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Binary Outcomes and 
Discrete Choices

§
17.1	 INTRODUCTION

This is the first of three chapters that will survey models used in microeconometrics. 
The analysis of individual choice that is the focus of this field is fundamentally about 
modeling discrete outcomes such as purchase decisions, whether or not to buy insurance, 
voting behavior, choice among a set of alternative brands, travel modes or places to 
live, and responses to survey questions about the strength of preferences or about self-
assessed health or well-being. In these and any number of other cases, the dependent 
variable is not a quantitative measure of some economic outcome, but rather an indicator 
of whether or not some outcome has occurred. It follows that the regression methods 
we have used up to this point are largely inappropriate. We turn, instead, to modeling 
probabilities and using econometric tools to make probabilistic statements about the 
occurrence of these events. We will also examine models for counts of occurrences. These 
are closer to familiar regression models, but are, once again, about discrete outcomes of 
behavioral choices. As such, in this setting as well, we will be modeling probabilities of 
events, rather than conditional mean functions.

The models used in this area of study are inherently (and intrinsically) nonlinear. We 
have developed some of the elements of nonlinear modeling in Chapters 7 and 14. 
Those elements are combined in whole in the study of discrete choices. This chapter will 
focus on binary choices, where the model is the probability of an event. Many general 
treatments of nonlinear modeling in econometrics, in fact, focus on only this segment 
of the field. This is reasonable. Nearly the full set of results used more broadly, for 
specification, estimation, inference, and analysis can be developed and understood 
in this particular application. We will take that approach here. Several of the parts of 
nonlinear modeling will be developed in detail in this chapter, then invoked or extended 
in straightforward ways in the chapters to follow.

The models that are analyzed in this and Chapter 18 are built on a platform of 
preferences of decision makers. We take a random utility view of the choices that are 
observed. The decision maker is faced with a situation or set of alternatives and reveals 
something about his or her underlying preferences by the choice that he or she makes. 
The choice(s) made will be affected by observable influences—this is, for example, the 
ultimate objective of advertising—and by unobservable characteristics of the chooser. 
The blend of these fundamental bases for individual choice is at the core of the broad 
range of models that we will examine here.1

1See Greene and Hensher (2010, Chapter 4) for a historical perspective on this approach to model specification.
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726	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

This chapter and Chapter 18 will describe four broad frameworks for analysis. The 
first is the simplest:

Binary Choice: T he individual faces two choices and makes that choice between the 
two that provides the greater utility. Many such settings involve the choice between 
taking an action and not taking that action, for example, the decision whether or not to 
purchase health insurance. In other cases, the decision might be between two distinctly 
different choices, such as the decision whether to travel to and from work via public 
or private transportation. In the binary choice case, the 0/1 outcome is merely a label 
for “no/yes”—the numerical values are a mathematical convenience. This chapter will 
present a lengthy survey of models and methods for binary choices.

The binary choice case naturally extends to cases of more than two outcomes. For 
one example, in our our travel mode case, the individual choosing private transport might 
choose between private transport as driver and private transport as passenger, or public 
transport by train or by bus. Such multinomial (many named) choices are unordered. 
Another case is one that is a constant staple of the online experience. Instead of being 
asked a binary choice, “Did you like our service?”, the hapless surfer will be asked an 
ordered multinomial choice, “On a scale from 1 to 5, how much did you like our service?”

Multinomial Choice: T he individual chooses among more than two choices, once again, 
making the choice that provides the greatest utility. At one level, this is a minor variation 
of the binary choice case—the latter is, of course, a special case of the former. But 
more elaborate models of multinomial choice allow a rich specification of consumer 
preferences. In the multinomial case, the observed response is again a label for the 
selected choice; it might be a brand, the name of a place, or the type of travel mode. 
Numerical assignments are not meaningful in this setting.

Ordered Choice: T he individual reveals the strength of his or her preferences with 
respect to a single outcome. Familiar cases involve survey questions about strength of 
feelings about a particular commodity, such as a movie, or self-assessments of social 
outcomes such as health in general or self-assessed well-being. In the ordered choice 
setting, opinions are given meaningful numeric values, usually 0, 1, . . . , J for some upper 
limit, J. For example, opinions might be labeled 0, 1, 2, 3, 4 to indicate the strength of 
preferences for a product, a movie, a candidate or a piece of legislation. But in this 
context, the numerical values are only a ranking, not a quantitative measure. Thus, a 
“1” is greater than a “0” only in a qualitative sense, not by one unit, and the difference 
between a “2” and a “1” is not the same as that between a “1” and a “0.”

In these three cases, although the numerical outcomes are merely labels of some 
nonquantitative outcome, the analysis will nonetheless have a regresson-style motivation. 
Throughout, the models will be based on the idea that observed covariates are relevant 
in explaining the observed choices and in how changes in those attributes can help 
explain variation in choices. For example, in the binary outcome “did or did not purchase 
health insurance,” a conditioning model suggests that covariates such as age, income, and 
family situation will help explain the choice.  Chapter 18 will describe a range of models 
that have been developed around these considerations.

We will also be interested in a fourth application of discrete outcome models:

Event Counts: T he observed outcome is a count of the number of occurrences. In 
many cases, this is similar to the preceding three settings in that the dependent variable 
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measures an individual choice, such as the number of visits to the physician or the 
hospital, the number of derogatory reports in one’s credit history, the number of vehicles 
in a household’s capital stock, or the number of visits to a particular recreation site. 
In other cases, the event count might be the outcome of some natural process, such as 
the occurrence rate of a disease in a population or the number of defects per unit of 
time in a production process. In these settings, we will be doing a more familiar sort 
of regression modeling. However, the models will still be constructed specifically to 
accommodate the discrete (and nonnegative) nature of the observed response variable 
and the modeling of probabilities of occurrences of events rather than some measure 
of the events themselves.

We will consider these four cases in turn. The four broad areas have many elements in 
common; however, there are also substantive differences between the particular models 
and analysis techniques used in each. This chapter will develop the first topic, models 
for binary choices. In each section, we will include several applications and present the 
single basic model that is the centerpiece of the methodology, and, finally, examine 
some recently developed extensions of the model. This chapter contains a very lengthy 
discussion of models for binary choices. This analysis is as long as it is because, first, the 
models discussed are used throughout microeconometrics—the central model of binary 
choice in this area is as ubiquitous as linear regression. Second, all the econometric issues 
and features that are encountered in the other areas will appear in the analysis of binary 
choice, where we can examine them in a fairly straightforward fashion.

It will emerge that, at least in econometric terms, the models for multinomial and 
ordered choice considered in Chapter 18 can be built from the two fundamental building 
blocks, the model of random utility and the translation of that model into a description of 
binary choices. There are relatively few new econometric issues that arise here.  Chapter 18 
will be largely devoted to suggesting different approaches to modeling choices among 
multiple alternatives and models for ordered choices. Once again, models of preference 
scales, such as movie or product ratings, or self-assessments of health or well-being, can be 
naturally built up from the fundamental model of random utility. Finally,  Chapter 18 will 
develop the well-known Poisson regression model for counts of events. We will then extend 
the model to demonstrate some recent applications and innovations.

Chapters 17 and 18 are a lengthy but far from complete survey of topics in estimating 
qualitative response (QR) models. In general, because the outcome variable in the first 
three of these four cases is merely the name of an event, not the event itself, linear regression 
will be an inappropriate approach. In most cases, the method of estimation is maximum 
likelihood.2 Therefore, readers interested in the mechanics of estimation may want to 
review the material in Appendices D and E before continuing. The various properties of 
maximum likelihood estimators are discussed in Chapter 14. We shall assume 
throughout these chapters that the necessary conditions behind the optimality properties 
of maximum likelihood estimators are met and, therefore, we will not derive or establish 
these properties specifically for the QR models. Detailed proofs for most of these models 

2In the binary choice case, it is possible arbitrarily to assign two numerical values to the outcomes, typically 0 
and 1, and “linearly regress” this constructed variable on the covariates. We will examine this strategy at some 
length with an eye to what information it reveals. The strategy would make little sense in the multinomial choice 
cases. Since the count data case is, in fact, a quantitative regression setting, the comparison of a linear regression 
approach to the intrinsically nonlinear regression approach is worth a close look.
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can be found in surveys by Amemiya (1981), McFadden (1984), Maddala (1983), and 
Dhrymes (1984). Additional commentary on some of the issues of interest in the 
contemporary literature is given by Manski and McFadden (1981) and Maddala and Flores-
Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) contain numerous 
theoretical developments and applications. Greene (2008) and Greene and Hensher (2010) 
provide, among many others, general surveys of discrete choice models and methods.3

17.2	 MODELS FOR BINARY OUTCOMES

For purposes of studying individual behavior, we will construct models that link a 
decision or outcome to a set of factors, at least in the spirit of regression. Our approach 
will be to analyze each of them in the general framework of probability models:

	Prob(event j occurs � x) = Prob(Y = j � x) = F(relevant effects, parameters, x).	 (17-1)

The study of qualitative choice focuses on appropriate specification, estimation, and use 
of models for the probabilities of events, where in most cases, the event is an individual’s 
choice among a set of two or more alternatives. Henceforth, we will use the shorthand,

Prob(Y = 1 � x) = Probability that event of interest occurs � x,

and, naturally, Prob(Y = 0 � x) = [1 - Prob(y = 1 � x)] is the probability that the event 
does not occur.

Example 17.1    Labor Force Participation Model
In Example 5.2, we estimated an earnings equation for the subsample of 428 married women 
who participated in the formal labor market taken from a full sample of 753 observations. The 
semilog earnings equation is of the form

ln earnings = b1 + b2 age + b3 age2 + b4 education + b5 kids + e,

where earnings is hourly wage times hours worked, education is measured in years of 
schooling, and kids is a binary variable that equals one if there are children under 18 in the 
household. What of the other 325 individuals? The underlying labor supply model described 
a market in which labor force participation is the outcome of a market process whereby the 
demanders of labor services are willing to offer a wage based on expected marginal product, 
and individuals themselves make a decision whether or not to accept the offer depending on 
whether it exceeds their own reservation wage. The first of these depends on, among other 
things, education, while the second (we assume) depends on such variables as age, the 
presence of children in the household, other sources of income (husband’s), and marginal 
tax rates on labor income. The sample we used to fit the earnings equation contains data 
on all these other variables. The models considered in this chapter would be appropriate 
for modeling the outcome y = 1 (in the labor force, 428 observations) or 0 (not in the labor 
force, 325 observations). For example, we would be interested how and how significantly the 
presence of children in the household (kids) affects the labor force participation.

Models for explaining a binary dependent variable are typically motivated in 
two contexts. The labor force participation model in Example 17.1 describes a process 
of individual choice between two alternatives in which the choice is influenced by 

3There are dozens of book-length surveys of discrete choice models. Two others that are heavily oriented to an 
application of these methods are Train (2009) and Hensher, Rose, and Greene (2015).
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observable effects (children, tax rates) and unobservable aspects of the preferences of 
the individual. The relationship between voting behavior and income is another example. 
In other cases, the binary choice model arises in a setting in which the nature of the 
observed data dictates the special treatment of a binary dependent variable model. In 
these cases, the analyst is essentially interested in a regression-like model of the sort 
considered in Chapters 2 through 7. With data on the variable of interest and a set of 
covariates, they are interested in specifying a relationship between the former and the 
latter, more or less along the lines of the models we have already studied. For example, 
in a model of the demand for tickets for sporting events, in which the variable of interest 
is number of tickets, it could happen that the observation consists only of whether the 
sports facility was filled to capacity (demand greater than or equal to capacity so Y = 1) 
or not (Y = 0). The event here is still qualitative, but now it is constructed as an indicator 
of a censoring (or not) of an underlying continuous variable, in this case, unobserved 
true demand. It will generally turn out that the models and techniques used in both 
cases (and, indeed, the underlying structure) are the same. Nonetheless, it is useful to 
examine both of them.

17.2.1    RANDOM UTILITY

An interpretation of data on individual choices is provided by a random utility model. Let 
Ua and Ub represent an individual’s utility of two choices. For example, Ua might be the 
utility of rental housing and Ub that of home ownership. The observed choice between the 
two reveals which one provides the greater utility, but not the underlying unobservable 
utilities. Hence, the observed indicator equals 1 if Ua 7 Ub and 0 if Ua … Ub. If we define, 
U = Ua - Ub, then Y = 1(U 7 0) [where 1 (condition) equals 1 if condition is true and 
0 if it is false]. This is precisely the same as the censoring case noted earlier.

A common formulation is the linear random utility model,

	 Ua = w′Ba + za
=Ga + ea and Ub = w′Bb + zb

=Gb + eb.	 (17-2)

In (17-2), the observable (measurable) vector of characteristics of the individual is 
denoted w; this might include gender, age, income, and other demographics. The vectors 
za and zb denote features (attributes) of the two choices that might be choice specific. 
In a voting context, for example, the attributes might be indicators of the competing 
candidates’ positions on important issues. The random terms, ea and eb, represent the 
stochastic elements that are specific to and known only by the individual, but not by the 
observer (analyst). To continue our voting example, ea might represent an intangible, 
general preference for candidate a, such as party affiliation.

The completion of the model for the determination of the observed outcome 
(choice) is the revelation of the ranking of the preferences by the choice the individual 
makes. Thus, if we denote by Y = 1 the consumer’s choice of alternative a, we infer from 
Y = 1 that Ua 7 Ub. Because the outcome is ultimately driven by the random elements 
in the utility functions, we have

 Prob[Y = 1 � w, z a, z b] = Prob[Ua 7 Ub]

 = Prob[(w′Ba + z a
=Ga + ea) - (w′Bb + z b

= Gb + eb) 7 0 �w, za, zb]

 = Prob[{w′(Ba - Bb) + (za
=Ga - zb

=Gb)} + (ea - eb) 7 0 �w, z a, zb]

 = Prob[x′B + e 7 0 � x],
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where x′B collects all the observable elements of the difference of the two utility 
functions and e denotes the difference between the two random elements.

Example 17.2    Structural Equations for a Binary Choice Model
Nakosteen and Zimmer (1980) analyzed a model of migration based on the following structure:4 
For a given individual, the market wage that can be earned at the present location is

yp* = wp
=Bp + ep.

Variables in the equation include age, sex, race, growth in employment, and growth in per capita 
income. If the individual migrates to a new location, then his or her market wage would be

ym* = wm
= Bm + em.

Migration entails costs that are related both to the individual and to the labor market,

C* = z′A + u.

Costs of moving are related to whether the individual is self-employed and whether that 
person recently changed his or her industry of employment. They migrate if the benefit 
ym* - yp* is greater than the cost, C*. The net benefit of moving is

 M* = ym* - yp* - C*

 = wm
= Bm - wp

=Bp - z′A + (em - ep - u)

 = x′B + e.

Because M* is unobservable, we cannot treat this equation as an ordinary regression. The 
individual either moves or does not. After the fact, we observe only ym*  if the individual has moved 
or yp* if he or she has not. But we do observe that M = 1 for a move and M = 0 for no move.

17.2.2    THE LATENT REGRESSION MODEL

Discrete dependent-variable models are often cast in the form of index function models. 
We view the outcome of a discrete choice as a reflection of an underlying regression. 
As an often-cited example, consider the decision to make a large purchase. The theory 
states that the consumer makes a marginal benefit/marginal cost calculation based on 
the utilities achieved by making the purchase and by not making the purchase (and by 
using the money for something else). We model the difference between perceived benefit 
and cost as an unobserved variable y* such that

y* = x′B + e.

Note that this is the result of the net utility calculation in the previous section and in 
Example 17.2. We assume that e has mean zero (there is a constant term in x) and has 
either a logistic distribution with variance p2/3 or a standard normal distribution with 
variance one, or some other specific distribution with known variance. We do not observe 

4A number of other studies have also used variants of this basic formulation. Some important examples are Willis 
and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in Example 17.13 is 
another application. The now standard approach, in which participation equals one if wage offer (xw

= Bw + ew) 
minus reservation wage (xr

=Br + er) is positive, underlies Heckman (1979) and is also used in Fernandez and 
Rodriguez-Poo (1997). Brock and Durlauf (2000) describe a number of models and situations involving individual 
behavior that give rise to binary choice models. The Di Maria et al. (2010) study of the light bulb puzzle in 
Example 17.4 is another example of an elaborate structural random utility model that produces a binary outcome. 
This application is also closely related to Rubin’s (1974, 1978) potential outcomes model discussed in Section 8.5.
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the net benefit of the purchase (i.e., net utility), only whether it is made or not. Therefore, 
our observation is

 y = 1 if y* 7 0,
 y = 0 if y* … 0.

The statement in (17-3) is conveniently denoted y = 1 (y* 7 0). In this formulation, x′B 
is called the index function. The assumption of known variance of e is an innocent 
normalization. Note, once again, the outcomes 0 and 1 are merely labels of the event. 
Now, suppose the variance of e is, instead, an unrestricted parameter s2. The latent 
regression will be y* = x′B + se*, where now e* has variance one. But 
(y*/s) = x′(B/s) + e is the same model with the same data. The observed data will be 
unchanged; y is still 0 or 1, depending only on the sign of y*, not on its scale. This means 
that there is no information about s in the sample data so s cannot be estimated. The 
parameter vector B in this model is only “identified up to scale.”5 The assumption of zero 
for the threshold in (17-4) is likewise innocent if the model contains a constant term (and 
not if it does not).6 Let a be a supposed nonzero threshold and a be the unknown 
constant term and, for the present, x and B contain the rest of the index not including 
the constant term. Then, the probability that y equals one is

	Prob(y* 7 a � x) = Prob(a + x′B + e 7 a � x) = Prob[(a - a) + x′B + e 7 0 � x].� (17-3)

Because a is unknown, the difference (a - a) remains an unknown parameter. The end 
result is that if the model contains a constant term, it is unchanged by the choice of the 
threshold in (17-4). The choice of zero is a normalization with no significance. With the 
two normalizations, then,

	 Prob(y* 7 0 � x) = Prob(e 7 -x′B � x).	 (17-4)

A remaining detail in the model is the choice of the specific distribution for e. We will 
consider several. The overwhelming majority of applications are based either on the 
normal or the logistic distribution. If the distribution is symmetric, as are the normal 
and logistic, then

	 Prob(y* 7 0 � x) = Prob(e 6 x′B � x) = F(x′B),	 (17-5)

where F(t) is the cdf of the random variable, e. This provides an underlying structural 
model for the probability.

17.2.3    FUNCTIONAL FORM AND PROBABILITY

Consider the model of labor force participation suggested in Example 17.1. The respondent 
either participates in the formal labor market (Y = 1) or does not (Y = 0) in the period 
in which the survey is taken. We believe that a set of factors, such as age, marital status, 
education, and work experience, gathered in a vector x, explain the decision, so that

 Prob(Y = 1 � x) = F(x, B)

 Prob(Y = 0 � x) = 1 - F(x, B).�
(17-6)

5In some treatments [e.g., Horowitz (1990) and Lewbel (2000)] it is more convenient to normalize one of the 
elements of B to equal 1 and leave s free to vary. In the end, only B/s is estimated, so this is inconsequential.
6Unless there is some compelling reason, binary choice models should not be estimated without constant terms.
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The set of parameters B reflects the impact of changes in x on the probability. For 
example, among the factors that might interest us is the partial effect of having 
children in the household on the probability of labor force participation. The 
challenge at this point is to devise a suitable specification for the right-hand side of 
the equation.

Our requirement is a model that will produce predictions consistent with the 
underlying theory in (17-5) and (17-6). For a given regressor vector, we would expect

	 0 … Prob(Y = 1 � x) … 1,	 (17-7)

 lim
x′BS -∞

 Prob(Y = 1 � x) = 0,

 lim
x′BS + ∞

 Prob(Y = 1 � x) = 1.�
(17-8)

See Figure 17.1. In principle, any proper, continuous probability distribution defined over 
the real line will suffice. The normal distribution has been used in many analyses, giving 
rise to the probit model,7

	 Prob(Y = 1 � x) = L
x′B

-∞
f(t)dt = Φ(x′B).	 (17-9)

7The term “probit” derives from “probability unit,” in turn from the use of inverse normal probability units in 
bioassay. See Finney (1971) and Greene and Hensher (2010, Ch. 4).

FIGURE 17.1    Model for a Probability.
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The function f(t) is a commonly used notation for the standard normal density 
function and Φ(t) is the cdf. Partly because of its mathematical convenience, the logistic 
distribution,

	 Prob(Y = 1 � x) =
exp(x′B)

1 + exp(x′B)
= Λ(x′B),	 (17-10)

has also been used in many applications. We shall use the notation Λ(.) to indicate the 
logistic distribution function. For this case, the density is Λ(t)[1 - Λ(t)]. This model is 
called the logit model for reasons we shall discuss below. Both of these distributions have 
the familiar bell shape of symmetric distributions and sigmoid shape shown in Figure 17.1. 
Other models which do not assume symmetry, such as the Gumbel model or Type I 
extreme value model,

Prob(Y = 1 � x) = exp[-exp(-x′B)],

complementary log log model,

Prob(Y = 1 � x) = 1 - exp[-exp(x′B)],

and the Burr model,8

Prob(Y = 1 � x) = J exp(x′B)

1 + exp(x′B)
R g

= [Λ(x′B)]g,

have also been employed. Still other distributions have been suggested,9 but the probit 
and logit models are by far the most common frameworks used in econometric 
applications.

The question of which distribution to use is a natural one. The logistic distribution 
is similar to the normal except in the tails, which are considerably heavier. (It more 
closely resembles a t distribution with seven degrees of freedom.) For intermediate 
values of x′B, the two distributions tend to give very similar probabilities. The 
logistic distribution tends to give larger probabilities to Y = 1 when x′B is extremely 
small (and smaller probabilities to Y = 1 when x′B is very large) than the normal 
distribution. It is difficult to provide practical generalities on this basis, however, 
as they would require knowledge of B. We might expect different predictions from 
the two models, however, if the sample contains (1) very few responses (Y’s equal 
to 1) or very few nonresponses (Y’s equal to 0) and (2) very wide variation in an 
important independent variable, particularly if (1) is also true. There are practical 
reasons for favoring one or the other in some cases for mathematical convenience, but 
it is difficult to justify the choice of one distribution or another on theoretical grounds. 
Amemiya (1981) discusses a number of related issues, but as a general proposition, 
the question is unresolved. In most applications, the choice between these two seems 
not to make much difference. As seen in the following example, the symmetric and 
asymmetric distributions can give somewhat different results, and here, the guidance 
on how to choose is unfortunately sparse. On the other hand, for estimation of the 
quantities usually of interest (partial effects), in the sample sizes typical in modern 

8Or Scobit model for a skewed logit model; see Nagler (1994).
9See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984), and Stata (2014).
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research, it turns out that the different functional forms tend to give comfortably 
similar results. The choice of which F(.) to use is ultimately less important than the 
choice of x and x′B. We will examine this proposition in more detail below.

17.2.4    PARTIAL EFFECTS IN BINARY CHOICE MODELS

Most analyses will be directed at examining the relationships between the covariates, 
x, and the probability of the event, Prob(Y = 1 � x) = F(y � x) = F(x′B), typically, the 
partial effects. Whatever distribution is used, it is important to note that the parameters 
of the model (B), like those of any nonlinear model, are not necessarily the partial effects 
we are accustomed to analyzing. In general, via the chain rule,

	
0F(y � x)

0x
= JdF(x′B)

d(x′B)
R * B = f(x′B) * B,	 (17-11)

where f(.) is the density function that corresponds to the distribution function, F(.). For 
the normal distribution (probit model), this result is

0F(y � x)

0x
= f(x′Bprobit) * Bprobit.

For the logistic distribution,

dΛ(x′Blogit)

d(x′Blogit)
=

exp(x′Blogit)

[1 + exp(x′Blogit)]2 = Λ(x′Blogit)[1 - Λ(x′Blogit)],

so, in the logit model,

0F(y � x)

0x
= Λ(x′Blogit)[1 - Λ(x′Blogit)]Blogit.

These values will vary with the values of x. In index function models generally, the set 
of partial effects is a multiple of the coefficient vector.

As we will observe below in several applications, a common empirical regularity for 
estimates of probit and logit models is Bnlogit ≈ 1.6Bnprobit. This might suggest quite a large 
difference between the two models, however, that would be misleading. As a general 
result, the partial effects produced by these two (and other) models will be nearly the 
same. Near the middle of the range of the probabilities, where F(x′B) is roughly 0.5, the 
logistic partial effects will be roughly 0.5(1 9 0.5)Blogit while the probit partial effects 
will be roughly 0.4Bprobit (where 0.4 is the normal density at the point where the cdf 
equals 0.5). If the two partial effects are to be the same, then 0.25Blogit = 0.4Bprobit or 
Blogit = 1.6Bprobit. Observed estimates will vary around this general result. An example 
is shown in Table 17.1.

For computing partial effects one can evaluate the expressions at the sample means 
of the data, producing the partial effects at the averages (PEA),

PEA = Gn(x) = f(x′Bn)Bn .

The means of the data do not always produce a realistic scenario for the computation. 
For example, the mean gender of 0.5 does not correspond to any individual in the sample. 
It is more common to evaluate the partial effects at every actual observation and use 
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the sample average of the individual partial effects, producing the average partial effects 
(APE). The desired computation would be

	 APE = GQn =
1
n a

n

i= 1
f(xi

=Bn)Bn .	 (17-12)

It is usually, the “average partial effect,” that is, the expected value of the partial effect, 
that is actually of interest. Let G0 denote the population parameter. Then,

	 APE0 = G0 = ExJ 0E[y � x]

0x
R .	 (17-13)

One might wonder whether the APE produces a different answer from the PEA. It 
is tempting to suggest that the difference is a small sample effect, but it is not, at least 
not entirely. Assume the parameters are known, and let the average partial effect for 
variable xk be

gk = APEk =
1
n a

n

i= 1

0F(xi
=B)

0xik
=

1
n a

n

i= 1
F′(xi

=B)bk =
1
n a

n

i= 1
gk(xi).

We will compute this at the MLE, Bn . Now, expand this function in a second-order Taylor 
series around the point of sample means, x, to obtain

 gk =
1
n a

n

i= 1
Jgk(x) + a

k

m= 1

0gk(x)

0xm
 (xim - xm) +

1
2 a

K

l= 1
a
K

m= 1

02gk(x)

0xl0xm
 (xil - xl)(xim - xm) + ∆i(x)R

 = gk(x) +
1
2 a

K

l= 1
a
K

m= 1
glmSlm + ∆(x),

where ∆(x) is the remaining higher-order terms. The first of the four terms is the partial 
effect at the sample means. The second term is zero. The third is an average of functions 
of the variances and covariances of the data and the curvature of the probability function 
at the means. The final term is the remainder. Little can be said to characterize these two 
terms in any particular sample. In applications, the difference is usually relatively small.

Another complication for computing partial effects in a nonlinear model arises 
because x will often include dummy variables—for example, a labor force participation 
equation will often contain a dummy variable for marital status. It is not appropriate to 
apply (17-12) for the effect of a change in a dummy variable, or a change of state. The 
appropriate partial effect for a binary independent variable, say, d, would be

	 Pea = Prob[Y = 1 � x(d), d = 1] - Prob[Y = 1 � x(d), d = 0] 	(17-14)

or

	 aPe =
1
n a

n

i= 1
[Prob(Y = 1 � xi,(d), di = 1) - Prob(Y = 1 � xi,(d), di = 0)],

where d denotes the other variables in the model excluding the dummy variable in 
question. Simply taking the derivative with respect to the binary variable as if it were 
continuous provides an approximation that is often surprisingly accurate. In Example 17.3,  
for the binary variable PSI, the average difference in the two probabilities for the probit 
model is 0.374, whereas the derivative approximation is 0.222 * 1.426 = 0.317. In a 
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larger sample, the differences are often very small. Nonetheless, the difference in the 
probabilities is the preferred computation, and is automated in standard software.

If the dummy variable in the choice model is a treatment as PSI is in the example 
below, then the APE would estimate the average treatment, ATE, for the population. But 
the average treatment on the treated, ATET, would require a change in the computation. 
If the treatment were exogenous (e.g., if students were carefully randomly assigned to 
PSI), then computing the APE over the subsample with di = 1, would be an appropriate 
estimator.10 Any difference between ATE and ATET would then be attributable to 
systematic differences in x � d = 1 and x � (d = 0 or d = 1). If the treatment were 
endogenous, then neither APE nor aPe � d = 1 would be an appropriate estimator—
indeed, the model itself would have to be extended. We will treat this case in Section 17.6.

17.2.5    ODDS RATIOS IN LOGIT MODELS

The odds in favor of an event is the ratio Prob(Y = 1)/Prob(Y = 0). For the logit 
model—the result is not meaningful for the other models considered—the odds “in 
favor of Y = 1” are

Odds =
Prob(Y = 1 � x)

Prob(Y = 0 � x)
=

exp(x′B)/[1 + exp(x′B)]

1/[1 + exp(x′B)]
= exp(x′B).

Consider the effect on the odds of the change of a dummy variable, d,

Odds Ratio =
Odds(x, d = 1)

Odds(x, d = 0)
=

Jexp(x′B + d * 1)/[1 + exp(x′B + d * 1)]

1/[1 + exp(x′B + d * 1)]
RJexp(x′B + d * 0)/[1 + exp(x′B + d * 0)]

1/[1 + exp(x′B + d * 0)]
R = exp(d).

Therefore, the change in the odds when a variable changes by one unit somewhat 
resembles a partial effect, though in fact it is not a derivative. “Odds ratios” are reported 
in many studies that are based on logit models. When the experiment of changing the 
variable in question, xk, by one unit is meaningful, exp(bk) for the respective coefficient 
reports the multiplicative change in the ratio. The proportional change would be 
exp(d) - 1. [Received studies always report exp(d), not exp(d) - 1.] If the experiment 
of a change in one unit is not meaningful, the odds ratio, like the simple partial effect, 
could be misleading. Note, in Example 17.8 (Table17.5) below, we have computed a partial 
effect for income of roughly -0.03. However, a change in income of a full unit in these 
data is not a meaningful experiment—the full range of values is about 1.0–3.0. The more 
useful calculation for a variable xk is 0Prob(Y = 1 � x)/0xk * dxk. In Example 17.8, for the 
income variable, dxk = 0.1 would be more informative. A similar computation would 
be appropriate for the odds ratios, though it is unclear how that might be constructed 
independently of the specific change for a specific variable, in which case, the partial 
effect (or elasticity) might be more straightforward. The odds ratio is meaningful for a 
dummy variable, however. We examine an application in Example 17.11.

10Use of linear regression with binary dependent variables to estimate treatment effects in randomized trials 
is discussed in Department of Health and Human Services, Office of Adolescent Health, Evaluation Technical 
Assistance Brief No. 6, December 2014, www.hhs.gov/ash/oah-initiatives/assets/lpm-tabrief.pdf (accessed 
June 2016).
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Example 17.3    Probability Models
The data listed in Appendix Table F14.1 were taken from a study by Spector and Mazzeo 
(1980), which examined whether a new method of teaching economics, the Personalized 
System of Instruction (PSI), significantly influenced performance in later economics 
courses. The “dependent variable” used in the application is GRADE, which indicates 
whether a student’s grade in an intermediate macroeconomics course was higher than 
that in the principles course. The other variables are GPA, their grade point average; 
TUCE, the score on a pretest that indicates entering knowledge of the material; and PSI, 
the binary variable indicator of whether the student was exposed to the new teaching 
method. (Spector and Mazzeo’s specific equation was somewhat different from the one 
estimated here.)

