in a study 
of obesity, Greene, Harris, Hollingsworth, and Maitra (2008) speculated that their 
ordered choice model (see Chapter 19) might systematically vary in a sample that 
contained (it was believed) some individuals who have a genetic predisposition 
toward obesity and most that did not. In another application, Lambert (1992) studied 
the number of defective outcomes in a production process. When a “zero defectives” 
condition is observed, it could indicate either regime 1, “the process is under control,” 
or regime 2, “the process is not under control but just happens to produce a zero 
observation.”

●● In a narrower sense, one might view parameter heterogeneity in a population as a 
form of discrete mixing. We have modeled parameter heterogeneity using continuous 
distributions in Section 11.10. The “finite mixture” approach takes the distribution 
of parameters across individuals to be discrete. (Of course, this is another way to 
interpret the first point.)

●● The finite mixing approach is a means by which a distribution (model) can be 
constructed from a mixture of underlying distributions. Quandt and Ramsey’s 
mixture of normals model in Example 13.4 is a case in which a nonnormal 
distribution is created by mixing two normal distributions with different 
parameters.

14.15.1    A FINITE MIXTURE MODEL

To lay the foundation for the more fully developed model that follows, we revisit the 
mixture of normals model from Example 13.4. Consider a population that consists of a 
latent mixture of two underlying normal distributions. Neglecting for the moment that 
it is unknown which applies to a given individual, we have, for individual i, one of the 
following:

48The first application of these methods was Pearson’s (1894) analysis of 1,000 measures of the “forehead breadth 
to body length” of two intermingled species of crabs in the Bay of Naples.
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	  f(yi � classi = 1) = n[m1, s1
2] =

exp[-1
2 (yi - m1)

2/s1
2]

s122p
,

or� (14-87)

	  f(yi � classi = 2) = n[m2, s2
2] =

exp[-1
2 (yi - m2)

2/s2
2]

s222p
.

The contribution to the likelihood function is f(yi � classi = 1) for an individual in class 
1 and f(yi � class = 2) for an individual in class 2. Assume that there is a true proportion 
l = Prob(classi = 1) of individuals in the population that are in class 1, and (1 - l) in 
class 2. Then, the unconditional (marginal) density for individual i is

 f(yi) = lf(yi � classi = 1) + (1 - l)f(yi � classi = 2)

 = Eclasses f(yi � classi). 	 (14-88)

The parameters to be estimated are l, m1, m2, s1, and s2. Combining terms, the log 
likelihood for a sample of n individual observations would be

	 ln L = a
n

i = 1
ln¢l exp[-1

2 (yi - m1)
2/s1

2]

s122p
+

(1 - l) exp[-1
2 (yi - m2)

2/s2
2]

s222p
≤.	 (14-89)

This is the mixture density that we saw in Example 13.4. We suggested the method of 
moments as an estimator of the five parameters in that example. However, this appears 
to be a straightforward problem in maximum likelihood estimation.

Example 14.19    A Normal Mixture Model for Grade Point Averages
Appendix Table F14.1 contains a data set of 32 observations used by Spector and Mazzeo 
(1980) to study whether a new method of teaching economics, the Personalized System of 
Instruction (PSI), significantly influenced performance in later economics courses. Variables 
in the data set include

GPA = the student’s grade point average,
GRADE = dummy variable for whether the student’s grade in Intermediate Macroeconomics 
was higher than in the principles course,
PSI = dummy variable for whether the individual participated in the PSI,
TUCE = the student’s score on a pretest in economics.

We will use these data to develop a finite mixture normal model for the distribution of grade 
point averages.

We begin by computing maximum likelihood estimates of the parameters in (14-89). To 
estimate the parameters using an iterative method, it is necessary to devise a set of starting 
values. It might seem natural to use the simple values from a one-class model, y and sy, 
and a value such as 1/2 for l. However, the optimizer will immediately stop on these values, 
as the derivatives will be zero at this point. Rather, it is common to use some value near 
these—perturbing them slightly (a few percent), just to get the iterations started. Table 14.16 
contains the estimates for this two-class finite mixture model. The estimates for the one-class 
model are the sample mean and standard deviation of GPA. [Because these are the MLEs, 
sn 2 = (1/n)Σ i = 1

32 (GPAi - GPA)2.] The means and standard deviations of the two classes are 
noticeably different—the model appears to be revealing a distinct splitting of the data into two 
classes. (Whether two is the appropriate number of classes is considered in Section 14.15.5.) 
It is tempting at this point to identify the two classes with some other covariate, either in 
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the data set or not, such as PSI. However, at this point, there is no basis for doing so—the 
classes are “latent.” As the analysis continues, however, we will want to investigate whether 
any observed data help predict the class membership.

14.15.2    MODELING THE CLASS PROBABILITIES

The development thus far has assumed that the analyst has no information about class 
membership. Estimation of the prior probabilities (l in the preceding example) is part 
of the estimation problem. There may be some, albeit imperfect, information about class 
membership in the sample as well. For our earlier example of grade point averages, 
we also know the individual’s score on a test of economic literacy (TUCE). Use of 
this information might sharpen the estimates of the class probabilities. The mixture of 
normals distribution, for example, might be formulated

f(yi � zi) = §Prob(class = 1 � zi) exp [-1
2 (yi - m1)

2/s1
2]

s122p

+
[1 - Prob(class = 1 � zi)] exp [-1

2 (yi - m2)
2/s2

2]

s222p

¥,

where zi is the vector of variables that help explain the class probabilities. To make the 
mixture model amenable to estimation, it is necessary to parameterize the probabilities. The 
logit probability model is a common device. [See Section 17.2. For applications, see Greene 
(2005, Section 2.3.3) and references cited.] For the two-class case, this might appear as follows:

 Prob(class = 1 � zi) =
exp(zi

=U)

