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Bayesian Estimation and Inference

§
16.1	 INTRODUCTION

The  preceding chapters  (and those that follow this one) are focused primarily on 
parametric specifications and classical estimation methods. These elements of the 
econometric method present a bit of a methodological dilemma for the researcher. They 
appear to straightjacket the analyst into a fixed and immutable specification of the 
model. But in any analysis, there is uncertainty as to the magnitudes, sometimes the signs 
and, at the extreme, even the meaning of parameters. It is rare that the presentation of 
a set of empirical results has not been preceded by at least some exploratory analysis. 
Proponents of the Bayesian methodology argue that the process of estimation is not one 
of deducing the values of fixed parameters, but rather, in accordance with the scientific 
method, one of continually updating and sharpening our subjective beliefs about the 
state of the world. Of course, this adherence to a subjective approach to model building 
is not necessarily a virtue. If one holds that models and parameters represent objective 
truths that the analyst seeks to discover, then the subjectivity of Bayesian methods may 
be less than perfectly comfortable.

Contemporary applications of Bayesian methods typically advance little of this 
theological debate. The modern practice of Bayesian econometrics is much more pragmatic. 
As we will see in several of the following examples, Bayesian methods have produced 
some remarkably efficient solutions to difficult estimation problems. Researchers often 
choose the techniques on practical grounds, rather than in adherence to their philosophical 
basis; indeed, for some, the Bayesian estimator is merely an algorithm.1

Bayesian methods have have been employed by econometricians since well before 
Zellner’s classic (1971) presentation of the methodology to economists, but until fairly 
recently, were more or less at the margin of the field. With recent advances in technique 
(notably the Gibbs sampler) and the advance of computer software and hardware that 
has made simulation-based estimation routine, Bayesian methods that rely heavily on 
both have become widespread throughout the social sciences. There are libraries of 
work on Bayesian econometrics, a rapidly expanding applied literature.2 This chapter 
will introduce the vocabulary and techniques of Bayesian econometrics. Section 16.2 

1For example, the Website of MLWin, a widely used program for random parameters modeling, www.bristol.ac.uk/
cmm/software/mlwin/features/mcmc.html, states that their use of diffuse priors for Bayesian models produces 
approximations to maximum likelihood estimators. Train (2001) is an interesting application that compares Bayesian 
and classical estimators of a random parameters model.  Another comparison appears in Example 16.7 below.
2Recent additions to the dozens of books on the subject include Gelman et al. (2004), Geweke (2005), Gill (2002), 
Koop (2003), Lancaster (2004), Congdon (2005), and Rossi et al. (2005). Readers with a historical bent will find 
Zellner (1971) and Leamer (1978) worthwhile reading. There are also many methodological surveys. Poirier and 
Tobias (2006) as well as Poirier (1988, 1995) sharply focus the nature of the methodological distinctions between 
the classical (frequentist) and Bayesian approaches.
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lays out the essential foundation for the method. The canonical application, the 
linear regression model, is developed in Section 16.3. Section 16.4 continues the 
methodological development. The fundamental tool of contemporary Bayesian 
econometrics, the Gibbs sampler, is presented in Section 16.5. Three applications and 
several more limited examples are presented in Sections 16.6 through 16.8. Section 16.6 
shows how to use the Gibbs sampler to estimate the parameters of a probit model 
without maximizing the likelihood function. This application also introduces the 
technique of data augmentation. Bayesian counterparts to the panel data random and 
fixed effects models are presented in Section 16.7. A hierarchical Bayesian treatment 
of the random parameters model is presented in Section 16.8 with a comparison to the 
classical treatment of the same model. Some conclusions are drawn in Section 16.9. The 
presentation here is nontechnical. A much more extensive entry-level presentation 
is given by Lancaster (2004). Intermediate-level presentations appear in Cameron 
and  Trivedi (2005, Chapter 13), and Koop (2003). A more challenging treatment 
is offered in Geweke (2005). The other sources listed in footnote 2 are oriented to 
applications.

16.2	 BAYES’ THEOREM AND THE POSTERIOR DENSITY

The centerpiece of the Bayesian methodology is Bayes’ theorem: for events A and B, 
the conditional probability of event A given that B has occurred is

	 P(A � B) =
P(B � A)P(A)

P(B)
.	 (16-1)

Paraphrased for our applications here, we would write

P(parameters � data) =
P(data � parameters)P(parameters)

P(data)
.

In this setting, the data are viewed as constants whose distributions do not involve the 
parameters of interest. For the purpose of the study, we treat the data as only a fixed set 
of additional information to be used in updating our beliefs about the parameters. Note 
the similarity to (12-1). Thus, we write

	
P(parameters � data) ∝ P(data � parameters)P(parameters)

          = Likelihood function * Prior density.
	 (16-2)

The symbol ∝  means “is proportional to.” In the preceding equation, we have dropped 
the marginal density of the data, so what remains is not a proper density until it is scaled 
by what will be an inessential proportionality constant. The first term on the right is 
the joint distribution of the observed random variables y, given the parameters. As we 
shall analyze it here, this distribution is the normal distribution we have used in our 
previous analysis—see (12-1). The second term is the prior beliefs of the analyst. The 
left-hand side is the posterior density of the parameters, given the current body of data, 
or our revised beliefs about the distribution of the parameters after seeing the data. The 
posterior is a mixture of the prior information and the current information, that is, the 
data. Once obtained, this posterior density is available to be the prior density function 
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when the next body of data or other usable information becomes available. The principle 
involved, which appears nowhere in the classical analysis, is one of continual accretion 
of knowledge about the parameters.

Traditional Bayesian estimation is heavily parameterized. The prior density and the 
likelihood function are crucial elements of the analysis, and both must be fully specified 
for estimation to proceed. The Bayesian estimator is the mean of the posterior density 
of the parameters, a quantity that is usually obtained either by integration (when closed 
forms exist), approximation of integrals by numerical techniques, or by Monte Carlo 
methods, which are discussed in Section 15.6.2.

Example 16.1    Bayesian Estimation of a Probability
Consider estimation of the probability that a production process will produce a defective 
product. In case 1, suppose the sampling design is to choose N = 25 items from the 
production line and count the number of defectives. If the probability that any item is defective 
is a constant u between zero and one, then the likelihood for the sample of data is

L(u � data) = uD(1 - u)25 - D,

where D is the number of defectives, say, 8. The maximum likelihood estimator of u will 
be p = D/25 = 0.32, and the asymptotic variance of the maximum likelihood estimator is 
estimated by p(1 - p)/25 = 0.008704.

Now, consider a Bayesian approach to the same analysis. The posterior density is obtained 
by the following reasoning:

 p(u � data) =
p(u, data)
p(data)

=
p(u, data)

Lu

p(u, data)du
=

p(data � u)p(u)
p(data)

 =
Likelihood(data � u) * p(u)

p(data)
,

where p(u) is the prior density assumed for u. [We have taken some license with the terminology, 
because the likelihood function is conventionally defined as L(u � data).] Inserting the results 
of the sample first drawn, we have the posterior density,

p(u � data) =
uD(1 - u)N - Dp(u)

Lu

uD(1 - u)N - Dp(u)du

.

What follows depends on the assumed prior for u. Suppose we begin with a noninformative 
prior that treats all allowable values of u as equally likely. This would imply a uniform 
distribution over (0,1). Thus, p(u) = 1, 0 … u … 1. The denominator with this assumption is 
a beta integral (see Section E2.3) with parameters a = D + 1 and b = N - D + 1, so the 
posterior density is

p(u � data) =
uD(1 - u)N - D¢ Γ(D + 1)Γ(N - D + 1)

Γ(D + 1 + N - D + 1)
≤ =

Γ(N + 2)uD(1 - u)N - D

Γ(D + 1)Γ(N - D + 1)
.

This is the density of a random variable with a beta distribution with parameters (a, b) =
(D + 1, N - D + 1). (See Section B.4.6.) The mean of this random variable is (D + 1)/
(N + 2) = 9/27 = 0.3333 (as opposed to 0.32, the MLE). The posterior variance is [(D + 1)/
(N - D + 1)]/[(N + 3)(N + 2)2] = 0.007936 compared to 0.00874 for the MLE.
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There is a loose end in this example. If the uniform prior were truly noninformative, that 
would mean that the only information we had was in the likelihood function. Why didn’t the 
Bayesian estimator and the MLE coincide? The reason is that the uniform prior over [0,1] is 
not really noninformative. It did introduce the information that u must fall in the unit interval. 
The prior mean is 0.5 and the prior variance is 1/12. The posterior mean is an average of 
the MLE and the prior mean. Another less than obvious aspect of this result is the smaller 
variance of the Bayesian estimator. The principle that lies behind this (aside from the fact that 
the prior did in fact introduce some certainty in the estimator) is that the Bayesian estimator 
is conditioned on the specific sample data. The theory behind the classical MLE implies that 
it averages over the entire population that generates the data. This will always introduce a 
greater degree of uncertainty in the classical estimator compared to its Bayesian counterpart.

16.3	 BAYESIAN ANALYSIS OF THE CLASSICAL REGRESSION MODEL

The complexity of the algebra involved in Bayesian analysis is often extremely 
burdensome. For the linear regression model, however, many fairly straightforward 
results have been obtained. To provide some of the flavor of the techniques, we present 
the full derivation only for some simple cases. In the interest of brevity, and to avoid the 
burden of excessive algebra, we refer the reader to one of the several sources that 
present the full derivation of the more complex cases.3

The classical normal regression model we have analyzed thus far is constructed 
around the conditional multivariate normal distribution N[XB, s2I]. The interpretation is 
different here. In the sampling theory setting, this distribution embodies the information 
about the observed sample data given the assumed distribution and the fixed, albeit 
unknown, parameters of the model. In the Bayesian setting, this function summarizes 
the information that a particular realization of the data provides about the assumed 
distribution of the model parameters. To underscore that idea, we rename this joint 
density the likelihood for B and s2 given the data, so

	 L(B, s2 � y, X) = [2ps2]-n/2e-[(1/(2s2))(y - XB)′(y - XB)].	 (16-3)

For purposes of the following results, some reformulation is useful. Let d = n - K 
(the degrees of freedom parameter), and substitute

y − XB = y − Xb − X(B − b) = e − X(B − b)

in the exponent. Expanding this produces

a -
1

2s2 b(y - XB)′(y - XB) = a -
1
2

 ds2b a 1
s2 b -

1
2

 (B - b)′a 1
s2 X′Xb(B - b).