Table 17.1 presents five sets of parameter estimates. The coefficients and average 
partial effects were computed for four probability models: probit, logit, Gompertz, and 
complementary log log and for the linear regression of GRADE on the covariates. The last 
four sets of estimates are computed by maximizing the appropriate log-likelihood function. 
Inference is discussed in the next section, so standard errors are not presented here. The 
scale factor given in the last row is the average of the density function evaluated at the means 
of the variables. If one looked only at the coefficient estimates, then it would be natural to 
conclude that the five models had produced radically different estimates. But a comparison of 
the columns of average partial effects shows that this conclusion is clearly wrong. The models 
are very similar; in fact, the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between 0s and 1s for the 
dependent variable (21 and 11). As such, we might expect similar results for the probit and 
logit models.11 One indicator is a comparison of the coefficients. In view of the different 
variances of the distributions, one for the normal and p2/3 for the logistic, we might expect 
to obtain comparable estimates by multiplying the probit coefficients by p/23 ≈ 1.8. 
Amemiya (1981) found, through trial and error, that scaling by 1.6 instead produced better 
results. This proportionality result is frequently cited. The result in (17-11) may help explain 
the finding. The index x′B is not the random variable. The partial effect in the probit model 
for, say, xk is f(x′Bp)bpk, whereas that for the logit is Λ(1 - Λ)blk. (The subscripts p and l are 
for probit and logit.) Amemiya suggests that his approximation works best at the center of 

11One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel 
distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values of e, 
not to the observed sample of values of the dependent variable.

Linear Logit Probit Comp. Log Log Gompertz

Variable Coeff. APE Coeff. APE Coeff. APE Coeff. APE Coeff. APE

Constant -1.498 – -13.021 – -7.452 – -10.361 – -7.141 –
GPA 0.464 0.464 2.826 0.363 1.626 0.361 2.293 0.413 1.584 0.319
TUCE 0.010 0.010 0.095 0.012 0.052 0.011 0.041 0.007 0.060 0.012
PSIa 0.379 0.379 2.379 0.358 1.426 0.374 1.562 0.312 1.616 0.411
Mean f(x′B)  1.000 0.128 0.222 0.180 0.201

aPartial effects for PSI computed as average of [Prob(Grade = 1 � x(PSI), PSI = 1) - Prob(Grade
= 1 � x(PSI), PSI = 0)].

TABLE 17.1  Estimated Probability Models
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the distribution, where F = 0.5, or x′B = 0 for either distribution. Suppose it is. Then 
f(0) = 0.3989 and Λ(0)[1 - Λ(0)] = 0.25. If the partial effects are to be the same, then 0.3989 
bpk = 0.25blk, or blk = 1.6bpk, which is the regularity observed by Amemiya. Note, though, 
that as we depart from the center of the distribution, the relationship will move away from 1.6. 
Because the logistic density descends more slowly than the normal, for unbalanced samples 
such as ours, the ratio of the logit coefficients to the probit coefficients will tend to be larger 
than 1.6. The ratios for the ones in Table 17.1 are closer to 1.7 than 1.6.

The computation of effects of dummy variables in binary choice settings is an important 
(one might argue, the most important) element of the analysis. One way to analyze the effect 
of a dummy variable on the whole distribution is to compute Prob(Y = 1) over the range of 
x′B (using the sample estimates) and with the two values of the binary variable. Using the 
coefficients from the probit model in Table 17.1, we have the following probabilities as a 
function of GPA, at the mean of TUCE (21.938):

 PSI = 0: Prob(GRADE = 1) = Φ[-7.452 + 1.626GPA + 0.052(21.938)],

 PSI = 1: Prob(GRADE = 1) = Φ[-7.452 + 1.626GPA + 0.052(21.938) + 1.426].

Figure 17.2 shows these two functions plotted over the range of GPA observed in the sample, 
2.0 to 4.0. The partial effect of PSI is the difference between the two functions, which ranges 
from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows that the 
probability that a student’s grade will increase after exposure to PSI is far greater for students 
with high GPAs than for those with low GPAs. At the sample mean of GPA of 3.117, the effect 
of PSI on the probability is 0.465. The simple estimate of the partial effect at the mean is 
0.468. But of course, this calculation does not show the wide range of differences displayed 
in Figure 17.2. The APE averages over the entire distribution, and equals 0.374. This latter 
figure is probably more representative of the desired effect. (In the typical application with a 
much larger sample, the differences in these results will usually be much smaller.)

FIGURE 17.2    Effect of GPA on Predicted Probabilities.
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The odds ratio for the PSI variable is exp(2.379) = 10.6. This would imply that the odds 
of a grade increase for those who take the PSI are more than 10 times the odds for a student 
who does not. From Figure 17.2, for the average student, the odds ratio would appear to be 
about (0.571/0.429)/(0.106/0.894) = 11.1, which is essentially the same result. The partial 
effect of PSI for that student is 0.571 - 0.106 = 0.465. It is clear from Figure 17.2, however, 
that the partial effect of PSI varies greatly depending on the GPA. The odds ratio, being 
a constant, will mask that aspect of the results. The plot in Figure 17.2 is suggestive, but 
imprecise. A more direct analysis would examine the effect of PSI on the probability as 
it varies with GPA. Figure 17.3 shows that effect. The unsurprising conclusion is that the 
impact of PSI is greatest for students in the middle of the grade distribution, not at the low 
end, which might have been expected. We also see that the marginal benefit of PSI actually 
begins to diminish for the students with the highest GPAs, probably because they are most 
likely already to have GRADE = 1. [Figure 17.3 also shows the estimated effect from the linear 
probability, model (Section 17.2.6) which, like the odds ratio, oversimplifies the relationship.]

Example 17.4    The Light Bulb Puzzle: Examining Partial Effects
The light bulb puzzle refers to an observed sluggishness by consumers in adopting energy 
efficient and environmentally less harmful CFL (compact fluorescent light) bulbs in spite of 
their advantageous cost and environmental impacts. Di Maria, Ferreira, and Lazarova (2010) 
examined a survey of Irish energy consumers to learn about the underlying preferences that 
seem to be driving this puzzling outcome. The authors develop a model of utility maximization 
over consumption of conventional lighting and CFL lighting. Utility is derived from two 
sources, consumption of the lighting (in lumens) and environmental impact, I. Determination 
of the binary outcome, “adopt CFL,” is based on maximizing utility from the two sources, 
subject to the costs of adoption, including effort. Individual heterogeneity enters the utility 
calculation (as a random component) through differences in environmental preferences, 
perceived costs, understanding of the technology, the costs of the effort in adoption, and 
differences in individual discount rates.

FIGURE 17.3    Effect of PSI on GRADE by GPA.
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The empirical analysis is based on a survey of 1,500 Irish lighting consumers in the 2001 
Urban Institute Ireland National Survey on Quality of Life. Inputs to the adoption model are 
in three components:

Environmental Interest:12

Support of Kyoto Protocol (1–4), Importance of Environment (1, 2, 3),
Knowledge of Environment (0, 1).

Demographics:

Age, Gender, Marital Status, Family Size, Education (4 levels), Income

Housing Attributes:

Rural, Own/Rent, Detached or Semidetached Number of Rooms,
House Built Before the 1960s.

The authors report coefficient estimates for probit models with standard errors and partial 
effects evaluated at the means of the data. Among the statistically significant results reported 
are partial effects of 0.098 for support of the Kyoto Protocal, 0.044 for the Importance of the 
Environment, and 0.115 for Knowledge of the Environment. Overall, about 30% of the sample 
are adopters. The environmental interest variables, therefore, are found to exert a very large 
influence. The mean values of these variables are 3.05, 2.51, and 0.85, respectively. Thus, 
starting from the base of 3.05, increased support for Kyoto increases the acceptance rate from 
about 0.30 to about 0.398, or roughly a third. For the Importance variable, the change from the 
average to the highest would be about 0.5, and the partial effect is 0.044, so the probability 
would increase by about 0.022 from a base of about 0.3, or about 7.3%, a much smaller 
increase. For the Knowledge variable, the partial effect is 0.115. Increasing this variable from 
0 to 1 would increase the probability from 0.3 by about 0.115, or, again, by about one-third.

The average income in the sample is €22,987. The log of the mean is about 10. An increase 
in the log of income of one unit would take it to 11, or income of about €62,500, which is 
larger than the maximum in the sample. A more reasonable experiment might be to raise 
income by about 10%, in which case the log income rises by about 0.095.The partial effect 
for log income is 0.073. An increase in the log of income of 0.095 would be associated with 
an increase in the average probability of 0.095 * 0.073 = 0.007. This would correspond to 
a 2.3% increase in the probability, from 0.30 to 0.307.

The authors report an experiment with the marginal effects: “As robustness checks we first 
estimated the marginal effects associated with the coefficients in Table 5 at different levels of 
income (1st, 25th, 50th, 75th, and 99th percentile) and educational attainment. The marginal 
impacts discussed above increase monotonically with the level of income and education, 
but these increases are not statistically significant.” That is, they examined the changes in 
the partial effect of education associated with changes in income. Superficially, this is an 
estimation of 0[0Prob(Adopt = 1)/0Education]/0income. This is the analysis in Figure 17.3.

17.2.6    THE LINEAR PROBABILITY MODEL

The binary outcome suggests a regression model,

F(x, B) = x′B,

with

E[y � x] = {0 * [1 - F(x, B)]} + {1 * [F(x, B)]} = F(x, B).

12The authors used a principal component for the three measures in one specification of the model, but the 
preferred specification used the three environmental variables separately.

M17_GREE1366_08_SE_C17.indd   740 2/24/17   1:51 PM



	 Chapter 17  ✦  Binary Outcomes and Discrete Choices	 741

This implies the regression model,

 y = E[y � x] + (y - E[y � x])
 = x′B + e.

The linear probability model (LPM) has a number of shortcomings. A minor 
complication arises because e is heteroscedastic in a way that depends on B. Because 
x′B + e must equal 0 or 1, e equals either -x′B or 1 - x′B, with probabilities 1 - F 
and F, respectively. Thus, you can easily show that in this model,

Var[e � x] = x′B(1 - x′B).

We could manage this complication with an FGLS estimator in the fashion of Chapter 9, 
though this only solves the estimation problem, not the theoretical one.13 A more serious 
flaw is that without some ad hoc tinkering with the disturbances, we cannot be assured 
that the predictions from this model will truly look like probabilities. We cannot constrain 
x′B to the 0–1 interval. Such a model produces both nonsense probabilities and negative 
variances. Five of the 32 observations in Example 17.3 predict negative probabilities. (This 
failure of the model to adhere to the basic assumptions of the theory is sometimes labeled 
“incoherence.”)

In spite of the list of shortcomings, the LPM has been used in a number of recent 
studies. The principal motivation is that it appears to reliably reproduce the partial 
effects obtained from the formal models such as probit and logit—often only the signs 
and statistical significance are of interest. Proponents of the LPM argue that it produces 
a good approximation to the partial effects in the nonlinear models. The authors of the 
study in Example 17.5 state that they obtained similar results from a logit model (in the 
2002 version, a probit model in the 2003 version). If that is always the case, and given the 
restrictiveness and incoherence of the linear specification, what is the LPM’s advantage? 
Proponents point to two:

1.	 Simplicity. This is, of course, dubious because modern software requires merely the 
press of a different button or two for nonlinear models. The argument gains more 
currency in models that contain endogenous variables. We will return to this case 
below.

2.	 Robustness. The assumptions of normality or logisticality (?) are fragile while 
linearity is distribution free. This remains actually to be verified. Researchers 
disagree on the appropriateness of the LPM. For discussion, see Lewbel, Dong, and 
Yang (2012) and Angrist and Pischke (2009).

Example 17.5    Cheating in the Chicago School System—An LPM
Jacob and Levitt (2002, 2003) used a binary choice model to detect cheating by teachers on 
behalf of their students in the Chicago school system. The study developed a method of 
detecting whether test results had been altered. The model used to generate the final results 

13There is a deeper peculiarity about this formulation. In the regression models we have examined up to this 
point, the disturbance, e, is assumed to embody the independent variation of influences (other variables) that are 
generated outside the model. Because the disturbance in this model arises only tautologically through the need to 
have y on the LHS of the equation equal y on the RHS, there is no room in the linear probability model for left-
out variables to explain some of the variation in y. For a given x, e cannot vary independently of x. Although the 
least squares residuals, ei, are algebraically orthogonal to xi, it is difficult to construct a statistical understanding of 
independence or uncorrelatedness of ei and xi.
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in the study is an LPM for the variable “Indicator of classroom cheating.” In one of the main 
results in the paper, the authors report (2002, p. 41): “[T]eachers are roughly 6 percentage 
points more likely to cheat for students who scored in the second quartile (between the 25th 
and 50th percentile) in the prior year, as compared to students scoring at the third or fourth 
quartiles.” The coefficient on the relevant variable in the LPM is 0.057, or roughly 6%. This 
seems like a moderate result. However, only about 1% of the observations in their sample 
are actually classified as having cheated, overall. As such, if 1% is the baseline, the “6 
percentage points” is actually a 600% increase! The moderate result is actually extreme. The 
result is not surprising, however. The linear probability model forces the probability function 
to have the same slope all the way from zero to one. It is clear from Figure 17.1, however, that 
in the extreme tails, such as F(.) = 0.01, the function will be much flatter than in the center 
of the distribution.14 Unless the entire distribution of the data is confined to the extreme ends 
of the range, having to accommodate the middle of the distribution will make the LPM highly 
inaccurate in the tails.15 An implication of this restriction is shown in Figure 17.3.

17.3	 ESTIMATION AND INFERENCE FOR BINARY CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models 
is usually based on the method of maximum likelihood. Each observation is treated as 
a single draw from a Bernoulli distribution (binomial with one draw). The model with 
success probability F(x′B) and independent observations leads to the joint probability, 
or likelihood function,

Prob(Y1 = y1, Y2 = y2, c, Yn = yn � X) = q
yi = 0

[1 - F(xi
=B)] q

yi = 1
F(xi

=B),

where X denotes [xi]i= 1, c, n. The likelihood function for a sample of n observations can 
be conveniently written as

	 L(B � data) = q
n

i= 1
[F(xi

=B)]yi[1 - F(xi
=B)]1 - yi.	 (17-15)

Taking logs, we obtain

	 ln L = a
n

i= 1
{yi ln F(xi

=B) + (1 - yi) ln[1 - F(xi
=B)]}.16	 (17-16)

The likelihood equations are

	
0 ln L

0B
= a

n

i= 1
Jyi 

fi

Fi
+ (1 - yi) 

-fi

(1 - Fi)
Rxi = 0,	 (17-17)

where fi is the density, dFi/d(xi
=B). [In (17-17) and later, we will use the subscript i to 

indicate that the function has an argument xi
=B.] The choice of a particular form for Fi 

leads to the empirical model.
Unless we are using the linear probability model, the likelihood equations in (17-17) 

will be nonlinear and require an iterative solution. All of the models we have seen thus 

14This result appears in the 2002 (NBER) version of the paper, but not in the 2003 version.
15See Wooldridge (2010, pp. 562–564).
16If the distribution is symmetric, as the normal and logistic are, then 1 - F(x′B) = F(-x′B). There is a further 
simplification. Let q = 2y - 1. Then ln L = Σi ln F(qixi

=B).
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far are relatively straightforward to calibrate. For the logit model, by inserting (17-10) in 
(17-17), we get, after a bit of manipulation, the likelihood equations,

	
0 ln L

0B
= a

n

i= 1
(yi - Λi)xi = 0.	 (17-18)

Note that if xi contains a constant term, the first-order conditions imply that the average 
of the predicted probabilities must equal the proportion of ones in the sample.17 This 
implication also bears some similarity to the least squares normal equations if we view 
the term yi - Λi as a residual.18 For the probit model, the log likelihood is

	 ln L = a
yi = 0

 ln[1 - Φ(xi
=B)] + a

yi = 1
 ln Φ(xi

=B).	 (17-19)

The first-order conditions for maximizing ln L are

0 ln L
0B

= a
yi = 0

-fi

1 - Φi
 xi + a

yi = 1

fi

Φi
 xi = a

yi = 0
l0ixi + a

yi = 1
l1ixi.

Using the device suggested in footnote 16, we can reduce this to

	
0 log L

0B
= a

n

i= 1
Jqif(qixi

=B)

Φ(qixi
=B)

Rxi = a
n

i= 1
lixi = 0,	 (17-20)

where qi = 2yi - 1.
The actual second derivatives for the logit model are quite simple:

	 H =
02 ln L
0B0B′

= - a
i

Λi(1 - Λi)xixi
=.	 (17-21)

The second derivatives do not involve the random variable yi, so Newton’s method is 
also the method of scoring for the logit model. The Hessian is always negative definite, 
so the log likelihood is globally concave. Newton’s method will usually converge to the 
maximum of the log likelihood in just a few iterations unless the data are especially 
badly conditioned. The computation is slightly more involved for the probit model. A 
useful simplification is obtained by using the variable l(yi, xi

=B) = li that is defined 
in (17-20). The second derivatives can be obtained using the result that for any z, 
df(z)/dz = -zf(z). Then, for the probit model,

	 H =
02 ln L
0B0B′

= a
n

i= 1
- li[li + (qixi

=B)]xixi
=.	 (17-22)

This matrix is also negative definite for all values of B. The proof is less obvious than for 
the logit model.19 It suffices to note that the scalar part in the summation is 
Var[e � e … B′x] - 1 when y = 1 and Var[e � e Ú -B′x] - 1 when y = 0. The 
unconditional variance is one. Because truncation always reduces variance—see 

17The same result holds for the linear probability model. Although regularly observed in practice, the result has 
not been proven for the probit model.
18The first derivative of the log likelihood with respect to the constant term produces the generalized residual in many 
settings. See, for example, Chesher, Lancaster, and Irish (1985) and the equivalent result for the tobit model in Section 
19.3.2.
19See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).

M17_GREE1366_08_SE_C17.indd   743 2/24/17   1:51 PM



744	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

Theorem 18.2—in both cases, the variance is between zero and one, so the value is 
negative.20

The asymptotic covariance matrix for the maximum likelihood estimator can be 
estimated by using the negative inverse of the Hessian evaluated at the maximum 
likelihood estimates. There are also two other estimators available. The Berndt, Hall, 
Hall, and Hausman estimator [see (14-18) and Example 14.4] would be (B)-1 where

B = a
n

i= 1
gi

2xixi
=,

where gi = (yi - �i) for the logit model [see (17-18)] and gi = li for the probit model 
[see (17-20)]. The third estimator would be based on the expected value of the Hessian. 
As we saw earlier, the Hessian for the logit model does not involve yi, so H = E[H]. 
But because li is a function of yi [see (17-20)], this result is not true for the probit model. 
Amemiya (1981) showed that for the probit model,

	 EJ 02 ln L
0B0B′

R
probit

= a
n

i= 1
l0il1ixixi

=.	 (17-23)

Once again, the scalar part of the expression is always negative [note in (17-20) that l0i 
is always negative and li1 is always positive]. The estimator of the asymptotic covariance 
matrix for the maximum likelihood estimator is then the negative inverse of whatever 
matrix is used to estimate the expected Hessian. Because the actual Hessian is generally 
used for the iterations, this option is the usual choice. As we shall see later, though, for 
certain hypothesis tests, the BHHH estimator is a more convenient choice.

17.3.1    ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likelihood 
estimator (QMLE) in view of the possibility that the normal probability model might be 
misspecified. White’s (1982a) robust sandwich estimator for the asymptotic covariance 
matrix of the QMLE (see Section 14.11 for discussion),

est.asy.Var[Bn] = [-Hn ]-1[Bn ][-Hn ]-1,

has been used in a number of studies based on the probit model.21 (Indeed, it is ubiquitous 
in the contemporary literature.) If the probit model is correctly specified, then 
plim(1/n)(Bn ) = plim(1/n)(-Hn ) and either single matrix will suffice, so the robustness 
issue is moot. On the other hand, the probit (Q-) maximum likelihood estimator is not 
consistent in the presence of any form of heteroscedasticity, unmeasured heterogeneity, 
omitted variables (even if they are orthogonal to the included ones), nonlinearity of the 
functional form of the index, or an error in the distributional assumption [with some 
narrow exceptions as described by Ruud (1986)]. Thus, in almost any case, the sandwich 
estimator provides an appropriate asymptotic covariance matrix for an estimator that 
is biased in an unknown direction.22 White raises this issue explicitly, although it seems 
to receive little attention in the literature: “It is the consistency of the QMLE for the 
parameters of interest in a wide range of situations which insures its usefulness as the 

20See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 19.

22See Section 14.11 and Freedman (2006).

21For example, Fernandez and Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner (1993).
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basis for robust estimation techniques” (1982a, p. 4). His very useful result is that, if the 
QMLE converges to a probability limit, then the sandwich estimator can be used under 
certain circumstances to estimate the asymptotic covariance matrix of that estimator. 
But there is no guarantee that the QMLE will converge to anything interesting or useful. 
Simply computing a robust covariance matrix for an otherwise inconsistent estimator 
does not give it redemption. Consequently, the virtue of a robust covariance matrix in 
this setting is unclear. It is true, however, that the robust estimator does appropriately 
estimate the asymptotic covariance for the parameter vector that is estimated by 
maximizing the log likelihood, whether that is B or something else. In practice, because 
the model is generally reasonably specified, the correction usually makes little difference.

Similar considerations apply to the cluster correction of the asymptotic covariance 
matrix for the MLE described in Section 14.8.2. For data with clustered structure, the 
estimator is

V =
C

C - 1
 ¢ - a

C

c = 1
a
Nc

t= 1

02 ln fct(Un)

0Un0Un′
b

-1J a
C

c = 1
¢ aNc

t= 1

0 ln fct(Un)

0Un
≤ ¢ aNc

t= 1

0 ln fct(Un)

0Un′
≤ R

	 ¢ - a
C

c = 1
a
Nc

t= 1

02 ln fct(Un)

0Un0Un′
≤-1

.	 (17-24)

(The analogous form will apply for a panel data arrangement with n groups and Ti 
observations in group i.) The matrix provides an appropriate estimator for the asymptotic 
variance for the MLE. Whether the MLE, itself, estimates the parameter vector of 
interest when the observations are correlated (clustered) is a separate issue.

Example 17.6    Robust Covariance Matrices for Probit and LPM Estimators
In Example 7.6, we considered nonlinear least squares estimation of a loglinear model for the 
number of doctor visits variable shown in Figure 14.6. The data are drawn from the Riphahn et 
al. (2003) data set in Appendix Table F7.1. We will continue that analysis here by fitting a more 
detailed model for the binary variable Doctor = 1 (DocVis 7 0). The index function for the model is

 Prob(Doctor = 1 � xit] = F(b1 + b2 Ageit + b3 Educit + b4 Incomeit + b5 Kidsit

+ b6 Health Satisfactionit + b7 Marital Statusit).

The data are an unbalanced panel of 27,326 household-years in 7,293 groups. We will 
examine the 3,377 observations in the 1994 wave, then the full data set. Descriptive 
statistics for the variables in the model are given in Table 17.2. (We will use these data in 

Full Panel: n = 27,326 1994 Wave: n = 3,377

Variable Mean
Standard 
Deviation Minimum Maximum Mean

Standard 
Deviation

Doctor 0.629 0.483 0 1 0.658 0.474
Age 43.526 11.330 25 64 42.627 11.586
Education 11.321 2.325 7 18 11.506 2.403
Income 0.352 0.177 0.0015 3.0671 0.445 0.217
Kids 0.403 0.490 0 1 0.388 0.487
Health Sat. 6.786 2.294 0 10 6.643 2.215
Married 0.759 0.428 0 1 0.710 0.454

Table 17.2  Descriptive Statistics for Binary Choice Model
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several examples to follow.) Table 17.3 presents two sets of estimates for each of the probit 
model and the linear probability model. The 1994 wave of the panel is used for the top panel 
of results. The comparison is between the conventional standard errors and the robust 
standard errors. These would be the White estimator for the LPM and the robust estimator 
in (14-36) for the MLE. In both cases, there is essentially no difference in the estimated 
standard errors. This would be the typical result. The lower panel shows the impact of 
correcting the standard errors of the pooled estimator in a panel. The robust standard errors 
are based on (17-24). In this case, there is a tangible difference, though perhaps less than 
one might expect. The correction for clustering produces a 20% to 50% increase in the 
standard errors.

17.3.2    HYPOTHESIS TESTS

The full menu of procedures is available for testing hypotheses about the coefficients. 
The simplest method for a single restriction would be the usual t tests, using the standard 
errors from the estimated asymptotic covariance matrix for the MLE. Based on the 
asymptotic normal distribution of the estimator, we would use the standard normal table 
rather than the t table for critical points. (See the several previous examples.) For more 
involved restrictions, it is possible to use the Wald test. For a set of restrictions RB = q, 
the statistic is

W = (RBn - q)′{R(est.asy.Var[Bn])R′}-1(RBn - q).

Cross Section Estimates, 1994 Wave

Probit Model Linear Probability Model

Variable Coefficient
Standard 

Error
Robust Std. 

Error Coefficient Std. Error
Robust Std. 

Error

Constant 1.69384 0.18199 0.18063 1.05062 0.05986 0.05840
Age 0.00448 0.00240 0.00238 0.00147 0.00080 0.00079
Education -0.01205 0.01002 0.01002 -0.00448 0.00343 0.00351
Income -0.09149 0.11187 0.11473 -0.02671 0.03842 0.04016
Kids -0.24557 0.05514 0.05541 -0.08398 0.01874 0.01907
Health Sat. -0.18503 0.01201 0.01187 -0.05800 0.00363 0.00319
Married 0.10571 0.06134 0.06131 0.03666 0.02055 0.02040

Full Panel Data Pooled Estimates

Variable Coefficient Std. Error
Clustered Std. 

Error Coefficient Std. Error
Clustered Std. 

Error

Constant 1.46973 0.06538 0.08687 0.99472 0.02246 0.02988
Age 0.00617 0.00082 0.00107 0.00213 0.00029 0.00037
Education -0.01527 0.00360 0.00499 -0.00587 0.00127 0.00180
Income -0.02838 0.04746 0.05727 -0.00285 0.01667 0.02031
Kids -0.12993 0.01868 0.02354 -0.04508 0.00656 0.00837
Health Sat. -0.17466 0.00396 0.00490 -0.05757 0.00126 0.00141
Married 0.06591 0.02103 0.02762 0.02363 0.00730 0.00958

Table 17.3  Estimates for Binary Choice Models
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For example, for testing the hypothesis that a subset of the coefficients, say, the last M, 
are zero, the Wald statistic uses R = [0 � IM] and q = 0. Collecting terms, we find that 
the test statistic for this hypothesis is

	 W = BnM
= VM

-1BnM,	 (17-25)

where the subscript M indicates the subvector or submatrix corresponding to the M 
variables and V is the estimated asymptotic covariance matrix of Bn .

Likelihood ratio and Lagrange multiplier statistics can also be computed. The 
likelihood ratio statistic is

Lr = -2[ln LnR - ln LnU],

where LnR and LnU are the likelihood functions evaluated at the restricted and unrestricted 
estimates, respectively.

A common test, which is similar to the F test that all the slopes in a regression are 
zero, is the likelihood ratio test that all the slope coefficients in the probit or logit model 
are zero. For this test, the constant term remains unrestricted. In this case, the restricted 
log likelihood is the same for both probit and logit models,

	 ln L0 = n[P ln P + (1 - P) ln(1 - P)],	 (17-26)

where P is the proportion of the observations that have dependent variable equal to 1. 
These tests of models ML1 and ML2 are shown in Table 17.9 in Example 17.14.

It might be tempting to use the likelihood ratio test to choose between the probit 
and logit models. But there is no restriction involved and the test is not valid for this 
purpose. To underscore the point, there is nothing in its construction to prevent the chi-
squared statistic for this “test” from being negative. Note, again, in Example 17.14, the 
log likelihood for the logit model is -1,991.13 while for the probit model (not shown) 
it is -1,990.36. This might suggest a preference for the probit model, but one could not 
carry out a test based on these results.

The Lagrange multiplier test statistic is Lm = g′Vg, where g is the first derivatives 
of the unrestricted model evaluated at the restricted parameter vector and V is any of the 
estimators of the asymptotic covariance matrix of the maximum likelihood estimator, 
once again computed using the restricted estimates. Davidson and MacKinnon (1984) 
find evidence that E[H] is the best of the three estimators, which gives

	 Lm = ¢ an
i= 1

gixi≤=Jan
i= 1

E[-hi]xixi
= R -1¢ an

i= 1
gixi≤,	 (17-27)

where E[-hi] is defined in (17-21) for the logit model and in (17-23) for the probit 
model. One could use the robust estimator in Section 13.3.1 instead.

For the logit model, when the hypothesis is that all the slopes are zero, the LM 
statistic is

Lm = nR2,

where R2 is the uncentered coefficient of determination in the regression of (yi - y) 
on xi and y is the proportion of 1s in the sample. An alternative formulation based on 
the BHHH estimator, which we developed in Section 14.4.6 is also convenient. For any 
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of the models considered (probit, logit, Gumbel, etc.), the first derivative vector can be 
written as

0 ln L
0B

= a
n

i= 1
gixi = X′Gi,

where G(n * n) = diag[g1, g2, c, gn] and i is an n * 1 column of 1s. The BHHH 
estimator of the Hessian is (X′G′GX), so the LM statistic based on this estimator is

	 Lm = nJ 1
n

 i′(GX)(X′G′GX)-1(X′G′)iR = nRi
2,	 (17-28)

where Ri
2 is the uncentered coefficient of determination in a regression of a column of 

ones on the first derivatives of the logs of the individual probabilities.
All the statistics listed here are asymptotically equivalent and under the null 

hypothesis of the restricted model have limiting chi-squared distributions with degrees 
of freedom equal to the number of restrictions being tested.

Example 17.7    Testing for Structural Break in a Logit Model
The probit model in Example 17.6, based on Riphahn, Wambach, and Million (2003), is

 Prob(DocVisit 7 0) = Φ(b1 + b2 Ageit + b3 Educationit + b4 Income

 + b5 Kidsit + b6 HealthSatit + b7 Marriedit).

In the original study, the authors split the sample on the basis of gender and fit separate 
models for male- and female-headed households. We will use the preceding results to 
test for the appropriateness of the sample splitting. This test of the pooling hypothesis 
is a counterpart to the Chow test of structural change in the linear model developed in 
Section 6.6.2. Because we are not using least squares (in a linear model), we use the 
likelihood-based procedures rather than an F test as we did earlier. Estimates of the three 
models (based on the 1994 wave of the datra) are shown in Table 17.4. The chi-squared 
statistic for the likelihood ratio test is

LR = -2(-1,990.534 - (-1,117.587 - 840.246)) = 65.402.

The 95% critical value for seven degrees of freedom is 14.067. To carry out the Wald test for 
this hypothesis there are two numerically identical ways to proceed. First, using the estimates 

Pooled Sample Male Female

Variable Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant 1.69384 0.18199 1.51850 0.23388 1.80570 0.30341
Age 0.00448 0.00240 0.00509 0.00331 0.00031 0.00374
Education -0.01205 0.01002 -0.01351 0.01309 0.00842 0.01645
Income -0.09149 0.11187 0.09350 0.15627 -0.30374 0.16447
Kids -0.24557 0.05514 -0.28068 0.07676 -0.26567 0.08357
Health Sat. -0.18503 0.01201 -0.19514 0.01635 -0.16289 0.01797
Married 0.10571 0.06134 0.13027 0.08862 0.08212 0.08862
ln L -1,990.534 -1,117.587 -840.246
Sample Size 3,377 1,812 1,565

TABLE 17.4  Estimated Models for Pooling Hypothesis
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for Male and Female samples separately, we can compute a chi-squared statistic to test the 
hypothesis that the difference of the two coefficients is zero. This would be

W = [BnMale - BnFemale]′[Est.Asy.Var(BnMale) + Est.Asy.Var(BnFemale)]-1[BnMale - BnFemale] = 64.6942.

Another way to obtain the same result is to add to the pooled model the original seven 
variables now multiplied by the Female dummy variable. We use the augmented X matrix 
X* = [X, female * X]. The model with 14 variables is now estimated, and a test of the pooling 
hypothesis is done by testing the joint hypothesis that the coefficients on these seven additional 
variables are zero. The Lagrange multiplier test is carried out by using this augmented model 
as well. To apply (17-28), the necessary derivatives are in (17-18). For the probit model, the 
derivative matrix is simply G* = diag[li] from (17-20). For the LM test, the vector B that is 
used is the one for the restricted model. Thus, Bn* = (BnPooled

= , 0, 0, 0, 0, 0, 0, 0)′. The estimated 
values that appear in G* are simply those obtained from the pooled model. Then,

LM = i′G*X*[(X*′G*′)(G*X*)]-1X*′G*′i = 65.9686.