1 + exp(zi
=U)

,

 Prob(class = 2 � zi) = 1 - Prob(class = 1 � zi).	 (14-90)

(The more general J class case is shown in Section 14.15.6.) The log likelihood for the 
mixture of two normal densities becomes

	 ln L = a
n

i = 1
ln Li = a

n

i = 1
ln§ ¢ exp(zi

=U)

1 + exp(zi
=U)

≤  
exp[-1

2 (yi - m1)
2/s1

2]

s122p

+ ¢ 1
1 + exp(zi

=U)
≤  

exp[-1
2 (yi - m2)

2/s2
2]

s222p

¥.	 (14-91)

The log likelihood is now maximized with respect to m1, s1, m2, s2, and U. If zi contains 
a constant term and some other observed variables, then the earlier model returns 
if the coefficients on those other variables all equal zero. In this case, it follows that 

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

M 3.1172 0.08251 3.64187 0.3452 2.8894 0.2514
S 0.4594 0.04070 0.2524 0.2625 0.3218 0.1095
Probability 1.0000 0.0000 0.3028 0.3497 0.6972 0.3497
ln L -20.51274 -19.63654

TABLE 14.16  Estimated Normal Mixture Model
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l = ln[u/(1 - u)]. (This device is usually used to ensure that 0 6 l 6 1 in the earlier 
model.)

14.15.3    LATENT CLASS REGRESSION MODELS

To complete the construction of the latent class model, we note that the means (and, in 
principle, the variances) in the original model could be conditioned on observed data as well. 
For our normal mixture models, we might make the marginal mean, mj, a conditional mean,

mij = xi
=Bj.

In the data of Example 14.17, we also observe an indicator of whether the individual has 
participated in a special program designed to enhance the economics program (PSI). 
We might modify the model,

f(yi � classi = 1, PSIi) = N[mi1, s1
2] =

exp[-1
2 (yi - b1,1 - b2,1PSIi)

2/s1
2]

s122p
,

and similarly for f(yi � classi = 2, PSIi). The model is now a latent class linear regression 
model.

More generally, as we will see shortly, the latent class, or finite mixture model for a 
variable yi can be formulated as

f(yi � classi = j, xi) = hj(yi, xi, Gj),

where hj denotes the density conditioned on class j—indexed by j to indicate, for example, 
the jth parameter vector Gj = (Bj, sj) and so on. The marginal class probabilities are

Prob(classi = j � zi) = pj(j, zi, U).

The methodology can be applied to any model for yi. In the example in Section 14.15.6, 
we will model a binary dependent variable with a probit model. The methodology 
has been applied in many other settings, such as stochastic frontier models [Orea and 
Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)], 
and a wide variety of count, discrete choice, and limited dependent variable models 
[McLachlan and Peel (2000), Greene (2007b)].

Example 14.20    Latent Class Regression Model for Grade Point Averages
Combining 14.15.2 and 14.15.3, we have a latent class model for grade point averages,

 f(GPAi � classi = j, PSIi) =
exp[-1

2 (yi - b1j - b2jPSIi)2/sj
2]

sj22p
, j = 1, 2,

 Prob(classi = 1 � TUCEi) =
exp(u1 + u2TUCEi)

1 + exp(u1 + u2TUCEi)
,

 Prob(classi = 2 � TUCEi) = 1 - Prob(class = 1 � TUCEi).

The log likelihood is now

ln L = a
n

i = 1
ln• ¢ exp(u1 + u2TUCEi)

1 + exp(u1 + u2TUCEi)
≤  

exp[-1
2 (yi - b1,1 - b2,1PSIi)2/s1

2]

s122p

+ ¢ 1
1 + exp(u1 + u2TUCEi)

≤  
exp[-1

2 (yi - b1,2 - b2,2PSIi)2/s2
2]

s222p

µ.

Maximum likelihood estimates of the parameters are given in Table 14.17.
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14.15.4    PREDICTING CLASS MEMBERSHIP AND Bi

The model in (14-91) now characterizes two random variables, yi, the outcome variable 
of interest, and classi, the indicator of which class the individual resides in. We have a 
joint distribution, f(yi, classi), which we are modeling in terms of the conditional density, 
f(yi � classi) in (14-87), and the marginal density of classi in (14-90). We have initially 
assumed the latter to be a simple Bernoulli distribution with Prob(classi = 1) = l, but 
then modified in the previous section to equal Prob(classi = 1 � zi) = Λ(zi

=U). These can 
be viewed as the prior probabilities in a Bayesian sense. If we wish to make a prediction 
as to which class the individual came from, using all the information that we have on that 
individual, then the prior probability is going to waste some information; it wastes the 
information on the observed outcome. The posterior, or conditional (on the remaining 
data) probability,

Prob(classi = 1 � zi yi) =
f(yi, class = 1 � zi)

f(yi)
,

will be based on more information than the marginal probabilities. We have the elements 
that we need to compute this conditional probability. Use Bayes’s theorem to write this as

Prob(classi = 1 � zi, yi)

=
f(yi � classi = 1, zi) Prob(classi = 1 � zi)

f(yi � classi = 1, zi) Prob(classi = 1 � zi) + f(yi � classi = 2, zi) Prob(classi = 2 � zi)
.