After a bit of manipulation (note that n/2 = d/2 + K/2), the likelihood may be written

L(B, s2 � y, X) = [2p]-d/2[s2]-d/2e-(d/2)(s2/s2)[2p]-K/2[s2]-K/2e-(1/2)(B - b)′[s2(X′X)-1]-1(B - b).

This density embodies all that we have to learn about the parameters from the observed 
data. Because the data are taken to be constants in the joint density, we may multiply 

3These sources include Judge et al. (1982, 1985), Maddala (1977a), Mittelhammer et al. (2000), and the canonical 
reference for econometricians, Zellner (1971). A remarkable feature of the current literature is the degree to 
which the analytical components have become ever simpler while the applications have become progressively 
more complex. This will become evident in Sections 16.5–16.7.
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this joint density by the (very carefully chosen), inessential (because it does not involve 
B or s2) constant function of the observations,

A =
ad

2
 s2b

(d/2) + 1

Γad
2

+ 1b
 [2p](d/2) � X′X � -1/2.

For convenience, let v = d/2. Then, multiplying L(B, s2 � y, X) by A gives

	
L(B, s2 � y, X) ∝

[vs2]v + 1

Γ(v + 1)
 a 1
s2 b

v

e-vs2(1/s2)[2p]-K/2 �s2(X′X)-1 � -1/2

* e-(1/2)(B - b)′[s2(X′X)-1]-1(B - b).
	 (16-4)

The likelihood function is proportional to the product of a gamma density for z = 1/s2 
with parameters l = vs2 and P = v + 1 [see (B-39); this is an inverted gamma 
distribution] and a K-variate normal density for B �s2 with mean vector b and covariance 
matrix s2(X′X)-1. The reason will be clear shortly.

16.3.1    ANALYSIS WITH A NONINFORMATIVE PRIOR

The departure point for the Bayesian analysis of the model is the specification of a 
prior distribution. This distribution gives the analyst’s prior beliefs about the parameters 
of the model. One of two approaches is generally taken. If no prior information is known 
about the parameters, then we can specify a noninformative prior that reflects that. We 
do this by specifying a flat prior for the parameter in question:4

g(parameter) ∝ constant.

There are different ways that one might characterize the lack of prior information. The 
implication of a flat prior is that within the range of valid values for the parameter, all 
intervals of equal length—hence, in principle, all values—are equally likely. The second 
possibility, an informative prior, is treated in the next section. The posterior density is 
the result of combining the likelihood function with the prior density. Because it pools 
the full set of information available to the analyst, once the data have been drawn, the 
posterior density would be interpreted the same way the prior density was before the 
data were obtained.

To begin, we analyze the case in which s2 is assumed to be known. This assumption 
is obviously unrealistic, and we do so only to establish a point of departure. Using Bayes’ 
theorem, we construct the posterior density,

f(B � y, X, s2) =
L(B �s2, y, X)g(B �s2)

f(y)
∝ L(B �s2, y, X)g(B �s2),

assuming that the distribution of X does not depend on B or s2. Because g(B �s2) ∝  a 
constant, this density is the one in (16-4). For now, write

	 f(B �s2, y, X) ∝ h(s2)[2p]-K/2 �s2(X′X)-1 � -1/2 e-(1/2)(B - b)′[s2(X′X)-1]-1(B - b),	 (16-5)

4That this improper density might not integrate to one is only a minor difficulty. Any constant of integration would 
ultimately drop out of the final result. See Zellner (1971, pp. 41–53) for a discussion of noninformative priors.
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where

	 h(s2) =
[vs2]v + 1

Γ(v + 1)
 J 1
s2 R v

e-vs2(1/s2).	 (16-6)

For the present, we treat h(s2) simply as a constant that involves s2, not as a probability 
density; (16-5) is conditional on s2. Thus, the posterior density f(B �s2, y, X) is 
proportional to a multivariate normal distribution with mean b and covariance matrix 
s2(X′X)-1.

This result is familiar, but it is interpreted differently in this setting. First, we 
have combined our prior information about B (in this case, no information) and 
the sample information to obtain a posterior distribution. Thus, on the basis of the 
sample data in hand, we obtain a distribution for B with mean b and covariance matrix 
s2(X′X)-1. The result is dominated by the sample information, as it should be if there 
is no prior information. In the absence of any prior information, the mean of the 
posterior distribution, which is a type of Bayesian point estimate, is the sampling theory 
estimator, b.

To generalize the preceding to an unknown s2, we specify a noninformative prior 
distribution for ln s over the entire real line.5 By the change of variable formula, if 
g(ln s) is constant, then g(s2) is proportional to 1/s2.6 Assuming that B and s2 are 
independent, we now have the noninformative joint prior distribution,

g(B, s2) = gB(B)gs2(s2) ∝
1
s2.

We can obtain the joint posterior distribution for B and s2 by using

	 f(B, s2 � y, X) = L(B �s2, y, X)gs2(s2) ∝ L(B �s2, y, X) *
1
s2.	 (16-7)

For the same reason as before, we multiply gs2(s2) by a well-chosen constant, this time 
vs2Γ(v + 1)/Γ(v + 2) = vs2/(v + 1). Multiplying (16-5) by this constant times gs2(s2) 
and inserting h(s2) gives the joint posterior for B and s2, given y and X,

f(B, s2 � y, X) ∝
[vs2]v + 2

Γ(v + 2)
 J 1
s2 R v + 1

 e-vs2(1/s2)[2p]-K/2 �s2(X′X)-1 � -1/2

* e-(1/2)(B - b)′[s2(X′X)-1]-1(B - b).

To obtain the marginal posterior distribution for B, it is now necessary to integrate s2 
out of the joint distribution (and vice versa to obtain the marginal distribution for s2). 
By collecting the terms, f(B, s2 � y, X) can be written as

f(B, s2 � y, X) ∝ A * a 1
s2 b

P - 1

e-l(1/s2),

5See Zellner (1971) for justification of this prior distribution.
6Many treatments of this model use s rather than s2 as the parameter of interest. The end results are identical. We 
have chosen this parameterization because it makes manipulation of the likelihood function with a gamma prior 
distribution especially convenient. See Zellner (1971, pp. 44–45) for discussion.
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where

A =
[vs2]v + 2

Γ(v + 2)
 [2p]-K/2 � (X′X)-1 � -1/2,

P = v + 2 + K/2 = (n - K)/2 + 2 + K/2 = (n + 4)/2,
and

l = vs2 + 1
2 (B - b)′X′X(B - b).

The marginal posterior distribution for B is

L
∞

0
f(B, s2 � y, X)ds2 ∝ AL

∞

0
a 1
s2 b

P - 1

e-l(1/s2)ds2.

To do the integration, we have to make a change of variable; d(1/s2) = -(1/s2)2ds2, 
so ds2 = -(1/s2)-2 d(1/s2). Making the substitution—the sign of the integral changes 
twice, once for the Jacobian and back again because the integral from s2 = 0 to ∞  is 
the negative of the integral from (1/s2) = 0 to ∞—we obtain

L
∞

0
f(B, s2 � y, X)ds2 ∝ AL

∞

0
a 1
s2 b

P - 3

e-l(1/s2)da 1
s2 b

= A *
Γ(P - 2)

lP - 2 .

Reinserting the expressions for A, P, and l produces

	 f(B � y, X) ∝

[vs2]v + 2Γ(v + K/2)

Γ(v + 2)
 [2p]-K/2 � X′X � -1/2

3vs2 + 1
2 (B - b)′X′X(B - b)4v + K/2

.	 (16-8)

This density is proportional to a multivariate t distribution7 and is a generalization of 
the familiar univariate distribution we have used at various points. This distribution has 
a degrees of freedom parameter, d = n - K, mean b, and covariance matrix 
(d/(d - 2)) * [s2(X′X)-1]. Each element of the K-element vector B has a marginal 
distribution that is the univariate t distribution with degrees of freedom n - K, mean 
bk, and variance equal to the kth diagonal element of the covariance matrix given 
earlier. Once again, this is the same as our sampling theory result. The difference is a 
matter of interpretation. In the current context, the estimated distribution is for B and 
is centered at b.

16.3.2    ESTIMATION WITH AN INFORMATIVE PRIOR DENSITY

Once we leave the simple case of noninformative priors, matters become quite 
complicated, both at a practical level and, methodologically, in terms of just where the 
prior comes from. The integration of s2 out of the posterior in (16-7) is complicated by 
itself. It is made much more so if the prior distributions of B and s2 are at all involved. 
Partly to offset these difficulties, researchers have used conjugate priors, which are ones 

7See, for example, Judge et al. (1985) for details. The expression appears in Zellner (1971, p. 67). Note that the 
exponent in the denominator is v + K/2 = n/2.
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that have the same form as the conditional density and are therefore amenable to the 
integration needed to obtain the marginal distributions.8

Example 16.2    Estimation with a Conjugate Prior
We continue Example 16.1, but we now assume a conjugate prior. For likelihood functions 
involving proportions, the beta prior is a common device, for reasons that will emerge shortly. 
The beta prior is

p(u) =
Γ(a + b)ua - 1(1 - u)b - 1

Γ(a)Γ(b)
.

Then the posterior density becomes

uD(1 - u)N - D 
Γ(a + b)ua - 1(1 - u)b - 1

Γ(a)Γ(b)

L
1

0
uD(1 - u)N - D 

Γ(a + b)ua - 1(1 - u)b - 1

Γ(a)Γ(b)
 du

=
uD + a - 1(1 - u)N - D + b - 1

L
1

0
uD + a - 1(1 - u)N - D + b - 1du

.

The posterior density is, once again, a beta distribution, with parameters (D + a, N - D + b). 
The posterior mean is

E[u � data] =
D + a

N + a + b
.

(Our previous choice of the uniform density was equivalent to a = b = 1.) Suppose we choose a 
prior that conforms to a prior mean of 0.5, but with less mass near zero and one than in the center, 
such as a = b = 2. Then the posterior mean would be (8 + 2)/(25 + 3) = 0.33571. (This is 
yet larger than the previous estimator. The reason is that the prior variance is now smaller than 
1/12, so the prior mean, still 0.5, receives yet greater weight than it did in the previous example.)