The pooling hypothesis is rejected by all three procedures.

17.3.3    INFERENCE FOR PARTIAL EFFECTS

The predicted probabilities, F(x′Bn) = Fn, and the estimated partial effects, 
f(x′Bn) * Bn = fn Bn , are nonlinear functions of the parameter estimates. We have three 
methods of computing asymptotic standard errors for these: the delta method, the 
method of Krinsky and Robb, and bootstrapping. All three methods can be found in 
applications in the received literature. Discussion of the various methods and some 
related issues appears in Dowd, Greene, and Norton (2014).

17.3.3.a    The Delta Method

To compute standard errors, we can use the linear approximation approach discussed in 
Section 4.6. For the predicted probabilities,

est.asy.Var[Fn] = [0Fn/0Bn]′V[0Fn/0Bn],
where

V = est.asy.Var[Bn].

The estimated asymptotic covariance matrix of Bn  can be any of those described earlier. 
Let z = x′Bn . Then the derivative vector is

[0Fn/0Bn] = [dFn/dz][0z/0Bn] = fnx.

Combining terms gives

est.asy.Var[Fn] = fn 2x′Vx,

which depends on the particular x vector used. This result is also useful when a partial 
effect is computed for a dummy variable. In that case, the estimated effect is

∆Fn = [Fn � (d = 1)] - [Fn � (d = 0)].

The estimator of the asymptotic variance would be

	 est.asy.Var[∆Fn] = [0∆Fn/0Bn]′V[0∆Fn/0Bn],	 (17-29)
where

[0∆Fn/0Bn] = fn1 * ¢x(d)

1
≤ - fn0 * ¢x(d)

0
≤.
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For the other partial effects, let Gn (x) = fn(x′Bn)Bn . Then

est.asy.Var[Gn (x)] = J 0Gn (x)

0Bn ′
RVJ 0Gn (x)

0Bn ′
R =

.

The matrix of derivatives (the Jacobian) is

fn(x=Bn)a 0Bn

0Bn ′
b + Bn adfn(x)

dz
b a 0z

0Bn ′
b = fn(x)I + adfn(x)

dz
bBnx′.

For the probit model, df(z)/dz = -zf(z), so

est.asy.Var[Gn (x)] = {f(x′Bn)}2 * [I - (x′Bn)Bnx′]V[I - (x′Bn)xBn ′].

For the logit model, fn(x=bn) = Λn(x)[1 - Λn(x)], so

dfn(x=Bn)

dz
= [1 - 2Λn (x)]¢dΛn (x)

dz
≤ = [1 - 2Λn (x)]Λn (x)[1 - Λn (x)].

Collecting terms, we obtain

est.asy.Var[Gn (x)] = {Λn(x)[1 - Λn(x)]}2[I + [1 - 2Λn(x)]Bnx′]Vn [I + [1 - 2Λ(x)]xBn ′].

As before, the value obtained will depend on the x vector used. A common application 
sets x at x, the means of the data.

The average partial effects would be computed as

GnQ =
1
n a

n

i= 1

0F(xi
=Bn)

0xi
= J 1

n a
n

i= 1
f(xi

=Bn) RBn .

The preceding estimator appears to be the mean of a random sample. It would be if 
it were based on the true B. But the n terms based on the same Bn  are correlated. The 
delta method must account for the asymptotic (co)variation of the terms in the sum of 
functions of Bn . To use the delta method to estimate the asymptotic standard errors for 
the average partial effects, APEk

¿
, we would use

 est.asy.Var[GnQ ] =
1
n2 est.asy.VarJan

i= 1
Gn iR

 =
1
n2 a

n

i= 1
a
n

j= 1
 est.asy.cov[Gn i, Gn j]

 =
1
n2 a

n

i= 1
a
n

j= 1
Gi(Bn)Vn Gj

=(Bn)

 = J 1
n a

n

i= 1
Gi(Bn) RVn J 1

n a
n

j= 1
Gj

=(Bn) R ,

where

Gi(Bn) =
0f(xi

=Bn)Bn

0Bn ′
= f(xi

=Bn)I + f′(xi
=Bn)Bnxi

=.

The estimator of the asymptotic covariance matrix for the APE is simply

est.asy.Var[GnQ ] = G(Bn) Vn  G′(Bn).
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The appropriate covariance matrix is computed by making the same adjustment as in 
the partial effects—the derivative matrices are averaged over the observations rather 
than being computed at the means of the data.

17.3.3.b    An Adjustment to the Delta Method

The delta method treats the data as fixed in repeated samples. If, instead, the APE were 
treated as a parameter to be estimated—that is, a feature of the population from which 
(yi, xi) are randomly drawn—then the asymptotic variance would account for the 
variation in xi as well.23 In the application, then, there are two sources of variation: the 
first is the sampling variation of the parameter estimator of B and the second is the 
sampling variability due to the variation in x.24 An appropriate asymptotic variance for 
the APE would be the sum of the two terms.25

Assume for the moment that B is known. Then, the APE is

G =
1
n a

n

i= 1

0F(xi
=B)

0xi
= J 1

n a
n

i= 1
 f(xi

=B) RB =
1
n a

n

i= 1
Gi.

Based on the sample of observations on the partial effects, the natural estimator of the 
variance of each of the K estimated partial effects would be

sn g,k
2 =

1
n

 J 1
n - 1 a

n

i= 1
(gk(xi) - gk) R 2

=
1
n

 J 1
n - 1 a

n

i= 1
(PEi,k - APEk) R 2

.26  

The asymptotic variance of the partial effects estimator is intended to reflect the 
variation of the parameter estimator, Bn , whereas the preceding estimator generates the 
variation from the heterogeneity of the sample data while holding the parameter fixed 
at Bn . For example, for a logit model, gnk(xi) = bnkΛ(xi

=Bn)[1 - Λ(xi
=Bn)] = Bnkd

n

i, and dni is 
the same for all k. It follows that

sn g,k
2 = bnk

2J 1
n

 
1

n - 1 a
n

i= 1
(dni - dn

Q)2 R = bnk
2s2

dn
.

The delta method would use, instead, the kth diagonal element of

est.asy.Var[Gn (x)] = {Λn(x)[1 - Λn(x)]}2[I + [1 - 2Λn(x)]Bnx′]Vn [I + [1 - 2Λ(x)]xBn ′].

To account for the variation of the data as well, the variance estimator would be the 
sum of these two terms.

The impact of the adjustment is data dependent. In our experience, it is usually 
minor. (It is trivial in the example below.) We do note that the APEs are sometimes 
computed for specific configurations of x, or specific values, or specific subsets of 
observations. In these cases, the appropriate adjustment, if any, is unclear.

23For example, see equation (17-13).
24The two sources of variation are the disturbances (the random part of the random utility model) and the variation 
of the observed sample of xi. This does raise a question as to the meaning of the standard errors, robust or otherwise, 
computed for the linear probability model.
25See Wooldridge (2010, p. 467 and 2011, pp. 184–186) for formal development of this result.
26See, for example, Contoyannis et al. (2004, p. 498), who reported computing the “sample standard deviation of the 
partial effects.”
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17.3.3.c    The Method of Krinsky and Robb

The method of Krinsky and Robb was described in Section 15.3. For present purposes, 
we will apply the method as follows. The MLEs of the model parameters are Bn  and V. We 
will draw a random sample of R draws from the multivariate normal population with 
this mean and variance. This is done by first computing the Cholesky decomposition of 
V = CC′ where C is a lower triangular matrix. With this in hand, we draw R standard 
multivariate normal vectors wr, then Bn(r) = Bn + Cwr. With each Bn(r), we compute the 
partial effects, either APE or PEA, Gn (r). The estimator of the asymptotic variance is the 
empirical variance of this sample of R observations,

est.asy.Var[Gn ] =
1
R a

R

r = 1
 (Gn (r) - GnQ )2.

Note that Krinsky and Robb will accommodate the sampling variability of Bn  but not 
the sample variation in xi considered in the preceding adjustment to the delta method.

17.3.3.d    Bootstrapping

Bootstrapping is described in Section 15.4. It is essentially the same as Krinsky and 
Robb save that the sample of draws of Bn  (r) is obtained by repeatedly sampling n 
observations from the data with replacement and reestimating the model with each. In 
principle, bootstrapping will automatically account for the extra variation due to the 
data discussed in Section 17.3.2b.

Example 17.8    STANDARD ERRORS FOR PARTIAL EFFECTS
Table 17.5 shows estimates of a simple probit model,

 Prob(DocVisit 7 0) = Φ(b1 + b2 Ageit + b3 Educationit + b4 Incomeit

 + b5 Kidsit + b6 HealthSatit + b7 Marriedit).

We report the average partial effects and the partial effects at the means. These results are 
based on the 1994 wave of the panel in Example 17.7. The sample size is 3,377. As noted 
earlier, the APEs and PEAs differ slightly, but not enough that one would draw a different 
conclusion about the population from one versus the other. In computing the standard errors 
for the APEs, we used the delta method without the adjustment in Section 17.3.2b. When that 
adjustment is made, the results are almost identical. The only change is the standard error for 
the coefficient on health satisfaction which changes from 0.00361 to 0.00362.

Probit Model Average Partial Effects Partial Effects at Means

Variable Coefficient Std. Error
Avg. Partial 

Effect Std. Error
Partial Effect 

at Means Std. Error

Constant 1.69384 0.18199
Age 0.00448 0.00240 0.00150 0.00080 0.00161 0.00086
Education -0.01205 0.01002 -0.00404 0.00336 -0.00433 0.00360
Income -0.09149 0.11187 -0.03067 0.03749 -0.03290 0.04022
Kids -0.24557 0.05514 -0.08358 0.01890 -0.08830 0.01982
Health Sat. -0.18503 0.01201 -0.06202 0.00362 -0.06653 0.00426
Married 0.10571 0.06134 0.02086 0.02086 0.04801 0.02206

Table 17.5  Comparison of Estimators of Partial Effects
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Table 17.6 compares the three methods of computing standard errors for average 
partial effects. These results, in a moderate sized data set, in a typical application, are 
consistent with the theoretical proposition that any of the three methods should be 
useable. The choice could be based on convenience.

Example 17.9    Hypothesis Tests About Partial Effects
Table 17.7 presents the maximum likelihood estimates for the probit model,

 Prob(DocVisit 7 0) = Φ(b1 + b2 Ageit + b3 Educationit + b4 Incomeit

+ b5 Kidsit + b6 Health + b7 Marriedit).

(The column labeled “Interaction Model” is the estimates of the model in Example 17.14.) 
The t ratios listed are used for testing the hypothesis that the coefficient or partial effect is 
zero. The similarity of the t statistics for the coefficients and the partial effects is typical. The 
interpretation differs, however. Consider the test of the hypothesis that the coefficient on Kids 
is zero. The value of -4.45 leads to rejection of the null bypothesis. The same hypothesis 
about the average partial effect produces the same conclusion. The question is, what should 
be the conclusion if these tests conflict? If the t ratio on the APE for Kids were 0.45, then the 
tests would conflict. And, because

APE (Kids) = bkids * E[density � x],

Variable
Avg. Partial 

Effect
Std. Error 

Delta Method
Std. Error 

Krinsky and Robb*
Std. Error 
Bootstrap*

Age 0.00150 0.00080 0.00081 0.00080
Education -0.00404 0.00336 0.00336 0.00372
Income -0.03067 0.03749 0.03680 0.04065
Kids -0.08358 0.01890 0.01839 0.02032
Health Sat. -0.06202 0.00361 0.00384 0.00372
Married 0.02086 0.02086 0.01971 0.02248

*100 Replications.

Table 17.6  Comparison of Methods for Computing Standard Errors for Average Partial Effects

Cross Section Estimation, 1994 Wave

Probit Model Average Partial Effects

Variable Coefficient Std. Error t Ratio
(Interaction 

Model) Estimate Std. Error t Ratio

Constant 1.69384 0.18199 9.31 1.98542 – – –
Age 0.00448 0.00240 1.86 -0.00177 0.00150 0.00080 -1.86
Education -0.01205 0.01002 -1.20 -0.03466 -0.00404 0.00336 -1.20
Income -0.09149 0.11187 -0.82 -0.09903 -0.03067 0.03749 -0.82
Kids -0.24557 0.05514 -4.45 -0.24976 -0.08358 0.01890 -4.42
Health Sat. -0.18503 0.01201 -15.40 -0.18527 -0.06202 0.00362 -17.15
Married 0.10571 0.06134 1.72 -0.10598 0.03571 0.02086 1.71
Age * Educ. 0.00055

Table 17.7  Estimates for Binary Choice Models
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the conflict would be fundamental. We have already rejected the hypothesis that bkids equals 
zero, so the only way that the APE can equal zero is if the second term is zero. But the second 
term is positive by construction—the density must be positive. Worse, if the expected density 
were zero, then all the other APEs would be zero as well. The natural way out of the dilemma 
is to base tests about relevance of variables on the structural model, not on the partial effects. 
The implication runs in the direction from the structure to the partial effects, not the reverse. 
That leaves a question. Is there a use for the standard errors for the partial effects? Perhaps 
not for hypothesis tests, but for developing confidence intervals as in the next example.

Example 17.10    Confidence Intervals for Partial Effects
Continuing the development of Section 17.3.3, the usual approach could be taken for forming 
a confidence interval for the APE. For example, based on the results in Table 17.7, we would 
estimate the APE for Kids to be -0.08358 { 1.96 (0.0189) = [-0.12062 - 0.0465]. As we 
noted in Example 17.3, the single estimate of the APE might not capture the interesting 
variation in the partial effect as other variables change. Figure 17.4 below reproduces the 
APE for PSI as it varies with GPA in the example of the performance in economics courses. 
We have added to Figure 17.3 confidence intervals for the APE of PSI for a set of values of 
GPA ranging from 2 to 4 to show a confidence region.

Example 17.11    Inference about Odds Ratios
The results in Table 17.8 are obtained for a logit model for GRADE in Example 17.3. (The 
coefficient estimates appear in Table 17.1.)

We are interested in the odds ratios for this model, which as we saw in Section 17.2.5, 
would be computed as exp(bnk) for each estimate. Williams (2015) reports the following post-
estimation results for this model using Version 11 (and later) of Stata. (Some detail has been 
omitted.)

FIGURE 17.4    Confidence Region for Average Partial Effect.
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grade | Odds Ratio Std. Err. z P>|z| [95% 
conf.

Interval]

gpa | 16.87972 21.31809 2.24 0.035 1.420194 200.6239

tuce | 1.098832 .1556859 0.67 0.501 .8333651 1.451502

psi | 10.79073 11.48743 2.23 0.025 1.339344 86.93802

This result from a widely used software package provides context to consider what is reported 
and how to interpret it. The estimated odds ratios appear in the first column. To obtain 
the standard errors, we would use the delta method. The Jacobian for each coefficient is 
d[exp(bnk)]/d bnk = exp(bnk), so the standard error would just be the odds ratio times the original 
estimated standard error. Thus, 21.31809 = 16.87972 * 1.26294. But the z is not the ratio 
of the odds ratio to the estimated standard error. It is the z ratio for the original coefficient. On 
the other hand, it would make no sense to test the hypothesis that the odds ratio equals zero, 
because it must be positive. Perhaps the meaningful test would be against the value 1.0, but 
2.24 is not equal to (16.87972 - 1)/21.31898 either. The 2.24 and the P value next to it are 
simply carried over from the original logit model. The implied test is that the odds ratio equals 
one—it is implied by the equality of the coefficient to zero. The confidence interval would 
typically be computed as we did in the previous example, but again, the values shown are not 
equal to 16.87972 { 1.96 (21.31809). They are equal to exp(0.35079) to exp(5.30143) which 
is the confidence interval from the original coefficient. This is logical—we have estimated a 
95% confidence interval for b, so these values do provide a 95% interval for the exponent. In 
Section 4.8.3, we considered whether this would be the shortest 95% confidence interval for a 
prediction of y from ln y, which is what we have done here, and discovered that it is not. On the 
other hand, it is unclear what utility that is not provided by the coefficient would be provided 
by the confidence interval for the odds ratio. Finally, as noted earlier, the odds ratio is useful 
for the conceptual experiment of changing the variable by one unit. For the GPA which ranges 
from 2 to 4 and for PSI which is a dummy variable, these would seem appropriate. TUCE is a 
test score that ranges around 30. A unit change in TUCE might not be as interesting.

17.3.4    INTERACTION EFFECTS

Models with interaction effects, such as

 Prob(DocVisit 7 0) = Λ(b1 + b2Ageit + b3 Educationit + b4 Incomeit

+ b5 Kidsit + b6 Healthit + b7 Marriedit + b8 Ageit * Educationit),

have attracted considerable attention in recent applications of binary choice models.27 
A practical issue concerns the computation of partial effects by standard computer 
packages. Write the model as

Prob(DocVisit 7 0) = Λ(b1x1it + b2x2it + b3x3it + b4x4it + b5x5it +b6x6it +b7x7it +b8x8it).

27See, for example, Ai and Norton (2004) and Greene (2010).

Variable Coefficient
Std.  

Error t Ratio P Value
95% Confidence 

Lower Interval Upper

Constant -13.0213 4.93132 -2.64 0.0083 -22.6866 -3.3561
GPA 2.82611 1.26294 2.24 0.0252 0.35079 5.3014
TUCE 0.09516 0.14155 0.67 0.5014 -0.18228 0.37260
PSI 2.37869 1.06456 2.23 0.0255 0.29218 4.46520

Table 17.8  Estimated Logit Model
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Estimation of the model parameters is routine. Rote computation of partial effects using 
(17-11) will produce

PE8 = 0 Prob(DocVis 7 0)/0x8 = b8Λ(x′B)[1 - Λ(x′B)],

which is what common computer packages will dutifully report. The problem is that 
x8 = x2x3, and PE8 in the previous equation is not the partial effect for x8—there is no 
meaningful partial effect for x8 because x8 = x2x3. Moreover, the partial effects for x2 
and x3 will also be misreported by the rote computation. To revert back to our original 
specification,

 0Prob(DocVis 7 0 � x)/0 Age = Λ(x′B)[1 - Λ(x′B)](b2 + b8 Education),

 0Prob(DocVis 7 0 � x)/0 Education = Λ(x′B)[1 - Λ(x′B)](b3 + b8 Age),

and what is computed as 0Prob(DocVis 7 0 � x)/0(Age * Education) is meaningless. The 
practical problem motivating Ai and Norton (2004) was that the computer package does 
not know that x8 is x2x3, so it computes a partial effect for x8 as if it could vary partially 
from the other variables. The (now) obvious solution is for the analyst to force the 
correct computations of the relevant partial effects by whatever software he or she is 
using, perhaps by programming the computations themselves.28

The practical complication raises a theoretical question that is less clear cut. What is 
the interaction effect in the model? In a linear model based on the preceding, we would 
have

02E[y � x]/0x20x3 = b8,

which is unambiguous. However, in this nonlinear binary choice model, the correct result is

 02E[y � x]/0x20x3 = {Λ(x′B)[1 - Λ(x′B)]}b8 +
{Λ(x′B)[1 - Λ(x′B)][1 - 2Λ(x′B)]}(b2 + b8 Education)(b3 + b8Age).

Not only is b8 not the interesting effect, but there is also a complicated additional 
term. Loosely, we can associate the first term as a direct effect—note that it is the 
naïve term PE8 from earlier. The second part can be attributed to the fact that we 
are differentiating a nonlinear model—essentially, the second part of the partial 
effect results from the nonlinearity of the function. The existence of an interaction 
effect in this model is inescapable—notice that the second part is nonzero (generally) 
even if b8 does equal zero. Whether this is intended to represent an interaction in 
some economic sense is unclear. In the absence of the product term in the model, 
probably not. We can see an implication of this in Figure 17.1. At the point where 
x′B = 0, where the probability equals one half, the probability function is linear. At 
that point, (1 - 2Λ) will equal zero and the functional form effect will be zero as well. 
When x′B departs from zero, the probability becomes nonlinear. (These same effects 
can be shown for the probit model—at x′B = 0, the second derivative of the probit 
probability is -x′Bf(x′B) = 0.)

28The practical issue is now widely understood. Modern computer packages are able to understand model 
specifications stated in structural form. For our example, rather than compute x8, the user would literally 
specifically the instruction to the software as x1, x2, x3, x4, x5, x6, x7, x2*x3 (not computing x8) and the computation 
of partial effects would be done accordingly.
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We developed an extensive application of interaction effects in a nonlinear model in 
Example 7.6. In that application, using the same data for the numerical exercise, we 
analyzed a nonlinear regression E[y � x] = exp(x′B). The results obtained in that study 
were general, and will apply to the application here, where the nonlinear regression is 
E[y � x] = Λ(x′B) or Φ(x′B).

Example 17.12    Interaction Effect
We added an interaction term, Age * Education, to the model in Example 17.9. The model 
is now

 Prob(DocVisit 7 0) = Φ(b1 + b2 Ageit + b3 Educationit + b4 Incomeit + b5 Kidsit

 + b6 Healthit + b7 Marriedit + b8 Ageit * Educationit).

Estimates of the model parameters appear in Table 17.6. Estimation of the probit model 
produces an estimate of b8 of 0.00055. It is not clear what this measures. From the correctly 
specified and estimated model (with the explicit interaction term), the estimated partial effect 
for education is f(x′B)(b3 + b8Age) = -0.00392. By fitting the model with x8 instead of x2 
times x3, we obtain the first term as the (erroneous) partial effect of education, -0.01162. This 
implies that the second term, f(x′B)b8Age, is -0.00392 + 0.01162 = 0.00770. As noted, the 
naïve calculation produces a value that has little to do with the desired result.

17.4	 MEASURING GOODNESS OF FIT FOR BINARY CHOICE MODELS

There have been many fit measures suggested for discrete response models.29 The 
general intent is to devise a counterpart to the R2 in linear regression. The R2 for a linear 
model provides two useful measures. First, when computed as 1 - e′e/y′M0y, it measures 
the success of the estimator at optimizing (minimizing) the fitting criterion, e′e. That is 
the interpretation of R2 as the proportion of the variation of y that is explained by the 
model. Second, when computed as Corr2(y, x′b), it measures the extent to which the 
predictions of the model are able to mimic the actual data. Fit measures for discrete 
choice models are based on the same two ideas. We will discuss several.

17.4.1    FIT MEASURES BASED ON THE FITTING CRITERION

Most applications of binary choice modeling use a maximum likelihood estimator. The 
log-likelihood function itself is the fitting criterion, so as a starting point for considering 
the performance of the estimator, ln LmLe = Σi= 1

n [(1 - yi) ln(1 - Pn i) + yi ln Pn i] is 
computed using the MLEs of the parameters. Following the first motivation for R2, the 
hypothesis that all the slopes in the model are zero is often interesting. The log likelihood 
computed with only a constant term will be ln L0 = n[P0 ln P0 + P1 ln P1] where n is the 
sample size and Pj is the sample proportion of zeros or ones. (Note: ln L0 is based only 
on the sample proportions, so it will be the same regardless of the model.) McFadden’s 
(1974) “Pseudo R2” or “likelihood ratio index” is

RPseudo
2 = LRI = 1 -

ln LMLE

ln L0
.

29See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva 
and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975), Efron 
(1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995). See, as well, Long and Freese 
(2006, Sec. 3.5) for a catalog of fit measures for discrete dependent variable models.
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This measure has an intuitive appeal in that it is bounded by zero and one and it increases 
when variables are added to the model.30 If all the slope coefficients (but not the constant 
term) are zero, then RPseudo

2  equals zero. Unlike R2, there is no way to make RPseudo
2  reach 

one. Moreover, the values between zero and one have no natural interpretation. If 
P(xi

=B) is a proper cdf, then even with many regressors the model cannot fit perfectly 
unless xi

=B goes to + ∞  or - ∞ . As a practical matter, it does happen. But when it does, 
it indicates a flaw in the model, not a good fit. If the range of one of the independent 
variables contains a value, say x*, such that the sign of (x - x*) predicts y perfectly and 
vice versa, then the model will become a perfect predictor. This result also holds in 
general if the sign of x′B gives a perfect predictor for some vector B. For example, one 
might mistakenly include as a regressor a dummy variable that is identical, or nearly so, 
to the dependent variable. In this case, the maximization procedure will break down 
precisely because x′B is diverging during the iterations.31

Notwithstanding all of the preceding, this statistic is very commonly reported 
with empirical results, with references to “fit” and even “proportion of variation 

explained.” A “degrees of freedom correction,” RPseudo
2 = 1 -

ln LMLE - K

ln L0
, has been 

suggested, as well as some similar ad hoc “adjustments,” such as the “Cox and Snell  
RCS

2 = 1 - exp(-(ln LM - ln L0)/n). We note, however, none of these are fit measures 
in the familiar sense, and they are not R2@like measures of explained variation. As a 
final note, another shortcoming of these measures is that they are based on a particular 
estimation criterion. There are other estimators for binary choice models, as shown in 
Example 17.14.

The pseudo R2 will be most useful for comparing one model to another. If the 
models are nested, then the log-likelihood function is the natural choice, as examined 
in the next section. For more general cases, researchers often use one of the information 
criteria, typically the Akaike Information Criterion,

AIC = -2 ln L + 2K  or  AIC/n,

or Schwartz’s Bayesian Information Criterion,

BIC = -2 ln L + K ln n  or  BIC/n.

In general, a lower IC value suggests a better model. In comparing nonnested models, 
some care is needed in interpreting this result, however.

17.4.2    FIT MEASURES BASED ON PREDICTED VALUES

Fit measures based on the predicted probabilities rather than the log likelihood have 
also been suggested. For example, Efron (1978) proposed a direct counterpart to R2,

REfron
2 = 1 -

Σi= 1
n (yi - Pn i)

2

Σi= 1
n (yi - y)2 .

30The log likelihood for a binary choice model must be negative as it is a sum of logs of probabilities. The model 
with fewer variables is a restricted version of the larger model so it must have a smaller log likelihood. Thus, the log-
likelihood function increases when variables are added to the model, and the LRI must be between zero and one. 
For models with continuous variables, the log likelihood can be positive, so these appealing results are not assured.
31See McKenzie (1998) for an application and discussion.
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The ambiguity in this measure comes from treating (yi - Pn i) as a quantitative residual 
when the yi is actually only a label of the outcome. Ben-Akiva and Lerman (1985) and 
Kay and Little (1986) suggested a fit measure that is keyed to the prediction rule,

RBL
2 =

1
n a

n

i= 1
[yiPn i + (1 - yi)(1 - Pn i)],

which can be written as a simple weighted average of the mean predicted probabilities 
of the two outcomes, RBL

2 = P0Pn
Q

0 + P1Pn
Q

1. A difficulty in this computation is that in 
unbalanced samples, the less frequent outcome will usually be predicted very badly by 
the standard procedure, and this measure does not pick up that point. Cramer (1999) 
and Tjur (2009) have suggested an alternative measure, the coefficient of discrimination, 
that directly considers this failure,

 l = (average Pn � yi = 1) - (average Pn � yi = 0)

 = (average(1 - Pn) � yi = 0) - (average(1 - Pn) � yi = 1).

This measure heavily penalizes the incorrect predictions, and because each proportion 
is taken within the subsample, it is not unduly influenced by the large proportionate size 
of the group of more frequent outcomes.

A useful summary of the predictive ability of the model is a 2 * 2 table of the hits 
and misses of a prediction rule such as

	 yn = 1 if Fn 7 F * and 0 otherwise.	 (17-30)

(In information theory, this is labeled a confusion matrix.) The usual threshold value is 
0.5, on the basis that we should predict a one if the model says a one is more likely than 
a zero. Consider, for example, the naïve predictor

	 yn = 1 if P 7 0.5 and 0 otherwise,	 (17-31)

where P is the simple proportion of ones in the sample. This rule will always predict correctly 
100 P% of the observations, which means that the naïve model does not have zero fit. In 
fact, if the proportion of ones in the sample is very high, it is possible to construct examples 
in which the second model will generate more correct predictions than the first! Once again, 
this flaw is not in the model; it is a flaw in the fit measure.32 The important element to bear 
in mind is that the coefficients of the estimated model are not chosen so as to maximize this 
(or any other) fit measure, as they are in the linear regression model where b maximizes R2.

Another consideration is that 0.5, although the usual choice, may not be a very good 
value to use for the threshold. If the sample is unbalanced—that is, has many more ones 
than zeros, or vice versa—then by this prediction rule it might never predict a one 
(or zero). To consider an example, suppose that in a sample of 10,000 observations, only 
1,000 have Y = 1. We know that the average predicted probability in the sample will be 
0.10. As such, it may require an extreme configuration of regressors even to produce a 
Pn  of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every time 
to predict when Y = 1. The obvious adjustment is to reduce F*. Of course, this 
adjustment comes at a cost. If we reduce the threshold F* so as to predict y = 1 more 
often, then we will increase the number of correct classifications of observations that do 

32See Amemiya (1981).
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have y = 1, but we will also increase the number of times that we incorrectly classify as 
ones observations that have y = 0.33 In general, any prediction rule of the form in (17-30) 
will make two types of errors: It will incorrectly classify zeros as ones and ones as zeros. 
In practice, these errors need not be symmetric in the costs that result. For example, in 
a credit scoring model, incorrectly classifying an applicant as a bad risk is not the same 
as incorrectly classifying a bad risk as a good one.34 Changing F* will always reduce the 
probability of one type of error while increasing the probability of the other. There is no 
correct answer as to the best value to choose. It depends on the setting and on the 
criterion function upon which the prediction rule depends.

17.4.3    SUMMARY OF FIT MEASURES

The likelihood ratio index and various modifications of it are related to the likelihood 
ratio statistic for testing the hypothesis that the coefficient vector is zero. Cramer’s 
measure is oriented more toward the relationship between the fitted probabilities and the 
actual values. It is usefully tied to the standard prediction rule yn = 1[Pn 7 0.5]. Whether 
these have a close relationship to any type of fit in the familiar sense is uncertain. In 
some cases, it appears so. But the maximum likelihood estimator, on which many of 
the fit measures are based, is not chosen so as to maximize a fitting criterion based on 
prediction of y as it is in the linear regression model (which maximizes R2). It is chosen to 
maximize the joint density of the observed dependent variables. It remains an interesting 
question for research whether fitting y well or obtaining good parameter estimates is a 
preferable estimation criterion. Evidently, they need not be the same thing.