The denominator is Li (not ln Li) from (14-91). The numerator is the first term in 
Li. To continue our mixture of two normals example, the conditional (posterior) 
probability is

Prob(classi = 1 � zi, yi) =

¢ exp(zi
=U)

1 + exp(zi
=U)

≤  
exp[-1

2 (yi - m1)
2/s1

2]

s122p
Li

,

while the unconditional probability is in (14-90). The conditional probability for the 
second class is computed using the other two marginal densities in the numerator (or by 
subtraction from one). Note that the conditional probabilities are functions of the data 
even if the unconditional ones are not. To come to the problem suggested at the outset, 

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

b1 3.1011 0.1117 3.3928 0.1733 2.7926 0.04988
b2 0.03675 0.1689 -0.1074 0.2006 -0.5703 0.07553
s 0.4443 0.0003086 0.3812 0.09337 0.1119 0.04487
u1 0.0000 0.0000 -6.8392 3.07867 0.0000 0.0000
u2 0.0000 0.0000 0.3518 0.1601 0.0000 0.0000
P(class � TUCE) 1.0000 0.7063 0.2937
ln L -20.48752 -13.39966

TABLE 14.17  Estimated Latent Class Linear Regression Model for GPA
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then, the natural predictor of classi is the class associated with the largest estimated 
posterior probability.

In random parameter settings, we have also been interested in predicting E[Bi � yi, Xi]. 
There are two candidates for the latent class model. Having made the best guess as to 
which specific class an individual resides in, a natural estimator of bi would be the bj 
associated with that class. A preferable estimator that uses more information would be 
the posterior expected value,

En [Bi � yi, Xi, zi] = a
J

j = 1
pnij (�n , zi)Bnj.

Example 14.21    Predicting Class Probabilities
Table 14.18 lists the observations sorted by GPA. The predictions of class membership reflect 
what one might guess from the coefficients in the table of coefficients. Class 2 members on 
average have lower GPAs than in class 1. The listing in Table 14.18 shows this clustering. It 

GPA TUCE PSI CLASS P1 P1* P2 P2*

2.06 22 1 2 0.7109 0.0116 0.2891 0.9884
2.39 19 1 2 0.4612 0.0467 0.5388 0.9533
2.63 20 0 2 0.5489 0.1217 0.4511 0.8783
2.66 20 0 2 0.5489 0.1020 0.4511 0.8980
2.67 24 1 1 0.8325 0.9992 0.1675 0.0008
2.74 19 0 2 0.4612 0.0608 0.5388 0.9392
2.75 25 0 2 0.8760 0.3499 0.1240 0.6501
2.76 17 0 2 0.2975 0.0317 0.7025 0.9683
2.83 19 0 2 0.4612 0.0821 0.5388 0.9179
2.83 27 1 1 0.9345 1.0000 0.0655 0.0000
2.86 17 0 2 0.2975 0.0532 0.7025 0.9468
2.87 21 0 2 0.6336 0.2013 0.3664 0.7987
2.89 14 1 1 0.1285 1.0000 0.8715 0.0000
2.89 22 0 2 0.7109 0.3065 0.2891 0.6935
2.92 12 0 2 0.0680 0.0186 0.9320 0.9814
3.03 25 0 1 0.8760 0.9260 0.1240 0.0740
3.10 21 1 1 0.6336 1.0000 0.3664 0.0000
3.12 23 1 1 0.7775 1.0000 0.2225 0.0000
3.16 25 1 1 0.8760 1.0000 0.1240 0.0000
3.26 25 0 1 0.8760 0.9999 0.1240 0.0001
3.28 24 0 1 0.8325 0.9999 0.1675 0.0001
3.32 23 0 1 0.7775 1.0000 0.2225 0.0000
3.39 17 1 1 0.2975 1.0000 0.7025 0.0000
3.51 26 1 1 0.9094 1.0000 0.0906 0.0000
3.53 26 0 1 0.9094 1.0000 0.0906 0.0000
3.54 24 1 1 0.8325 1.0000 0.1675 0.0000
3.57 23 0 1 0.7775 1.0000 0.2225 0.0000
3.62 28 1 1 0.9530 1.0000 0.0470 0.0000
3.65 21 1 1 0.6336 1.0000 0.3664 0.0000
3.92 29 0 1 0.9665 1.0000 0.0335 0.0000
4.00 21 0 1 0.6336 1.0000 0.3664 0.0000
4.00 23 1 1 0.7775 1.0000 0.2225 0.0000

TABLE 14.18  Estimated Latent Class Probabilities
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also suggests how the latent class model is using the sample information. If the results in 
Table 14.16—just estimating the means, constant class probabilities—are used to produce 
the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in class 
2. The more elaborate model is adding information on TUCE to the computation. A low TUCE 
score can push a high GPA individual into class 2. (Of course, this is largely what multiple 
linear regression does as well.)

14.15.5    DETERMINING THE NUMBER OF CLASSES

There is an unsolved inference issue remaining in the specification of the model. The 
number of classes has been taken as a known parameter—two in our main example thus 
far, three in the following application. Ideally, one would like to determine the appropriate 
number of classes statistically. However, J is not a parameter in the model. A likelihood 
ratio test, for example, will not provide a valid result. Consider the original model in 
Example 14.17. The model has two classes and five parameters in total. It would seem 
natural to test down to a one-class model that contains only the mean and variance using 
the LR test. However, the number of restrictions here is actually ambiguous. If m1 = m2 and 
s1 = s2, then the mixing probability is irrelevant—the two class densities are the same, and 
it is a one-class model. Thus, the number of restrictions needed to get from the two-class 
model to the one-class model is ambiguous. It is neither two nor three. One strategy that 
has been suggested is to test upward, adding classes until the marginal class insignificantly 
changes the log likelihood or one of the information criteria such as the AIC or BIC (see 
Section 14.6.5). Unfortunately, this approach is likewise problematic because the estimates 
from any specification that is too short are inconsistent. The alternative would be to test 
down from a specification known to be too large. Heckman and Singer (1984b) discuss 
this possibility and note that when the number of classes becomes larger than appropriate, 
the estimator should break down. In our Example 14.15, if we expand to four classes, the 
optimizer breaks down, and it is no longer possible to compute the estimates. A five-class 
model does produce estimates, but some are nonsensical. This does provide at least the 
directions to seek a viable strategy. The authoritative treatise on finite mixture models by 
McLachlan and Peel (2000, Chapter 6) contains extensive discussion of this issue.