Suppose that we assume that the prior beliefs about B may be summarized in a 
K-variate normal distribution with mean B0 and variance matrix �0. Once again, it is 
illuminating to begin with the case in which s2 is assumed to be known. Proceeding in 
exactly the same fashion as before, we would obtain the following result: The posterior 
density of B conditioned on s2 and the data will be normal with

 E[B �s2, y, X] = 5�0
-1 + [s2(X′X)-1]-16-15�0

-1B0 + [s2(X′X)-1]-1b6
 = FB0 + (I - F)b, � (16-9)

where

 F = 5�0
-1 + [s2(X′X)-1]-16-1�0

-1

 = 5[prior variance]-1 + [conditional variance]-16-1[prior variance]-1.�
(16-10)

This vector is a matrix weighted average of the prior and the least squares (sample) 
coefficient estimates, where the weights are the inverses of the prior and the conditional 

8Our choice of noninformative prior for ln s led to a convenient prior for s2 in our derivation of the posterior 
for B. The idea that the prior can be specified arbitrarily in whatever form is mathematically convenient is very 
troubling; it is supposed to represent the accumulated prior belief about the parameter. On the other hand, it 
could be argued that the conjugate prior is the posterior of a previous analysis, which could justify its form. The 
issue of how priors should be specified is one of the focal points of the methodological debate. Non-Bayesians 
argue that it is disingenuous to claim the methodological high ground and then base the crucial prior density 
in a model purely on the basis of mathematical convenience. In a small sample, this assumed prior is going to 
dominate the results, whereas in a large one, the sampling theory estimates will dominate anyway.
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covariance matrices.9 The smaller the variance of the estimator, the larger its weight, 
which makes sense. Also, still taking s2 as known, we can write the variance of the 
posterior normal distribution as

	 Var[B � y, X, s2] = 5�0
-1 + [s2(X′X)-1]-16-1.	 (16-11)

Notice that the posterior variance combines the prior and conditional variances on the 
basis of their inverses.10 We may interpret the noninformative prior as having infinite 
elements in �0. This assumption would reduce this case to the earlier one.

Once again, it is necessary to account for the unknown s2. If our prior over s2 is 
to be informative as well, then the resulting distribution can be extremely cumbersome. 
A conjugate prior for B and s2 that can be used is

	 g(B, s2) = gB�s2(B �s2)gs2(s2),	 (16-12)

where gB�s2(B �s2) is normal, with mean B0 and variance s2A and

	 gs2(s2) =
[ms0

2]m + 1

Γ(m + 1)
 a 1
s2 b

m

e-ms0
2(1/s2).	 (16-13)

This distribution is an inverted gamma distribution. It implies that 1/s2 has a gamma 
distribution. The prior mean for s2 is s0

2 and the prior variance is s0
4/(m - 1).11 The 

product in (16-12) produces what is called a normal-gamma prior, which is the natural 
conjugate prior for this form of the model. By integrating out s2, we would obtain the 
prior marginal for B alone, which would be a multivariate t distribution.12 Combining 
(16-12) with (16-13) produces the joint posterior distribution for B and s2. Finally, the 
marginal posterior distribution for B is obtained by integrating out s2. It has been shown 
that this posterior distribution is multivariate t with

	 E[B � y, X] = 5[s2A]-1 + [s2(X′X)-1]-16-15[s2A]-1B0 + [s2(X′X)-1]-1b6	 (16-14)

and

	 Var[B � y, X] = a j

j - 2
b5[s2A]-1 + [s2(X′X)-1]-16-1,	 (16-15)

where j is a degrees of freedom parameter and s2 is the Bayesian estimate of s2. The 
prior degrees of freedom m is a parameter of the prior distribution for s2 that would 
have been determined at the outset. (See the following example.) Once again, it is clear 
that as the amount of data increases, the posterior density, and the estimates thereof, 
converge to the sampling theory results.

9Note that it will not follow that individual elements of the posterior mean vector lie between those of B0 and b. 
See Judge et al. (1985, pp. 109–110) and Chamberlain and Leamer (1976).
10Precisely this estimator was proposed by Theil and Goldberger (1961) as a way of combining a previously 
obtained estimate of a parameter and a current body of new data. They called their result a “mixed estimator.” 
The term “mixed estimation” takes an entirely different meaning in the current literature, as we saw in Chapter 15.
11You can show this result by using gamma integrals. Note that the density is a function of 1/s2 = 1/x 
in the formula of (B-39), so to obtain E[s2], we use the analog of E[1/x] = l/(P - 1) and 
E[(1/x)2] = l2/[(P - 1)(P - 2)]. In the density for (1/s2), the counterparts to l and P are ms0

2 and m + 1.
12Full details of this (lengthy) derivation appear in Judge et al. (1985, pp. 106–110) and Zellner (1971).
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Example 16.3    Bayesian Estimate of the Marginal Propensity to Consume
In Example 3.2, an estimate of the marginal propensity to consume is obtained using 11 
observations from 1940 to 1950, with the results shown in the top row of Table 16.1. [Referring 
to Example 3.2, the variance is (6,848.975/9)/12,300.182.] A classical 95% confidence interval for 
b based on these estimates is (0.1221, 1.2475). (The very wide interval probably results from the 
obviously poor specification of the model.) Based on noninformative priors for b and s2, we would 
estimate the posterior density for b to be univariate t with nine degrees of freedom, with mean 
0.6848014 and variance (11/9)0.061878 = 0.075628. An HPD interval for b would coincide with 
the confidence interval. Using the fourth quarter (yearly) values of the 1950–2000 data used in 
Example 5.3, we obtain the new estimates that appear in the second row of the table.

We take the first estimate and its estimated distribution as our prior for b and obtain a 
posterior density for b based on an informative prior instead. We assume for this exercise 
that s may be taken as known at the sample value of 24.954. Then,

b = c 1
0.061878

+
1

0.000065865
d

-1

c 0.6848014
0.061878

+
0.92481

0.000065865
d = 0.92455,

The weighted average is overwhelmingly dominated by the far more precise sample 
estimate from the larger sample. The posterior variance is the inverse in brackets, which 
is 0.000065795. This is close to the variance of the latter estimate. An HPD interval can be 
formed in the familiar fashion. It will be slightly narrower than the confidence interval, because 
the variance of the posterior distribution is slightly smaller than the variance of the sampling 
estimator. This reduction is the value of the prior information. (As we see here, the prior is not 
particularly informative.)

16.4	 BAYESIAN INFERENCE

The posterior density is the Bayesian counterpart to the likelihood function. It embodies 
the information that is available to make inference about the econometric model. As we 
have seen, the mean and variance of the posterior distribution correspond to the classical 
(sampling theory) point estimator and asymptotic variance, although they are interpreted 
differently. Before we examine more intricate applications of Bayesian inference, it is 
useful to formalize some other components of the method, point and interval estimation 
and the Bayesian equivalent of testing a hypothesis.13

16.4.1    POINT ESTIMATION

The posterior density function embodies the prior and the likelihood and therefore contains 
all the researcher’s information about the parameters. But for purposes of presenting 

13We do not include prediction in this list. The Bayesian approach would treat the prediction problem as one 
of estimation in the same fashion as parameter estimation. The value to be forecasted is among the unknown 
elements of the model that would be characterized by a prior and would enter the posterior density in a 
symmetric fashion along with the other parameters.

Years Estimated MPC Variance of b Degrees of Freedom Estimated S

1940–1950 0.6848014 0.061878 9 24.954
1950–2000 0.92481 0.000065865 49 92.244

TABLE 16.1  Estimates of the MPC
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results, the density is somewhat imprecise, and one normally prefers a point or interval 
estimate. The natural approach would be to use the mean of the posterior distribution as 
the estimator. For the noninformative prior, we use b, the sampling theory estimator.

One might ask at this point, why bother? These Bayesian point estimates are identical 
to the sampling theory estimates. All that has changed is our interpretation of the results. 
This situation is, however, exactly the way it should be. Remember that we entered the 
analysis with noninformative priors for B and s2. Therefore, the only information brought 
to bear on estimation is the sample data, and it would be peculiar if anything other than 
the sampling theory estimates emerged at the end. The results do change when our prior 
brings out of sample information into the estimates, as we shall see later.

The results will also change if we change our motivation for estimating B. The 
parameter estimates have been treated thus far as if they were an end in themselves. But 
in some settings, parameter estimates are obtained so as to enable the analyst to make 
a decision. Consider then, a loss function, H(Bn , B), which quantifies the cost of basing 
a decision on an estimate Bn  when the parameter is B. The expected, or average, loss is

	 EB[H(Bn , B)] = LB

H(Bn , B)f(B � y, X)dB,	 (16-16)

where the weighting function, f, is the marginal posterior density. (The joint density for B 
and s2 would be used if the loss were defined over both.) The Bayesian point estimate is 
the parameter vector that minimizes the expected loss. If the loss function is a quadratic 
form in (Bn - B), then the mean of the posterior distribution is the minimum expected 
loss (MELO) estimator. The proof is simple. For this case,

E[H(Bn , B) � y, X] = E31
2 (Bn - B)′W(Bn - B) � y, X4 .

To minimize this, we can use the result that

 0E[H(Bn , B) � y, X]/0Bn = E[0H(Bn , B)/0Bn � y, X]

 = E[-W(Bn - B) � y, X].

The minimum is found by equating this derivative to 0, whence, because -W is irrelevant, 
Bn = E[B � y, X]. This kind of loss function would state that errors in the positive and 
negative directions are equally bad, and large errors are much worse than small errors. 
If the loss function were a linear function instead, then the MELO estimator would be 
the median of the posterior distribution. These results are the same in the case of the 
noninformative prior that we have just examined.

16.4.2    INTERVAL ESTIMATION

The counterpart to a confidence interval in this setting is an interval of the posterior 
distribution that contains a specified probability. Clearly, it is desirable to have this 
interval be as narrow as possible. For a unimodal density, this corresponds to an interval 
within which the density function is higher than any points outside it, which justifies the 
term highest posterior density (HPD) interval. For the case we have analyzed, which 
involves a symmetric distribution, we would form the HPD interval for B around the least 
squares estimate b, with terminal values taken from the standard t tables. Section 4.8.3 
shows the (classical) derivation of an HPD interval for an asymmetric distribution, in 
that case for a prediction of y when the regression models ln y.