Example 17.13    Prediction with a Probit Model
Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and 
earnings for a large sample of observations of male members of households in Turkey. Among 
his results, he reports the confusion matrix shown here for a probit model: The estimated 
model is highly significant, with a likelihood ratio test of the hypothesis that the coefficients 
(16 of them) are zero based on a chi-squared value of 69 with 16 degrees of freedom.35 The 
model predicts 491 of 690, or 71.2%, of the observations correctly, although the likelihood 
ratio index is only 0.083. A naïve model, which always predicts that y = 0 because P 6 0.5, 
predicts 487 of 690, or 70.6%, of the observations correctly. This result is hardly suggestive 
of no fit. The maximum likelihood estimator produces several significant influences on the 
probability but makes only four more correct predictions than the naïve predictor.36

Predicted

D = 0 D = 1 Total

Actual D = 0 471 16 487
D = 1 183 20 203
Total 654 36 690

33The technique of discriminant analysis is used to build a procedure around this consideration. In this setting, we 
consider not only the number of correct and incorrect classifications, but also the cost of each type of misclassification.
34See Boyes, Hoffman, and Low (1989).
35This view actually understates slightly the significance of his model, because the preceding predictions are based on a 
bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model applies, however.
36It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the zeros. It hits 
only 10% of the ones in the sample.
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Example 17.14    Fit Measures for a Logit Model
Table 17.9 presents estimates of a logit model for the specification in Example 17.12. 
Results ML1 are the MLEs for the full model. ML2 is a restricted version from which Age, 
Education, and Health are excluded. The variables removed are highly significant; the chi-
squared statistic for the four restrictions is 2(2,137.06 - 1,991.13) = 291.86. The critical 
value for 95% from the chi-squared table with four degrees of freedom is 9.49, so the 
excluded variables significantly contribute to the likelihood for the data. We consider 
the fit of the model based on the measures suggested earlier. The results labeled NLS 
in Table 17.9 were computed by nonlinear least squares, rather than MLE. The criterion 
function is SS(bNLS) = Σ i(yi - Λ(B′xi)2. We are interested in how the fit obtained by this 
alternative estimator compares to that obtained by the MLE. Table 17.10 shows the various 
scalar fit measures. Note, first, the log likelihood strongly favors ML1. The nonlinear least 
squares estimates appear rather different from the MLEs but produce nearly the same log 
likelihood. However, the statistically significant coefficients, on Kids, Health, and Married, 
are actually almost the same, which would explain the finding. The information criteria favor 
ML1 as might be expected. The predictive influence of the excluded variables in ML2 is 
clear in the scalar measures, which generally rise from about 0.01 to 0.10. The Ben-Akiva 
and Lerman measure does not discriminate between the two specifications. Cramer and the 
others are essentially the same. Based on the confusion matrices, the count R2 underscores 
the difficulty of summarizing the fit of the model to the data. The two models do essentially 
equally well, though, at predicting different outcomes. ML1 predicts the zeros much better 
than ML2, but at the cost of many more erroneous predictions of the observations with y 
equal to one. Overall, the results for this model are typical. The ambiguity of the overall picture 
suggests the difficulty of constructing a single scalar measure of fit for a binry choice model. 
The comparison between ML1 and ML2 provided by the Cramer or the other measures 
seems appropriate. However, it is unclear how to interpret the 0.10 value for the fit measures. 
It obviously does not reflect a “proportion of explained variation.” Nor, however, does it (or the 
pseudo R2) have any connection to the ability of the model to predict the outcome variable—
the standard predictor obtains a 67.3% success rate. But the naïve predictor, Doctor = 1, will 
predict correctly 2,222/3,377 or 65.8% of the cases, so the full model improves the success 
rate from 65.8% to 67.3%

Maximum  
Likelihood

ML1

Maximum  
Likelihood

ML2

Nonlinear Least  
Squares

NLS

Constant 3.18430 (4.00) 0.85360 2.98328
Age -0.00097 (0.05) 0.00000 0.00294
Education -0.05054 (0.18) 0.00000 -0.03707
Income -0.15076 (0.81) -0.52235 -0.09437
Kids -0.41358 (4.50) -0.57608 -0.42014
Health -0.30957 (14.9) 0.00000 -0.30032
Married 0.17415 (1.71) 0.37995 0.17301
Age * Education 0.00072 (0.47) 0.00000 0.00028

Table 17.9  �Estimated Parameters for Logit Model for Prob (Doctor=1)  
(Absolute values of z statistics in parentheses for model ML1)

M17_GREE1366_08_SE_C17.indd   761 2/24/17   1:51 PM



762	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

17.5	 SPECIFICATION ANALYSIS

In the linear regression model, we considered two important specification problems: 
the effect of omitted variables and the effect of heteroscedasticity. In the linear 
regression model, y = X1B1 + X2B2 + E, when least squares estimates b1 are computed 
omitting X2,

E[b1] = B1 + [X1
=X1]

-1X1
=X2B2,

unless X1 and X2 are orthogonal or B2 = 0, b1 is biased. If we ignore heteroscedasticity, 
then although the least squares estimator is still unbiased and consistent, it is inefficient 
and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and 
Griliches (1984) have examined these same issues in the setting of the probit and logit 
models. In the context of a binary choice model, they find the following:

1.	 If x2 is omitted from a model containing x1 and x2, (i.e., B2 ≠ 0) then

plim Bn1 = c1B1 + c2B2,

where c1 and c2 are complicated functions of the unknown parameters. The 
implication is that even if the omitted variable is uncorrelated with the included 
one, the coefficient on the included variable will be inconsistent.

2.	 If the disturbances in the underlying model, y = 1[(xi
=B + e) 7 0], are 

heteroscedastic, then the maximum likelihood estimators are inconsistent and 

ML1 ML2 NLS

Based on the log likelihood
  Ln L0 -2,169.27 -2,169.27 -2,169.27
  Ln LM -1,991.13 -2,137.06 -1,991.41
  Chi squared[df] 356.28[7] 64.41[3]

  Pseudo R2 0.08212 0.01484 0.0819923

  Adjusted Pseudo R2 0.07889 0.01162 0.0787654

  AIC 3,998.27 4,290.13 3,998.81
  AIC/n 1.18397 1.27040 1.18413
  BIC 4,047.26 4,339.12 4,047.81
  BIC/n 1.19848 1.28491 1.19864
Based on the predicted outcomes

  Cramer R2 0.09840 0.01867 0.09644

  Cox-Snell R2 0.10013 0.01889 0.09998

  Efron R2 0.09736 0.01827 0.09750

  Ben-Akiva – Lerman R2 0.54992 0.54992 0.54954

  Count R2 0.67338 0.65591 0.67516

  Confusion Matrix C289 866 1155
237 1985 2222
526 2851 3377

S C17 1138 1155
24 2198 2222
41 3336 3377

S C285 870 1155
227 1995 2222
512 2865 3377

S

Table 17.10  Fit Measures for Estimated Logit Models
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the covariance matrix is inappropriate. This is in contrast to the linear regression 
case, where heteroscedasticity only affects the estimated asympotic variance of the 
estimator.

In both of these cases (and others), the impact of the specification error on estimates of 
partial effects and predictions is less clear, but probably of greater interest.

Any of the three methods of hypothesis testing discussed here can be used to analyze 
these two specification problems. The Lagrange multiplier test has the advantage that it 
can be carried out using the estimates from the restricted model, which might bring a 
saving in computational effort for the test for heteroscedasticity.37 To reiterate, the Lagrange 
multiplier statistic is computed as follows. Let the null hypothesis, H0, be a specification of 
the model, and let H1 be the alternative. For example, H0 might specify that only variables 
x1 appear in the model, whereas H1 might specify that x2 appears in the model as well. It 
is assumed that the null model is nested in the alternative. The statistic is

Lm = g0
=V0

-1g0,

where g0 is the vector of derivatives of the log likelihood as specified by H1 but evaluated 
at the maximum likelihood estimator of the parameters assuming that H0 is true, and V0

-1 
is any of the consistent estimators of the asymptotic variance matrix of the maximum 
likelihood estimator under H1, also computed using the maximum likelihood estimators 
based on H0. The statistic has a limiting chi-squared distribution with degrees of freedom 
equal to the number of restrictions.

17.5.1    OMITTED VARIABLES

The hypothesis to be tested is

 H0: y* = x1
=B1 + e,

 H1: y* = x1
=B + x2

=B2 + e,

so the test is of the null hypothesis that B2 = 0. The Lagrange multiplier test would be 
carried out as follows:

1.	 Estimate the model in H0 by maximum likelihood. The restricted coefficient vector 
is [Bn1, 0].

2.	 Let x be the compound vector, [x1, x2].

The statistic is then computed according to (17-27) or (17-28). For a logit model, for 
example, the test is carried out as follows: (1) Fit the null model by ML; (2) Compute 
the fitted probabilities using the null model and the “residuals,” ei = yi - Pi,0 arranged 
in diagonal matrix E; (3) The LM statistic is 1′EX(X′E2X)-1X′E′1. As usual, this can 
be computed as n times an uncentered R2, here in the regression of a column of ones on 
variables eixi. The likelihood ratio test is equally straightforward. Using the estimates 
of the two models, the statistic is simply 2(ln L1 - ln L0). The Wald statistic would be 
based on estimates of the alternative model and is computed as in (17-25).

37The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium on the 
subject of specification tests in discrete choice models is Blundell (1987).
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17.5.2    HETEROSCEDASTICITY

We use the standard formulation analyzed by Harvey (1976)38 (see Section 14.10.3), 
Var[e � z] = [exp(z′G)]2. We will obtain results specifically for the probit model; the logit 
or other models are essentially the same.

The starting point is an extension of the binary choice model,

 y* = x′B + e, y = 1(y* 7 0),

 E[e � x, z] = 0, Var[e � x, z] = [exp(z′G)]2.

There is an ambiguity in the formulation of the model. A nonlinear index function, 
probit model (with no suggestion of heteroscedasticity),

y** =
x′B

exp(z′G)
+ e, y = 1(y** 7 0), e ∼ n[0,1],

leads to the identical log likelihood and the identical estimated parameters. It is not 
possible to distinguish heteroscedasticity from this nonlinearity in the conditional mean 
function.39 Unlike the linear regression model, in this binary choice context, the data 
contain no direct (identifying) information about scaling, or variation of the dependent 
variable. (Hence, the observational equivalence of the two specifications.) The (identical) 
signs of y* and y** are unaffected by the variance function. More broadly, the binary 
choice model creates an ambiguity in the distinction between heteroscedasticity and 
variation in the mean of the underlying regression.

The presence of heteroscedasticity requires some care in interpreting the coefficients. 
For a variable wk that could be in x or z or both,

	
0 Prob(y = 1 � x, z)

0wk
= bf c x′B

exp(z′G)
d  

1
exp(z′G)

r(bk - (x′B)gk).	 (17-32)

Only the first (second) term applies if wk appears only in x (z). This implies that the 
simple coefficient may differ greatly from the effect that is of interest in the estimated 
model. This effect is clearly visible in the next example.40

The log likelihood is

	 ln L = a
n

i= 1
byi ln F¢ xi

=B

exp(zi
=G)

≤ + (1 - yi) lnJ1 - F¢ xi
=B

exp(zi
=G)

≤ R r .	 (17-33)

38See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin (1981), 
Hausman and Wise (1978), Horowitz (1993), and Khan (2013).
39See Khan (2013) for extensive discussion of this observational equivalence. Manski (1988) notes this as well.
40Wooldridge (2010, pp. 602–603) develops the identification issue in terms of the average structural function 
[Blundell and Powell (2004)]; asF(x) = Ez[Φ(exp(-z′G)x′B)]. Under this interpretation, the partial effect is 
0asF(x)/0x = Ez[f(exp(-z′G)x′B)B]. The Average Structural Function treats z and x differently (even if they share 
variables). This computes the function for a fixed x, averaging over the sample values of z. The empirical estimator 
would be 0ASnF(x)/0x = (1/n)Σn

i= 1f[exp(-zi
=Gn)x′Bn]Bn . The author suggests “the uncomfortable conclusion is that we 

have no convincing way of choosing” between (17-32) and this alternative result. Recent applications generally report 
(17-32), notwithstanding this alternative interpretation. One advantage of interpretation (17-32) is that it explicitly 
examines the effect of variation in z on the response probability, particularly in the typical case in which z and x, have 
variables in common.
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To be able to estimate all the parameters, z cannot have a constant term. The derivatives 
are

 
0 ln L

0B
= a

n

i= 1
J fi(yi - Fi)

Fi(1 - Fi)
R  exp(-zi

=G)xi,

	  
0 ln L

0G
= a

n

i= 1
J fi(yi - Fi)

Fi(1 - Fi)
R  exp(-zi

=G)zi(-xi
=B).	 (17-34)

If the model is estimated assuming that G = 0, then we can easily test for homoscedasticity. 
Let gi equal the bracketed function in (17-34), G = diag(gi) and

	 wi = J xi

(-xi
=Bn)zi

R ,	 (17-35)

computed at the maximum likelihood estimator, assuming that G = 0. Then, the LM 
statistic is

Lm = i′GW[(W′G)(GW)]-1W′Gi = nR2,

where the regression is of a column of ones on giwi. Wald and likelihood ratio tests of the 
hypothesis that G = 0 are also straightforward based on maximum likelihood estimates 
of the full model.

Davidson and MacKinnon (1981) carried out a Monte Carlo study to examine the 
true sizes and power functions of these tests. As might be expected, the test for omitted 
variables is relatively powerful. The test for heteroscedasticity may pick up some other 
form of misspecification, however, including perhaps the simple omission of z from the 
index function, so its power may be problematic. It is perhaps not surprising that the 
same problem arose earlier in our test for heteroscedasticity in the linear regression 
model. The problem in the binary choice context stems partly from the ambiguous 
interpretation of the role of z in the model discussed earlier.

Example 17.15    Specification Test in a Labor Force Participation Model
Using the data described in Example 17.1, we fit a probit model for labor force participation 
based on the following specification [see Wooldridge (2010, p. 580)]:41  

Prob[LFP = 1] = F(Constant, Other Income, Education, Experience, Experience2,
Age, Kids Under 6, Kids 6 to 18).

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant 
term) log likelihood is 325 * ln(325/753) + 428 * ln(428/753) = -514.8732. The unrestricted 
log likelihood for the probit model is -401.3022. The chi-squared statistic is, therefore, 
227.142. The critical value from the chi-squared distribution with seven degrees of freedom 
is 14.07, so the joint hypothesis that the coefficients on Other Income, etc. are all zero is 
rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on 
Other Income, etc. are the same whether the individual resides in a city (CITY = 1) or not 
(CITY = 0), against the alternative that an altogether different equations apply for the two 

41Other income is computed as family income minus the wife’s hours times the wife’s reported wage, divided by 
1,000. This produces several small negative values. In the interest of comparability to the received application, we 
have left these values intact.
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groups of women. To test this hypothesis, we would use a counterpart to the Chow test of 
Section 6.4.1 and Example 6.9. The restricted model in this instance would be based on 
the pooled data set of all 753 observations. The log likelihood for the pooled model—which 
has a constant term and the seven variables listed above—is -401.302. The log likelihoods 
for this model based on the 484 observations with CIT = 1 and the 269 observations with 
CIT = 0 are -255.552 and -142.727, respectively. The log likelihood for the unrestricted 
model with separate coefficient vectors is thus the sum, -398.279. The chi-squared statistic 
for testing the eight restrictions of the pooled model is twice the difference, 6.046. The 95% 
critical value from the chi-squared distribution with 8 degrees of freedom is 15.51, so at this 
significance level, the hypothesis that the constant terms and the other coefficients are all 
the same is not rejected.

Table 17.11 presents estimates of the probit model with a correction for heteroscedasticity 
of the form Var[ei] = [exp(gCITY)]2. The three tests for homoscedasticity give

 LR = 2[-400.641 - (-401.302)] = 1.322,

 LM = 1.362 based on the BHHH estimator, 

 Wald = (-1.13)2 = 1.276.  

The 95% critical value for one restrictions is 3.84 so the three tests are consistent in not 
rejecting the hypothesis that g equals zero.

17.5.3    DISTRIBUTIONAL ASSUMPTIONS

One concern about the models suggested here is that the choice of the particular 
distribution is itself vulnerable to a specification error. For example, the problem arises if 
a probit model is analyzed when a logit model would be appropriate.42 It might seem logical 
to test the hypothesis of the model along with the other specification analyses one might 
do. Alternatively, a more robust, less parametric specification might be attractive. The 
substantive difference between probit and logit coefficient estimates in the preceding 
examples (e.g., Example 17.3) is misleading. The difference masks the underlying scaling of 

42See, for example, Ruud (1986).

Homoscedastic Heteroscedasti 

Estimate (Std. Err.) Partial Effect* Estimate (Std. Err.) Partial Effect*

Constant b1 0.27008 (0.5086) – 0.25140 (0.4548) –
Other Inc. b2 -0.01202 (0.0048) -0.00362 (0.0014) -0.01075 (0.0044) -0.00362 (0.0014)
Education b3 0.13090 (0.0253) 0.39370 (0.0072) 0.11734 (0.0255) 0.03949 (0.0072)
Exper b4 0.12335 (0.0187) 0.02558 (0.0022) 0.11190 (0.0197) 0.02599 (0.0022)

Exper2 b5 -0.00189 (0.0006) -0.00171 (0.0006)

Age b6 -0.05285 (0.0085) -0.01590 (0.0024) -0.04774 (0.0089) -0.01607 (0.0024)
Kids 6 6 b7 -0.86833 (0.1185) -0.26115 (0.0131) -0.77151 (0.1356) -0.25968 (0.0318)
Kids 6–18 b8 0.03600 (0.0438) 0.01083 (0.0319) 0.02800 (0.0390) 0.00943 (0.0130)
City g 0.00000 -0.17446 (0.1541) 0.00843 (0.0075)
ln L -401.302 -400.641

*Average partial effects and estimated standard errors include both mean (B) and variance (G) effects.

TABLE 17.11  Estimated Coefficients
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the distributions. The partial effects generated by the models are typically almost identical. 
This is a widely observed result that suggests that concerns about biases in the coefficients 
due to the wrong distribution might be misplaced. The other element of the analysis is the 
predicted probabilities. Once again, the scaling of the coefficients by the different models 
disguises the typical similarity of the predicted probabilities of the different parametric 
models. A broader question concerns the specific distribution compared to a semi- or 
nonparametric alternative. Manski’s (1988) maximum score estimator [and Horowitz’s 
(1992) smoothed version], Klein and Spady’s (1993) semiparametric (kernel function 
based), and Khan’s (2013) heteroscedastic probit model are a few of the less heavily 
parameterized specifications that have been proposed for binary choice models. Frolich 
(2006) presents a comprehensive survey of nonparametric approaches to binary choice 
modeling, with an application to Portuguese female labor supply.

The linear probability model is not offered as a robust alternative specification for 
the choice model. Proponents of the linear probability model argue only that the linear 
regression delivers a reliable approximation to the partial effects of the underlying true 
probability model.43 The robustness aspect is speculative. The approximation does appear 
to mimic the nonlinear results in many cases. In terms of the relevant computations, 
partial effects and predicted probabilities, the various candidates seem to behave similarly. 
An essential ingredient is often the curvature in the tails that allows predicted probabilities 
to mimic the features of unbalanced samples. From this standpoint, the linear model 
would seem to be the less robust specification. (See Example 17.5.) It is precisely this 
rigidity of the LPM (as well as the parametric models) that motivates the nonparametric 
approaches such as the local likelihood logit approach advocated by Frolich (2006).

Example 17.16    Distributional Assumptions
Table 17.12 presents estimates of the model in Example 17.36 based on the linear probability 
model and four alternative specifications. Only the estimated partial effects are shown in the 
table. The probit estimates match the authors’ results. The correspondence of the various 
results is consistent with the earlier observations. Generally, the models produce similar 
results. The linear probability model does stand alone for two of the seven results, for the 
market share and productivity variables.

43Chung and Goldberger (1984), Stoker (1986, 1992), and Powell (1994) (among others) consider general cases 
in which B can be consistently estimated “up to scale” using ordinary least squares. For example, Stoker (1986) 
shows that if x is multivariate normally distributed, then the LPM would provide a consistent estimator of the 
slopes of the probability function under very general specifications.

Linear Probit Logit
Complementary 

Log Log Gompertz

Log Sales 0.05198 0.06573 0.06766 0.06457 0.06639
Share 0.09492 0.39812 0.43993 0.33011 0.49826
Imports 0.45284 0.42080 0.41101 0.43734 0.40304
FDI 1.07787 1.05890 1.08753 0.99556 1.12929
Productivity -0.55012 -0.86887 -1.01060 -0.85039 -0.87471
Raw Material -0.09861 -0.10569 -0.09635 -0.10626 -0.10615
Investment 0.07879 0.07045 0.06758 0.07704 0.06356

Table 17.12  Estimated Partial Effects in a Model of Innovation
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17.5.4    CHOICE-BASED SAMPLING

In some studies, the mix of ones and zeros in the observed sample of the dependent 
variable is deliberately skewed in favor of one outcome or the other to achieve a more 
balanced sample than random sampling would produce.44 The sampling is said to be 
choice based. In the studies noted, the dependent variable measured the occurrence of 
loan default, which is a relatively uncommon occurrence. To enrich the sample, 
observations with y = 1 (default) were oversampled. Intuition should suggest (correctly) 
that the bias in the sample should be transmitted to the parameter estimates, which will 
be estimated so as to mimic the sample, not the population, which is known to be different. 
Manski and Lerman (1977) derived the weighted exogenous sampling maximum 
likelihood (WESML) estimator for this situation. The estimator requires that the true 
population proportions, v1 and v0, be known. Let p1 and p0 be the sample proportions 
of ones and zeros. Then the estimator is obtained by maximizing a weighted log likelihood,

ln L = a
n

i= 1
wi ln F(qixi

=B),

where wi = yi(v1/p1) + (1 - yi)(v0/p0). Note that wi takes only two different values. 
The derivatives and the Hessian are likewise weighted. A final correction is needed after 
estimation; the appropriate estimator of the asymptotic covariance matrix is the sandwich 
estimator discussed in Section 17.3.1, (-H)-1(B)(-H)-1 (with weighted B and H),  
instead of B or H alone. (The weights are not squared in computing B.) WESML and 
the choice-based sampling estimator are not the free lunch they may appear to be. That 
which the biased sampling does, the weighting undoes. It is common for the end result 
to be very large standard errors, which might be viewed as unfortunate, insofar as the 
purpose of the biased sampling was to balance the data precisely to avoid this problem.

Example 17.17    Credit Scoring
In Example 7.12, we examined the spending patterns of a sample of 10,499 cardholders for 
a major credit card vendor. The sample of cardholders is a subsample of 13,444 applicants 
for the credit card. Applications for credit cards, then (1992) and now, are processed by 
a major nationwide processor, Fair Isaacs, Inc. The algorithm used by the processors is 
proprietary. However, conventional wisdom holds that a few variables are important in the 
process, such as Age, Income, OwnRent (whether the applicant owns hi or her home), Self-
Employed (whether he or she is self-employed), and how long the applicant has lived at his or 
her current address. The number of major and minor derogatory reports (60-day and 30-day 
delinquencies) are also very influential variables in credit scoring. The probit model we will 
use to “model the model” is

 Prob(Cardholder = 1) = Prob(C = 1 � x)

 = Φ(b1 + b2 Age + b3 Income + b4 OwnRent

 + b5 Months Living at Current Address

 + b6 Self@Employed

 + b7 Number of major derogatory reports

+ b8 Number of minor derogatory reports).

44For example, Boyes, Hoffman, and Low (1989) and Greene (1992).
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In the data set, 78.1% of the applicants are cardholders. In the population, at that time, 
the true proportion was roughly 23.2%, so the sample is substantially choice based on 
this variable. The sample was deliberately skewed in favor of cardholders for purposes 
of the original study [Greene (1992)]. The weights to be applied for the WESML estimator 
are 0.232/0.781 = 0.297 for the observations with C = 1 and 0.768/0.219 = 3.507 for 
observations with C = 0. Table 17.13 presents the unweighted and weighted estimates for 
this application. The change in the estimates produced by the weighting is quite modest, 
save for the constant term. The results are consistent with the conventional wisdom 
that Income and OwnRent are two important variables in a credit application and self-
employment receives a substantial negative weight. But as might be expected, the single 
most significant influence on cardholder status is major derogatory reports. Because lenders 
are strongly focused on default probability, past evidence of default behavior will be a major 
consideration.

17.6	 TREATMENT EFFECTS AND ENDOGENOUS VARIABLES IN BINARY 
CHOICE MODELS

Consider the binary choice model with endogenous right-hand side variable, T,

y* = x′B + Tg + e, y = 1(y* 7 0), cov(T, e) ≠ 0.

We examine the two leading cases:

1.	 T is an endogenous dummy variable that indicates some kind of treatment or 
program participation such as graduating from high school or college, receiving 
some kind of job training, purchasing health insurance, etc.45

2.	 T is an endogenous continuous variable. Because the model is not linear, 
conventional instrumental variable estimators such as two-stage least squares 
(2SLS) are not appropriate. We consider the alternative estimators based on the 
maximum likelihood estimator.

45Discussion appears in Angrist (2001) and Angrist and Pischke (2009, 2010).

Unweighted Weighted

Variable Estimate Std. Error Estimate Std. Error

Constant 0.31783 0.05094 (6.24) -1.13089 0.04725 (-23.94)
Age 0.00184 0.00154 (1.20) 0.00156 0.00145 (1.07)
Income 0.00095 0.00025 (3.86) 0.00094 0.00024 (3.92)
OwnRent 0.18233 0.03061 (5.96) 0.23967 0.02968 (8.08)
CurrentAddress 0.02237 0.00120 (18.67) 0.02106 0.00109 (19.40)
SelfEmployed -0.43625 0.05585 (-7.81) -0.47650 0.05851 (-8.14)
Major Derogs -0.69912 0.01920 (-36.42) -0.64792 0.02525 (-25.66)
Minor Derogs -0.04126 0.01865 (-2.21) -0.04285 0.01778 (-2.41)

TABLE 17.13  Estimated Card Application Equation (t ratios in parentheses)
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17.6.1    ENDOGENOUS TREATMENT EFFECT

A structural model in which a treatment effect will be correlated with the unobservables is

 T i* = zi
=A + ui, Ti = 1[T i* 7 0],

 yi* = xi
=B + gTi + ei, yi = 1[yi* 7 0],¢ei

ui
≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R .

The correlation between u and e induces the endogeneity of T in the equation for y. We 
are interested in two effects: (1) the causal treatment effect of T on Prob(y = 1 � x, T), 
and (2) the partial effects of x and z on Prob(y = 1 � x, z, T) in the presence of the 
endogenous treatment.

This recursive model is a bivariate probit model (Section 17.9.5). The log 
likelihood is constructed from the joint probabilities of the observed outcomes. 
The four possible outcomes and associated probabilities are obtained as the 
marginal probabilities for T times the conditional probabilities for y � T. Thus, 
P(y = 1, T = 1) = P(y = 1 � T = 1)P(T = 1). The marginal probability for T = 1 
is just Φ(zi

=A), whereas the conditional probability is the bivariate normal probability 
divided by the marginal, Φ2(xi

=B + g, zi
=A, r)/Φ(zi

=A). The product returns the bivariate 
normal probability. The other three terms in the log likelihood are derived similarly. The 
four terms are

 P(y = 1, T = 1 � x, z) = Φ2(x′B + g, z′A, r),

 P(y = 1, T = 0 � x, z) = Φ2(x′B + g, -z′A, -r),

 P(y = 0, T = 1 � x, z) = Φ2[-(x′B + g), z′A, -r],

 P(y = 0, T = 0 � x, z) = Φ2[-(x′B + g), -  z′A, r).

The log likelihood is then

ln L(B, A, r) = a
n

i= 1
 ln Prob(y = yi, T = Ti � x, z).

Estimation is discussed in Section 17.9.5. The model looks like a conventional 
simultaneous-equations model; the difference arises from the nonlinear transformation 
of (y*,T*) that produces the observed (y,T). One implication is that whereas for 
identification of a linear model of this form, there would have to be at least one variable 
in z that is not in x, that is not the case here. The model is identified partly through the 
nonlinearity of the functional form. (See the commentary in Example 17.18.)

The treatment effect (TE) is derived from the marginal distribution of y,

 te = Prob(y = 1 � x, T = 1) - Prob(y = 1 � x, T = 0)
 = Φ(x′B + g) - Φ(x′B).

The average treatment effect (ATE), will be estimated by averaging the estimates of TE 
over the sample observations. The treatment effect on the treated (ATET) would be based 
on the conditional probability, Prob(y = 1 � T = 1),

tet = ΦJ (x′B + g) - r(z′A)21 - r2
R - ΦJ (x′B) - r(z′A)21 - r2

R .
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The ATET is computed by averaging this quantity over the sample observations for 
which Ti = 1.46

To compute the average partial effects for the exogenous variables, we will require

      Prob(y = 1 � x, z, T = 0) Prob(T = 0 � z) +
Prob(y = 1 � x, z, T = 1) Prob(T = 1 � z)

            = Φ2(x′B + g, z′A, r) + Φ2(x′B, -z′A, -r

The partial effects for x and z are then

0 Prob(y = 1 � x, z)

0¢x
z
≤ =

0[Φ2(x′B + g, z′A, r) + Φ2(x′B, -z′A, -r)]

0¢x
z
≤ .

Expressions for the derivatives appear in Section 17.9. This is a fairly intricate calculation. 
It is automated or conveniently computed in contemporary software, however. We can 
interpret 0Prob(y = 1 � x, z)/0x as a direct effect and 0Prob(y = 1 � x, z)/0z as an indirect 
effect on y that is transmitted through T. For variables that appear in both x and z, the 
total effect is the sum of the two. The computations are illustrated in Example 17.19 
below.

Example 17.18    An Incentive Program for Quality Medical Care
Scott, Schurer, Jensen, and Sivey (2009) examined an incentive program for Australian general 
practitioners to provide high quality care in diabetes management. The specific outcome of 
interest is ordering HbA1c tests as part of a diabetes consultation. The treatment of interest 
is participation in the incentive program.

A pay-for-performance program, the Practice Incentive Program (PIP) was superimposed 
on the Australian fee for service system in 1999 to encourage higher quality of care in 
chronic diseases including diabetes. Program participation by general practitioners (GPs) 
was voluntary. The quality of care outcome is whether the HbA1c test is administered. 
Analysis is conducted with a unique data set on GP consultations. The authors compare the 
average proportion of HbA1c tests ordered by GPs who have joined the incentive scheme 
with the average proportion of tests ordered by GPs who have not joined, while controlling 
for key sources of unobserved heterogeneity. A key assumption here is that HbA1c tests are 
undersupplied in the absence of the PIP scheme and therefore more frequent HbA1c testing 
is related to higher quality management. The endogenous nature of general practitioners’ 
participation in the PIP is addressed by applying a bivariate probit model, using exclusion 
restrictions to aid identification of the causal parameters.

The GP will join the PIP if the utility from joining is positive. Utility depends on the additional 
income from joining the PIP, from the diabetes sign-on payment and negatively on the costs 
of accreditation and establishing the requisite IT systems. GPs will increase quality of care 
if the utility of doing so is positive, which partly depends on PIP membership. The bivariate 
probit model used is

 Yij* = a1 + B1
=Xij + bPIP PIPij + u1ij

 PIPij* = a2 + B2
 =Xij + P′Iij + u2ij,

where	 Yij = 1 (GP j ordered an HbA1c test in recorded consultation i),
and	 PIPij = 1 (Practice in which GPj works has joined the PIP program).

46See Jones (2007).
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The authors calculate the marginal treatment effect of PIP using MEPIP = bPIP f(Bn1
=x).47 

Regarding the specification, they note “[a]lthough the model is formally identified by its non-
linear functional form, as long as the full rank condition of the data matrix is ensured (Heckman, 
1978; Wilde, 2000), we introduce exclusion restrictions to aid identification of the causal 
parameter bPIP (Maddala, 1983); Monfardini and Radice (2008). The row vector Iij captures the 
variables in the PIP participation equation (5) but excluded from the outcome equation (4).”

Marginal effects for PIP status are reported (in Table II) for two treatment groups. For the first 
group, the estimated effect is roughly 0.2. In year 1 of the data set, before the PIP was introduced, 
the average proportion of HbA1c tests conducted was 13%. After the reform was introduced, 
the average diabetes patient therefore faced a probability of 32% of receiving an HbA1c test 
during an average encounter in a practice that has joined the PIP. The result from a univariate  
probit model that treated PIP as exogenous produced a corresponding value of only 0.028.

Example 17.19    Moral Hazard In German Health Care
Riphahn, Wambach, and Million (2003) examined health care utilization in a panel data set 
of German households. The main objective of the study was to consider evidence of moral 
hazard. The authors considered the joint determination of hospital and doctor visits in a 
bivariate count data model. The model assessed whether purchase of Add-on insurance was 
associated with heavier use of the health care system. All German households have some 
form of health insurance. In our data, roughly 89% have the compulsory public form. Some 
households, typically higher income, can opt, instead, for private insurance. The “Add-on” 
insurance, that is available to those who have the compulsory public insurance, provides 
coverage for additional benefits, such as certain prevention programs and additional dental 
coverage. We will construct a small model to suggest the computations of treatment effects 
in a recursive bivariate probit model. The structure for one of the two count variables is

 Hospital* = b1 + b2 Age + b3 Working + b4 Health + g Addon + e,

 Addon* = a1 + a2 Age + a3 Education + a4 Income + a5 Married + a6 Kids + a7 Health+u.