14.15.6    A PANEL DATA APPLICATION

The latent class model is a useful framework for applications in panel data. The class 
probabilities partly play the role of common random effects, as we will now explore. 
The latent class model can be interpreted as a random parameters model with a discrete 
distribution of the parameters.

Suppose that Bj is generated from a discrete distribution with J outcomes, or classes, 
so that the distribution of Bj is over these classes. Thus, the model states that an individual 
belongs to one of the J latent classes, indexed by the parameter vector, but it is unknown 
from the sample data exactly which one. We will use the sample data to estimate the 
parameter vectors, the parameters of the underlying probability distribution and the 
probabilities of class membership. The corresponding model formulation is now

	 f(yit � xit, zi, 
, B1, B2, c, BJ) = a
J

j = 1
pij(zi, 
)f(yit � class = j, xit, Bj),	 (14-92)

where it remains to parameterize the class probabilities, pij, and the structural model, 
f(yit � class = j, xit, Bj). The parameter matrix, 
, contains the parameters of the discrete 
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probability distribution. It has J rows, one for each class, and M columns, for the 
M variables in zi. At a minimum, M = 1 and zi contains a constant term if the class 
probabilities are fixed parameters as in Example 14.17. Finally, to accommodate the 
panel data nature of the sampling situation, we suppose that conditioned on Bj, that is, on 
membership in class j, which is fixed over time, the observations on yit are independent. 
Therefore, for a group of Ti observations, the joint density is

f(yi1, yi2, c, yt,Ti
� class = j, xi1, xi2, c, xi,Ti

, Bj) = q
Ti

t = 1
f(yit � class = j, xit, Bj).

The log-likelihood function for a panel of data is

	 ln L = a
n

i = 1
lnJaJ

j = 1
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj) R .	 (14-93)

The class probabilities must be constrained be in (0,1) and to sum to 1. The approach 
that is usually used is to reparameterize them as a set of logit probabilities, as we did in 
the preceding examples. Then,

	 pij(zi, 
) =
exp(uij)

a J
j = 1exp(uij)

, j = 1, c, J, uij = zi
=Dj, uiJ = 0 (DJ = 0).	 (14-94)

(See Section 18.2.2 for development of this model for the set of probabilities.) Note 
the restriction on uij. This is an identification restriction. Without it, the same set of 
probabilities will arise if an arbitrary vector is added to every Dj. The resulting log 
likelihood is a continuous function of the parameters B1, c, BJ and D1, c, DJ. For 
all its apparent complexity, estimation of this model by direct maximization of the log 
likelihood is not especially difficult.49 The number of classes that can be identified is 
likely to be relatively small (on the order of 5 or 10 at most), however, which has been 
viewed as a drawback of the approach. In general, the more complex the model for 
yit, the more difficult it becomes to expand the number of classes. Also, as might be 
expected, the less rich the data set in terms of cross-group variation, the more difficult 
it is to estimate latent class models.

Estimation produces values for the structural parameters, (Bj, Dj), j = 1, c, J. 
With these in hand, we can compute the prior class probabilities, pij, using (14-94). For 
prediction purposes, we are also interested in the posterior (to the data) class 
probabilities, which we can compute using Bayes’ theorem [see (14-93)]. The conditional 
probability is

 Prob(class = j � observation i)

 =
f(observation i � class = j)Prob(class j)

a J
j = 1f(observation i � class = j) Prob(class j)

 

 =
f(yi1, yi2, c, yi,Ti

� xi1, xi2, c, xi,Ti
, Bj)pij(zj, 
)

a J
j = 1f(yi1, yi2, c, yi,Ti

� xi1, xi2, c, xi,Ti
, Bj)pij(zj, 
)

 = wij.�

(14-95)

49See Section E.3 and Greene (2001, 2007b). The EM algorithm discussed in Section E.3.7 is especially well suited 
for estimating the parameters of latent class models. See McLachlan and Peel (2000).
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The set of probabilities, wi = (wi1, wi2, c, wiJ), gives the posterior density over the 
distribution of values of B, that is, [B1, B2, c, BJ]. For a particular model and allowing 
for grouping within a panel data set, the posterior probability for class j is found as

 Prob(class = j � yi, Xi, zi) =
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj)

a
J

j = 1
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj)

 =
¢ exp(zi

=
j)

Σm = 1
J  exp(zi

=
m)
≤qTi

t = 1
f(yit � class = j, xit, Bj)

a
J

j = 1
¢ exp(zi

=
j)

Σm = 1
J  exp(zi

=
m)
≤qTi

t = 1
f(yit � class = m, xit, Bm)

.�

(14-96)

Example 14.22    A Latent Class Two-Part Model for Health Care Utilization
Jones and Bago D’Uva (2009) examined health care utilization in Europe using 8 waves of the 
ECHP panel data set. The variable of interest was numbers of visits to the physician. They 
examined two outcomes, visits to general practitioners and visits to specialists. The modeling 
framework was the latent class model in (14-92). The class-specific model was a two-part, 
negative binomial “hurdle” model for counts,

 Prob(yit = 0 � xit, B1j) =
1

1 + l1it,j
, l1it,j = exp(xit

=B1j)

 Prob(yit � yit 7 0, xit, B2j, aj) =
(ajl2it,j + 1)-1/aj Γ(yit + 1/aj)[1 + (l2it,j

-1 /aj)]-yit

Γ(1/aj)Γ(yit + 1)[1 - (ajl2it,j + 1)-1/aj]
,

 l2it,j = exp(xit
=B2j), aj 7 0. 