M16_GREE1366_08_SE_C16.indd   704 2/24/17   1:36 PM



	 CHAPTER 16  ✦  Bayesian Estimation and Inference	 705

16.4.3    HYPOTHESIS TESTING

The Bayesian methodology treats the classical approach to hypothesis testing with 
a large amount of skepticism. Two issues are especially problematic. First, a close 
examination of only the work we have done in Chapter 5 will show that because we 
are using consistent estimators, with a large enough sample, we will ultimately reject 
any (nested) hypothesis unless we adjust the significance level of the test downward as 
the sample size increases. Second, the all-or-nothing approach of either rejecting or not 
rejecting a hypothesis provides no method of simply sharpening our beliefs. Even the 
most committed of analysts might be reluctant to discard a strongly held prior based 
on a single sample of data, yet that is what the sampling methodology mandates. The 
Bayesian approach to hypothesis testing is much more appealing in this regard. Indeed, 
the approach might be more appropriately called comparing hypotheses, because it 
essentially involves only making an assessment of which of two hypotheses has a higher 
probability of being correct.

The Bayesian approach to hypothesis testing bears large similarity to Bayesian 
estimation.14 We have formulated two hypotheses, a null, denoted H0, and an alternative, 
denoted H1. These need not be complementary, as in H0 : “statement A is true” versus 
H1 : “statement A is not true,” because the intent of the procedure is not to reject one 
hypothesis in favor of the other. For simplicity, however, we will confine our attention 
to hypotheses about the parameters in the regression model, which often are 
complementary. Assume that before we begin our experimentation (i.e., data gathering, 
statistical analysis) we are able to assign prior probabilities P(H0) and P(H1) to the two 
hypotheses. The prior odds ratio is simply the ratio

	 oddsprior =
P(H0)

P(H1)
.	 (16-17)

For example, one’s uncertainty about the sign of a parameter might be summarized in a 
prior odds over H0 : b Ú 0 versus H1 : b 6 0 of 0.5/0.5 = 1. After the sample evidence 
is gathered, the prior will be modified, so the posterior is, in general,

oddsposterior = B01 * oddsprior.

The value B01 is called the Bayes factor for comparing the two hypotheses. It summarizes 
the effect of the sample data on the prior odds. The end result, oddsposterior, is a new odds 
ratio that can be carried forward as the prior in a subsequent analysis.

The Bayes factor is computed by assessing the likelihoods of the data observed 
under the two hypotheses. We return to our first departure point, the likelihood of the 
data, given the parameters,

	 f(y �B, s2, X) = [2ps2]-n/2e(-1/(2s2))(y - XB)′(y - XB).	 (16-18)

Based on our priors for the parameters, the expected, or average likelihood, assuming 
that hypothesis j is true (j = 0, 1), is

f(y � X, Hj) = EB,s2[f(y �B, s2, X, Hj)] = Ls2LB

f(y �B, s2, X, Hj)g(B, s2)dBds2.

14For extensive discussion, see Zellner and Siow (1980) and Zellner (1985, pp. 275–305).
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(This conditional density is also the predictive density for y.) Therefore, based on the 
observed data, we use Bayes’s theorem to reassess the probability of Hj; the posterior 
probability is

P(Hj � y, X) =
f(y � X, Hj)P(Hj)

f(y)
.

The posterior odds ratio is P(H0 � y, X)/P(H1 � y, X), so the Bayes factor is

B01 =
f(y � X, H0)

f(y � X, H1)
.

Example 16.4    Posterior Odds for the Classical Regression Model
Zellner (1971) analyzes the setting in which there are two possible explanations for the 
variation in a dependent variable y:

Model0: y = x0
=B0 + E0

and

Model1: y = x1
=B1 + E1.

We will briefly sketch his results. We form informative priors for [B, s2]j, j = 0, 1, as specified 
in (16-12) and (16-13), that is, multivariate normal and inverted gamma, respectively. Zellner 
then derives the Bayes factor for the posterior odds ratio. The derivation is lengthy and 
complicated, but for large n, with some simplifying assumptions, a useful formulation 
emerges. First, assume that the priors for s0

2 and s1
2 are the same. Second, assume that 

[ � A0
-1 � / � A0

-1 + X0
=X0 � ]/[ � A1

-1 � / � A1
-1 + X1

=X1 � ] S 1. The first of these would be the usual 
situation, in which the uncertainty concerns the covariation between yi and xi, not the amount 
of residual variation (lack of fit). The second concerns the relative amounts of information in 
the prior (A) versus the likelihood (X′X). These matrices are the inverses of the covariance 
matrices, or the precision matrices. [Note how these two matrices form the matrix weights 
in the computation of the posterior mean in (16-9).] Zellner (p. 310) discusses this assumption 
at some length. With these two assumptions, he shows that as n grows large,15

B01 ≈ a s0
2

s1
2 b

-(n + m)/2

= a1 - R0
2

1 - R1
2 b

-(n + m)/2

.

Therefore, the result favors the model that provides the better fit using R2 as the fit measure. 
If we stretch Zellner’s analysis a bit by interpreting model 1 as the model and model 0 as “no 
model” (that is, the relevant part of B0 = 0, so R0

2 = 0), then the ratio simplifies to

B01 = (1 - R1
2)(n + m)/2.

Thus, the better the fit of the regression, the lower the Bayes factor in favor of model 0 (no 
model), which makes intuitive sense.

Zellner and Siow (1980) have continued this analysis with noninformative priors for B and 
sj

2. Specifically, they use a flat prior for ln s [see (16-7)] and a multivariate Cauchy prior (which 
has infinite variances) for B. Their main result (3.10) is

15A ratio of exponentials that appears in Zellner’s result (his equation 10.50) is omitted. To the order of approximation 
in the result, this ratio vanishes from the final result. (Personal correspondence from A. Zellner to the author.)
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B01 =
1
2 2p

Γ[(k + 1)/2]
 an - K

2
b

k/2

(1 - R2)(n - K - 1)/2.

This result is very much like the previous one, with some slight differences due to degrees of 
freedom corrections and the several approximations used to reach the first one.

16.4.4    LARGE-SAMPLE RESULTS

Although all statistical results for Bayesian estimators are necessarily “finite sample” 
(they are conditioned on the sample data), it remains of interest to consider how the 
estimators behave in large samples.16 Do Bayesian estimators “converge” to something? 
To do this exercise, it is useful to envision having a sample that is the entire population. 
Then, the posterior distribution would characterize this entire population, not a sample 
from it. It stands to reason in this case, at least intuitively, that the posterior distribution 
should coincide with the likelihood function. It will (as usual) save for the influence of 
the prior. But as the sample size grows, one should expect the likelihood function to 
overwhelm the prior. It will, unless the strength of the prior grows with the sample size 
(that is, for example, if the prior variance is of order 1/n). An informative prior will still 
fade in its influence on the posterior unless it becomes more informative as the sample 
size grows.

The preceding suggests that the posterior mean will converge to the maximum 
likelihood estimator. The MLE is the parameter vector that is at the mode of the likelihood 
function. The Bayesian estimator is the posterior mean, not the mode, so a remaining 
question concerns the relationship between these two features. The Bernstein–von Mises 
“theorem” [See Cameron and Trivedi (2005, p. 433) and Train (2003, Chapter 12)] states 
that the posterior mean and the maximum likelihood estimator will coverge to the same 
probability limit and have the same limiting normal distribution. A form of central limit 
theorem is at work.

But for remaining philosophical questions, the results suggest that for large samples, 
the choice between Bayesian and frequentist methods can be one of computational 
efficiency. (This is the thrust of the application in Section 16.8. Note, as well, footnote 1 
at the beginning of this chapter. In an infinite sample, the maintained uncertainty of the 
Bayesian estimation framework would have to arise from deeper questions about the 
model. For example, the mean of the entire population is its mean; there is no uncertainty 
about the parameter.)

16.5	 POSTERIOR DISTRIBUTIONS AND THE GIBBS SAMPLER

The foregoing analysis has proceeded along a set of steps that includes formulating the 
likelihood function (the model), the prior density over the objects of estimation, and 
the posterior density. To complete the inference step, we then analytically derived the 
characteristics of the posterior density of interest, such as the mean or mode, and the 

16The standard preamble in econometric studies, that the analysis to follow is “exact” as opposed to approximate 
or “large sample,” refers to this aspect—the analysis is conditioned on and, by implication, applies only to the 
sample data in hand. Any inference outside the sample, for example, to hypothesized random samples is, like the 
sampling theory counterpart, approximate.
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variance. The complicated element of any of this analysis is determining the moments 
of the posterior density, for example, the mean,

	 un = E[u � data] = Lu

u p(u � data)du.	 (16-19)

There are relatively few applications for which integrals such as this can be derived in 
closed form. (This is one motivation for conjugate priors.) The modern approach to 
Bayesian inference takes a different strategy. The result in (16-19) is an expectation. 
Suppose it were possible to obtain a random sample, as large as desired, from the 
population defined by p(u � data). Then, using the same strategy we used throughout 
Chapter 15 for simulation-based estimation, we could use that sample’s characteristics, 
such as mean, variance, quantiles, and so on, to infer the characteristics of the posterior 
distribution. Indeed, with an (essentially) infinite sample, we would be freed from having 
to limit our attention to a few simple features such as the mean and variance and we 
could view any features of the posterior distribution that we like. The (much less) 
complicated part of the analysis is the formulation of the posterior density.

It remains to determine how the sample is to be drawn from the posterior density. 
This element of the strategy is provided by a remarkable (and remarkably useful) result 
known as the Gibbs sampler.17 The central result of the Gibbs sampler is as follows: We 
wish to draw a random sample from the joint population (x, y). The joint distribution of 
x and y is either unknown or intractable and it is not possible to sample from the joint 
distribution. However, assume that the conditional distributions f(x � y) and f(y � x) are 
known and simple enough that it is possible to draw univariate random samples from 
both of them. The following iteration will produce a bivariate random sample from the 
joint distribution:   

Gibbs Sampler:

1.	 Begin the cycle with a value of x0 that is in the right range of x � y,
2.	 Draw an observation y0 � x0, from the known population y � x,
3.	 Draw an observation xt � yt - 1, from the known population x � y,
4.	 Draw an observation yt � xt from the known population of y � x.

Iteration of steps 3 and 4 for several thousand cycles will eventually produce a random 
sample from the joint distribution. (The first several thousand draws are discarded to 
avoid the influence of the initial conditions—this is called the burn in.) [Some technical 
details on the procedure appear in Cameron and Trivedi (Section 13.5).]