Hospital is constructed as 1(Hospital Visits 7 0) while Add@On = 1(Household has Add-On 
Insurance). Estimation is based, once again, on the 1994 wave of the data.

Estimation results are shown in Table 17.14. We find that the only significant determinant 
of hospital visitation is Health (measured as self-reported Health Satisfaction). The crucial 
parameter is g, the coefficient on Add-On. The value of 0.04131 for APE(Add-On) is the 
estimated average treatment effect. We find, as did Riphahn, that the data do not appear to 
support the hypothesis of moral hazard. The t ratio on Add-On in the regression is only 0.16, far 
from significant. On the other hand, the estimated value, 0.04131, is not trivial. The mean value 
of Hospital is 0.091; 9.1% of this sample had at least one hospital visit in 1994. On average, if 
the subgroup of Add-On policy holders visited the hospital with 0.04 greater probability, this 
represents, using 0.091 as the base, an increase of 44% in the rate. That is actually quite large. 
For comparison purposes, the 2SLS estimates of this model are shown in the last column. (The 
authors of the application in Example 17.6 used 2SLS for estimation of their recursive bivariate 
probit model.) As might be expected, the 2SLS estimates provide a good approximation to the 
average partial effects of the exogenous variables. However, it produces an estimate for the 
causal Add-On effect that is three times as large as the FIML estimate, and has the wrong sign.

47The calculation of MEPIP treats PIP as if it were continuous and differentiates the probability. This approximates 
Φ(Bn1

=x + bPiP) - Φ(Bn1
=x) as suggested earlier. The authors note: “An alternative is to calculate the difference in 

the probabilities of an HbA1c test in a consultation in which the practice participates in the PIP, and a practice 
that does not. Our method assumes the treatment indicator to be continuous to be able to use the delta method. 
We compared the two methods and the magnitude of the marginal effect is the same.” (There is, in fact, no 
obstacle to using the delta method for the difference in the probabilities. See equation (17-29).) The authors 
computed the TE at the means of the data rather than averaging the TE values over the observations.
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17.6.2    ENDOGENOUS CONTINUOUS VARIABLE

If the endogenous variable in the recursive model is continuous, the structure is

 Ti = zi
=A + ui,

 yi* = xi
=B + gTi + ei, yi = 1[yi* 7 0],¢ei

ui
≤ ∼ NJ ¢0

0
≤, ¢ 1 rsu

rsu su
2 ≤ R .

In the model for labor force participation in Example 17.15, Family income is endogenous.

17.6.2.a    IV and GMM Estimation 

The instrumental variable estimator described in Chapter 8 is based on moments of the 
data, variances, and covariances. In this binary choice setting, we are not using any form 
of least squares to estimate the parameters, so the IV method would appear not to apply. 
Generalized method of moments is a possibility. Starting from

E[ei � zi, xi] = 0,
E[Tizi] ≠ 0,

a natural instrumental variable estimator would be based on the moment condition,

EJ(yi* - xi
=B - gTi)¢ xi

zi*
≤ R = 0.

(In this formulation, zi* would contain only the variables in zi not also contained in x.) 
However, yi* is not observed, yi is. The approach that was used in Avery et al. (1983), 
Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is to assume that the 
instrumental variables are orthogonal to the residual, [y - Φ(xi

=B + gTi)]; that is,

EJ[yi - Φ(xi
=B + gTi)]¢ xi

zi*
≤ R = 0.

Add-On Hospital

Variable Estimate Std. Error t Ratio Estimate Std. Error t Ratio APE 2SLS

Constant -3.64543 0.42225 -8.63 -0.56009 0.18342 -3.05 0.24352
Health 0.00452 0.02552 0.18 -0.14258 0.01412 -10.10 -0.02195 -0.02505
Working 0.00728 0.07223 0.10 0.00112 0.00121
Add-On 0.23389 1.43618 0.16 0.04131 -0.11826
Age 0.00884 0.00568 1.56 0.00210 0.00292 0.72 0.00034* 0.00035
Education 0.07896 0.02030 3.89
Income 0.48428 0.23142 2.09
Married -0.09885 0.13584 -0.73
Kids 0.21025 0.13142 1.60
r -0.01363 0.60432 -0.02
Log likelihood function    -1296.40433
Estimation based on N = 3377, K = 13

*Average Treatment Effect. Estimated ATET is 0.03861

Table 17.14  Estimates of Recursive Bivariate Probit Model
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This form of the moment equation, based on observables, can form the basis of a 
straightforward two-step GMM estimator. (See Chapter 13 for details.)

17.6.2.b    Partial ML Estimation

Simple probit estimation based on yi and (xi, Ti) will not consistently estimate (B, g) 
because of the correlation between Ti and ei induced by the correlation between ui 
and ei. The maximum likelihood estimator is based on the full specification of the 
model, including the bivariate normality assumption that underlies the endogeneity 
of T. One possibility is to use the partial reduced form obtained by inserting 
the first equation in the second. This becomes a probit model with probability 
Prob(yi = 1 � xi, zi) = Φ(xi

=B* + zi*
=A*). This will produce a consistent estimator of 

B* = B/(1 + g2su
2 + 2gsur)1/2 and A* = gA/(1 + g2su

2 + 2gsur)1/2 as the coefficients 
on xi and zi, respectively. (The procedure would estimate a mixture of B* and A* for 
any variable that appears in both xi and zi.) Newey (1987) suggested a minimum chi-
squared estimator that does estimate all parameters. Linear regression of Ti on zi 
produces estimates of A and su

2, which suggests a third possible estimator, based on a 
two-step MLE. But there is no method of moments estimator of r or g produced by this 
procedure, so this estimator is incomplete.

17.6.2.c    Full Information Maximum Likelihood Estimation

A more direct and actually simpler approach is full information maximum likelihood. 
The log likelihood is built up from the joint density of yi and Ti, which we write as the 
product of the conditional and the marginal densities,

f(yi, Ti) = f(yi � Ti)f(Ti).

To derive the conditional distribution, we use results for the bivariate normal, and write

ei � ui = [(rsu)/su
2]ui + vi,

where vi is normally distributed with Var[vi] = (1 - r2). Inserting this in the second 
equation, we have

yi* � Ti = xi
=B + gTi + (r/su)ui + vi.

Therefore,

	 Prob[yi = 1 � xi, Ti] = ΦJxi
=B + gTi + (r/su)ui21 - r2

R .	 (17-36)

Inserting the expression for ui = (Ti - zi
=A), and using the normal density for the 

marginal distribution of Ti in the first equation, we obtain the log-likelihood function 
for the sample,

ln L = a
n

i= 1
b ln ΦJ(2yi - 1)¢ xi

=B + gTi + (r/su)(Ti - zi
=A)21 - r2

≤ R
	 + lnJ 1

su
 f¢Ti - zi

=A

su
≤ R r .	 (17-37)

Some convenience can be obtained by rewriting the log-likelihood function as

ln L = a
n

i= 1
ln Φ[(2yi - 1)(xi

=B
∼ + g∼Ti + t[(Ti - zi

=A)/su]] + a
n

i= 1
lnJ 1

su
 f[(Ti - zi

=A)/su]R ,
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where B∼ = (1/21 - r2)B, g∼ = (1/21 - r2)g and t = (r/21 - r2). The delta method 
can be used to recover the original parameters and appropriate standard errors after 
estimation.48

Partial effects are derived from the first term in (17-37),

 
0Prob(y = 1 � x,T,z)

0£ x
T
z
≥ =

0Φ¢ xi
=B + gTi + (r/su)(Ti - zi

=A)21 - r2
b

0£ x
T
z
≥

 = f¢ xi
=B + gTi + (r/su)(Ti - zi

=A)21 - r2
≤  

121 - r2
£ B

g + r/su

-(r/su)A
≥.

17.6.2.d    Residual Inclusion and Control Functions
A further simplification of the log-likelihood function is obtained by writing

ln L = a
n

i= 1
ln Φ[(2yi - 1)(xi

=B
∼ + g∼Ti + tu∼i] + a

n

i= 1
lnJ 1

su
 f(u∼i) R ,

u∼i = (Ti - zi
=A)/su. This “residual inclusion” form suggests a two-step approach. The 

parameters in the linear regression, A and su, can be consistently estimated by a linear 
regression of T on z. The scaled residual u∼ni = (Ti - zi

=a)/su can now be computed and 
inserted into the log likelihood. Note that the second term in the log likelihood involves 
parameters that have already been estimated at the first step, so it can be ignored. The 
second-step log likelihood is, then,

ln L = a
n

i= 1
ln Φ[(2yi - 1)(xi

=B
∼ + g∼wi + tu∼ni)].

This can be maximized using the methods developed in Section 17.3. The estimator of 
r can be recovered from r = t/(1 + t2)1/2. Estimators of B and g follow, and the delta 
method can be used to construct standard errors. Because this is a two-step estimator, 
the resulting estimator of the asymptotic covariance matrix would be adjusted using the 
Murphy and Topel (2002) results in Section 14.7. Bootstrapping the entire apparatus (i.e., 
both steps—see Section 15.4) would be an alternative way to estimate an asymptotic 
covariance matrix. The original (one-step) log likelihood is not very complicated, and 
full information estimation is fairly straightforward. The preceding demonstrates how 
the alternative two-step method would proceed and suggests how the residual inclusion 
method proceeds. The general approach of residual inclusion for nonlinear models with 
endogenous variables is explored in detail by Terza, Basu, and Rathouz (2008).

17.6.2.e    A Control Function Estimator
In the residual inclusion estimator noted earlier the endogeneity of T in the probit 
model is mitigated by adding the estimated residual to the equation—in the presence 

48Recent applications of this estimator have referred to it as instrumental variable probit estimation. The estimator 
is a full information maximum likelihood estimator.
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of the residual, T is no longer correlated with e. We took this approach in estimating a 
linear model in Section 8.4.2. Blundell and Powell (2004) label the foregoing the control 
function approach to accommodating the endogeneity. The residual inclusion estimator 
suggested here was proposed by Rivers and Vuong (1988). As noted, the estimator is 
fully parametric. They propose an alternative semiparametric approach that retains 
much of the functional form specification, but works around the specific distributional 
assumptions. Adapting their model to our earlier notation, their departure point is a 
general specification that produces, once again, a control function,

E[yi � xi, Ti, ui] = F(xi
=B + gTi, ui).

Note that (17-36) satisfies the assumption; however, they reach this point without assuming 
either joint or marginal normality. The authors propose a three-step, semiparametric 
approach to estimating the structural parameters. In an application somewhat similar to 
Example 17.8, they apply the technique to a labor force participation model for British men 
in which a variable of interest is a dummy variable for education greater than 16 years, the 
endogenous variable in the participation equation, also of interest, is earned income of 
the spouse, and an instrumental variable is a welfare benefit entitlement. Their findings 
are rather more substantial than ours; they find that when the endogeneity of other family 
income is accommodated in the equation, the education coefficient increases by 40% and 
remains significant, but the coefficient on other income increases by more than tenfold.

Example 17.20    Labor Supply Model
In Examples 5.2, 17.1, and 17.15, we examined a labor supply model for married women using 
Mroz’s (1987) data on labor supply. The wife’s labor force participation equation suggested 
in Example 17.15 is

 Prob[LFP = 1] = F(Constant, Other Income, Education, Experience, Experience2,

Age, Kids Under 6, Kids 6 to 18).

The Other Income (non-wife’s) would likely be jointly determined with the LFP decision. We 
model this with

 Other Income = a1 + a2 Husband’s Age + a3 Husband’s Education + a4 City

+ a5 Kids Under 6 + a6 Kids 6 to 18 + u.

As before, we use the Mroz (1987) labor supply data described in Example 5.2. Table 17.15 reports 
the naïve single-equation and full information maximum likelihood estimates of the parameters of 
the two equations. The third set of results is the two-step estimator detailed in Section 17.6.2d. 
Standard errors for the maximum likelihood estimators are based on the derivatives of the log-
likelihood function. Standard errors for the two-step estimator are computed using 50 bootstrap 
replications. (Both steps are computed for the bootstrap replications.)

Comparing the two sets of probit estimates, it appears that the (assumed) endogeneity of the 
Other Income is not substantially affecting the estimates. The results are nearly the same. There 
are two simple ways to test the hypothesis that r equals zero. The FIML estimator produces an 
estimated asymptotic standard error with the estimate of r, so a Wald test can be carried out. 
For the preceding results, the Wald statistic would be (0.18777/0.13625)2 = 1.3782 = 1.899. 
The critical value from the chi-squared table for one degree of freedom would be 3.84, so we 
would not reject the hypothesis of exogeneity. The second approach would use the likelihood 
ratio test. Under the null hypothesis of exogeneity, the probit model and the regression 
equation can be estimated independently. The log likelihood for the full model would be the 
sum of the two log likelihoods, which would be -401.30 + (-2,844.103) = -3,245.405. The 
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log likelihood for the combined model is -3,244.556. Twice the difference is 0.849, which is 
also well under the 3.84 critical value, so on this basis as well, we would not reject the null 
hypothesis that r = 0. As would now be expected, the three sets of estimates are nearly the 
same. The estimate of -0.02761 for the coefficient on Other Income implies that a $1,000 
increase reduces the LFP by about 0.028. Because the participation rate is about 0.57, the 
$1,000 increase suggests a reduction in participation of about 4.9%. The mean value of other 
income is roughly $20,000, so the 5% increase in Other Income is associated with a 5% 
decrease in LFP, or an elasticity of about one.

17.6.3    ENDOGENOUS SAMPLING

We have encountered several instances of nonrandom sampling in the binary choice 
setting. In Example 17.17, we examined an application in credit scoring in which the 
balance in the sample of responses of the outcome variable, C = 1 for acceptance of 
an application and C = 0 for rejection, is different from the known proportions in the 
population. The sample was skewed in favor of observations with C = 1 to enrich the 
data set. A second type of nonrandom sampling arises in the analysis of nonresponse/
attrition in the GSOEP in Example 17.29 below. Here, the observed sample is not random 
with respect to individuals’ presence in the sample at different waves of the panel. The 

Probit FIML
2-Step Control 

Function

Variable Estimate Std. Err. Estimate Std. Err. APE Estimate Std. Err.

LFP Equation for Wife

Constant 0.27008 0.50859 0.21277 0.51736 0.21811 0.50719
Education 0.13090 0.02525 0.14571 0.02689 0.05693 0.14816 0.02900
Experience 0.12335 0.01872 0.12299 0.01851 0.04805 0.12521 0.01868

Experience2 -0.00189 0.00060 -0.00192 0.00060 -0.00075 -0.00196 0.00053

Age -0.05285 0.00848 -0.04878 0.00951 -0.01906 -0.04970 0.00914
Kids Under 6 -0.86833 0.11852 -0.83049 0.12684 -0.32447 -0.84568 0.13693
Kids 6–18 0.03600 0.04348 0.04781 0.04214 0.01868 0.04855 0.05240
Non-wife Inc. -0.01202 0.00484 -0.02761 0.01254 -0.01079 -0.02798 0.01500
Residual 0.01795 0.01572

Non-wife Income Equation

Constant -10.6816 4.34481 -10.5492
Hus. Age 0.23009 0.07089 0.22818
Hus. Education 1.35361 0.12978 1.34613
City 3.54202 0.91338 3.62319
Kids Under 6 1.36755 0.67056 1.36403
Kids 6–18 0.67856 0.36160 0.67573
s 10.5708 0.15966 10.61312
r 0.18777 0.13625
ln L -401.302 -3244.556 -2844.103

Table 17.15  Estimated Labor Supply Model
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first of these represents selection specifically on an observable outcome—the observed 
dependent variable. We construct a model for the second of these that relies on an 
assumption of selection on a set of certain observables—the variables that enter the 
probability weights. We will now examine a third form of nonrandom sample selection, 
based crucially on the unobservables in the two equations of a bivariate probit model.

We return to the banking application of Example 17.17. In that application, we 
examined a binary choice model,

 Prob(Cardholder = 1 � x) = Prob(C = 1 � x)

 = Φ(b1 + b2 Age + b3 Income + b4 OwnRent

 + b5 Months at Current Address

 + b6 Self@Employed

 + b7 Number of Major Derogatory Reports

 + b8 Number of Minor Derogatory Reports).

From the point of view of the lender, cardholder status is not the interesting 
outcome in the credit history, default is. The more interesting equation describes 
Prob(Default = 1 � z, C = 1). The natural approach, then, would be to construct a binary 
choice model for the interesting default variable using the historical data for a sample 
of cardholders. The problem with the approach is that the sample of cardholders is 
not randomly drawn from the full population—applicants are screened with an eye 
specifically toward whether or not they seem likely to default. In this application, and in 
general, there are three economic agents, the credit scorer (e.g., Fair Isaacs), the lender, 
and the borrower. Each of them has latent characteristics in the equations that determine 
their behavior. It is these latent characteristics that drive, in part, the application/scoring 
process and, ultimately, the consumer behavior.

A model that can accommodate these features is

 S* = x1
=B1 + e1, S = 1(S* 7 0),

 y* = x1
=B2 + e2, y = 1(y* 7 0),¢e1

e2
� x1, x2≤ ∼ NJ ¢0

0
≤,¢1 r

r 1
≤ R ,

(y, x2) observed only when S = 1,

which contains an observation rule, S = 1, and a behavioral outcome, y = 0 or 1. The 
endogeneity of the sampling rule implies that

Prob(y = 1 � S = 1, x2) ≠ Φ(x2
=B).

From properties of the bivariate normal distribution, the appropriate probability is

Prob(y = 1 � S = 1, x1, x2) = ΦJx2
=B2 + rx1

=B121 - r2
R .

If r is not zero, then in using the simple univariate probit model, we are omitting from 
our model any variables that are in x1 but not in x2, and in any case, the estimator is 
inconsistent by a factor (1 - r2)-1/2. To underscore the source of the bias, if r equals 
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zero, the conditional probability returns to the model that would be estimated with the 
selected sample. Thus, the bias arises because of the correlation of (i.e., the selection on) 
the unobservables, e1 and e2. This model was employed by Wynand and van Praag (1981) 
in the first application of Heckman’s (1979) sample selection model in a nonlinear setting 
to insurance purchases by Boyes, Hoffman, and Lowe (1989) in a study of bank lending 
by Greene (1992) to the credit card application begun in Example 17.17 and continued 
in Example 17.21 and hundreds of applications since.

Given that the forms of the probabilities are known, the appropriate log-likelihood 
function for estimation of B1, B2, and r is easily obtained. The log likelihood must be 
constructed for the joint or the marginal probabilities, not the conditional ones. For the 
selected observations, that is, (y = 0, S = 1) or (y = 1, S = 1), the relevant probability 
is simply

Prob(y = 0 or 1 � S = 1) * Prob(S = 1) = Φ2[(2y - 1)x2
=B2, x1

=B1, (2y - 1)r].

For the observations with S = 0, the probability that enters the likelihood function is 
simply Prob(S = 0 � x1) = Φ(-x1

=B1). Estimation is then based on a simpler form of the 
bivariate probit log likelihood that we examined in Section 17.6.1. Partial effects and 
post-estimation analysis would follow the analysis for the bivariate probit model. The 
desired partial effects would differ by the application, whether one desires the partial 
effects from the conditional, joint, or marginal probability would vary. The necessary 
results are in Section 17.9.3.

Example 17.21    Cardholder Status and Default Behavior
In Example 17.9, we estimated a logit model for cardholder status,

 Prob(Cardholder = 1) = Prob(C = 1 � x)

 = Φ(b1 + b2Age + b3Income + b4OwnRent

 + b5 Current Address + b6 SelfEmployed

	  + b7 Major Derogatory Reports

	  + b8 Minor Derogatory Reports),

using a sample of 13,444 applications for a credit card. The complication in that example was 
that the sample was choice based. In the data set, 78.1% of the applicants are cardholders. 
In the population, at that time, the true proportion was roughly 23.2%, so the sample is 
substantially choice based on this variable. The sample was deliberately skewed in favor of 
cardholders for purposes of the original study.49 The weights to be applied for the WESML 
estimator are 0.232/0.781 = 0.297 for the observations with C = 1 and 0.768/0.219 = 3.507 
for observations with C = 0. Of the 13,444 applicants in the sample, 10,499 were accepted 
(given the credit cards). The “default rate” in the sample is 996/10,499 or 9.48%. This is 
slightly less than the population rate at the time, 10.3%. For purposes of a less complicated 
numerical example, we will ignore the choice-based sampling nature of the data set for the 
present. An orthodox treatment of both the selection issue and the choice-based sampling 
treatment is left for the exercises [and pursued in Greene (1992).]

We have formulated the cardholder equation so that it probably resembles the policy of 
credit scorers, both then and now. A major derogatory report results when a credit account 
that is being monitored by the credit reporting agency is more than 60 days late in payment. 
A minor derogatory report is generated when an account is 30 days delinquent. Derogatory 

49See Greene (1992).
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reports are a major contributor to credit decisions. Contemporary credit processors such 
as Fair Isaacs place extremely heavy weight on the “credit score,” a single variable that 
summarizes the credit history and credit-carrying capacity of an individual. We did not have 
access to credit scores at the time of this study. The selection equation was given earlier. The 
default equation is a behavioral model. There is no obvious standard for this part of the model. 
We have used three variables, Dependents, the number of dependents in the household, 
Income, and Exp_Income, which equals the ratio of the average credit card expenditure in 
the 12 months after the credit card was issued to average monthly income. Default status is 
measured for the first 12 months after the credit card was issued.

Estimation results are presented in Table 17.16. These are broadly consistent with the earlier 
results—the models with no correlation from Example 17.9 are repeated in Table 17.16. There 
are two tests we can employ for endogeneity of the selection. The estimate of r is 0.41947 
with a standard error of 0.11762. The t ratio for the test that r equals zero is 3.57, by which 
we can reject the hypothesis. Alternatively, the likelihood ratio statistic based on the values 
in Table 17.16 is 2(8,670.78831 - 8,660.90650) = 19.76362. This is larger than the critical 
value of 3.84, so the hypothesis of zero correlation is rejected. The results are as might be 
expected, with one counterintuitive result, that a larger credit burden, expenditure to income 
ratio, appears to be associated with lower default probabilities, though not significantly so.

17.7	 PANEL DATA MODELS

Qualitative response models have been a growth industry in econometrics. The recent 
literature, particularly in the area of panel data analysis, has produced a number of 
new techniques. The availability of large, high-quality panel data sets on microeconomic 

Endogenous Sample Model Uncorrelated Equations

Variable/Equation Estimate Std. Error (t) Estimate Std. Error

Cardholder Equation

Constant 0.30516 0.04781 (6.38) 0.31783 0.04790 (6.63)
Age 0.00226 0.00145 (1.56) 0.00184 0.00146 (1.26)
Current Address 0.00091 0.00024 (3.80) 0.00095 0.00024 (3.94)
OwnRent 0.18758 0.03030 (6.19) 0.18233 0.03048 (5.98)
Income 0.02231 0.00093 (23.87) 0.02237 0.00093 (23.95)
SelfEmployed -0.43015 0.05357 (-8.03) -0.43625 0.05413 (-8.06)
Major Derogatory -0.69598 0.01871 (-37.20) -0.69912 0.01839 (-38.01)
Minor Derogatory -0.04717 0.01825 (-2.58) -0.04126 0.01829 (-2.26)

Default Equation
Constant -0.96043 0.04728 (-20.32) -0.81528 0.04104 (-19.86)
Dependents -0.04995 0.01415 (3.53) 0.04993 0.01442 (3.46)
Income -0.01642 0.00122 (-13.41) -0.01837 0.00119 (-15.41)
Expend/Income -0.16918 0.14474 (-1.17) -0.14172 0.14913 (-0.95)
Correlation 0.41947 0.11762 (3.57) 0.00000
Log Likelihood -8,660.90650 -8,670.78831

Table 17.16  Estimated Joint Cardholder and Default Probability Models
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behavior has supported an interest in extending the models of Chapter 11 to binary 
(and other discrete) choice models. In this section, we will survey a few results from this 
rapidly growing literature.

The structural model for a possibly unbalanced panel of data would be

 yit* = xit
=B + eit, i = 1, c, n, t = 1, c, Ti,

	  yit = 1(yit* 7 0). � (17-38)

Most of the interesting cases to be analyzed will start from our familiar common effects 
model,

 yit* = xit
=B + vit + ui, i = 1, c, n, t = 1, c, Ti,

	  yit = 1 if yit* 7 0, and 0 otherwise, 	 (17-39)

where, as before (see Sections 11.4 and 11.5), ui is the unobserved, individual specific 
heterogeneity. Once again, we distinguish between random and fixed effects models by 
the relationship between ui and xit. The assumption of strict exogeneity, that f(ui � Xi) 
is not dependent on Xi, produces the random effects model. Note that this places a 
restriction on the distribution of the heterogeneity. If that distribution is unrestricted, 
so that ui and xit may be correlated, then we have the fixed effects model. As before, the 
distinction does not relate to any intrinsic characteristic of the effect itself.

As we shall see shortly, this modeling framework is fraught with difficulties and 
unconventional estimation problems. Among them are the following: Estimation of the 
random effects model requires very strong assumptions about the heterogeneity; the 
fixed effects model relaxes these assumptions, but the natural estimator in this case 
encounters an incidental parameters problem that renders the maximum likelihood 
estimator inconsistent even when the model is correctly specified.

17.7.1    THE POOLED ESTIMATOR

To begin, it is useful to consider the pooled estimator that results if we simply ignore 
the heterogeneity, ui, in (17-39) and fit the model as if the cross-section specification of 
Section 17.2.2 applies.50 If the fixed effects model is appropriate, then results for omitted 
variables, including the Yatchew and Griliches (1984) result, apply. The pooled MLE 
that ignores fixed effects will be inconsistent—possibly wildly so. (Note: Because the 
estimator is ML, not least squares, converting the data to deviations from group means 
is not a solution—converting the binary dependent variable to deviations will produce 
a new variable with unknown properties.)

The random effects case is simpler. From (17-39), the marginal probability implied 
by the model is

 Prob(yit = 1 � xit) = Prob(vit + ui 7 -xit
=B)

 = F[xit
=B/(1 + su

2)1/2]
 = F(xit

=D).

50We could begin the analysis by establishing the assumptions within which we can estimate the parameters 
of interest (B) by treating the panel as a long cross section. The point of the exercise, however, is that those 
assumptions are unlikely to be met in any realistic application.
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The implication is that based on the marginal distributions, we can consistently 
estimate D (but not B or su separately) by pooled MLE.51 This would be a pseudo 
MLE because the log-likelihood function is not the true log likelihood for the full 
set of observed data, but it is the correct product of the marginal distributions for 
yit � xit. (This would be the binary choice case counterpart to consistent estimation of 
B in a linear random effects model by pooled ordinary least squares.) The implication, 
which is absent in the linear case, is that ignoring the random effects in a pooled 
model produces an attenuated (inconsistent—downward biased) estimate of B; the 
scale factor that produces D is 1/(1 + su

2)1/2, which is between zero and one. The 
implication for the partial effects is less clear. In the model specification, the partial 
effect is

PE(xit, ui) = 0Prob[yit = 1 � xit, ui]/0xit = B * f(xit
=B + ui),

which is not computable. The useful result would be

Eu[PE(xit, ui)] = B Eu[f(xit
=B + ui)].

Wooldridge (2010) shows that the end result, assuming normality of both vit and ui is 
Eu[PE(xit, ui)] = Df(xit

=D). Thus far, surprisingly, it would seem that simply pooling the 
data and using the simple MLE works. The estimated standard errors will be incorrect, so 
a correction such as the cluster estimator shown in Section 14.8.2 would be appropriate. 
Three considerations suggest that one might want to proceed to the full MLE in spite of 
these results: (1) The pooled estimator will be inefficient compared to the full MLE; (2) 
the pooled estimator does not produce an estimator of su that might be of interest in its 
own right; and (3) the FIML estimator is available in contemporary software and is no 
more difficult to estimate than the pooled estimator. Note that the pooled estimator is 
not justified (over the FIML approach) on robustness considerations because the same 
normality and random effects assumptions that are needed to obtain the FIML estimator 
will be needed to obtain the preceding results for the pooled estimator.

17.7.2    RANDOM EFFECTS

A specification that has the same structure as the random effects model of Section 11.5 
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to 
suggest how random effects can be handled in discrete and limited dependent variable 
models such as this one. Full details on estimation and inference may be found in Butler 
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the 
Butler and Moffitt model.

The random effects model specifies

eit = vit + ui,

where vit and ui are independent random variables with

 E[vit � X] = 0; cov[vit, vjs, � X] = Var[vit � X] = 1, if i = j and t = s; 0 otherwise,

E[ui � X] = 0; cov[ui, uj � X] = Var[ui � X] = su
2, if i = j; 0 otherwise,

cov[vit, uj � X] = 0 for all i, t, j,

51This result is explored at length in Wooldridge (2010).
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and X indicates all the exogenous data in the sample, xit for all i and t.52 Then,

E[eit � X] = 0,

Var[eit � X] = sv
2 + su

2 = 1 + su
2,

and

corr[eit, eis � X] = r =
su

2

1 + su
2 .

The new free parameter is su
2 = r/(1 - r).

Recall that in the cross-section case, the marginal probability associated with an 
observation is

P(yi � xi) = L
Ui

Li

f(ei)dei, (Li, Ui) = (- ∞ , -xi
=B) if yi = 0 and (-xi

=B, + ∞) if yi = 1.

This simplifies to Φ[(2yi - 1)xi
=B] for the normal distribution and Λ[(2yi - 1)xi

=B] 
for the logit model. In the fully general case with an unrestricted covariance matrix, 
the contribution of group i to the likelihood would be the joint probability for all Ti 
observations,

	Li = P(yi1, c, yiTi
� X) = L

UiTi

LiTi

gL
Ui1

Li1

f(ei1, ei2, c, eiTi
)dei1dei2 cdeiTi

.	 (17-40)

The integration of the joint density, as it stands, is impractical in most cases. The special 
nature of the random effects model allows a simplification, however. We can obtain the 
joint density of the vit’s by integrating ui out of the joint density of (ei1, c, eiTi

, ui), 
which is

f(ei1, c, eiTi
, ui) = f(ei1, c, eiTi

� ui)f(ui).

So,

f(ei1, ei2, c, eiTi
) = L

+∞

-∞
f(ei1, ei2, c, eiTi

� ui)f(ui) dui.

The advantage of this form is that conditioned on ui, the eit’s are independent, so

f(ei1, ei2, c, eiTi
) = L

+∞

-∞
q
Ti

t= 1
f(eit � ui)f(ui) dui.

Inserting this result in (17-40) produces

Li = P(yi1, c, yiTi
� X) = L

UiTi

LiTi

gL
Ui1

Li1

q
Ti

t= 1
f(eit � ui)f(ui) dui dei1 dei2 cdeiTi

.

This may not look like much simplification, but in fact, it is. Because the ranges of 
integration are independent, we may change the order of integration:

Li = P(yi1, c, yiTi
� X) = L

+∞

-∞
JLUiTi

LiTi

gL
Ui1

Li1

q
Ti

t= 1
f(eit � ui) dei1 dei2 cdeiTi

R f(ui) dui.