[This is their equation (2) with k = 0.] The first equation is a participation equation, for whether 
the number of doctor visits equals 0 or some positive value. The second equation is the 
intensity equation that predicts the number of visits, given that the number of visits is positive. 
The count model is a negative binomial model. This is an extension of the Poisson regression 
model. The Poisson model is a limiting case when aj S 0. The hurdle and count equations 
involve different coefficient vectors, B1 and B2, so that the determinants of care have different 
effects on the two stages. Interpretation of this model is complicated by the results that 
variables appear in both equations, and that the conditional mean function is complex. The 
simple conditional mean, if there were no hurdle effects, would be E[yit � xit] = l2it. However, 
with the hurdle effects,

E[yit � xit] = Prob(yit 7 0 � xit) * E[yit � yit 7 0, xit].

The authors examined the two components of this result separately. (The elasticity of 
the mean would be the sum of these two elasticities.) The mixture model involves two 
classes (as typical in this literature) A sampling of their results appears in Table 14.19 
below. (The results are extracted from their Table 8.) Note that separate tables are given 
for “Low Users” and “High Users.” The results in Section 14.15.4 are used to classify 
individuals into class 1 and class 2. It is then discovered that the average usage of those 
individuals classified as in class 1 is far lower than the average use of those in class 2.
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Example 14.23    Latent Class Models for Health Care Utilization
In Examples 7.6 and 11.21, we proposed an exponential regression model,

yit = DocVisit = exp(xit
=B) + eit,

for the variable DocVis, the number of visits to the doctor, in the German health care data. (See 
Example 11.20 for details.) The regression results for the specification,

xit = (1, Ageit, Educationit, Incomeit, Kidsit), 

are repeated (in parentheses) in Table 14.20 for convenience. The nonlinear least squares 
estimator is only semiparametric; it makes no assumption about the distribution of DocVisit 
or about eit. We do see striking increases in the standard errors when the “cluster robust” 
asymptotic covariance matrix is used. (The estimates are given in parentheses.) The analysis 
at this point assumes that the nonlinear least squares estimator remains consistent in the 
presence of the cross-observation correlation. Given the way the model is specified, that is, 
only in terms of the conditional mean function, this is probably reasonable. The extension 
would imply a nonlinear generalized regression as opposed to a nonlinear ordinary regression.

Low Users High Users

Country Coefficient Elasticity Coefficient Elasticity

Austria P(y 7 0) -0.051 -0.012 -0.109 -0.005
E[y � y 7 0] 0.012 0.009 0.039 0.035

Denmark P(y 7 0) 0.083 0.033 0.261 0.023

E[y � y 7 0] 0.042 0.021 -0.030 -0.024
The Netherlands P(y 7 0) 0.082 0.035 0.094 0.009

E[y � y 7 0] -0.037 -0.019 -0.085 -0.068

TABLE 14.19  Country-Specific Estimated Income Coefficients and Elasticities for GP Visits

TABLE 14.20  Panel Data Estimates of a Geometric Regression for DOCVis

Pooled Random Effectsa Fixed Effects

Variable Estimate Std. Err.b Estimate Std. Err. Estimate Std. Err.

Constant 1.09189
(0.98017)c

0.10828
(0.18137)

0.39936 0.09530

Age 0.01799
(0.01873)

0.00130
(0.00198)

0.02209 0.00122 0.04845 0.00351

Education -0.04725
(-0.03609)

0.00671
(0.01287)

-0.04506 0.00626 -0.05434 0.03721

Income -0.46836
(-0.59189)

0.07265
(0.12827)

-0.19569 0.06106
-0.18760

0.09134

Kids -0.15684
(-0.16930)

0.03055
(0.04882)

-0.12434 0.02336 -0.00253 0.03687

aEstimated su = 0.95441.
bStandard errors corrected for clusters in the panel.
cNonlinear least squares results in parentheses.
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In Example 14.13, we narrowed this model by assuming that the observations on doctor visits 
were generated by a geometric distribution,

f(yi � xi) = ui(1 - ui)
yi, ui = 1/(1 + li), li = exp(xi

=B), yi = 0, 1, c.

The conditional mean is still exp(xit
=B), but this specification adds the structure of a particular 

distribution for outcomes. The pooled model was estimated in Example 14.13. Examples 
14.17 and 14.18 added the panel data assumptions of random, then fixed effects, to the 
model. The model is now

f(yit � xit) = uit(1 - uit)
yit, uit = 1/(1 + lit), lit = exp(ci + xit

=B), yit = 0, 1, c.

The pooled, random effects and fixed effects estimates appear in Table 14.17. The pooled 
estimates, where the standard errors are corrected for the panel data grouping, are 
comparable to the nonlinear least squares estimates with the robust standard errors. The 
parameter estimates are similar—both are consistent and this is a very large sample. The 
smaller standard errors seen for the MLE are the product of the more detailed specification.
We will now relax the specification by assuming a two-class finite mixture model. We also 
specify that the class probabilities are functions of gender and marital status. For the latent 
class specification,

Prob(classi = 1 � zi) = Λ(u1 + u2Femalei + u3Marriedi).

The model structure is the geometric regression as before. Estimates of the parameters of the 
latent class model are shown in Table 14.21. See Section E3.7 for discussion of estimation 
methods.
Deb and Trivedi (2002) and Bago D’Uva and Jones (2009) suggested that a meaningful 
distinction between groups of health care system users would be between infrequent and 
frequent users. To investigate whether our latent class model is picking up this distinction in 
the data, we used (14-96) to predict the class memberships (class 1 or 2). We then linearly 
regressed DocVisit on a constant and a dummy variable for class 2. The results are