Example 16.5    Gibbs Sampling from the Normal Distribution
To illustrate the mechanical aspects of the Gibbs sampler, consider random sampling from 
the joint normal distribution. We consider the bivariate normal distribution first. Suppose we 
wished to draw a random sample from the population¢x1

x2
≤ ∼ NJ ¢0

0
≤,¢1 r

r 1
≤ R .

As we have seen in Chapter 15, a direct approach is to use the fact that linear functions 
of normally distributed variables are normally distributed. [See (B-80).] Thus, we might 

17See Casella and George (1992).
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transform a series of independent normal draws (u1, u2)′ by the Cholesky decomposition of 
the covariance matrix, ¢x1

x2
≤

i
= J 1 0

u1 u2
R ¢u1

u2
≤

i
= Lui,

where u1 = r and u2 = 21 - r2. The Gibbs sampler would take advantage of the result

x1 � x2 ∼ N[rx2, (1 - r2)],

and
x2 � x1 ∼ N[rx1, (1 - r2)].

To sample from a trivariate, or multivariate population, we can expand the Gibbs sequence 
in the natural fashion. For example, to sample from a trivariate population, we would use the 
Gibbs sequence

x1 � x2, x3 ∼ N[b1,2x2 + b1,3x3, �1�2,3],

x2 � x1, x3 ∼ N[b2,1x1 + b2,3x3, �2�1,3],

x3 � x1, x2 ∼ N[b3,1x1 + b3,2x2, �3�1,2],

where the conditional means and variances are given in Theorem B.7. This defines a three-
step cycle.

The availability of the Gibbs sampler frees the researcher from the necessity of deriving 
the analytical properties of the full, joint posterior distribution. Because the formulation 
of conditional priors is straightforward, and the derivation of the conditional posteriors 
is only slightly less so, this tool has facilitated a vast range of applications that previously 
were intractable. For an example, consider, once again, the classical normal regression 
model. From (16-7), the joint posterior for (B, s2) is

p(B, s2 � y, X) ∝
[vs2]v + 2

Γ(v + 2)
 J 1
s2 R v + 1

 exp(-vs2/s2)[2p]-K/2 �s2(X′X)-1 � -1/2

* exp(-(1/2)(B - b)′[s2(X′X)-1]-1(B - b).

If we wished to use a simulation approach to characterizing the posterior distribution, 
we would need to draw a K + 1 variate sample of observations from this intractable 
distribution. However, with the assumed priors, we found the conditional posterior for 
B in (16-5):

p(B �s2, y, X) = N[b, s2(X′X)-1].

From (16-6), we can deduce that the conditional posterior for s2 �B, y, X is an inverted 
gamma distribution with parameters ms0

2 = vsn 2 and m = v in (16-13):

p(s2 �B, y, X) =
[vsn 2]v + 1

Γ(v + 1)
 J 1
s2 R v

 exp(-vsn 2/s2), sn 2 =
Σi= 1(yi - xi

=B)2

n - K
.

This sets up a Gibbs sampler for sampling from the joint posterior of B and s2. We 
would cycle between random draws from the multivariate normal for B and the inverted 
gamma distribution for s2 to obtain a K + 1 variate sample on (B, s2). [Of course, for 
this application, we do know the marginal posterior distribution for B—see (16-8).]
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The Gibbs sampler is not truly a random sampler; it is a Markov chain—each “draw” 
from the distribution is a function of the draw that precedes it. The random input at 
each cycle provides the randomness, which leads to the popular name for this strategy, 
Markov chain Monte Carlo or MCMC or MC2 (pick one) estimation. In its simplest 
form, it provides a remarkably efficient tool for studying the posterior distributions in 
very complicated models. The example in the next section shows a striking example of 
how to locate the MLE for a probit model without computing the likelihood function 
or its derivatives. In Section 16.8, we will examine an extension and refinement of the 
strategy, the Metropolis–Hasting algorithm.

In the next several sections, we will present some applications of Bayesian inference. 
In Section 16.9, we will return to some general issues in classical and Bayesian estimation 
and inference. At the end of the chapter, we will examine Koop and Tobias’s (2004) 
Bayesian approach to the analysis of heterogeneity in a wage equation based on panel 
data. We used classical methods to analyze these data in Example 15.16.

16.6	 APPLICATION: BINOMIAL PROBIT MODEL

Consider inference about the binomial probit model for a dependent variable that is 
generated as follows (see Sections 17.2–17.4):

	 yi
* = xi

=B + ei, ei ∼ n[0, 1],	 (16-20)

yi = 1 if yi
* 7 0, otherwise yi = 0.	 (16-21)

(Theoretical motivation for the model appears in Section 17.3.) The data consist of 
(y, X) = (yi, xi), i = 1, c, n. The random variable yi has a Bernoulli distribution with 
probabilities

Prob[yi = 1 � xi] = Φ(xi
=B),

Prob[yi = 0 � xi] = 1 - Φ(xi
=B).

The likelihood function for the observed data is

L(y � X, B) = q
n

i= 1
[Φ(xi

=B)]yi[1 - Φ(xi
=B)]1 - yi.

(Once again, we cheat a bit on the notation—the likelihood function is actually the joint 
density for the data, given X and B.) Classical maximum likelihood estimation of B is 
developed in Section 17.3. To obtain the posterior mean (Bayesian estimator), we assume 
a noninformative, flat (improper) prior for B,

p(B) ∝ 1.

The posterior density would be

p(B � y, X) = q n
i= 1[Φ(xi

=B)]yi[1 - Φ(xi
=B)]1 - yi(1)

LB
q n

i= 1[Φ(xi
=B)]yi[1 - Φ(xi

′B)]1 - yi(1)dB

,

and the estimator would be the posterior mean,
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	 Bn = E[B � y, X] =
LB

Bq n
i= 1[Φ(xi

=B)]yi[1 - Φ(xi
=B)]1 - yidB

LB
q n

i= 1[Φ(xi
=B)]yi[1 - Φ(xi

=B)]1 - yidB

.	 (16-22)

Evaluation of the integrals in (16-22) is hopelessly complicated, but a solution using 
the Gibbs sampler and a technique known as data augmentation, pioneered by Albert 
and Chib (1993a), is surprisingly simple. We begin by treating the unobserved yi

*’s as 
unknowns to be estimated, along with B. Thus, the (K + n) * 1 parameter vector is 
U = (B, y*). We now construct a Gibbs sampler. Consider, first, p(B � y*, y, X). If yi

* is 
known, then yi is known [see (16-21)]. It follows that

p(B � y*, y, X) = p(B � y*, X).

This posterior defines a linear regression model with normally distributed disturbances 
and known s2 = 1. It is precisely the model we saw in Section 16.3.1, and the posterior 
we need is in (16-5), with s2 = 1. So, based on our earlier results, it follows that

	 p(B � y*, y, X) = n[b*, (X′X)-1],	 (16-23)

where

b* = (X′X)-1X′y*.

For yi
*, ignoring yi for the moment, it would follow immediately from (16-20) that

p(yi
* �B, X) = n[xi

=B, 1].

However, yi is informative about yi
*. If yi equals one, we know that yi

* 7 0 and if yi 
equals zero, then yi

* … 0. The implication is that conditioned on B, X, and y, yi
* has the 

truncated (above or below zero) normal distribution that is developed in Sections 19.2.1 
and 19.2.2. The standard notation for this is

 p(yi
* � yi = 1, B, xi) = n+[xi

=B, 1],

 p(yi
* � yi = 0, B, xi) = n-[xi

=B, 1].�
(16-24)

Results (16-23) and (16-24) set up the components for a Gibbs sampler that we can 
use to estimate the posterior means E[B � y, X] and E[y* � y, X]. The following is our 
algorithm:

Gibbs Sampler for the Binomial Probit Model
1.	 Compute X′X once at the outset and obtain L such that LL′ = (X′X)-1 (Cholesky 

decomposition).
2.	 Start B at any value such as 0.
3.	 Result (15-4) shows how to transform a draw from U[0, 1] to a draw from the 

truncated normal with underlying mean m and standard deviation s. For this 
application, the draw is

 yi,r
* (r) = xi

=Br - 1 + Φ-1[1 - (1 - U)Φ(xi
=Br - 1)] if yi = 1,

 yi,r
* (r) = xi

=Br - 1 + Φ-1[UΦ(-xi
=Br - 1)] if yi = 0.

This step is used to draw the n observations on yi,r
* (r).
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4.	 Section 15.2.4 shows how to draw an observation from the multivariate normal 
population. For this application, we use the results at step 3 to compute 
b* = (X′X)-1X′y*(r). We obtain a vector, v, of K draws from the N[0, 1] population, 
then B(r) = b* + Lv.

The iteration cycles between steps 3 and 4. This should be repeated several thousand 
times, discarding the burn-in draws, then the estimator of B is the sample mean of the 
retained draws. The posterior variance is computed with the variance of the retained 
draws. Posterior estimates of yi

* would typically not be useful.

Example 16.6    Gibbs Sampler for a Probit Model
In Examples 14.19 through 14.21, we examined Spector and Mazzeo’s (1980) widely traveled 
data on a binary choice outcome. (The example used the data for a different model.) The 
binary probit model studied in the paper was

Prob(GRADEi = 1 �B, xi) = Φ(b1 + b2GPAi + b3TUCEi + b4PSIi).

The variables are defined in Example 14.19. Their probit model is studied in Example 17.3. 
The sample contains 32 observations. Table 16.2 presents the maximum likelihood estimates 
and the posterior means and standard deviations for the probit model. For the Gibbs sampler, 
we used 5,000 draws, and discarded the first 1,000.

The results in Table 16.2 suggest the similarity of the posterior mean estimated with the 
Gibbs sampler to the maximum likelihood estimate. However, the sample is quite small, and 
the differences between the coefficients are still fairly substantial. For a striking example 
of the behavior of this procedure, we now revisit the German health care data examined in 
Example 14.23 and several other examples throughout the book. The probit model to be 
estimated is

Prob(Doctor visitsit 7 0) = Φ(b1 + b2 Ageit + b3 Educationit + b4 Incomeit

+ b5 Kidsit + b6 Marriedit + b7 Femaleit).

The sample contains data on 7,293 families and a total of 27,326 observations. We are 
pooling the data for this application. Table 16.3 presents the probit results for this model 
using the same procedure as before. (We used only 500 draws and discarded the first 100.)