52See Wooldridge (2010) for discussion of this strict exogeneity assumption.
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Conditioned on the common ui, the e’s are independent, so the term in square brackets 
is just the product of the individual probabilities. We can write this as

	 Li = P(yi1, c, yiTi
� X) = L

+∞

-∞
JqTi

t= 1
¢ LUit

Lit

f(eit � ui)deit≤ R f(ui) dui.	 (17-41)

Now, consider the individual densities in the product. Conditioned on ui, these are the 
now-familiar probabilities for the individual observations, computed now at xit

=B + ui. 
This produces a general form for random effects for the binary choice model. Collecting 
all the terms, we have reduced it to

	 Li = P(yi1, c, yiTi
� X) = L

+∞

-∞
JqTi

t= 1
 Prob(Yit = yit � xit

=B + ui) R  f(ui) dui.	 (17-42)

It remains to specify the distributions, but the important result thus far is that the 
entire computation requires only one-dimensional integration. The inner probabilities 
may be any of the models we have considered so far, such as probit, logit, Gumbel, 
and so on. The intricate part that remains is how to do the outer integration. Butler 
and Moffitt’s quadrature method assuming that ui is normally distributed is detailed in 
Section 14.14.4.

A number of authors have found the Butler and Moffitt formulation to be a 
satisfactory compromise between a fully unrestricted model and the cross-sectional variant 
that ignores the correlation altogether. An application that includes both group and time 
effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal behavior. 
The Butler and Moffitt approach has been criticized for the restriction of equal correlation 
across periods. But it does have a compelling virtue that the model can be efficiently 
estimated even with fairly large Ti, using conventional computational methods.53

A remaining problem with the Butler and Moffitt specification is its assumption of 
normality. In general, other distributions are problematic because of the difficulty of 
finding either a closed form for the integral or a satisfactory method of approximating 
the integral. An alternative approach that allows some flexibility is the method of 
maximum simulated likelihood (MSL), which was discussed in Section 15.6. The 
transformed likelihood we derived in (17-42) is an expectation,

 Li = L
+∞

-∞
JqTi

t= 1
 Prob(Yit = yit � xit

=B + ui) R  f(ui) dui

 = Eui
JqTi

t= 1
Prob(Yit = yit � xit

=B + ui) R .

This expectation can be approximated by simulation rather than quadrature. First, let u 
now denote the scale parameter in the distribution of ui. This would be su for a normal 
distribution, for example, or some other scaling for the logistic or uniform distribution. 
Then, write the term in the likelihood function as

Li = Eui
 JqTi

t= 1
F(yit, xit

=B + uui) R = Eu[h(ui)].

Note that ui is free of any unknown parameters. For example, for normally distributed u, by 
this transformation, u is su and now, u ∼ N[0, 1]. The function is smooth, continuous, and 

53See Greene (2007b).
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continuously differentiable. If this expectation is finite, then the conditions of the law of large 
numbers should apply, which would mean that for a sample of observations ui1, c, uiR,

plim 
1
R a

R

r = 1
h(uir) = Eu[h(ui)].

This suggests, based on the results in Chapter 15, an alternative method of maximizing 
the log likelihood for the random effects model. A sample of person-specific draws from 
the population ui can be generated with a random number generator. For the Butler 
and Moffitt model with normally distributed ui, the simulated log-likelihood function is

	 ln LSimulated = a
n

i= 1
lnb 1

R a
R

r = 1
JqTi

t= 1
F[(2yit - 1)(xit

=B + suuir)] R r .	 (17-43)

This function is maximized with respect to B and su. Note that in the preceding, as in 
the quadrature approximated log likelihood, the model can be based on a probit, logit, 
or any other functional form desired.

For testing the hypothesis of the restricted, pooled model, a Lagrange multiplier 
approach that does not require estimation of the full random effects model will be 
attractive. Greene and McKenzie (2015) derived an LM test specifically for the random 
effects model. Let lit equal the derivative with respect to the constant term under H0, 
defined in (17-20), and let tit = -(qitxit

=B)lit - lit
 2. Then,

gi = D a
Ti

t= 1
litxit

1
2

 ¢ aTi

t= 1
tit≤ +

1
2

 ¢ aTi

t= 1
litb

2 T .

Finally, gi′ is the ith row of the n * (K + 1) matrix G. The LM statistic is 
Lm = i′G(G′G)-1G′i = nR2 in the regression of a column of ones on gi. The first K 
elements of i′G equal zero as they are the score of the log likelihood under H0. Therefore, 
the LM statistic is the square of the (K + 1) element of i′G times the last diagonal 
element of the matrix (G′G)-1. Wooldridge (2010) proposes an omnibus test of the null 
of the pooled model against the more general model that contains lagged values of xit 
and/or yit. The two steps of the test are: (1) Pooled probit estimation of the null model; and 
(2) Pooled probit estimation of the augmented model Prob(yit = 1) = Φ(xit

=B + gui,t - 1) 
based on observations t = 2, c, Ti where uit = (yit - xit

=B). The test is a simple Wald, 
LM, or LR test of the hypothesis that g equals zero.

We have examined two approaches to estimation of a probit model with random 
effects. GMM estimation is a third possibility. Avery, Hansen, and Hotz (1983), Bertschek 
and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer 
some comparison with the quadrature and simulation-based estimators considered here. 
(Our application in Example 17.36 will use the Bertschek and Lechner data.)

17.7.3    FIXED EFFECTS

The fixed effects model is

	  yit* = aidit + xit
=B + eit, i = 1, c, n, t = 1, c, Ti,

	  yit = 1(yit* 7 0),� (17-44)
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where dit is a dummy variable that takes the value one for individual i and zero otherwise. 
For convenience, we have redefined xit to be the nonconstant variables in the model. The 
parameters to be estimated are the K elements of B and the n individual constant terms. 
Before we consider the several virtues and shortcomings of this model, we consider 
the practical aspects of estimation of what are possibly a huge number of parameters; 
(n + K); n is not limited here, and could be in the thousands in a typical application. 
The log-likelihood function for the fixed effects model is

	 ln L = a
n

i= 1
a
Ti

t= 1
ln P(yit �ai + xit

=B),	 (17-45)

where P(.) is the probability of the observed outcome, for example, Φ[qit(ai + xit
=B)] 

for the probit model or Λ[qit(ai + xit
=B)] for the logit model, where qit = 2yit - 1. What 

follows can be extended to any index function model, but for the present, we will confine 
our attention to symmetric distributions such as the normal and logistic, so that the 
probability can be conveniently written as Prob(Yit = yit � xit) = P[qit(ai + xit

=B)]. It will 
be convenient to let zit = ai + xit

=B so (Yit = yit � xit) = P(qitzit).
In our previous application of this model, in the linear regression case, we found that 

estimation of the parameters was simplified by a transformation of the data to deviations 
from group means, which eliminated the person-specific constants from the estimator. (See 
Section 11.4.1.) Save for the special case discussed later, that will not be possible here, so 
that if one desires to estimate the parameters of this model, it will be necessary actually 
to compute the possibly huge number of constant terms at the same time. This has been 
widely viewed as a practical obstacle to estimation of this model because of the need to 
invert a potentially large second derivatives matrix, but this is a misconception.54 The 
method for estimation of nonlinear fixed effects models such as the probit and logit 
models is detailed in Section 14.9.6.d.55

The problems with the fixed effects estimator are statistical, not practical. The 
estimator relies on Ti increasing for the constant terms to be consistent—in essence, 
each ai is estimated with Ti observations. But in this setting, not only is Ti fixed, it is 
likely to be quite small. As such, the estimators of the constant terms are not consistent 
(not because they converge to something other than what they are trying to estimate, 
but because they do not converge at all). The estimator of B is a function of the 
estimators of a, which means that the MLE of B is not consistent either. This is the 
incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] 
How serious this bias is remains a question in the literature. Two pieces of received 
wisdom are Hsiao’s (1986) results for a binary logit model [with additional results in 
Abrevaya (1997)] and Heckman and MaCurdy’s (1980) results for the probit model. 
Hsiao found that for Ti = 2, the bias in the MLE of B is 100%, which is extremely 
pessimistic. Heckman and MaCurdy found in a Monte Carlo study that in samples of 
n = 100 and T = 8, the bias appeared to be on the order of 10%, which is substantive, 
but certainly less severe than Hsiao’s results suggest. No other theoretical results have 
been shown for other models, although in very few cases, it can be shown that there is 
no incidental parameters problem. (The Poisson model mentioned in Section 14.9.6.d 

54See, for example, Maddala (1987), p. 317.
55Fernandez-Val (2009) reports using that method to fit a probit model for 500,000 groups.
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is one of these special cases.) The available mix of theoretical results and Monte Carlo 
evidence suggests that for binary choice estimation of static models, plim BnFE = S(T)B 
where S(2) = 2, S(T + 1) 6 S(T) and limt -7 ∞ S(T) = 1.56 The issue is much less clear 
for dynamic models—there is little small T wisdom, though the large T result appears 
to apply as well.

The fixed effects approach does have some appeal in that it does not require an 
assumption of orthogonality of the independent variables and the heterogeneity. An 
ongoing pursuit in the literature is concerned with the severity of the tradeoff of this 
virtue against the incidental parameters problem. Some commentary on this issue 
appears in Arellano (2001). Results of our own investigation appear in Section 15.5.2 
and Greene (2004).

17.7.3.a    A Conditional Fixed Effects Estimator

Why does the incidental parameters problem arise here and not in the linear regression 
model?57 Recall that estimation in the regression model was based on the deviations 
from group means, not the original data as it is here. The result we exploited there was 
that although f(yit � Xi) is a function of ai, f(yit � Xi, yi) is not a function of ai, and we used 
the latter in estimation of B. In that setting, yi is a minimal sufficient statistic for ai. 
Sufficient statistics are available for a few distributions that we will examine, but not for 
the probit model. They are available for the logit model, as we now examine.

A fixed effects binary logit model is

Prob(yit = 1 � xit) =
eai + xit

=B

1 + eai + xit
=B

.

The unconditional likelihood for the nT independent observations is

L = q
i
q

t
(Fit)

yit (1 - Fit)
1 - yit.

Chamberlain (1980) [following Rasch (1960) and Andersen (1970)] observed that the 
conditional likelihood function,

Lc = q
n

i= 1
Prob¢Yi1 = yi1, Yi2 = yi2, c, YiTi

= yiTi
2 aTi

t= 1
yit≤,

is free of the incidental parameters, ai. The joint likelihood for each set of Ti observations 
conditioned on the number of ones in the set is

 Prob¢Yi1 = yi1, Yi2 = yi2, c, YiTi
= yiTi

2 aTi

t= 1
yit, xi≤

	  =
exp¢ a Ti

t= 1yitxit
=b≤

a Σtdit = Si
exp¢ a Ti

t= 1ditxit
=b≤ .� (17-46)

56For example, Hahn and Newey (2002), Fernandez-Val (2009), Greene (2004), Katz (2001), Han (2002) and 
others.
57The incidental parameters problem does show up in ML estimation of the FE linear model, where Neyman and Scott 
(1948) discovered it, in estimation of se

2. The MLE of se
2 is e′/e/nT, which converges to [(T - 1)/T]se

2 6 se
2.
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The function in the denominator is summed over the set of all (Si

Ti) different sequences 
of Ti zeros and ones that have the same sum as Si = a Ti

t= 1yit.58

Consider the example of Ti = 2. The unconditional likelihood is

L = q
i

 Prob(Yi1 = yi1) Prob(Yi2 = yi2).

For each pair of observations, we have these possibilities:

1.	 yi1 = 0 and yi2 = 0. Prob(0, 0 � sum = 0) = 1.
2.	 yi1 = 1 and yi2 = 1. Prob(1, 1 � sum = 2) = 1.

The ith term in Lc for either of these is just one, so they contribute nothing to the 
conditional likelihood function.59 When we take logs, these terms (and these observations) 
will drop out. But suppose that yi1 = 0 and yi2 = 1. Then

Prob(0, 1 � sum = 1) =
Prob(0, 1 and sum = 1)

Prob(sum = 1)
=

Prob(0, 1)

Prob(0, 1) + Prob(1, 0)
.

Therefore, for this pair of observations, the conditional probability is

1

1 + eai + xi1
= B

 
eai + xi2

= B

1 + eai + xi2
= B

1

1 + eai + xi1
= B

 
eai + xi2

= B

1 + eai + xi2
= B

+
eai + xi1

= B

1 + eai + xi1
= B

 
1

1 + eai + xi2
= B

=
exi2

= B

exi1
= B + exi2

= B
.

By conditioning on the sum of the two observations, we have removed the heterogeneity. 
Therefore, we can construct the conditional likelihood function as the product of these 
terms for the pairs of observations for which the two observations are (0, 1). Pairs of 
observations with (1, 0) are included analogously. The product of the terms such as the 
preceding, for those observation sets for which the sum is not zero or Ti, constitutes the 
conditional likelihood. Maximization of the resulting function is straightforward and 
may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is 
indeed heterogeneity. With homogeneity (ai = a), there is no unusual problem, and the 
model can be estimated, as usual, as a logit model. It is not possible to test the hypothesis 
using the likelihood ratio test, however, because the two likelihoods are not comparable. 
(The conditional likelihood is based on a restricted data set.) None of the usual tests of 
restrictions can be used because the individual effects are never actually estimated.60 
Hausman’s (1978) specification test is a natural one to use here, however. Under the null 
hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood 

58The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or Baltagi 
(2005, p. 235). In fact, using a recursion suggested by Krailo and Pike (1984), the computation even with Ti up to 
100 is routine.
59In the probit model when we encounter this situation, the individual constant term cannot be estimated and the group 
is removed from the sample. The same effect is at work here.
60This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in the next 
section. Because the fixed effects are not estimated, it is not possible to compute probabilities or marginal effects with 
these estimated coefficients, and it is a bit ambiguous what one can do with the results of the computations. The brute 
force estimator that actually computes the individual effects might be preferable.
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estimator (CMLE) and the usual maximum likelihood estimator are consistent, but 
Chamberlain’s is inefficient. (It fails to use the information that ai = a, and it may not 
use all the data.) Under the alternative hypothesis, the unconditional maximum 
likelihood estimator is inconsistent,61 whereas Chamberlain’s estimator is consistent and 
efficient. The Hausman test can be based on the chi-squared statistic,

	 x2 = (BncmL - BnmL)′(Var[cmL] - Var[mL])-1(BncmL - BnmL).	 (17-47)

The estimated covariance matrices are those computed for the two maximum likelihood 
estimators. For the unconditional maximum likelihood estimator, the row and column 
corresponding to the constant term are dropped. A large value will cast doubt on the 
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible 
that the covariance matrix for the maximum likelihood estimator will be larger than that 
for the conditional maximum likelihood estimator. If so, then the difference matrix in 
brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore zero.

Example 17.22    Binary Choice Models for Panel Data
In Example 17.6, we fit a pooled binary Iogit model y = 1(DocVis 7 0) using the German 
health care utilization data examined in appendix Table F7.1. The model is

 Prob(DocVisit 7 0) = Λ(b1 + b2 Ageit + b3 Incomeit + b4 Kidsit

	  + b5 Educationit + b6 Marriedit).

No account of the panel nature of the data set was taken in that exercise. The sample contains 
a total of 27,326 observations on 7,293 families with Ti ranging from 1 to 7. Table 17.17 lists 
estimates of parameter estimates and estimated standard errors for probit and Iogit random 
and fixed effects models. There is a surprising amount of variation across the estimators. 
The coefficients are in bold to facilitate reading the table. It is generally difficult to compare 
across the estimators. The three estimators would be expected to produce very different 
estimates in any of the three specifications—recall, for example, the pooled estimator is 
inconsistent in either the fixed or random effects cases. The Iogit results include two fixed 
effects estimators. The line marked “U” is the unconditional (inconsistent) estimator. The one 
marked “C” is Chamberlain’s consistent estimator. Note for all three fixed effects estimator 
it is necessary to drop from the sample any groups that have DocVisit equal to zero or one 
for every period. There were 3,046 such groups, which is about 42% of the sample. We also 
computed the probit random effects model in two ways, first by using the Butler and 
Moffitt method, then by using maximum simulated likelihood estimation. In this case, the 
estimators are very similar, as might be expected. The estimated correlation coefficient, r, 
is computed as su

2 /(se
2 + su

2). For the probit model, se
2 = 1. The MSL estimator computes 

su = 0.9088376, from which we obtained r. The estimated partial effects for the models 
are shown in Table 17.18. The average of the fixed effects constant terms is used to obtain 
a constant term for the unconditional fixed effects case. No estimator is available for the 
conditional fixed effects case. Once again there is a considerable amount of variation 
across the different estimators. On average, the fixed effects models tend to produce 
much larger values than the pooled or random effects models.

Example 17.23    Fixed Effects Logit Model: Magazine Prices Revisited
The fixed effects model does have some appeal, but the incidental parameters problem is 
a significant shortcoming of the unconditional probit and logit estimators. The conditional 

61Hsiao (2003) derives the result explicitly for some particular cases.
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MLE for the fixed effects logit model is a fairly common approach. A widely cited application 
of the model is Cecchetti’s (1986) analysis of changes in newsstand prices of magazines. 
Cecchetti’s model was

Prob(Price change in year t of magazine i) = Λ(aj + xit
=B),

where the variables in xit are: (1) time since last price change, (2) inflation since last change, 
(3) previous fixed price change, (4) current inflation, (5) industry sales growth, and (6) sales 
volatility. The fixed effect in the model is indexed “j” rather than “i” as it is defined as a three-
year interval for magazine i. Thus, a magazine that had been on the newstands for nine years 
would have three constants, not just one. In addition to estimating several specifications of 
the price change model, Cecchetti used the Hausman test in (17-47) to test for the existence 
of the common effects. Some of Cecchetti’s results appear in Table 17.19.

Willis (2006) argued that Cecchetti’s estimates were inconsistent and the Hausman test is 
invalid because right-hand-side variables (1), (2), and (6) are all functions of lagged dependent 
variables. This state dependence invalidates the use of the sum of the observations for 
the group as a sufficient statistic in the Chamberlain estimator and the Hausman tests. He 
proposes, instead, a method suggested by Heckman and Singer (1984b) to incorporate 
the unobserved heterogeneity in the unconditional likelihood function. The Heckman and 
Singer model can be formulated as a latent class model (see Section 14.15.7) in which the 
classes are defined by different constant terms—the remaining parameters in the model are 
constrained to be equal across classes. Willis fit the Heckman and Singer model with two 
classes to a restricted version of Cecchetti’s model using variables (1), (2), and (5). The results 
in Table 17.19 show some of the results from Willis’s Table I. (Willis reports that he could 
not reproduce Cecchetti’s results—the ones in Cecchetti’s second column would be the 
counterparts—because of some missing values. In fact, Willis’s estimates are quite far from 
Cecchetti’s results, so it will be difficult to compare them. Both are reported here.)

The two mass points reported by Willis are shown in Table 17.19. He reported that these 
two values (-1.94 and -29.15) correspond to class probabilities of 0.88 and 0.12, though it 
is difficult to make the translation based on the reported values. He does note that the change 
in the log likelihood in going from one mass point (pooled logit model) to two is marginal, only 
from -500.45 to -499.65. There is another anomaly in the results that is consistent with this 

Model Age Income Kids Education Married

Logit, Pa 0.00472 -0.04238 -0.05272 -0.01037 0.01951
Logit: RE,Qb 0.00705 0.00049 -0.05461 -0.01193 0.00560
Logit: F,Uc 0.02570 -0.01402 -0.02167 -0.02865 -0.01404
Logit: F,Cd — — — — —
Probit, Pa 0.00475 -0.04315 -0.05267 -0.01040 0.01942
Probit RE.Qb 0.00550 -0.00073 -0.04226 -0.00920 0.00445
Probit:RE,Se 0.00694 -0.00090 -0.05362 -0.01166 0.00605
Probit: F,Uc 0.01312 -0.00662 -0.01012 -0.01516 -0.00688

aPooled estimator.
bButler and Moffitt estimator.
cUnconditional fixed effects estimator.
dConditional fixed effects estimator. Partial effects not computed.
eMaximum simulated likelihood estimator.

TABLE 17.18  Estimated Partial Effects for Panel Data Binary Choice Models
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finding. The reported standard error for the second mass point is 1.1 * 1011, or essentially 
+ ∞ . The finding is consistent with overfitting the latent class model. The results suggest that 
the better model is a one-class (pooled) model.

17.7.3.b    Mundlak’s Approach, Variable Addition, and Bias Reduction

Thus far, both the fixed effects (FE) and the random effects (RE) specifications present 
problems for modeling binary choice with panel data. The MLE of the FE model is 
inconsistent even when the model is properly specified—this is the incidental parameters 
problem. (And, like the linear model, the FE probit and logit models do not allow 
time-invariant regressors.) The random effects specification requires a strong, often 
unreasonable assumption that the effects and the regressors are uncorrelated. Of the 
two, the FE model is the more appealing, though with modern longitudinal data sets 
with many demographics, the problem of time-invariant variables would seem to be 
compelling. This would seem to recommend the conditional estimator in Section 17.4.4, 
save for yet another complication. With no estimates of the constant terms, neither 
probabilities nor partial effects can be computed with the results. We are left making 
inferences about ratios of coefficients. Two approaches have been suggested for finding 
a middle ground: Mundlak’s (1978) approach that involves projecting the effects on the 
group means of the time-varying variables and recent developments such as Fernandez-
Val’s (2009) approach that involves correcting the bias in the FE MLE.

The Mundlak (1978) approach62 augments (17-44) as follows:

 yit* = ai + xit
=B + eit

 Prob(yit = 1 � xit) = F(ai + xit
=B)

 ai = a + xi
=D + ui,

where we have used xi generically for the group means of the time-varying variables in 
xit. The reduced form of the model is

Prob(yit = 1 � Xi) = F(a + xi
=D + xit

=B + ui).

(Wooldridge and Chamberlain also suggest using all years of xit rather than the group 
means. This raises a problem in unbalanced panels, however. We will ignore this 
possibility.) The projection of ai on xi produces a random effects formulation. As in the 

62See also Chamberlain (1984) and Wooldridge (2010).

Pooled
Unconditional

FE
Conditional
FE Cecchetti

Conditional
FE Willis

Heckman and 
Singer

b1 -1.10 (0.03) -0.07 (0.03) 1.12 (3.66) 1.02 (0.28) -0.09 (0.04)
b2 6.93 (1.12) 8.83 (1.25) 11.57 (1.68) 19.20 (7.51) 8.23 (1.53)
b5 -0.36 (0.98) -1.14 (1.06) 5.85 (1.76) 7.60 (3.46) -0.13 (1.14)
Constant 1 -1.90 (0.14) -1.94 (0.20)
Constant 2 -29.15 (1.1e11)
ln L -500.45 -473.18 -82.91 -83.72 -499.65
Sample size 1026 1026 543 1026

Table 17.19  Models for Magazine Price Changes (Standard errors in parentheses)
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linear model (see Sections 11.5.6 and 11.5.7), it also suggests a means of testing for fixed 
versus random effects. Because D = 0 produces the pure random effects model, a joint 
Wald test of the null hypothesis that D equals zero can be used.

Example 17.24    Panel Data Random Effects Estimators
Example 17.22 presents several panel data estimators for the probit and logit models. Pooled, 
random effects, and fixed effects estimates are given for the probit model

 Prob(DocVisit 7 0) = Φ(b1 + b2 Ageit + b3 Incomeit + b4 Kidsit

+ b5 Educationit + b6 Marriedit).

We continue that analysis here by considering Mundlak’s approach to the common effects 
model. Table 17.20 presents the random effects model from earlier, and the augmented 
estimator that contains the group means of the variables, all of which are time varying. 
The addition of the group means to the regression brings large changes to the estimates 
of the parameters, which might suggest the appropriateness of the fixed effects model. A 
formal test is carried by computing a Wald statistic for the null hypothesis that the last five 
coefficients in the augmented model equal zero. The chi-squared statistic equals 113.35 
with 5 degrees of freedom. The critical value from the chi-squared table for 95% significance 
is 11.07, so the hypothesis that D equals zero, that is, the hypothesis of the random effects 
model (restrictions), is rejected. The two log likelihoods are -16,273.96 for the REM and 
-16,222/04 for the augmented REM. The LR statistic would be twice the difference, or 103.4. 
This produces the same conclusion. The FEM appears to be the preferred model.

A series of recent studies has sought to maintain the fixed effects specification 
while correcting the bias due to the incidental parameters problem. There are two broad 
approaches. Hahn and Kuersteiner (2004), Hahn and Newey (2005), and Fernandez-Val 
(2009) have developed an approximate, “large T” result for plim(BnFE,MLE - B) that 
produces a direct correction to the estimator, itself. Fernandez-Val (2009) develops 
corrections for the estimated constant terms as well. Arellano and Hahn (2006, 2007) 
propose a modification of the log-likelihood function with, in turn, different first-order 
estimation equations, that produces an approximately unbiased estimator of B. In a 
similar fashion to the second of these approaches, Carro (2007) modifies the first-order 
conditions (estimating equations) from the original log-likelihood function, once again 
to produce an approximately unbiased estimator of B. [In general, given the overall 
approach of using a large T approximation, the payoff to these estimators is to reduce the 
bias of the FE, MLE from O(1/T) to O(1/T 2), which is a considerable reduction.] These 
estimators are not yet in widespread use. The received evidence suggests that in the 

Basic Random Effects Mundlak Formulation

Estimate Std. Error Estimate Std. Error Mean Std. Error

Constant 0.03410 (0.09635) 0.37496 (0.10501)
Age 0.02014 (0.00132) 0.05032 (0.00357) -0.03656 (0.00384)
Income -0.00267 (0.06770) -0.02863 (0.09325) -0.35365 (0.13991)
Kids -0.15377 (0.02704) -0.04195 (0.03752) -0.22516 (0.05499)
Education -0.03371 (0.00629) -0.05450 (0.03307) 0.02391 (0.03374)
Married 0.01629 (0.03135) -0.02661 (0.05180) 0.14689 (0.06606)

Table 17.20  Estimated Random Effects Models
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simple case we are considering here, the incidental parameters problem is a secondary 
concern when T reaches say 10 or so. For some modern public use data sets, such as the 
BHPS or GSOEP which are well beyond their 15th wave, the incidental parameters 
problem may not be too severe. However, most of the studies mentioned above are 
concerned with dynamic models (see Section 17.7.4), where the problem is possibly more 
severe than in the static case. Research in this area is ongoing.

17.7.4    DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model that explicitly allows for lagged effects would be

yit = 1(xit
=B + ai + gyi,t - 1 + eit 7 0).

Lagged effects, or persistence, in a binary choice setting can arise from three sources, 
serial correlation in eit, the heterogeneity, ai, or true state dependence through the term 
gyi,t - 1. Chiappori (1998) and Arellano (2001) suggest an application to the French 
automobile insurance market in which the incentives built into the pricing system are 
such that having an accident in one period should lower the probability of having one 
in the next (state dependence), but some drivers remain more likely to have accidents 
than others in every period, which would reflect the heterogeneity instead. State 
dependence is likely to be particularly important in the typical panel, which has only a 
few observations for each individual. Heckman (1981a) examined this issue at length. 
Among his findings were that the somewhat muted small sample bias in fixed effects 
models with T = 8 was made much worse when there was state dependence. A related 
problem is that with a relatively short panel, the initial conditions, yi0, have a crucial 
impact on the entire path of outcomes. Modeling dynamic effects and initial conditions 
in binary choice models is more complex than in the linear model, and by comparison, 
there are relatively fewer firm results in the applied literature.63

The correlation between ai and yi,t - 1 in the dynamic binary choice model makes 
yi,t - 1 endogenous. Thus, the estimators we have examined so far will not be consistent. 
Two familiar alternative approaches that have appeared in recent applications are due 
to Heckman (1981) and Wooldridge (2005), both of which build on the random effects 
specification. Heckman’s approach provides a separate equation for the initial condition,

 Prob(yi1 = 1 � xi1, zi, ai) = Φ(xi1
= D + zi

=T + uai)
 Prob(yit = 1 � xit, yi,t - 1, ai) = Φ(xit

=B + gyi,t - 1 + ai), t = 2, c, Ti,

where zi is a set of instruments observed at the first period that are not contained in xit. 
The conditional log likelihood is

 ln L �A = a
n

i= 1
 lnbΦ[(2yi1 - 1)(xi1

= D + zi
=T + uai)]q

Ti

t= 2
Φ[(2yit - 1)(xi1

= B + gyi,t - 1 + ai)] r
 = a

n

i= 1
 ln Li �ai.

63A survey of some of these results is given by Hsiao (2003). Most of Hsiao (2003) is devoted to the linear 
regression model. A number of studies specifically focused on discrete choice models and panel data have 
appeared recently, including Beck, Epstein, Jackman, and O’Halloran (2001), Arellano (2001), and Greene (2001). 
Vella and Verbeek (1998) provide an application to the joint determination of wages and union membership. 
Other important references are Aguirregabiria and Mira (2010), Carro (2007), and Fernandez-Val (2009). Stewart 
(2006) and Arulampalam and Stewart (2007) provide several results for practitioners.
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We now adopt the random effects approach and further assume that ai is normally 
distributed with mean zero and variance sa

2. The random effects log-likelihood function 
can be maximized with respect to (D, T, u, B, g, sa) using either the Butler and Moffitt 
quadrature method or the maximum simulated likelihood method described in Section 
17.4.2. Stewart and Arulampalam (2007) suggest a useful shortcut for formulating the 
Heckman model. Let Dit = 1 and g = u - 1 in period 1 and 0 in every other  period, 
Cit = 1 - Dit. Then, the two parts may be combined in

ln L �A = a
n

i= 1
lnq

Ti

t= 1
{Φ[(2yit - 1)8Cit(xi1

= B + gyi,t - 1) + Dit(xit
=D + zi

=T) + (1 + lDit)ai9 ]}.

In this form, the model can be viewed as a random parameters (random constant term) 
model in which there is heteroscedasticity in the random part of the constant term.

Wooldridge’s approach builds on the Mundlak device of the previous section. 
Starting from the same point, he suggests a model for the random effect conditioned on 
the initial value. Thus,

ai � yi1, zi ∼ N[a0 + hyi1 + zi
=T, sa

2].

Assembling the parts, Wooldridge’s model is a bit simpler than Heckman’s,

Prob(Yit = yit � xit, yi1, ui)
 = Φ[(2yit - 1)(a0 + xit

=B + gyi,t - 1 + hyi1 + zi
=T + ui)], t = 2, c, Ti.

The source of the instruments zi is unclear. Wooldridge (2005) simplifies the model a 
bit by using, instead, a Mundlak approach, using the group means of the time-varying 
variables as z. The resulting random effects formulation is

 Prob(Yit = yit � xit, yi1, yi,t - 1,ui)
 = Φ[(2yit - 1)(a0 + xit

=B + gyi,t - 1 + hyi1 + xi
=T + ui)], t = 2, c, Ti.

Much of the contemporary literature has focused on methods of avoiding the strong 
parametric assumptions of the probit and logit models. Manski (1987) and Honore and 
Kyriazidou (2000) show that Manski’s (1986) maximum score estimator can be applied to 
the differences of unequal pairs of observations in a two-period panel with fixed effects. 
However, the limitations of the maximum score estimator have motivated research on 
other approaches. An extension of lagged effects to a parametric model is Chamberlain 
(1985), Jones and Landwehr (1988), and Magnac (1997), who added state dependence to 
Chamberlain’s fixed effects logit estimator. Unfortunately, once the identification issues 
are settled, the model is only operational if there are no other exogenous variables in 
it, which limits its usefulness for practical application. Lewbel (2000) has extended his 
fixed effects estimator to dynamic models as well.

Dong and Lewbel (2010) have extended Lewbel’s special regressor method to 
dynamic binary choice models and have devised an estimator based on an IV linear 
regression. Honore and Kyriazidou (2000) have combined the logic of the conditional 
logit model and Manski’s maximum score estimator. They specify

 Prob(yi0 = 1 � xi, ai) = p0(xi, ai) where xi = (xi1, xi2, c, xiT),
Prob(yit = 1 � xi, ai, yi0, yi1, c, yi,t - 1) = F(xit

=B + ai + gyi,t - 1) t = 1, c, T.

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting 
estimator resembles Chamberlain’s but relies on observations for which xit = xi,t - 1, 
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which rules out direct time effects as well as, for practical purposes, any continuous 
variable. The restriction to a single regressor limits the generality of the technique as 
well. The need for observations with equal values of xit is a considerable restriction, and 
the authors propose a kernel density estimator for the difference, xit - xi,t - 1, instead 
which does relax that restriction a bit. The end result is an estimator that converges (they 
conjecture) but to a nonnormal distribution and at a rate slower than n-1/3.