DocVisit = 5.8034 (0.0465) - 4.7801 (0.06282)Class2i + eit,

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

b1 1.0918 0.1082 1.6423 0.05351 -0.3344 0.09288
b2 0.0180 0.0013 0.01691 0.0007324 0.02649 0.001248
b3 -0.0473 0.0067 -0.04473 0.003451 -0.06502 0.005739
b4 -0.4687 0.0726 -0.4567 0.04688 0.01395 0.06964
b5 -0.1569 0.0306 -0.1177 0.01611 -0.1388 0.02738
u1 0.000 0.000 -0.4280 0.06938 0.0000 0.0000
u2 0.000 0.000 0.8255 0.06322 0.0000 0.0000
u3 0.000 0.000 -0.07829 0.07143 0.0000 0.0000
Prob � z 1.0000 0.47697 0.52303
ln L -61917.97 -58708.63

TABLE 14.21  Estimated Latent Class Geometric Regression Model for DocVis
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where estimated standard errors are in parentheses. The linear regression suggests that the 
class membership dummy variable is strongly segregating the observations into frequent and 
infrequent users. The information in the regression is summarized in the descriptive statistics 
in Table 14.22.
Finally, we did a specification search for the number of classes. Table 14.23 reports the 
log likelihoods and AICs for models with 1 to 8 classes. The lowest value of the AIC occurs 
with 7 classes, although the marginal improvement ends near to J = 4. The rightmost 8 
columns show the averages of the conditional probabilities, which equal the unconditional 
probabilities. Note that when J = 8, three of the classes (2, 5, and 6) have extremely small 
probabilities. This suggests that the model might be overspecified. We will see another 
indicator in the next section.

14.15.7    A SEMIPARAMETRIC RANDOM EFFECTS MODEL

Heckman and Singer (1984a,b) suggested a semiparametric maximum likelihood 
approach to modeling latent heterogeneity in a duration model  (Section 19.5) for 
unemployment spells. The methodology applies equally well to other settings, such as 
the one we are examining here. Their method can be applied as a finite mixture model 
in which only the constant term varies across classes. The log likelihood in this case 
would be

	 ln L = a
n

i = 1
 lna

J

j = 1
pj¢ qTi

t = 1
f(yit �aj + xit

=B)≤.	 (14-97)

Class Mean Standard Deviation

All, n = 27,326 3.18352 5.68979
Class 1, n = 12,349 5.80347 7.47579
Class 2, n = 14,977 1.02330 1.63076

TABLE 14.22  Descriptive Statistics for Doctor Visits

J ln L AIC P1 P2 P3 P4 P5 P6 P7 P8

1 -61917.77 1.23845 1.0000
2 -58708.48 1.17443 0.4770 0.5230
3 -58036.15 1.16114 0.2045 0.6052 0.1903
4 -57953.02 1.15944 0.1443 0.5594 0.2407 0.0601
5 -57866.34 1.15806 0.0708 0.0475 0.4107 0.3731 0.0979
6 -57829.96 1.15749 0.0475 0.0112 0.2790 0.1680 0.4380 0.0734
7 -57808.50 1.15723 0.0841 0.0809 0.0512 0.3738 0.0668 0.0666 0.2757
8 -57808.07 1.15738 0.0641 0.0038 0.4434 0.3102 0.0029 0.0002 0.1115 0.0640

TABLE 14.23  Specification Search for Number of Latent Classes
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50The multinomial distribution has interior boundaries at the midpoints between the estimated constants. The 
mass points have heights equal to the probabilities. The rectangles sum to slightly more than one—about 1.15. The 
figure is only a sketch of an implied approximation to the normal distribution in the parametric model.

This is a restricted form of (14-93). The specification is a random effects model in which 
the heterogeneity has a discrete, multinomial distribution with unconditional mixing 
probabilities.

Example 14.24    Semiparametric Random Effects Model
Estimates of a random effects geometric regression model are given in Table 14.17. The 
random effect (random constant term) is assumed to be normally distributed; the estimated 
standard deviation is 0.95441. Tables 14.24 and 14.25 present estimates of the semiparametric 
random effects model. The estimated constant terms and class probabilities are shown in 
Table 14.24. We fit mixture models for 2 through 7 classes. The AIC stopped falling at J = 7. 
The results for 6 and 7 are shown in the table. Note in the 7 class model, the estimated 
standard errors for the constants for classes 2 and 4 are essentially infinite—the values 
shown are the result of rounding error. As Heckman and Singer noted, this should be taken 
as evidence of overfitting the data. The remaining coefficients for the parametric parts of the 
model are shown in Table 14.25. The two approaches to fitting the random effects model 
produce similar results. The coefficients on the regressors and their estimated standard errors 
are very similar. The random effects in the normal model are estimated to have a mean of 
0.39936 and standard deviation of 0.95441. The multinomial distribution in the mixture model 
has estimated mean 0.27770 and standard deviation 1.2333. Figure 14.7 shows a comparison 
of the two estimated distributions.50

Class a Std. Err. P(class) a Std. Err. P(class)

1 -3.17815 0.28542 0.07394 -0.72948 0.16886 0.16825
2 -0.72948 0.15847 0.16825 1.23774 358561.2 0.04030
3 0.38886 0.11867 0.41734 0.38886 0.15112 0.41734
4 1.23774 0.12295 0.28452 1.23774 59175.41 0.24421
5 2.11958 0.28568 0.05183 2.11958 0.41549 0.05183
6 2.69846 0.98622 0.00412 2.69846 1.17124 0.00412
7 -3.17815 0.28863 0.07394

Table 14.24  Heckman and Singer Semiparametric Random Effects Model

Finite Mixture Model Normal Random Effects Model

Estimate Std. Err. Estimate Std. Err .