The similarity is what one would expect given the large sample size. We note before 
proceeding to other applications, notwithstanding the striking similarity of the Gibbs sampler 
to the MLE, that this is not an efficient method of estimating the parameters of a probit 
model. The estimator requires generation of thousands of samples of potentially thousands 
of observations. We used only 500 replications to produce Table 16.3. The computations 
took about five minutes. Using Newton’s method to maximize the log likelihood directly took 
less than five seconds. Unless one is wedded to the Bayesian paradigm, on strictly practical 
grounds, the MLE would be the preferred estimator.

Maximum Likelihood Posterior Means and Std. Devs.

Variable Estimate Std. Error Posterior Mean Posterior S.D.

Constant -7.4523 2.5425 -8.6286 2.7995
GPA 1.6258 0.6939 1.8754 0.7668
TUCE 0.0517 0.0839 0.0628 0.0869
PSI 1.4263 0.5950 1.6072 0.6257

TABLE 16.2  Probit Estimates for Grade Equation
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Maximum Likelihood Posterior Means and Std. Devs.

Variable Estimate Std. Error Posterior Mean Posterior S.D.

Constant -0.124332 0.058146 -0.126287 0.054759
Age 0.011892 0.000796 0.011979 0.000801
Education -0.014959 0.003575 -0.015142 0.003625
Income -0.132595 0.046552 -0.126693 0.047979
Kids -0.152114 0.018327 -0.151492 0.018400
Married 0.073518 0.020644 0.071977 0.020852
Female 0.355906 0.016017 0.355828 0.015913

TABLE 16.3  Probit Estimates for Doctor Visits Equation

This application of the Gibbs sampler demonstrates in an uncomplicated case how 
the algorithm can provide an alternative to actually maximizing the log likelihood. We 
do note that the similarity of the method to the EM algorithm in Section E.3.7 is not 
coincidental. Both procedures use an estimate of the unobserved, censored data, and 
both estimate B by using OLS using the predicted data.

16.7	 PANEL DATA APPLICATION: INDIVIDUAL EFFECTS MODELS

We consider a panel data model with common individual effects,

yit = ai + xit
=B + eit, eit ∼ n[0, se

2].

In the Bayesian framework, there is no need to distinguish between fixed and random 
effects. The classical distinction results from an asymmetric treatment of the data and 
the parameters. So, we will leave that unspecified for the moment. The implications will 
emerge later when we specify the prior densities over the model parameters.

The likelihood function for the sample under normality of eit is

p(y �a1, c, an, B, se
2, X) = q

n

i= 1
q
Ti

t= 1
 

1

se22p
 exp¢ -

(yit - ai - xit
=B)2

2se
2 ≤.

The remaining analysis hinges on the specification of the prior distributions. We will 
consider three cases. Each illustrates an aspect of the methodology.

First, group the full set of location (regression) parameters in one (n + K) * 1 
slope vector, G. Then, with the disturbance variance, U = (A, B, se

2) = (G, se
2). Define 

a conformable data matrix, Z = (D, X), where D contains the n dummy variables so 
that we may write the model

y = ZG + E

in the familiar fashion for our common effects linear regression. (See Chapter 11.) We 
now assume the uniform-inverse gamma prior that we used in our earlier treatment of 
the linear model,

p(G, se
2) ∝ 1/se

2.

The resulting (marginal) posterior density for G is precisely that in (16-8) (where now the slope 
vector includes the elements of A). The density is an (n + K) variate t with mean equal to the 
OLS estimator and covariance matrix [(ΣiTi - n - K)/(ΣiTi - n - K - 2)]s2(Z′Z)-1. 
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Because OLS in this model as stated means the within estimator, the implication is that with 
this noninformative prior over (A, B), the model is equivalent to the fixed effects model. 
Note, again, this is not a consequence of any assumption about correlation between effects 
and included variables. That has remained unstated; though, by implication, we would allow 
correlation between D and X.

Some observers are uncomfortable with the idea of a uniform prior over the entire 
real line.18 Formally, our assumption of a uniform prior over the entire real line is an 
improper prior because it cannot have a positive density and integrate to one over the 
entire real line. As such, the posterior appears to be ill defined. However, note that the 
“improper” uniform prior will, in fact, fall out of the posterior, because it appears in both 
numerator and denominator. The practical solution for location parameters, such as a 
vector of regression slopes, is to assume a nearly flat, “almost uninformative” prior. The 
usual choice is a conjugate normal prior with an arbitrarily large variance. (It should be 
noted, of course, that as long as that variance is finite, even if it is large, the prior is 
informative. We return to this point in Section 16.9.)

Consider, then, the conventional normal-gamma prior over (G, se
2) where the 

conditional (on se
2) prior normal density for the slope parameters has mean G0 and 

covariance matrix se
2A, where the (n + K) * (n + K) matrix, A, is yet to be specified. 

[See the discussion after (16-13).] The marginal posterior mean and variance for G for this 
set of assumptions are given in (16-14) and (16-15). We reach a point that presents two 
rather serious dilemmas for the researcher. The posterior was simple with our uniform, 
noninformative prior. Now, it is necessary actually to specify A, which is potentially large. 
(In one of our main applications in this text, we are analyzing models with n = 7,293 
constant terms and about K = 7 regressors.) It is hopelessly optimistic to expect to be 
able to specify all the variances and covariances in a matrix this large, unless we actually 
have the results of an earlier study (in which case we would also have a prior estimate 
of G). A practical solution that is frequently chosen is to specify A to be a diagonal 
matrix with extremely large diagonal elements, thus emulating a uniform prior without 
having to commit to one. The second practical issue then becomes dealing with the 
actual computation of the order (n + K) inverse matrix in (16-14) and (16-15). Under 
the strategy chosen, to make A a multiple of the identity matrix, however, there are 
forms of partitioned inverse matrices that will allow solution to the actual computation.

Thus far, we have assumed that each ai is generated by a different normal distribution, 
-  G0 and A, however specified, have (potentially) different means and variances for the 
elements of A. The third specification we consider is one in which all ai’s in the model 
are assumed to be draws from the same population. To produce this specification, we 
use a hierarchical prior for the individual effects. The full model will be

 yit = ai + xit
=B + eit, eit ∼ n[0, se

2],

 p(B �se
2) = n[B0, se

2A],

 p(se
2) = Gamma(s0

2, m),

 p(ai) = n[ma, ta
2],

 p(ma) = n[a, Q],

 p(ta
2) = Gamma(t0

2, v).

18See, for example, Koop (2003, pp. 22–23), Zellner (1971, p. 20), and Cameron and Trivedi (2005, pp. 425–427).
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We will not be able to derive the posterior density (joint or marginal) for the parameters 
of this model. However, it is possible to set up a Gibbs sampler that can be used to infer 
the characteristics of the posterior densities statistically. The sampler will be driven by 
conditional normal posteriors for the location parameters, [B �A, se

2, ma, ta
2],

[ai �B, se
2, ma, ta

2], and [ma �B, A, se
2, ta

2] and conditional gamma densities for the scale 
(variance) parameters, [se

2 �A, B, ma, ta
2] and [ta

2 �A, B, se
2, ma].19 The assumption of a 

common distribution for the individual effects and an independent prior for B produces 
a Bayesian counterpart to the random effects model.

16.8	� HIERARCHICAL BAYES ESTIMATION OF A RANDOM PARAMETERS 
MODEL

We now consider a Bayesian approach to estimation of the random parameters model.20 
For an individual i, the conditional density for the dependent variable in period t is 
f(yit � xit, Bi), where Bi is the individual specific K * 1 parameter vector and xit is 
individual specific data that enter the probability density.21 For the sequence of T 
observations, assuming conditional (on Bi) independence, person i’s contribution to the 
likelihood for the sample is

	 f(yi � Xi, Bi) = q
T

t= 1
f(yit � xit, Bi),	 (16-25)

where yi = (yi1, c, yiT) and Xi = [xi1, c, xiT]. We will suppose that Bi is distributed 
normally with mean B and covariance matrix �. (This is the “hierarchical” aspect of 
the model.) The unconditional density would be the expected value over the possible 
values of Bi,

	 f(yi � Xi, B, �) = LBi

 q
T

t= 1
f(yit � xit, Bi)fK[Bi �B, �]dBi,	 (16-26)

where fK[Bi �B, �] denotes the K variate normal prior density for Bi given B and �. 
Maximum likelihood estimation of this model, which entails estimation of the deep 
parameters, B, �, then estimation of the individual specific parameters, Bi is considered in 
Sections 15.7 through 15.11. We now consider the Bayesian approach to estimation of 
the parameters of this model.

To approach this from a Bayesian viewpoint, we will assign noninformative prior 
densities to B and �. As is conventional, we assign a flat (noninformative) prior to B. 

19The procedure is developed at length by Koop (2003, pp. 152–153).
20Note that there is occasional confusion as to what is meant by random parameters in a random parameters 
(RP) model. In the Bayesian framework we discuss in this chapter, the “randomness” of the random parameters 
in the model arises from the uncertainty of the analyst. As developed at several points in this book (and in the 
literature), the randomness of the parameters in the RP model is a characterization of the heterogeneity of 
parameters across individuals. Consider, for example, in the Bayesian framework of this section, in the RP model, 
each vector Bi is a random vector with a distribution (defined hierarchically). In the classical framework, each Bi 
represents a single draw from a parent population.
21To avoid a layer of complication, we will embed the time-invariant effect ∆zi in xit

=B. A full treatment in the 
same fashion as the latent class model would be substantially more complicated in this setting (although it is quite 
straightforward in the maximum simulated likelihood approach discussed in Section 15.11).
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The variance parameters are more involved. If it is assumed that the elements of Bi are 
conditionally independent, then each element of the (now) diagonal matrix � may be 
assigned the inverted gamma prior that we used in (16-13). A full matrix � is handled 
by assigning to � an inverted Wishart prior density with parameters scalar K and matrix 
K * I.22 This produces the joint posterior density,

	Λ(B1, c, Bn, B, � � all data) = b q
n

i= 1
q

T

t= 1
f(yit � xit, Bi)fK[Bi �B, �] r * p(B, �).	 (16-27)

This gives the joint density of all the unknown parameters conditioned on the observed 
data. Our Bayesian estimators of the parameters will be the posterior means for these 
(n + 1)K + K(K + 1)/2 parameters. In principle, this requires integration of (16-27) 
with respect to the components. As one might guess at this point, that integration is 
hopelessly complex and not remotely feasible.