Semiparametric estimators for dynamic models at this point in the development are 
still primarily of theoretical interest. Models that extend the parametric formulations to 
include state dependence have a much longer history, including Heckman (1978, 1981a, 
1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993), and Beck et al. 
(2001) to name a few.64 In general, even without heterogeneity, dynamic models 
ultimately involve modeling the joint outcome (yi0, c, yiT), which necessitates some 
treatment involving multivariate integration. Example 17.14 describes an application. 
Stewart (2006) provides another.

Example 17.25    A Dynamic Model for Labor Force Participation and Disability
Gannon (2005) modeled the relationship between labor force participation and disability in 
Ireland with a panel data set, The Living in Ireland Survey 1995–2000. The sample begins in 1995 
with 7,254 individuals, but with attrition, shrinks to 3,670 in 2000. The dynamic probit model is

yit
 * = b0 + b1yi,t - 1 + b2Dit + b3Di,t - 1 + b4zit + ai + eit, yit = 1(yit

 * 7 0),

where yit is the labor force participation indicator and Dit is an indicator of disability. The 
related covariates are gathered in zit. The lagged value of Dit helps distinguish longer-term 
disabilities from those recently acquired. Unobserved time-invariant individual effects are 
captured by the common effect, ai. The lagged dependent variable helps distinguish between 
the impact of the individual effect and the inertia of past participation. Variables in zit include 
age, residence region, education, marital status, children, and unearned income.

The starting point of the analysis is a pooled probit model without the common effect (with 
standard errors corrected for the clustering at the individual level). The pooled model leaves 
two interesting questions:

1.	 Do the control variables adequately account for the unobserved characteristics?
2.	 Does past disability affect participation directly as in the model, or through some different 

channel that affects past participation?

The author adopts Wooldridge’s (2005) (Mundlak) form of the random effects model we 
examined in Section 17.7.3.b and Example 17.24 to deal with the unobserved heterogeneity 
and the initial conditions problem. Thus, the initial value of yit and the group means of time-
varying variables are added to the random effects model,

yit
 * = b1yi,t - 1 + b2Dit + b3Di,t - 1 + b4zit + a0 + a1yi0 + A2

=xi + ai + eit, yit = 1(yit
 * 7 0).

The resulting model is now estimated using the Butler and Moffitt method for random effects.

Example 17.26    An Intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women. The focus 
of the study is the high degree of persistence in the participation decision. Data used in the 

64Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they 
observe a large sample of countries (147) over a fairly large number of years, 40. As such, they are able to 
formulate their models in a way that makes the asymptotics with respect to T appropriate. They can analyze 
the data essentially in a time-series framework. Sepanski (2000) is another application that combines state 
dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).
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study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of 1,812 
continuously married couples was studied. Exogenous variables that appeared in the model 
were measures of permanent and transitory income and fertility captured in yearly counts 
of the number of children from 0 to 2, 3 to 5, and 6 to 17 years old. Hyslop’s formulation, in 
general terms, is

(initial condition) yi0 = 1(xi0
= B0 + vi0 7 0),

(dynamic model) yit = 1(xit
=B + gyi,t - 1 + ai + vit 7 0)

(heterogeneity correlated with participation) ai = zi
=D + hi,

(stochastic specification)

hi � Xi ∼ N[0, sh
2],

vi0 � X ∼ N[0, s0
2],

wit � Xi ∼ N[0, sw
2 ],

vit = rvi,t - 1 + wit, sh
2 + sw

2 = 1,
Corr[vi0, vit] = rt, t = 1, c, T - 1.

The presence of the autocorrelation and state dependence in the model invalidate the simple 
maximum likelihood procedures we examined earlier. The appropriate likelihood function is 
constructed by formulating the probabilities as

Prob(yi0, yi1, c) = Prob(yi0) * Prob(yi1 � yi0) * g * Prob(yiT � yi,T - 1).

This still involves a T = 7 order normal integration, which is approximated in the study using 
a simulator similar to the GHK simulator discussed in 15.6.2.b. Among Hyslop’s results are a 
comparison of the model fit by the simulator for the multivariate normal probabilities with the 
same model fit using the maximum simulated likelihood technique described in Section 15.6.

17.7.5    A SEMIPARAMETRIC MODEL FOR INDIVIDUAL HETEROGENEITY

The panel data analysis considered thus far has focused on modeling heterogeneity 
with the fixed and random effects specifications. Both assume that the heterogeneity is 
continuously distributed among individuals. The random effects model is fully parametric, 
requiring a full specification of the likelihood for estimation. The fixed effects model is 
essentially semiparametric. It requires no specific distributional assumption; however, it 
does require that the realizations of the latent heterogeneity be treated as parameters, 
either estimated in the unconditional fixed effects estimator or conditioned out of the 
likelihood function when possible. As noted in Example 17.23, Heckman and Singer’s 
(1984b) model provides a less stringent specification based on a discrete distribution of 
the latent heterogeneity. A straightforward method of implementing their model is to 
cast it as a latent class model in which the classes are distinguished by different constant 
terms and the associated probabilities. The class probabilities are treated as parameters 
to be estimated with the model parameters.

Example 17.27    Semiparametric Models of Heterogeneity
We have extended the random effects and fixed effects logit models in Example 17.22 by 
fitting the Heckman and Singer (1984b) model. Table 17.21 shows the specification search 
and the results under different specifications. The first column of results shows the estimated 
fixed effects model from Example 17.22. The conditional estimates are shown in parentheses. 
Of the 7,293 groups in the sample, 3,056 are not used in estimation of the fixed effects models 
because the sum of Doctorit is either 0 or Ti for the group. The mean and standard deviation 
of the estimated underlying heterogeneity distribution are computed using the estimates of 
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ai for the remaining 4,237 groups. The remaining five columns in the table show the results 
for different numbers of latent classes in the Heckman and Singer model. The listed constant 
terms are the “mass points” of the underlying distributions. The associated class probabilities 
are shown in parentheses under them. The mean and standard deviation are derived from the 
2-to-5 point discrete distributions shown. It is noteworthy that the mean of the distribution 
is relatively stable, but the standard deviation rises monotonically. The search for the best 
model would be based on the AIC. As noted in Section 14.15.5, using a likelihood ratio test 
in this context is dubious, as the number of degrees of freedom is ambiguous. Based on the 
AIC, the four-class model is the preferred specification.

17.7.6    MODELING PARAMETER HETEROGENEITY

In Section 11.10, we examined specifications that extend the underlying heterogeneity 
to all the parameters of the model. We have considered two approaches. The random 
parameters or mixed models discussed in Chapter 15 allow parameters to be distributed 
continuously across individuals. The latent class model  in Section 14.15 specifies a 
discrete distribution instead. (The Heckman and Singer model in the previous section 

Number of Classes

Fixed Effect 1 2 3 4 5

b1 0.10475 0.02071 0.03033 0.03368 0.03408 0.03416
(0.08476)

b2 -0.06097 -0.18592 0.02555 -0.00580 -0.00635 -0.01363
(-0.05038)

b3 -0.08841 -0.22947 -0.24708 -0.26388 -0.26590 -0.26626
(-0.07776)

b4 -0.11671 -0.04559 -0.05092 -0.05802 -0.05975 -0.05918
(-0.09082)

b5 -0.05732 0.08529 0.04297 0.03794 0.02923 0.03070
(-0.52072)

a1 -2.62334 0.25111 0.91764 1.71669 1.94536 2.76670
(1.00000) (0.62681) (0.34838) (0.29309) (0.11633)

a2 -1.47800 -2.23491 -1.76371 1.18323
(0.37319) (0.18412) (0.21714) (0.26468)

a3 -0.28133 -0.03674 -1.96750
(0.46749) (0.46341) (0.19573)

a4 -4.03970 -0.25588
(0.02636) (0.40930)

a5 -6.48191
(0.01396)

Mean -2.62334 0.25111 0.02361 0.05506 0.06369 0.05471
Std. Dev. 3.13415 0.00000 1.15866 1.40723 1.48707 1.62143
ln L -9458.638 -17673.10 -16353.14 -16278.56 -16276.07 -16275.85

(-6299.02)
AIC/N 1.00349 1.29394 1.19748 1.19217 1.19213 1.19226

TABLE 17.21  Estimated Heterogeneity Models
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applies this method to the constant term.) Most of the focus to this point, save for 
Example 14.17, has been on linear models.

The random effects model can be cast as a model with a random constant term,

 yit* = ai + xit
=B + eit, i = 1, c, n, t = 1, c, Ti,

 yit = 1(yit* 7 0),

where ai = a + suui. This is simply a reinterpretation of the model we just analyzed. We 
might, however, now extend this formulation to the full parameter vector. The resulting 
structure is

 yit* = xit
=Bi + eit, i = 1, c, n, t = 1, c, Ti,

 yit = 1(yit* 7 0),

where Bi = B + �ui and � is a nonnegative definite diagonal matrix—some of its 
diagonal elements could be zero for nonrandom parameters. The method of estimation 
is maximum simulated likelihood. The simulated log likelihood is now

ln LSimulated = a
n

i= 1
lnb 1

R a
R

r = 1
JqTi

t= 1
F[qit(xit

= (B + �uir))] R r .

The simulation now involves R draws from the multivariate distribution of u. Because the 
draws are uncorrelated—� is diagonal—this is essentially the same estimation problem as 
the random effects model considered previously. This model is estimated in Example 17.28.  
Example 17.28 also presents a similar model that assumes that the distribution of Bi is 
discrete rather than continuous.

Example 17.28    Parameter Heterogeneity in a Binary Choice Model
We have extended the logit model for doctor visits from Example 17.14 to allow the parameters 
to vary randomly across individuals. The random parameters logit model is

Prob (Doctorit = 1) = Λ(b1i + b2i Ageit + b3i Incomeit + b4i Kidsit + b5i Educit + b6i Marriedit),

where the two models for the parameter variation we have employed are:

 Continuous:   bki = bk + skuki, uki ∼ N[0, 1], k = 1, c, 6, Cov[uki, umi] = 0,

 Discrete:	 bki = bk
1 with probability p1,

	 bk
2 with probability p2,

	 bk
3 with probability p3.

We have chosen a three-class latent class model for the illustration. In an application, one 
might undertake a systematic search, such as in Example 17.27 to find a preferred 
specification. Table 17.22 presents the fixed parameter (pooled) logit model and the two 
random parameters versions. (There are infinite variations on these specifications that one 
might explore—see Chapter 15 for discussion— we have shown only the simplest to illustrate 
the models.65)

Figure 17.5 shows the implied distribution for the coefficient on age. For the continuous 
distribution, we have simply plotted the normal density. For the discrete distribution, we first 

65Nonreplicability is an ongoing challenge in empirical work in economics. (See, for instance, Example 17.14.) 
The problem is particularly acute in analyses that involve simulation such as Monte Carlo studies and random 
parameter models. In the interest of replicability, we note that the random parameter estimates in Table 17.22 were 
computed with NLOGIT [Econometric Software (2007)] and are based on 50 Halton draws. We used the first six 
sequences (prime numbers 2, 3, 5, 7, 11, 13) and discarded the first 10 draws in each sequence.
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obtained the mean (0.0358) and standard deviation (0.0107). Notice that the distribution 
is tighter than the estimated continuous normal (mean, 0.026; standard deviation, 0.0253). 
To suggest the variation of the parameter (purely for purpose of the display, because the 
distribution is discrete), we placed the mass of the center interval, 0.461, between the 
midpoints of the intervals between the center mass point and the two extremes. With a width 

Pooled Random Parameters Latent Class

Variable Estimate: B Estimate: B Estimate: S Estimate: B Estimate: B Estimate: B

Constant 0.25111 -0.03496 0.81651 0.96605 -0.18579 -1.52595
(0.09114) (0.07553) (0.01654) (0.43757) (0.23907) (0.43498)

Age 0.02071 0.02631 0.02533 0.04906 0.03225 0.01998
(0.00129) (0.00110) (0.00042) (0.00695) (0.00315) (0.00626)

Income -0.18592 -0.00436 0.10737 -0.27917 -0.06863 0.45487
(0.07506) (0.06245) (0.03828) (0.37149) (0.16748) (0.31153)

Kids -0.22947 -0.17461 0.55520 -0.28385 -0.28336 -0.11708
(0.02954) (0.02452) (0.02387) (0.14279) (0.06640) (0.12363)

Education -0.04559 -0.04051 0.03792 -0.02530 -0.05734 -0.09385
(0.00565) (0.00475) (0.00134) (0.02777) (0.01247) (0.02797)

Married 0.08529 0.01462 0.07070 -0.10875 0.02533 0.23571
(0.03329) (0.027417) (0.01736) (0.17228) (0.07593) (0.14369)

Class 1.00000 1.00000 0.34833 0.46181 0.18986
Prob. (0.00000) (0.00000) (0.03850) (0.02806) (0.02234)
ln L -17673.10 -16271.72 -16265.59
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0.000
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FIGURE 17.5    Distribution of AGE Coefficient.

TABLE 17.22  Estimated Heterogeneous Parameter Models
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of 0.0145 the density is 0.461/0.0145 = 31.8. We used the same interval widths for the outer 
segments. This range of variation covers about five standard deviations of the distribution.

17.7.7    NONRESPONSE, ATTRITION, AND INVERSE PROBABILITY WEIGHTING

Missing observations is a common problem in the analysis of panel data. Nicoletti and 
Peracchi (2005) suggest several reasons that, for example, panels become unbalanced:

●● Demographic events such as death;
●● Movement out of the scope of the survey, such as institutionalization or emigration;
●● Refusal to respond at subsequent waves;
●● Absence of the person at the address;
●● Other types of noncontact.

The GSOEP that we [from Riphahn, Wambach, and Million (2003)] have used in many 
examples in this text is one such data set. Jones, Koolman, and Rice (2006) (JKR) list several 
other applications, including the British Household Panel Survey (BHPS), the European 
Community Household Panel (ECHP), and the Panel Study of Income Dynamics (PSID).

If observations are missing completely at random (MCAR, see Section 4.7.4) then the 
problem of nonresponse can be ignored, though for estimation of dynamic models, either 
the analysis will have to be restricted to observations with uninterrupted sequences of 
observations, or some very strong assumptions and interpolation methods will have to 
be employed to fill the gaps. (See Section 4.7.4 for discussion of the terminology and 
issues in handling missing data.) The problem for estimation arises when observations 
are missing for reasons that are related to the outcome variable of interest. Nonresponse 
bias and a related problem, attrition bias (individuals leave permanently during the 
study), result when conventional estimators, such as least squares or the probit maximum 
likelihood estimator being used here are applied to samples in which observations are 
present or absent from the sample for reasons related to the outcome variable. It is a 
form of sample selection bias that we will examine further in Chapter 19.

Verbeek and Nijman (1992) have suggested a test for endogeneity of the sample 
response pattern. (We will adopt JKR’s notation and terminology for this.) Let h denote 
the outcome of interest and x denote the relevant set of covariates. Let R denote the 
pattern of response. If nonresponse is (completely) random, then E[h � x, R] = E[h � x]. 
This suggests a variable addition test (neglecting other panel data effects); a pooled 
model that contains R in addition to x can provide the means for a simple test of 
endogeneity. JKR (and Verbeek and Nijman) suggest using the number of waves at 
which the individual is present as the measure of R. Thus, adding R to the pooled model, 
we can use a simple t test for the hypothesis.

Devising an estimator given that (non)response is nonignorable requires a more 
detailed understanding of the process generating the response pattern. The crucial issue 
is whether the sample selection is based on unobservables or on observables. Selection 
on unobservables results when, after conditioning on the relevant variables, x, and 
other information, z, the sampling mechanism is still nonrandom with respect to the 
disturbances in the models. Selection on unobservables is at the heart of the sample 
selectivity methodology pioneered by Heckman (1979) that we will study in Chapter 19. 
(Some applications of the role of unobservables in biased estimation are discussed in 
Chapter 8, where we examine sources of endogeneity in regression models.) If selection 
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is on observables and then conditioned on an appropriate specification involving the 
observable information, (x,z), a consistent estimator of the model parameters will be 
available by purging the estimator of the endogeneity of the sampling mechanism.

JKR adopt an inverse probability weighted (IPW) estimator devised by Robins, 
Rotnitsky, and Zhao (1995), Fitzgerald, Gottshalk, and Moffitt (1998), Moffitt, Fitzgerald, 
and Gottshalk (1999), and Wooldridge (2002). The estimator is based on the general 
MCAR assumption that P(R = 1 � h, x, z) = P(R = 1 � x, z). That is, the observable 
covariates convey all the information that determines the response pattern—the 
probability of nonresponse does not vary systematically with the outcome variable once 
the exogenous information is accounted for. Implementing this idea in an estimator 
would require that x and z be observable when R = 0, that is, the exogenous data be 
available for the nonresponders. This will typically not be the case; in an unbalanced 
panel, the entire observation is missing. Wooldridge (2002) proposed a somewhat 
stronger assumption that makes estimation feasible: P(R = 1 � h, x, z) = P(R = 1 � z) 
where z is a set of covariates available at wave 1 (entry to the study). To compute 
Wooldridge’s IPW estimator, we will begin with the sample of all individuals who are 
present at wave 1 of the study. (In our Example 17.17, based on the GSOEP data, not 
all individuals are present at the first wave.) At wave 1, (xi1, zi1) are observed for all 
individuals to be studied; zi1 contains information on observables that are not included 
in the outcome equation and that predict the response pattern at subsequent waves, 
including the response variable at the first wave. At wave 1, then, P(Ri1 = 1 � xi1, zi1) = 1. 
Wooldridge suggests using a probit model for P(Rit = 1 � xi1, zi1), t = 2, c, T for the 
remaining waves to obtain predicted probabilities of response, pn it. The IPW estimator 
then maximizes the weighted log likelihood,

ln LIPW = a
n

i= 1
a
T

t= 1

Rit

pn it
 ln Lit.

Inference based on the weighted log-likelihood function can proceed as in Section 17.3. 
A  remaining detail concerns whether the use of the predicted probabilities in the 
weighted log-likelihood function makes it necessary to correct the standard errors for 
two-step estimation. The case here is not an application of the two-step estimators we 
considered in Section 14.7, because the first step is not used to produce an estimated 
parameter vector in the second. Wooldridge (2002) shows that the standard errors 
computed without the adjustment are “conservative” in that they are larger than they 
would be with the adjustment.

Example 17.29    Nonresponse in the GSOEP Sample
Of the 7,293 individuals in the GSOEP data that we have used in several earlier examples, 
3,874 were present at wave 1 (1984) of the sample. The pattern of the number of waves present 
by these 3,874 is shown in Figure 17.6. The waves are 1984–1988, 1991, and 1994. A dynamic 
model would be based on the 1,600 of those present at wave 1 who were also present for the 
next four waves. There is a substantial amount of nonresponse in these data. Not all individuals 
exit the sample with the first nonresponse, however, so the resulting panel remains unbalanced. 
The impression suggested by Figure 17.6 could be a bit misleading—the nonresponse pattern 
is quite different from simple attrition. For example, 364 of the 3,874 individuals who responded 
at wave 1 did not respond at wave 2 but returned to the sample at wave 3.

To employ the Verbeek and Nijman test, we used the entire sample of 27,326 household 
years of data. The pooled probit model for DocVis 7 0 produced the results at the left in 
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Table 17.23. A t (Wald) test of the hypothesis that the coefficient on number of waves present 
is zero is strongly rejected, so we proceed to the inverse probability weighted estimator. For 
computing the inverse probability weights, we used the following specification:

 xi1 = constant, age, income, educ, kids, married

 zi1 = female, handicapped dummy, percentage handicapped,

university, working, blue collar, white collar, public servant, yi1

 yi1 = DoctorVisits 7 0 in period 1.

This first-year data vector is used as the observed explanatory variables in probit models 
for waves 2 to 7 for the 3,874 individuals who were present at wave 1. There are 3,874 
observations for each of these probit models, because all were observed at wave, 1. Fitted 
probabilities for Rit are computed for waves 2 to 7, while Ri1 = 1. The sample means of these 
probabilities, which equals the proportion of the 3,874 who responded at each wave, are 
1.000, 0.730, 0.672, 0.626, 0.682, 0.568, and 0.386, respectively. Table 17.23 presents the 
estimated models for several specifications In each case, it appears that the weighting brings 
some moderate changes in the parameters and, uniformly, reductions in the standard errors.

TABLE 17.23  Inverse Probability Weighted Estimators

Pooled Model Random 
Effects–Mundlak

Fixed Effects

Variable Endog. Test Unwtd. IPW Unwtd. IPW Unwtd. IPW

Constant 0.26411 0.03369 -0.02373 0.09838 0.13237
(0.05893) (0.07684) (0.06385) (0.16081) (0.17019)

Age 0.01369 0.01667 0.01831 0.05141 0.05656 0.06210 0.06841
(0.00080) (0.00107) (0.00088) (0.00422) (0.00388) (0.00506) (0.00465)

Income -0.12446 -0.17097 -0.22263  0.05794 0.01699 0.07880 0.03603
(0.04636) (0.05981) (0.04801) (0.11256) (0.10580) (0.12891) (0.12193)

Education -0.02925 -0.03614 -0.03513 -0.06456 -0.07058 -0.07752 -0.08574
(0.00351) (0.00449) (0.00365) (0.06104) (0.05792) (0.06582) (0.06149)

Kids -0.13130 -0.13077 -0.13277 -0.04961 -0.03427 -0.05776 -0.03546
(0.01828) (0.02303) (0.01950) (0.04500) (0.04356) (0.05296) (0.05166)

Married 0.06759 0.06237 0.07015 -0.06582 -0.09235 -0.07939 -0.11283
(0.02060) (0.02616) (0.02097) (0.06596) (0.06330) (0.08146) (0.07838)

Mean Age -0.03056 -0.03401
(0.00479) (0.00455)

Mean Income -0.66388 -0.78077
(0.18646) (0.18866)

Mean 0.02656 0.02899
Education (0.06160) (0.05848)
Mean Kids -0.17524 -0.20615

(0.07266) (0.07464)
Mean Married 0.22346 0.25763

(0.08719) (0.08433)
Number of 
Waves

-0.02977
(0.00450)

r 0.46538 0.48616
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17.9	 SPATIAL BINARY CHOICE MODELS

Section 11.7 presented a model of spatial interaction among sample observations. In an 
application, Bell and Bockstael (2000) constructed a spatial hedonic regression model 
of house prices that were influenced by attributes and by neighborhood effects. We 
considered two frameworks for the regression model: spatial autoregression (SAR),

yi = xi
=B + rΣj= 1

n wijyj + ei, or, for all n observations, y = XB + rWy + E,

and spatial autocorrelation (SAC),

yi = xi
=B + ei where ei = rΣj= 1

n wijej + ui, or y = XB + E, E = rWE + u.

Both cases produce a generalized regression model with full n * n covariance matrix 
when y is a continuous random variable. The model frameworks turn on the crucial 
spatial correlation parameter, r, and the specification of the contiguity matrix, W, which 
defines the form of the spatial correlation. In Bell and Bockstael’s application, in the 
sample of 1,000 home sales, the elements of W (in one of several specifications) are

Wij =
1(home i and j are 6 600 meters apart)

distance between homes i and j
; Wii = 0.

(The rows of W are standardized.) Conditioned on the value of r, this produces a 
generalized regression model that is estimated by GMM or maximum likelihood.

We are interested in extending the idea of spatial interaction to a binary outcome.66 
Some received examples are:

●● Garrett, Wagner, and Wheelock (2005) examined banks’ choices of branch banking;
●● McMillen (1992) examined factors associated with high (or low) crime rates in 

neighborhoods of Columbus, Ohio;

FIGURE 17.6    Number of Waves Responded for Those Present at Wave 1.
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66Smirnov (2010) provides a survey of applications of spatial models to nonlinear regression settings.
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●● Pinske and Slade (2006) examined operation decisions (open/closed) for a panel 
of copper mines;

●● Flores-Lagunes and Schnier (2012) extended Heckman’s (1979) two-step estimator 
to include spatial effects in both the selection (probit) and regression steps. They 
apply the method to a sample of 320 observations on trawl fishing in which only 207 
are fully reported (selected).

●● Klier and McMillen (2008) analyzed county-wide data on auto supply plant location 
decisions in the U.S. Midwest. An industry that serviced the auto manufacturing 
centered around Detroit was earlier oriented west-east from Chicago to New York. 
During the mid-20th century, entry took place along an axis running from south to 
north (along with an historic internal migration in the U.S. that accompanied the 
decline of the coal industry). Klier and McMillen examined data on counties and 
whether an auto supplier was located in the county, a binary outcome.

The model framework is a binary choice model,

yi* = xi
=B + ei, yi = 1(yi* 7 0).

The distribution for most applications will be the normal or logistic leading to a probit 
or logit model. A model of spatial autoregression would be

yi* = xi
=B + rΣj= 1

n wijyj* + ei, yi = 1(yi* 7 0).

Based on a random utility interpretation, it would be difficult to motivate spatial 
interaction based on the latent utilities.67 The spatial autoregression model based on the 
observed outcomes instead would be

yi* = xi
=B + rΣj= 1

n wijyj* + ei, yi = 1(yi* 7 0).

This might seem more reasonable; however, this model is incoherent—it is not possible 
to insure that Prob(yi = 1 � xi) lies between zero and one. A spatial error model used in 
several applications is

yi* = xi
=B + ei; ei = rΣj= 1

n wijej + ui, ui ∼ n[0, 1], yi = 1(yi* 7 0).

Pinske and Slade (1998, 2006) and McMillen (1992) use this framework to construct a 
GMM estimator based on the generalized residuals, li, defined in (17-20). Solving for 
the reduced form,

E = (I - rW)-1u.

The full covariance matrix for the n observations would be

Var[E] = su
 2[(I - rW)=(I - rW)]-1 = su

 2D(r).

(Note that su
 2 = 1.) Then,

yi* = xi
=B + Σj= 1

n Dij(r)uj, yi = 1(yi* 7 0).

67But Klier and McMillen (2008, p. 462) note, “The assumption that the latent variable depends on spatially 
lagged values of the latent variable may be disputable in some settings. In our example, we are assuming that 
the propensity to locate a new supplier plant in a county depends on the propensity to locate plants in nearby 
counties, and it does not depend simply on whether new plants have located nearby. The assumption is reasonable 
in this context because of the forward-looking nature of plant location decisions.”
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The marginal probability is

Prob(yi = 1 � xi) = Prob(xi
=B + Σj= 1

n Dij(r)uj 7 0)

= F¢ xi
=B

Σj= 1
n [Dij(r)]2 ≤ = F[xi*(D, r)=].

This corresponds to the heteroscedastic probit model in Section 17.5.2. (The difference 
here is that the observations are all correlated.) We have seen two GMM approaches to 
estimation. Consistent with Bertschuk and Lechner’s (1998) approach based on simple 
regression residuals, the GMM estimator would use E{zi * [yi - Φ(xi*(D, r)=B)]} = 0, 
where zi is the set of instrumental variables. McMillen (1992) and Pinske and Slade 
(2006) use the generalized residuals, here li*(D, r), defined in (17-20), instead,

EJzi * b (yi - Φ[xi*(D, r)=B])f[xi*(D, r)=B]

Φ[xi*(D, r)=B](1 - Φ[xi*(D, r)=B])
r R = E[zi * l(xi*(D, r)=B)] = 0.

Pinske and Slade (2006) used a probit model while Klier and McMillen proposed a logit 
model. The estimation method is largely the same in both cases.

The preceding estimators use an approximation based on the marginal probability 
to form a feasible GMM estimator. Case (1992) suggests that if the contiguity pattern 
were compressed so that the data set consists of a finite number of neighborhoods, each 
with a small enough number of members, then the model could be handled directly by 
maximum likelihood. It would resemble a panel probit model in this case. Klier and 
McMillen used this approach to simplify their estimation procedure. Wang, Iglesias, and 
Wooldridge (2013) proposed a similar approach to an unrestricted model based on the 
principle of a partial likelihood. By using a spatial moving average for E, they show how 
to use pairs of observations to formulate a bivariate heteroscedastic probit model that 
identifies the spatial parameters.

Example 17.30    A Spatial Logit Model for Auto Supplier Locations
Klier and McMillen (2008) specified a binary logit model with spatial error correlation to model 
whether a county experienced a new auto supply location in 1991—2003. The data consist of 
3,107 county observations. The weighting matrix is initially specified as 1/ni where ni = the 
number of counties that are contiguous to county i—share a common border. To speed up 
computation, the weighting matrix is further reduced so that counties are only contiguous if 
they are in the same census region. This produces a block diagonal W that greatly simplifies 
the estimation. Figure 17.7 [Based on Figure 2 from Klier and McMillen (2008)] illustrates clusters 
of U.S. counties that experienced entry of new auto suppliers. The east-west oriented line 
shows the existing focus of the industry. The north-south line (roughly oriented with historical 
U.S. Route 23) shows the focus of new plants in the years studied. Results for the spatial 
correlation model are compared to a pooled logit model. The estimated spatial autocorrelation 
coefficient, r, is moderately large (0.425 with a standard error of 0.180), however, the results 
are similar for the two specifications. For example, one of the central results, the coefficient on 
Proportion Manufacturing Employment, is 6.877 (1.039) in the pooled model and 5.307 (1.224) 
in the spatial model. The magnitudes of the coefficients are difficult to interpret and partial 
effects were not computed.68 The signs are generally consistent with expectations.

68Wooldridge (2010) and Wang, Iglesias, and Wooldridge (2013) recommend analyzing Average Structural 
Functions (ASFs) for the heteroscedastic probit (logit) model considered here. Since the weighting matrix, W, 
does not involve any exogenous variables, the derivatives of the ASFs will be identical to the average partial 
effects. (See footnote 40 in Section 17.5.2.)
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17.9	 THE BIVARIATE PROBIT MODEL

In Chapter 10, we analyzed a number of different multiple-equation extensions of the linear 
and generalized regression model. A natural extension of the probit model would be to allow 
more than one equation, with correlated disturbances, in the same form as the seemingly 
unrelated regressions model. The general specification for a two-equation model would be

 y1* = x1
=B1 + e1, y1 = 1(y1* 7 0),

 y2* = x2
=B2 + e2, y2 = 1(y2* 7 0),

 ¢e1

e2
� x1, x2≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R .

� (17-48)

This bivariate probit model is interesting in its own right for modeling the joint 
determination of two variables, such as doctor and hospital visits in the next example. It 
also provides the framework for modeling in two common applications. In many cases, 
a treatment effect, or endogenous influence, takes place in a binary choice context. The 
bivariate probit model provides a specification for analyzing a case in which a probit 
model contains an endogenous binary variable in one of the equations. In Section 17.6.1 
(Examples 17.18 and 17.19), we extended (17-48) to

FIGURE 17.7    Counties with New Plants.
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 T * = x1
=B1 + e1,  T = 1(T * 7 0),

 y* = x2
=B2 + gT + e2, y = 1(y* 7 0),

 ¢e1

e2
� x1, x2≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R .�

(17-49)

This model extends the case in Section 17.6.2, where T* rather than T appears on the 
right-hand side of the second equation. In Example 17.35, T denotes whether a liberal 
arts college supports a women’s studies program on the campus while y is a binary 
indicator of whether the economics department provides a gender economics course. 
A second common application, in which the first equation is an endogenous sampling 
rule, is another variant of the bivariate probit model:

 S* = x1
=B1 + e1, S = 1 if S* 7 0, 0 otherwise, 

 y* = x2
=B2 + e2, y = 1 if y* 7 0, 0 otherwise, 

 ¢e1

e2
� x1, x2≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R , 

 (y, x2) observed only when S = 1.�

(17-50)

In Example 17.21, we studied an application in which S is the result of a credit card 
application (or any sort of loan application) while y2 is a binary indicator for whether the 
borrower defaults on the credit account (loan). This is a form of endogenous sampling (in 
this instance, sampling on unobservables) that has some commonality with the attrition 
problem that we encountered in Section 17.7.7.