Constant anQ = 0.277697 0.39936 0.09530

Age 0.02136 0.00115 0.02209 0.00122
Educ. -0.03877 0.00607 -0.04506 0.00626
Income -0.23729 0.05972 -0.19569 0.06106
Kids -0.12611 0.02280 -0.12434 0.02336

sa = 1.23333 su = 0.95441

Table 14.25  Estimated Random Effects Exponential Count Data Model
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14.16    SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood 
estimation, which is the most frequently used estimation technique in econometrics 
after least squares. The maximum likelihood estimators are consistent, asymptotically 
normally distributed, and efficient among estimators that have these properties. The 
drawback to the technique is that it requires a fully parametric, detailed specification 
of the data-generating process. As such, it is vulnerable to misspecification problems. 
Chapter 13 considered GMM estimation techniques that are less parametric, but more 
robust to variation in the underlying data-generating process. Together, ML and GMM 
estimation account for the large majority of empirical estimation in econometrics.

FIGURE 14.7    Estimated Distributions of Random Effects.
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Exercises

1.	 Assume that the distribution of x is f(x) = 1/u, 0 … x … u. In random sampling 
from this distribution, prove that the sample maximum is a consistent estimator  
of u. Note: You can prove that the maximum is the maximum likelihood estimator of u.  
But the usual properties do not apply here. Why not? (Hint: Attempt to verify that 
the expected first derivative of the log likelihood with respect to u is zero.)

2.	 In random sampling from the exponential distribution f(x) = (1/u)e-x/u, x Ú 0, 
u 7 0, find the maximum likelihood estimator of u and obtain the asymptotic 
distribution of this estimator.

3.	 Mixture distribution. Suppose that the joint distribution of the two random 
variables x and y is

f(x, y) =
ue-(b + u)y(by)x

x!
, b, u 7 0, y Ú 0, x = 0, 1, 2, c.

a.	 Find the maximum likelihood estimators of b and u and their asymptotic joint 
distribution.

b.	 Find the maximum likelihood estimator of u/(b + u) and its asymptotic 
distribution.

c.	 Prove that f(x) is of the form

f(x) = g(1 - g)x, x = 0, 1, 2, c,

and find the maximum likelihood estimator of g and its asymptotic distribution.
d.	 Prove that f(y � x) is of the form

f(y � x) =
le-ly(ly)x

x!
, y Ú 0, l 7 0.

Prove that f(y � x) integrates to 1. Find the maximum likelihood estimator of l 
and its asymptotic distribution. (Hint: In the conditional distribution, just carry 
the x’s along as constants.)

e.	 Prove that

f(y) = ue-uy, y Ú 0, u 7 0.

Find the maximum likelihood estimator of u and its asymptotic variance.
f.	 Prove that

f(x � y) =
e-by(by)x

x!
, x = 0, 1, 2, c, b 7 0.

Based on this distribution, what is the maximum likelihood estimator of b?

•	Nonlinear least squares
•	Nonnested models
•	Oberhofer–Kmenta 

estimator
•	Outer product of gradients 

estimator (OPG)

•	Precision parameter
•	Pseudo-log-likelihood 

function
•	Pseudo-MLE
•	Quasi-MLE
•	Random effects

•	Regularity conditions
•	Score test
•	Score vector
•	Vuong test
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4.	 Suppose that x has the Weibull distribution

f(x) = abxb - 1e-axb

, x Ú 0, a, b 7 0.

a.	 Obtain the log-likelihood function for a random sample of n observations.
b.	 Obtain the likelihood equations for maximum likelihood estimation of a and b. 

Note that the first provides an explicit solution for a in terms of the data and b. But, 
after inserting this in the second, we obtain only an implicit solution for b. How 
would you obtain the maximum likelihood estimators?

c.	 Obtain the second derivatives matrix of the log likelihood with respect to a and 
b. The exact expectations of the elements involving b involve the derivatives 
of the gamma function and are quite messy analytically. Of course, your exact 
result provides an empirical estimator. How would you estimate the asymptotic 
covariance matrix for your estimators in part b?

d.	 Prove that ab Cov[ln x, xb] = 1. (Hint: The expected first derivatives of the  
log-likelihood function are zero.)

5.	 The following data were generated by the Weibull distribution of Exercise 4:

1. 3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1. 0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0. 33453 1.1227 2.0296 1.2797 0.96080 2.0070

a.	 Obtain the maximum likelihood estimates of a and b, and estimate the 
asymptotic covariance matrix for the estimates.

b.	 Carry out a Wald test of the hypothesis that b = 1.
c.	 Obtain the maximum likelihood estimate of a under the hypothesis that b = 1.
d.	 Using the results of parts a and c, carry out a likelihood ratio test of the hypothesis 

that b = 1.
e.	 Carry out a Lagrange multiplier test of the hypothesis that b = 1.

6.	 Limited Information Maximum Likelihood Estimation. Consider a bivariate 
distribution for x and y that is a function of two parameters, a and b. The joint 
density is f(x, y �a, b). We consider maximum likelihood estimation of the two 
parameters. The full information maximum likelihood estimator is the now 
familiar maximum likelihood estimator of the two parameters. Now, suppose that 
we can factor the joint distribution as done in Exercise 3, but in this case, we have 
f(x, y �a, b) = f(y � x, a, b)f(x �a). That is, the conditional density for y is a function 
of both parameters, but the marginal distribution for x involves only a.
a.	 Write down the general form for the log-likelihood function using the joint density.
b.	 Because the joint density equals the product of the conditional times the 

marginal, the log-likelihood function can be written equivalently in terms of the 
factored density. Write this down, in general terms.

c.	 The parameter a can be estimated by itself using only the data on x and the log 
likelihood formed using the marginal density for x. It can also be estimated with 
b by using the full log-likelihood function and data on both y and x. Show this.

d.	 Show that the first estimator in part c has a larger asymptotic variance than 
the second one. This is the difference between a limited information maximum 
likelihood estimator and a full information maximum likelihood estimator.

e.	 Show that if 02 ln f(y � x, a, b)/0a0b = 0, then the result in part d is no longer true.