However, the techniques of Markov chain Monte Carlo (MCMC) simulation 
estimation (the Gibbs sampler) and the Metropolis–Hastings algorithm enable us to 
sample from the (only seemingly hopelessly complex) joint density 
Λ(B1, c, Bn, B, � � all data) in a remarkably simple fashion. Train (2001 and 2002, 
Chapter 12) describes how to use these results for this random parameters model.23 The 
usefulness of this result for our current problem is that it is, indeed, possible to partition 
the joint distribution, and we can easily sample from the conditional distributions. We 
begin by partitioning the parameters into G = (B, �) and D = (B1, c, Bn). Train 
proposes the following strategy: To obtain a draw from G �D, we will use the Gibbs 
sampler to obtain a draw from the distribution of (B � �, D) and then one from the 
distribution of (� �B, D). We will lay out this first, then turn to sampling from D �B, �.

Conditioned on D and �, B has a K-variate normal distribution with mean 
B = (1/n) � Σi= 1

n Bi and covariance matrix (1/n)�. To sample from this distribution we 
will first obtain the Cholesky factorization of � = LL′ where L is a lower triangular 
matrix. (See Section A.6.11.) Let v be a vector of K draws from the standard normal 
distribution. Then, B + Lv has mean vector B + L * 0 = B and covariance matrix 
LIL′ = �, which is exactly what we need. So, this shows how to sample a draw from 
the conditional distribution B.

To obtain a random draw from the distribution of � �B, D, we will require a random 
draw from the inverted Wishart distribution. The marginal posterior distribution of 
� �B, D is inverted Wishart with parameters scalar K + n and matrix W = (KI + nV), 
where V = (1/n)a n

i= 1(Bi - B)(Bi - B)′. Train (2001) suggests the following strategy 
for sampling a matrix from this distribution: Let M be the lower triangular Cholesky factor 
of W-1, so MM′ = W-1. Obtain K + n draws of vk = K standard normal variates. Then, 

obtain S = Ma aK + n
k = 1 vkvk

= bM′. Then �j = S-1 is a draw from the inverted Wishart 

distribution. [This is fairly straightforward, as it involves only random sampling from the 
standard normal distribution. For a diagonal � matrix, that is, uncorrelated parameters 

22The Wishart density is a multivariate counterpart to the chi-squared distribution. Discussion may be found in 
Zellner (1971, pp. 389–394) and Gelman (2003).
23Train describes the use of this method for mixed (random parameters) multinomial logit models. By writing the 
densities in generic form, we have extended his result to any general setting that involves a parameter vector in 
the fashion described above. The classical version of this appears in Section 15.11 for the binomial probit model 
and in Section 18.2.7 for the mixed logit model.
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in Bi, it simplifies a bit further. A draw for the nonzero kth diagonal element can be 
obtained using (1 + nVkk)/aK + n

k = 1 vrk
2 .]

The difficult step is sampling Bi. For this step, we use the Metropolis–Hastings 
(M–H) algorithm suggested by Chib and Greenberg (1995, 1996) and Gelman et al. 
(2004). The procedure involves the following steps:

1.	 Given B and � and “tuning constant” t (to be described next), compute d = tLv 
where L is the Cholesky factorization of � and v is a vector of K independent 
standard normal draws.

2.	 Create a trial value Bi1 = Bi0 + d where Bi0 is the previous value.
3.	 The posterior distribution for Bi is the likelihood that appears in (16-26) times the 

joint normal prior density, fK[Bi �B, �]. Evaluate this posterior density at the trial 
value Bi1 and the previous value Bi0. Let

R10 =
f(yi � Xi, Bi1)fK(Bi1 �B, �)

f(yi � Xi, Bi0)fK(Bi0 �B, �)
.

4.	 Draw one observation, u, from the standard uniform distribution, U[0, 1].
5.	 If u 6 R10, then accept the trial (new) draw. Otherwise, reuse the old one.

This M–H iteration converges to a sequence of draws from the desired density. Overall, 
then, the algorithm uses the Gibbs sampler and the Metropolis–Hastings algorithm 
to produce the sequence of draws for all the parameters in the model. The sequence 
is repeated a large number of times to produce each draw from the joint posterior 
distribution. The entire sequence must then be repeated N times to produce the sample 
of N draws, which can then be analyzed, for example, by computing the posterior mean.

Some practical details remain. The tuning constant, t, is used to control the iteration. 
A smaller t increases the acceptance rate. But at the same time, a smaller t makes new 
draws look more like old draws so this slows down the process. Gelman et al. (2004) suggest 
t = 0.4 for K = 1 and smaller values down to about 0.23 for higher dimensions, as will be 
typical. Each multivariate draw takes many runs of the MCMC sampler. The process must 
be started somewhere, though it does not matter much where. Nonetheless, a “burn-in” 
period is required to eliminate the influence of the starting value. Typical applications 
use several draws for this burn-in period for each run of the sampler. How many sample 
observations are needed for accurate estimation is not certain, though several hundred 
would be a minimum. This means that there is a huge amount of computation done by 
this estimator. However, the computations are fairly simple. The only complicated step 
is computation of the acceptance criterion at step 3 of the M–H iteration. Depending on 
the model, this may, like the rest of the calculations, be quite simple.

Example 16.7  �  Bayesian and Classical Estimation of Heterogeneity in the 
Returns to Education

Koop and Tobias (2004) study individual heterogeneity in the returns to education using a panel 
data set from the National Longitudinal Survey of Youth (NLSY). In a wage equation such as

ln Wageit = u1,i + u2,i Educationit + g1Experienceit + g2Experienceit
2 + g3Timeit

+ g4Unempit + eit,� (16-28)

individual heterogeneity appears in the intercept and in the returns to education. Received 
estimates of the returns to education, u2 here, computed using OLS, are biased due to the 
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endogeneity of Education in the equation. The missing variables would include ability and 
motivation. Instrumental variable approaches will mitigate the problem (and IV estimators are 
typically larger than OLS), but the authors are concerned that the results might be specific to 
the instrument used. They cite the example of using as an instrumental variable a dummy 
variable for presence of a college in the county of residence, by which the IV estimator will 
deliver the returns to education for those who attend college given that there is a college in 
their county, but not for others (the local average treatment effect rather than the average 
treatment effect). They propose a structural approach based on directly modeling the 
heterogeneity. They examine several models including random parameters (continuous 
variation) and latent class (discrete variation) specifications. They propose extensions of the 
familiar models by introducing covariates into the heterogeneity model (see Example 15.16) 
and by exploiting time variation in schooling as part of the identification strategy. Bayesian 
methods are used for the estimation and inference.24

Several models are considered. The one most preferred is the hierarchical linear model 
examined in Example 15.16:

 u1,i = u1,0 + l1,1Abilityi + l1,2Mother's Educationi + l1,3 Father's Educationi +

 + l1,4 Broken Homei + l1,5 Siblingsi + u1,i,

 u2,i = u2,0 + l2,1 Abilityi + l2,2 Mother's Educationi + l2,3 Father's Educationi

 + l2,4 Broken Homei + l2,5 Siblingsi + u2,i.	 (16-29)

The candidate models are framed as follows:

yit � xit,zit,Ui,G,Se
2 ∼ N[xit

= Ui + zit
= G, Se

2] (main regression model),
  G �MG, VG ∼ N[MG, VG] (normal distribution for location parameters),
  se

-2 �  se-2, he ∼ G(se-2,he) (gamma distribution for 1/se
2),

  Ui �L, wi ∼ f(Ui �L,wi) (varies by model, discrete or continuous),
  L �L ∼ g(L) (varies by model).

The models for Ui �L,wi are either discrete or continuous distributions, parameterized in terms 
of a vector of parameters, L and a vector of time-invariant variables, wi. [Note, for example, 
(16-29).] The model for the regression slopes, G, and the regression variance, se

2, will be 
common to all the specifications. The models for the heterogeneity, Ui �L,wi and for L �L will 
vary with the specification. The models considered are:

1.	 u1, i  = u1,0 and u2,i = u2,0,  no heterogeneity (-24,212),
2.	 Ui  ∼ N[U0, �u],  a simple random parameters model (-15,886),
3.	 u1,i  ∼ N[u1,su12], u2, i = u2,0,  a random effects model (-16,501),
4.	 Ui  = Ug

0 with probability pg,  a latent class model(-16,528),
5.	 f(Ui) = Σg pg f(Ui �Ug

0, Σg),  a finite mixture of normal (-15,898).

(The BIC values for model selection reported in the study are shown in parentheses. These are 
discussed further below.) The preferred model is model 2 with mean function U0 + �wi. This is 

24The authors note, “Although the length of our panel is rather short, this does not create a significant problem for 
us as we employ a Bayesian approach which provides exact finite sample results.” It is not clear at this point what 
problem is caused by the short panel—actually, for most of the sample the panel is reasonably long (see Figure 
15.7)—or how exact inference mitigates that problem. Likewise, “estimates of the individual-level parameters 
obtained from our hierarchical model incorporate not only information from the outcomes of that individual, but 
also incorporate information obtained from the other individuals in the sample.” As the authors carefully note 
later, they do not actually compute individual specific estimates, but rather conditional means for individuals with 
specific characteristics. (Both from p. 828.)

M16_GREE1366_08_SE_C16.indd   718 2/24/17   1:36 PM



	 CHAPTER 16  ✦  Bayesian Estimation and Inference	 719

(16-28) and (16-29). Model 4 could be also augmented with wi. This would be a latent class model 
with prob(ui = ug

0) = exp(wi
=Lg)/Σg= 1

G  exp(wi
=Lg). This model is developed in Section 14.15.2. 

Estimates based on this latent class formulation are shown below.
The data set is an unbalanced panel of 2,178 individuals, altogether 17,919 person-year 

observations with Ti ranging from 1 to 15. (See Figure 15.7.) Means of the data are given in 
Example 15.16.25 Most of the analysis is based on the full data set. However, models involving 
the time-invariant variables were estimated using 1,694 individuals (14,170 person-year 
observations) whose parents have at least 9 years of education. A Gibbs sampler is used with 
11,000 repetitions; the first 1,000 are discarded as the burn-in. (The Gibbs sampler, priors, and 
other computational details are provided in an appendix in the paper.) Two devices are 
proposed to choose among the models. First, the posterior odds ratio in Section 16.4.3 is 
computed. With equal priors for the models, the posterior odds equals the likelihood ratio, 
which is computed for two models, A and B, as exp(lnLA - lnLB). The log likelihoods for models 
1, 2, and 3 are -12,413, -8,046, and -8,153. Small differences in the log likelihoods always 
translate to huge differences in the posterior odds. For these cases, the posterior odds in favor 
of model 2 against model 3 are exp(107), which is overwhelming (“massive”). (The log likelihood 
for the version of model 2 in Example 15.16 is -7,983, which is also vastly better than the 
model 2 here by this criterion.) A second criterion is the Bayesian information criterion, which 
is 2lnL - Klnn, where K is the number of parameters estimated and n is the number of 
individuals (2,170 or 1,694). The BICs for the five models are listed above with the model 
specifications. The model with no heterogeneity is clearly rejected. Among the others, Model 
2, the random parameters specification, is preferred by a wide margin. Model 5, the mixture of 
two normal distributions with heterogeneous means, is second, followed by Model 3, the 
random effects model. Model 4, the latent class model, is clearly the least preferred.

Continuous Distribution of Heterogeneity
The main results for the study are based on the subsample and Model 2. The reported 
posterior means of the coefficient distributions of (16-29) are shown in the right panel in 
Table 16.4. (Results are extracted from Tables IV and V in the paper.) We re-estimated (16-28) 
and (16-29) using the methods of Sections 15.7 and 15.8. The estimates of the parameters 

25The unemployment rate variable in (16-28) is not included in the JAE archive data set that we have used to 
partially replicate this study in Example 15.16 and here.

Random Parameters Model Koop–Tobias Posterior Means

Variable Constant Education Constant Education

Exp 0.12621 0.126

Exp2 -0.00388 -0.004

Time -0.01787 -0.024
Unemployment -0.004
Constant 0.39277 0.09578 0.797 0.070
Ability -0.13177 0.01568 -0.073 0.0125
Mother’s Educ 0.02864 -0.00167 0.021 -0.001
Father’s Educ 0.00242 -0.00022 -0.022 0.002
Broken Home 0.12963 -0.01640 0.115 -0.015
Number Siblings -0.08323 0.00659 -0.079 0.007

TABLE 16.4  Estimated Wage Equations
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of the model are shown in the left panel of Table 16.4. Overall, the mean return is about 
11% (0.11). We did the same analysis with the classical results based on Section 15.10. The 
individual specific estimates are summarized in Figure 16.1 (which is nearly identical to the 
authors’ Figure 3). The results are essentially the same as Koop and Tobias’s. The differences 
are attributable to the different methodologies – the prior distributions will have at least 
some influence on the results – and to our omission of the unemployment rate from the main 
equation. The authors’ reported results suggest that the impact of the unemployment rate on 
the results is minor, which would suggest that the differences in the estimated results primarily 
reflect the different approaches to the analysis. The similarity of the end results would be 
anticipated by the Bernstein–von Mises theorem. (See Section 16.4.4.)

Discrete Distribution of Heterogeneity
Model 4 in the study is a latent class model. The authors fit a model with G = 10 classes. The 
model is a Heckman and Singer style (Section 14.15.7) specification in that the coefficients on 
the time-varying variables are the same in all 10 classes. The class probabilities are specified 
as fixed constants. This provides a discrete distribution for the heterogeneity in Ui. Model 4 
was the least preferred model among the candidates.

We fit a 5 segment latent class model based on (16-28) and (16-29). The parameters on 
the time-varying variables in (16-28) are the same in all classes—only the constant terms and 
the education coefficients differ across the classes. The class probabilities are built on the 
time-invariant effects, ability, parent’s education, etc. (The authors do not report a model with 
this form of heterogeneity.) The log likelihood for this extension of the model is

ln L = a
n

i= 1
 ln a

G

g= 1
 pig(wi)¢qTi

t= 1
 f(yit � u0,g + u1,g Educationit + zit

=G)≤� (16-30)

pig(wi) =
exp(wi

=Lg)

Σg= 1
G  exp(wi

=Lg)
.

Figure 16.1    Random Parameters Estimate of Expected Returns.
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Using the suggested subsample, the log likelihood for the model in (16-30) is 6235.02. When 
the time-invariant variables are not included in the class probabilities, the log likelihood falls 
to 6192.66. By a standard likelihood ratio test, the chi squared is 84.72, with 20 degrees of 
freedom (the 5 additional coefficients in G-1 of the class probabilities). The critical chi squared 
is 31.02. We computed E[u1,i � data] for each individual based on the estimated posterior class 
probabilities as

	 En[u1,i] = Σg= 1
G Pn ig(u1,g � wi, datai)un1,g.� (16-31)

(See Section 14.15.4.) The overall estimate of returns to education is the sample average of 
these, 0.107. Figure 16.2 shows the results of this computation for the 1,694 individuals. We 
then used the method in Section 14.15.4. to estimate the class assignments and computed 
the means of the expected returns for the individuals assigned to each of the 5 classes. 
The results are shown in Table 16.5. Finally, because we now have a complete (estimated) 
assignment of the individuals, we constructed in Figure 16.3 a comparison of distributions of 
the expected coefficients in each of the 5 classes.

This analysis has examined the heterogeneity in the returns to education by a variety 
of model specifications. In the end, the results are quite consistent across the different 
models and based on the two methodologies.

16.9	   SUMMARY AND CONCLUSIONS

This chapter has introduced the major elements of the Bayesian approach to 
estimation and inference. The contrast between Bayesian and classical, or frequentist, 
approaches to the analysis has been the subject of a decades-long dialogue among 

Figure 16.2    Estimated Distribution of Expected Returns Based on Latent Class Model.
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Figure 16.3    Kernel Density Estimates of Expected Returns by Class.
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1 0.147 167
2 0.092 608
3 0.080 189
4 0.123 640
5 0.083 90
Full Sample 0.107 1,694

TABLE 16.5  Estimated Expected Returns to Schooling by Class

practitioners and philosophers. As the frequency of applications of Bayesian methods 
has grown dramatically in the modern literature, however, the approach to the body 
of techniques has typically become more pragmatic. The Gibbs sampler and related 
techniques including the Metropolis–Hastings algorithm have enabled some remarkable 
simplifications of previously intractable problems. For example, recent developments 
in commercial software have produced a wide choice of mixed estimators which are 
various implementations of the maximum likelihood procedures and hierarchical Bayes 
procedures (such as the Sawtooth and MLWin programs). Unless one is dealing with 
a small sample, the choice between these can be based on convenience. There is little 
methodological difference. This returns us to the practical point noted earlier. The choice 
between the Bayesian approach and the sampling theory method in this application 
would not be based on a fundamental methodological criterion, but on purely practical 
considerations—the end result is largely the same.
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This chapter concludes our survey of estimation and inference methods in 
econometrics. We will now turn to two major areas of applications, microeconometrics in 
Chapters 17–19. which is primarily oriented to cross-section and panel data applications, 
and time series and (broadly) macroeconometrics in Chapters 20 and 21.

Key Terms and Concepts

•	Bayes factor
•	Bayes’ theorem
•	Bernstein–von Mises 

theorem
•	Burn in
•	Conjugate prior
•	Data augmentation
•	Gibbs sampler
•	Hierarchical prior
•	Highest posterior density 

(HPD) interval
•	Improper prior
•	Informative prior

•	Inverted gamma 
distribution

•	Inverted Wishart
•	Joint posterior distribution
•	Likelihood function
•	Loss function
•	Markov chain Monte Carlo 

(MCMC)
•	Metropolis–Hastings 

algorithm
•	Multivariate t distribution
•	Noninformative prior
•	Normal-gamma prior
•	Posterior density

•	Posterior mean
•	Precision matrix
•	Predictive density
•	Prior beliefs
•	Prior density
•	Prior distribution
•	Prior odds ratio
•	Prior probabilities
•	Sampling theory
•	Uniform-inverse gamma 

prior
•	Uniform prior

Exercise

1.	 Suppose the distribution of yi �l is Poisson,

f(yi �l) =
exp(-l)lyi

yi!
=

exp(-l)lyi

Γ(yi + 1)
, yi = 0, 1, c, l 7 0.

We will obtain a sample of observations, yi, c, yn. Suppose our prior for l is the 
inverted gamma, which will imply

p(l) ∝
1
l

.

a.	 Construct the likelihood function, p(y1, c, yn �l).
b.	 Construct the posterior density,

p(l � y1, c, yn) =
p(y1, c, yn �l)p(l)

L
∞

0
p(y1, c, yn �l)p(l)dl

.

c.	 Prove that the Bayesian estimator of l is the posterior mean, E[l � y1, c, yn] = y.
d.	 Prove that the posterior variance is Var[l � yl, c, yn] = y/n.
(Hint: You will make heavy use of gamma integrals in solving this problem. Also, 
you will find it convenient to use Σiyi = ny.)
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Applications

1.	 Consider a model for the mix of male and female children in families. Let Ki denote 
the family size (number of children), Ki = 1, c. Let Fi denote the number of 
female children, Fi = 0, c, Ki. Suppose the density for the number of female 
children in a family with Ki children is binomial with constant success probability u:

p(Fi � Ki, u) = ¢Ki

Fi
≤uFi(1 - u)Ki - Fi.

We are interested in analyzing the “probability,” u. Suppose the (conjugate) prior 
over u is a beta distribution with parameters a and b:

p(u) =
Γ(a + b)

Γ(a)Γ(b)
 ua - 1(1 - u)b - 1.

Your sample of 25 observations is given here:

Ki 2 1 1 5 5 4 4 5 1 2 4 4 2 4 3 2 3 2 3 5 3 2 5 4 1

Fi 1 1 1 3 2 3 2 4 0 2 3 1 1 3 2 1 3 1 2 4 2 1 1 4 1

a.	 Compute the classical maximum likelihood estimate of u.
b.	 Form the posterior density for u given (Ki, Fi), i = 1, c, 25 conditioned on a 

and b.
c.	 Using your sample of data, compute the posterior mean assuming a = b = 1.
d.	 Using your sample of data, compute the posterior mean assuming a = b = 2.
e.	 Using your sample of data, compute the posterior mean assuming a = 1 and 

b = 2.
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