M14_GREE1366_08_SE_C14.indd   637 2/24/17   1:15 PM



638	 Part III  ✦   Estimation Methodology

7.	 Show that the likelihood inequality in Theorem 14.3 holds for the Poisson distribution 
used in Section 14.3 by showing that E[(1/n) ln L(u � y)] is uniquely maximized at 
u = u0. (Hint: First show that the expectation is -u + u0 ln u - E0[ln yi].) Show 
that the likelihood inequality in Theorem 14.3 holds for the normal distribution.

8.	 For random sampling from the classical regression model in (14-3), reparameterize 
the likelihood function in terms of h = 1/s and D = (1/s)B. Find the maximum 
likelihood estimators of h and D and obtain the asymptotic covariance matrix of 
the estimators of these parameters.

9.	 Consider sampling from a multivariate normal distribution with mean vector 
M = (m1, m2, c, mM) and covariance matrix s2I. The log-likelihood function is

ln L =
-nM

2
 ln(2p) -

nM
2

 ln s2 -
1

2s2 a
n

i = 1
(yi - M)′(yi - M).

Show that the maximum likelihood estimators of the parameters are mnm = ym, and

sn ML
2 = a n

i = 1aM
m = 1(yim - ym)2

nM
=

1
M a

M

m = 1

1
n a

n

i = 1
(yim - ym)2 =

1
M a

M

m = 1
sn m

2 .

Derive the second derivatives matrix and show that the asymptotic covariance 
matrix for the maximum likelihood estimators isb -EJ 02 ln L

0U0U′
R r -1

= Js2I/n 0
0 2s4/(nM)

R .

Suppose that we wished to test the hypothesis that the means of the M distributions 
were all equal to a particular value m0. Show that the Wald statistic would be

W = (y - m0i)′¢sn 2

n
 I≤-1

(y - m0i) = ¢ n

s2 ≤(y - m0i)′(y - m0i),

where y is the vector of sample means.

Applications

1.	 Binary Choice. This application will be based on the health care data analyzed 
in Example 14.13 and several others. Details on obtaining the data are given in 
Appendix F Table 7.1. We consider analysis of a dependent variable, yit, that takes 
values 1 and 0 with probabilities F(xi

=B) and 1 - F(xi
=B), where F is a function that 

defines a probability. The dependent variable, yit, is constructed from the count 
variable DocVis, which is the number of visits to the doctor in the given year. 
Construct the binary variable

yit = 1 if DocVis 7 0, 0 otherwise.

We will build a model for the probability that yit equals one. The independent 
variables of interest will be

xit = (1, ageit, educit, femalet, marriedit, hsatit).
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a.	 According to the model, the theoretical density for yit is

f(yit � xit) = F(xit
=B) for yit = 1 and 1 - F(xit

=B) for yit = 0.

We will assume that a “logit model” (see Section 17.2) is appropriate, so that

F(xit
=B) = Λ(xit

=B) =
exp(xit

=B)

1 - exp(xit
=B)

.

Show that for the two outcomes, the probabilities may be combined into the 
density function

f(yit � xit) = g(yit, xit, B) = Λ[(2yit - 1)xit
=B].

Now, use this result to construct the log-likelihood function for a sample of data 
on (yit, xit). (Note: We will be ignoring the panel aspect of the data set. Build the 
model as if this were a cross section.)

b.	 Derive the likelihood equations for estimation of B.
c.	 Derive the second derivatives matrix of the log-likelihood function. (Hint: The 

following will prove useful in the derivation: dΛ(t)/dt = Λ(t)[1 - Λ(t)].)
d.	 Show how to use Newton’s method to estimate the parameters of the model.
e.	 Does the method of scoring differ from Newton’s method? Derive the negative 

of the expectation of the second derivatives matrix.
f.	 Obtain maximum likelihood estimates of the parameters for the data and 

variables noted. Report your results, estimates, standard errors, and so on, as 
well as the value of the log likelihood.

g.	 Test the hypothesis that the coefficients on female and marital status are zero. 
Show how to do the test using Wald, LM, and LR tests, and then carry out the 
tests.

h.	 Test the hypothesis that all the coefficients in the model save for the constant 
term are equal to zero.

2.	 The geometric distribution used in Examples 14.13, 14.17, 14.18, and 14.22 would 
not be the typical choice for modeling a count such as DocVis. The Poisson model 
suggested at the beginning of Section 14.11.1 would be the more natural choice (at 
least at the first step in an analysis). Redo the calculations in Exercises 14.13 and 
14.17 using a Poisson model rather than a geometric model. Do the results change 
very much? It is difficult to tell from the coefficient estimates. Compute the partial 
effects for the Poisson model and compare them to the partial effects shown in 
Table 14.11.

3.	 (This application will require an optimizer. Maximization of a user-supplied 
function is provided by commands in Stata, R, SAS, EViews or NLOGIT.) Use the 
following pseudo-code to generate a random sample of 1,000 observations on y 
from a mixed normals population:

Set the seed of the random number generator at any specific value.

Generate two sets of 1,000 random draws from normal populations 

with standard deviations 1. For the means, use 1 for y1 and 

5 for y2.

Generate a set of 1,000 random draws, c, from uniform(0,1) 

population.
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For each observation, if c < .3, y = y1; if c ≥ .3, use y = y2.

The log-likelihood function for the mixture of two normals is given in (14-89). (The 
first step sets the seed at a particular value so that you can replicate your calculation 
of the data sets.)
a.	 Find the values that maximize the log-likelihood function. As starting values, 

use the sample mean of y (the same value) and sample standard deviation of y 
(again, same value) and 0.5 for p.

b.	 You should have observed the iterations in part a never get started. Try again 
using 0.9y, .9sy, 1.1y, 1.1sy, and 0.5. This should be much more satisfactory.

c.	 Experiment with the estimator by generating y1 and y2 with more similar means, 
such as 1 and 3, or 1 and 2.
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