In Section 17.10, we will extend (17-48) to more than two equations. This will allow 
direct treatment of multiple binary outcomes. It will also allow a more general panel data 
model for T periods than is provided by the random effects specification.

17.9.1    MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

Prob(X1 6 x1, X2 6 x2) = L
x2

-∞ L
x1

-∞
f2(z1, z2, r)dz1dz2,

which we denote Φ2(x1, x2, r). The density is69

f2(x1, x2, r) =
e-(1/2)(x2

1 + x2
2 - 2rx1x2)/(1 - r2)

2p(1 - r2)1/2 .

To construct the log likelihood, let qi1 = 2yi1 - 1 and qi2 = 2yi2 - 1. Thus, qij = 1 if 
yij = 1 and -1 if yij = 0 for j = 1 and 2. Now let

zij = xij
=Bj and wij = qijzij, j = 1, 2,

and
ri* = qi1qi2r.

69See Section B.9.
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Note the notational convention. The subscript 2 is used to indicate the bivariate normal 
distribution in the density f2 and cdf Φ2. In all other cases, the subscript 2 indicates the 
variables in the second equation. As before, f(.) and Φ(.) without subscripts denote the 
univariate standard normal density and cdf.

The probabilities that enter the likelihood function are

Prob(Y1 = yi1, Y2 = yi2 � x1, x2) = Φ2(wi1, wi2, ri*),

which accounts for all the necessary sign changes needed to compute probabilities for 
y’s equal to zero and one. Thus,70

ln L = a
n

i= 1
ln Φ2(wi1, wi2, ri*).

The derivatives of the log likelihood then reduce to

 
0 ln L

0Bj
= a

n

i= 1
¢qijgij

Φ2
≤xij, j = 1, 2,

 
0 ln L

0r
= a

n

i= 1

qi1qi2f2

Φ2
,�

(17-51)

where

	 gi1 = f(wi1)ΦJwi2 - ri*wi121 - ri*
2

R 	 (17-52)

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. Before considering the 
Hessian, it is useful to note what becomes of the preceding if r = 0. For 0 ln L/0B1, if 
r = ri* = 0, then gi1 reduces to f(wi1)Φ(wi2), f2 is f(wi1)f(wi2), and Φ2 is Φ(wi1)Φ(wi2). 
Inserting these results in (17-51) with qi1 and qi2 produces (17-20). Because both functions 
in 0 ln L/0r factor into the product of the univariate functions, 0 ln L/0r reduces to 

a n
i= 1li1li2, where lij, j = 1, 2, is defined in (17-20). (This result will reappear in the 

LM statistic shown later.)
The maximum likelihood estimates are obtained by simultaneously setting the three 

derivatives to zero. The second derivatives are relatively straightforward but tedious. 
Some simplifications are useful. Let

di =
121 - ri*

2
,

vi1 = di(wi2 - ri*wi1), so gi1 = f(wi1)Φ(vi1),
vi2 = di(wi1 - ri*wi2), so gi2 = f(wi2)Φ(vi2).

By multiplying it out, you can show that

dif(wi1)f(vi1) = dif(wi2)f(vi2) = f2.

70To avoid further ambiguity, and for convenience, the observation subscript will be omitted from 
Φ2 = Φ2(wi1, wi2, ri*) and from f2 = f2(wi1, wi2, ri*).
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Then

 
02 ln L
0B10B1

= = a
n

i= 1
xi1xi1

= J -wi1gi1

Φ2
-

ri*f2

Φ2
-

gi1
2

Φ2
2 R ,

 
02 ln L
0B10B2

= = a
n

i= 1
qi1qi2xi1xi2

= Jf2

Φ2
-

gi1gi2

Φ2
2 R ,

 
02 ln L
0B10r

= a
n

i= 1
qi2xi1 

f2

Φ2
 Jri*divi1 - wi1 -

gi1

Φ2
R ,

 
02 ln L

0r2 = a
n

i= 1

f2

Φ2
 Jdi

2ri*(1 - wi
=Ri

-1wi) + di
2wi1wi2 -

f2

Φ2
R ,	 (17-53)

where wi
=Ri

-1wi = di
2(wi1

2 + wi2
2 - 2ri*wi1wi2). (For B2, change the subscripts in 

02 ln L/0B10B1
=  and 02 ln L/0B10r accordingly.) The complexity of the second derivatives 

for this model makes it an excellent candidate for the Berndt et al. estimator of the 
variance matrix of the maximum likelihood estimator.

Example 17.31    Tetrachoric Correlation
Returning once again to the health care application of Example 17.6 and several others, we 
now consider a second binary variable,

Hospitalit = 1(HospVisit 7 0).

Our previous analyses have focused on

Doctorit = 1(DocVisit 7 0).

A simple bivariate frequency count for these two variables is:

Hospital

Doctor 0 1 Total

0 9,715 420 10,135
1 15,216 1,975 17,191
Total 24,931 2,395 27,326

Looking at the very large value in the lower-left cell, one might surmise that these two binary 
variables (and the underlying phenomena that they represent) are negatively correlated. The 
usual Pearson product moment correlation would be inappropriate as a measure of this 
correlation because it is used for continuous variables. Consider, instead, a bivariate probit 
model,

 Hit* = m1 + e1,it, Hospitalit = 1(Hit* 7 0),

 Dit* = m2 + e2,it, Doctorit = 1(Dit* 7 0),

where (e1, e2) have a bivariate normal distribution with means (0, 0), variances (1, 1), and 
correlation r. This is the model in (17-48) without independent variables. In this representation, 
the tetrachoric correlation, which is a correlation measure for a pair of binary variables, is 
precisely the r in this model—it is the correlation that would be measured between the 
underlying continuous variables if they could be observed. This suggests an interpretation of 
the correlation coefficient in a bivariate probit model—as the conditional tetrachoric correlation. 
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It also suggests a method of easily estimating the tetrachoric correlation coefficient using a 
program that is built into nearly all commercial software packages.

Applied to the hospital/doctor data defined earlier, we obtained an estimate of r of 
0.31106, with an estimated asymptotic standard error of 0.01357. Apparently, our earlier 
intuition was incorrect.

17.9.2    TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence of 
correlation in this model. Under the null hypothesis that r equals zero, the model consists 
of independent probit equations, which can be estimated separately. Moreover, in the 
multivariate model, all the bivariate (or multivariate) densities and probabilities factor 
into the products of the marginals if the correlations are zero, which makes construction 
of the test statistic a simple matter of manipulating the results of the independent probits. 
The Lagrange multiplier statistic for testing H0: r = 0 in a bivariate probit model is71

Lm =
Ja n

i= 1qi1qi2 
f(wi1)f(wi2)

Φ(wi1)Φ(wi2)
R 2

a n
i= 1

[f(wi1)f(wi2)]2

Φ(wi1)Φ(-wi1)Φ(wi2)Φ(-wi2)

.

As usual, the advantage of the LM statistic is that it obviates computing the bivariate 
probit model. But the full unrestricted model is now fairly common in commercial 
software, so that advantage is minor. The likelihood ratio or Wald test can be used with 
equal ease. To carry out the likelihood ratio test, we note first that if r equals zero, then 
the bivariate probit model becomes two independent univariate probits models. The log 
likelihood in that case would simply be the sum of the two separate log likelihoods. The 
test statistic would be

lLr = 2[ln LBiVariate - (ln L1 + ln L2)].

This would converge to a chi-squared variable with one degree of freedom. The Wald 
test is carried out by referring

lWaLd = crnMLE/2est.asy.Var[rnMLE d
2

to the chi-squared distribution with one degree of freedom. For 95% significance, the 
critical value is 3.84 (or one can refer the positive square root to the standard normal 
critical value of 1.96). Example 17.32 demonstrates.

17.9.3    PARTIAL EFFECTS

There are several partial effects one might want to evaluate in a bivariate probit model.72 
A natural first step would be the derivatives of Prob[y1 = 1, y2 = 1 � x1, x2]. These can 
be deduced from (17-51) by multiplying by Φ2, removing the sign carrier, qij, and 
differentiating with respect to xj rather than Bj. The result is

71This is derived in Kiefer (1982).
72See Greene (1996b) and Christofides et al. (1997, 2000).

M17_GREE1366_08_SE_C17.indd   811 2/24/17   1:52 PM



812	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

0Φ2(x1
=B1, x2

=B2, r)

0x1
= f(x1

=B1)Φ¢ x2
=B2 - rx1

=B121 - r2
≤B1.

Note, however, the bivariate probability, albeit possibly of interest in its own right, is not 
a conditional mean function. As such, the preceding does not correspond to a regression 
coefficient or a slope of a conditional expectation.

For convenience in evaluating the conditional mean and its partial effects, we will 
define a vector x = x1 h  x2 and let x1

=B1 = x′G1. Thus, G1 contains all the nonzero 
elements of B1 and possibly some zeros in the positions of variables in x that appear 
only in the other equation; G2 is defined likewise. The bivariate probability is

Prob[y1 = 1, y2 = 1 � x] = Φ2[x′G1, x′G2, r].

Signs are changed appropriately if the probability of the zero outcome is desired in 
either case. (See 17-48.) The partial effects of changes in x on this probability are given by

0Φ2

0x
= g1G1 + g2G2,

where g1 and g2 are defined in (17-52). The familiar univariate cases will arise if 
r = 0, and effects specific to one equation or the other will be produced by zeros 
in the corresponding position in one or the other parameter vector. There are also 
some probabilities to consider. The marginal probabilities are given by the univariate 
probabilities,

Prob[yj = 1 � x] = Φ(x′Gj), j = 1, 2,

so the analysis of (17-11) and (17-12) applies. One pair of probabilities that might be of 
interest are

 Prob[y1 = 1 � y2 = 1, x] =
Prob[y1 = 1, y2 = 1 � x]

Prob[y2 = 1 � x]

 =
Φ2(x′G1, x′G2, r)

Φ(x′g2)

and similarly for Prob[y2 = 1 � y1 = 1, x]. The partial effects for this function are given by

0Prob[y1 = 1 � y2 = 1, x]

0x
= ¢ 1

Φ(x′G2)
≤ Jg1G1 + ¢g2 - Φ2 

f(x′G2)

Φ(x′G2)
≤G2 R .

Finally, one might construct the probability function,

Prob(y1 = 1 � y2, x) =
Φ2[x′G1, (2y2 - 1)x′G2, (2y2 - 1)r]

Φ[(2y2 - 1)x′G2]
.

The derivatives of this function are the same as those presented earlier, with sign changes 
in several places if y2 = 0 is the argument.
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Example 17.32    Bivariate Probit Model for Health Care Utilization
We have extended the bivariate probit model of the previous example by specifying a set of 
independent variables,

xi = Constant, Femalei, Ageit, Incomeit, Kidsit, Educationit, Marriedit.

We have specified that the same exogenous variables appear in both equations. (There is no 
requirement that different variables appear in the equations, nor that a variable be excluded 
from each equation.) The correct analogy here is to the seemingly unrelated regressions 
model, not to the linear simultaneous-equations model. Unlike the SUR model of Chapter 10, 
it is not the case here that having the same variables in the two equations implies that the 
model can be fit equation by equation, one equation at a time. That result only applies to the 
estimation of sets of linear regression equations.

Table 17.24 contains the estimates of the parameters of the univariate and bivariate probit 
models. The tests of the null hypothesis of zero correlation strongly reject the hypothesis 
that r equals zero. The t statistic for r based on the full model is 0.2981/0.0139 = 21.446, 
which is much larger than the critical value of 1.96. For the likelihood ratio test, we compute

lLR = 2{-25,285.07 - [-17,422.72 + (-8,073.604)]} = 422.508.

Once again, the hypothesis is rejected. (The Wald statistic is 21.4462 = 459.957.) The LM 
statistic is 383.953. The coefficient estimates agree with expectations. The income coefficient 
is statistically significant in the doctor equation, but not in the hospital equation, suggesting, 
perhaps, that physican visits are at least to some extent discretionary while hospital visits 
occur on an emergency basis that would be much less tied to income. The table also 
contains the decomposition of the partial effects for Prob[y1 = 1 � y2 = 1]. The direct effect 
is [g1/Φ(x′G2)]G1 in the definition given earlier. The mean estimate of Prob[y1 = 1 � y2 = 1] 
is 0.821285. In the table in Example 17.31, this would correspond to the raw proportion 
P(D = 1, H = 1)/P(H = 1) = (1,975/27,326)/(2,395/27,326) = 0.8246.

Doctor Hospital

Model Estimates Partial Effects Model Estimates

Variable Univariate Bivariate Direct Indirect Total Univariate Bivariate

Constant -0.1243 -0.1243 -1.3328 -1.3385
(0.05815) (0.05814) (0.08320) (0.07957)

Female 0.3559 0.3551 0.09650 -0.00724 0.08926 0.1023 0.1050
(0.01602) (0.01604) (0.00500) (0.00152) (0.00513) (0.02195) (0.02174)

Age 0.01189 0.01188 0.00323 0.00032 0.00291 0.00461 0.00461
(0.00080) (0.00080) (0.00023) (0.00007) (0.00024) (0.00108) (0.00106)

Income -0.1324 -0.1337 -0.03632 -0.00306 -0.03939 0.03739 0.04441
(0.04655) (0.04628) (0.01260) (0.00411) 0.01254) (0.06329) (0.05946)

Kids -0.1521 -0.1523 -0.04140 0.00105 -0.04036 -0.01714 -0.01517
(0.01833) (0.01825) (0.00505) (0.00177) (0.00517) (0.02562) (0.02570)

Education -0.01497 -0.01484 -0.00403 0.00151 -0.00252 -0.02196 -0.02191
(0.00358) (0.00358) (0.00010) (0.00035) (0.00100) (0.00522) (0.00511)

Married 0.07352 0.07351 0.01998 0.00330 0.02328 -0.04824 -0.04789
(0.02064) (0.02063) 0.00563) (0.00192) (0.00574) (0.02788) (0.02777)

ln L -17422.72 -25285.07 -8073.604 -25285.07

aEstimated correlation coefficient = 0.2981 (0.0139).

TABLE 17.24  Estimated Bivariate Probit Modela
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17.9.4    A PANEL DATA MODEL FOR BIVARIATE BINARY RESPONSE

Extending multiple equation models to accommodate unobserved common effects in 
panel data settings is straightforward in theory, but complicated in practice. For the 
bivariate probit case, for example, the natural extension of (17-48) would be

y1,it* = x1,it
= B1 + e1,it + a1,i y1,it = 1 if y1,it* 7 0, 0 otherwise,

y2,it* = x2,it
= B2 + e2,it + a2,i y2,it = 1 if y2,it* 7 0, 0 otherwise,

 ¢e1

e2
� x1, x2≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R ..

The complication will be in how to treat (a1, a2). A fixed effects treatment will require 
estimation of two full sets of dummy variable coefficients, will likely encounter the 
incidental parameters problem in double measure, and will be complicated in practical 
terms. As in all earlier cases, the fixed effects case also preempts any specification 
involving time-invariant variables. It is also unclear in a fixed effects model how any 
correlation between a1 and a2 would be handled. It should be noted that strictly from 
a consistency standpoint, these considerations are moot. The two equations can be 
estimated separately, only with some loss of efficiency. The analogous situation would 
be the seemingly unrelated regressions model in Chapter 10. A random effects treatment 
(perhaps accommodated with Mundlak’s approach of adding the group means to the 
equations as in Section 17.7.3.b) offers greater promise. If (a1, a2) = (u1, u2) are normally 
distributed random effects, with¢u1,i

u2,i
� X1,i, X2,i≤ ∼ NJ ¢0

0
≤, ¢ s1

2 rs1s2

rs1s2 s2
2 ≤ R ,

then the unconditional log likelihood for the bivariate probit model,

ln L = a
n

i= 1
lnLu1, u2

q
Ti

t= 1
Φ2[(w1,it � u1,i), (w2,it � u2,i), rit*] f(u1,i, u2,i), du1,i du2,i,

can be maximized using simulation or quadrature as we have done in previous applications. 
A possible variation on this specification would specify that the same common effect enter 
both equations. In that instance, the integration would only be over a single dimension. 
In this case, there would only be a single new parameter to estimate, s2, the variance of 
the common random effect while r would equal one. A refinement on this form of the 
model would allow the scaling to be different in the two equations by placing ui in the first 
equation and uui in the second. This would introduce the additional scaling parameter, 
but r would still equal one. This is the formulation of a common random effect used in 
Heckman’s formulation of the dynamic panel probit model in Section 17.7.4.

Example 17.33  �  Bivariate Random Effects Model for Doctor and Hospital 
Visits

We will extend the pooled bivariate probit model presented in Example 17.32 by allowing 
a general random effects formulation, with free correlation between the time-varying 
components, (e1, e2), and between the time-invariant effects, (u1, u2). We used simulation 
to fit the model. Table 17.25 presents the pooled and random effects estimates. The 
log-likelihood functions for the pooled and random effects models are -25,285.07 and 
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-23,769.67, respectively. Two times the difference is 3,030.76. This would be a chi squared 
with three degrees of freedom (for the three free elements in the covariance matrix of u1 and 
u2). The 95% critical value is 7.81, so the pooling hypothesis would be rejected. The change 
in the correlation coefficient from 0.2981 to 0.1501 suggests that we have decomposed the 
disturbance in the model into a time-varying part and a time-invariant part. The latter seems 
to be the smaller of the two. Although the time-invariant elements are more highly correlated, 
their variances are only 0.22332 = 0.0499 and 0.63382 = 0.4017 compared to 1.0 for both 
e1 and e2.

17.9.5    A RECURSIVE BIVARIATE PROBIT MODEL

Section 17.6.2 examines a case in which there is an endogenous continuous variable in a 
binary choice (probit) model. The model is

 T = xT
= BT + eT,

 y* = xy
=By + gT + ey, y = 1(y* 7 0),

 ¢eT

ey
� xT, xy≤ ∼ NJ ¢0

0
≤, ¢s2 rs

rs 1
≤ R .

The application examined there involved a labor force participation model that was 
conditioned on an endogenous variable, the non-wife part of family income. In many 
cases, the endogenous variable in the equation is also binary. In the application we will 
examine below, the presence of a gender economics course in the economics curriculum 

Doctor Hospital

Pooled Random Effects Pooled Random Effects

Constant -0.1243 -0.2976 -1.3385 -1.5855
(0.0581) (0.0965) (0.0796) (0.1085)

Female 0.3551 0.4548 0.1050 0.1280
(0.0160) (0.0286) (0.0217) (0.0295)

Age 0.0119 0.0199 0.0046 0.0050
(0.0008) (0.0013) (0.0011) (0.0014)

Income -0.1337 -0.0106 0.0444 0.1336
(0.0463) (0.0640) (0.0595) (0.0773)

Kids -0.1523 -0.1544 -0.0152 0.0216
(0.0183) (0.0269) (0.0257) (0.0321)

Education -0.0148 -0.0257 -0.0219 -0.0244
(0.0036) (0.0061) (0.0051) (0.0068)

Married 0.0735 0.0288 -0.0479 -0.1050
(0.0206) (0.0317) (0.0278) (0.0355)

Corr(e1, e2) 0.2981 0.1501 0.2981 0.1501
Corr(u1, u2) 0.0000 0.5382 0.0000 0.5382
Std. Dev. u 0.0000 0.2233 0.0000 0.6338
Std. Dev. e 1.0000 1.0000 1.0000 1.0000

TABLE 17.25  Estimated Random Effects Bivariate Probit Model
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at liberal arts colleges is conditioned on whether or not there is a women’s studies 
program on the campus. The model in this case becomes

 T * = xT
= BT + eT,  T = 1(T * 7 0),

 y* = xy
=By + gT + ey,  y = 1(y* 7 0),

 ¢eT

ey
� xT, xy≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R .

This model is qualitatively different from the bivariate probit model in (17-48); the first 
dependent variable, T, appears on the right-hand side of the second equation.73 This 
model is a recursive, simultaneous-equations model. Surprisingly, the endogenous nature 
of one of the variables on the right-hand side of the second equation does not need 
special consideration in formulating the log likelihood.74 We can establish this fact with 
the following (admittedly trivial) argument: The term that enters the log likelihood is 
P(y = 1, T = 1) = P(y = 1 � T = 1)P(T = 1). Given the model as stated, the marginal 
probability for T = 1 is just Φ(xT

= BT), whereas the conditional probability is 
Φ2( g)/Φ(xT

= BT). The product returns the bivariate normal probability we had earlier. 
The other three terms in the log likelihood are derived similarly, which produces:

 P(y = 1, T = 1) = Φ(xy
=By + g, xT

= BT, r),

 P(y = 1, T = 0) = Φ(xy
=By, -xT

= BT, -r),

 P(y = 0, T = 1) = Φ[-(xy
=By + g), xT

= BT, -r],

 P(y = 0, T = 0) = Φ(-xy
=By, -xT

= BT, r).

These terms are exactly those of (17-48) that we obtain just by carrying T in the 
second equation with no special attention to its endogenous nature. We can ignore the 
simultaneity in this model and we cannot in the linear regression model. In this instance, 
we are maximizing the full log likelihood, whereas in the linear regression case, we are 
manipulating certain sample moments that do not converge to the necessary population 
parameters in the presence of simultaneity. The log likelihood for this model is

ln L = a
n

i= 1
 ln Φ[qy,i(xyi

= By + gTi), qT,i(xT,i
= BT), qy,iqt,ir],

where qy,i = (2yi - 1) and qT,i = 2(Ti - 1).75

73Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint 
(recursive) effect of T = veteran status on y, smoking behavior. The estimator they used was two-stage least 
squares and GMM. Evans and Schwab (1995), examined below, fit their model by MLE and by 2SLS for 
comparison.
74The model appears in Maddala (1983, p. 123).
75If one were armed with only a univariate probit estimator, it might be tempting to mimic 2SLS to estimate this model 
using a two-step procedure: (1) estimate BT by a probit regression of T on xT, then (2) estimate (By, g) by probit 
regression of y on [xy, Φ(xT′BnT)]. This would be an example of a forbidden regression. [See Wooldridge (2010, pp. 267, 
594).] The first step works, but the second does not produce consistent estimators of the parameters of interest. The 
estimating equation at the second is improper—the conditional probability is conditioned on T, not on the probability 
that T equals one. The temptation should be easy to resist; the recursive bivariate probit model is a built-in procedure 
in contemporary software.
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Example 17.34  �  The Impact of Catholic School Attendance on High 
School Performance

Evans and Schwab (1995) considered the effect of Catholic school attendance on two success 
measures, graduation from high school and entrance to college. Their model is

 C* = x′BC + eC,    C = 1(C* 7 0),

 G* = x′BG + dR + gC + eG, G = 1(G* 7 0),

 ¢eC

eG
� xC, xG≤ ∼ NJ ¢0

0
≤, ¢1 r

r 1
≤ R .

The binary variables are C = 1(Attended Catholic School) and G = 1(Graduated from high 
school). In a second specification of the model, G = 1(Entered a four-year college after 
graduation). Covariates included race, gender, family income, parents’ education, family structure, 
religiosity, and a tenth-grade test score. The parameters of the model are all identified (estimable) 
whether or not there are variables in the G equation that are not in the C equation (i.e., whether or 
not there are exclusion restrictions) by dint of the nonlinearity of the structure. However, mindful of 
the dubiousness of a model that is identified only by the nonlinearity, the authors included R = 1
(Student is Catholic) in the equation, to aid identification. That would seem important here, as of 
more than 30 variables in the equations, only two, the test score and a “% Catholic in County of 
Residence,” were not also dummy variables. (Income was categorized.)

Example 17.35    Gender Economics Courses at Liberal Arts Colleges
Burnett (1997) proposed the following bivariate probit model for the presence of a gender 
economics course in the curriculum of a liberal arts college:

Prob[G = 1, W = 1 � xG, xW] = Φ2(xG
= BG + gW, xW

= bW, r).

The dependent variables in the model are

 G = presence of a gender economics course
 W = presence of a women’s studies program on the campus.

The independent variables in the model are

 z1 = constant term,
 z2 = academic reputation of the college, coded 1(best), 2, . . . to 141,
 z3 = size of the full-time economics faculty, a count,
 z4 = percentage of the economics faculty that are women, proportion (0 to 1),
 z5 = religious affiliation of the college, 0 = no, 1 = yes,
 z6 = percentage of the college faculty that are women, proportion (0 to 1),
 z7 - z10 = regional dummy variables, South, Midwest, Northeast, West.

The regressor vectors are

 xG = z1, z2, z3, z4, z5 (gender economics course equation),

 xW = z2, z5, z6, z7 - z10 (women’s studies program equation).

Maximum likelihood estimates of the parameters of Burnett’s model were computed by 
Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools offer gender 
economics, 58 have women’s studies programs, and 29 have both. (See Appendix Table 
F17.1.) The estimated parameters are given in Table 17.26. Both bivariate probit and 
single-equation estimates are given. The estimate of r is only 0.1359, with a standard 
error of 1.2359. The Wald statistic for the test of the hypothesis that r equals zero is 
(0.1359/1.2539)2 = 0.011753. For a single restriction, the critical value from the chi-squared 
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table is 3.84, so the hypothesis cannot be rejected. The likelihood ratio statistic for the same 
hypothesis is 2[-85.6317 - (-85.6458)] = 0.0282, which leads to the same conclusion. 
The Lagrange multiplier statistic is 0.003807, which is consistent. This result might seem 
counterintuitive, given the setting. Surely gender economics and women’s studies are highly 
correlated, but this finding does not contradict that proposition. The correlation coefficient 
measures the correlation between the disturbances in the equations, the omitted factors. 
That is, r measures (roughly) the correlation between the outcomes after the influence of 
the included factors is accounted for. Thus, the value 0.1359 measures the effect after the 
influence of women’s studies is already accounted for. As discussed in the next paragraph, 
the proposition turns out to be right. The single most important determinant (at least within 
this model) of whether a gender economics course will be offered is indeed whether the 
college offers a women’s studies program.

The partial effects in this model are fairly involved, and as before, we can consider several 
different types. Consider, for example, z2, academic reputation. There is a direct effect 
produced by its presence in the gender economics course equation. But there is also an 
indirect effect. Academic reputation enters the women’s studies equation and, therefore, 
influences the probability that W equals one. Because W appears in the gender economics 
course equation, this effect is transmitted back to G. The total effect of academic reputation 
and, likewise, religious affiliation is the sum of these two parts. Consider first the gender 
economics variable, G. The conditional probability is

 Prob[G = 1 � xG, xW] = Prob[G = 1 � W = 1, xG, xW]Prob[W = 1]
 + Prob[G = 1 � W = 0, xG, xW] Prob[W = 0]

 = Φ2(xG
= BG + g, xwBw, r) + Φ2(xG

= BG, -xW
= BW, -r).

Single Equation Bivariate Probit

Variable Coefficient Std. Err. Coefficient Std. Err.

Gender Economics Equation
Constant -1.4176 (0.8768) -1.1911 (2.2155)
AcRep -0.0114 (0.0036) -0.0123 (0.0079)
WomStud 1.1095 (0.4699) 0.8835 (2.2603)
EconFac 0.0673 (0.0569) 0.0677 (0.0695)
PctWEcon 2.5391 (0.8997) 2.5636 (1.0144)
Relig -0.3482 (0.4212) -0.3741 (0.5264)
Women’s Studies Equation
AcRep -0.0196 (0.0042) -0.0194 (0.0057)
PctWFac 1.9429 (0.9001) 1.8914 (0.8714)
Relig -0.4494 (0.3072) -0.4584 (0.3403)
South 1.3597 (0.5948) 1.3471 (0.6897)
West 2.3386 (0.6449) 2.3376 (0.8611)
North 1.8867 (0.5927) 1.9009 (0.8495)
Midwest 1.8248 (0.6595) 1.8070 (0.8952)
r 0.0000 (0.0000) 0.1359 (1.2539)
ln L -85.6458 -85.6317

TABLE 17.26  �Estimates of a Recursive Simultaneous Bivariate Probit Model 
(estimated standard errors in parentheses)
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Derivatives can be computed using our earlier results. We are also interested in the effect 
of religious affiliation. Because this variable is binary, simply differentiating the probability 
function may not produce an accurate result. Instead, we would compute the probability with 
this variable set to one and then zero, and take the difference. Finally, what is the effect of the 
presence of a women’s studies program on the probability that the college will offer a gender 
economics course? To compute this effect, we would first compute the average treatment 
effect (see Section 17.6.1) by averaging

TE = Φ(xG′BG + g) - Φ(xG′BG)

over the full sample of schools. The average treatment effect for the schools that actually do 
have a women’s studies program would be

TET = ΦJ (xG
= BG + g) - r(xW

= BW)21 - r2
R - ΦJ (xG

= BG) - r(xW
= BW)21 - r2

R
and averaging over the schools that have a women’s studies program (W = 1).

Table 17.27 presents the estimates of the partial effects and some descriptive statistics 
for the data. Numerically, the strongest effect appears to be exerted by the representation 
of women on the faculty; its coefficient of 0.3602 is by far the largest. However, this variable 
cannot change by a full unit because it is a proportion. An increase of 1% in the presence of 
women on the economics faculty raises the probability by only 0.0036, which is comparable 
in scale to the effect of academic reputation. The effect of women on the faculty is likewise 
fairly small, only 0.000508 per 1% change. As might have been expected, the single most 
important influence is the presence of a women’s studies program. The estimated average 
treatment effect is 0.1452 (0.3891). The average treatment effect on the schools that have 
women’s studies programs (ATET) is 0.2293 (0.5165). Of course, the raw data would have 
anticipated this result. Of the 31 schools that offer a gender economics course, 29 also 
have a women’s studies program and only two do not. Note finally that the effect of religious 
affiliation (whatever it is) is mostly direct.

17.10	 A MULTIVARIATE PROBIT MODEL

In principle, a multivariate probit model would simply extend (17-48) to more than 
two outcome variables just by adding equations. The resulting equation system, again 
analogous to the seemingly unrelated regressions model, would be

Direct Indirect Total (Type of Variable, Mean)

AcRep -0.0017 -0.0005 -0.0022 (Continuous, 119.242)
PctWEcon 0.3602 0.3602 (Continuous, 0.24787)
EconFac 0.0095 0.0095 (Continuous, 6.74242)
Relig -0.0716a (Binary,  0.57576)
PctWFac 0.0508 0.0508 (Continuous, 0.35772)

aDirect and indirect effects for binary variables are the same.

TABLE 17.27  Partial Effects in Gender Economics Model
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ym* = xm
= Bm + em, ym = 1(ym* 7 0), m = 1, c, M,

E[em � x1, c, xM] = 0,

Var[em � x1, c, xM] = 1,

cov[ej, em � x1, c, xM] = rjm,

(e1, c, eM) ∼ nM[0, R].

The joint probabilities of the observed events, [yi1, yi2 c, yiM � xi1, xi2, c, xiM],
i = 1, c, n that form the basis for the log-likelihood function are the M-variate 
normal probabilities,

Li = ΦM(qi1xi1
= b1, c, qiMxiM

= bM, R*),

where

 qim = 2yim - 1,
 Rjm* = qijqimrjm.

The practical obstacle to this extension is the evaluation of the M-variate normal 
integrals and their derivatives. Simulation-based integration using the GHK simulator 
or simulated likelihood methods (see Chapter 15) allow for estimation of relatively large 
models. We consider an application in Example 17.36.76

The multivariate probit model in another form presents a useful extension of the 
random effects probit model for panel data (Section 17.7.2). If the parameter vectors in 
all equations are constrained to be equal, we obtain what Bertschek and Lechner (1998) 
call the “panel probit model”,

 yit* = xit
=B + eit, yit = 1(yit* 7 0), i = 1, c, n, t = 1, c, T,

 (ei1, c, eiT) ∼ n[0, R].

The Butler and Moffitt (1982) approach for this model (see Section 17.4.2) has proved 
useful in many applications. But the underlying assumption that cov[eit, eis] = r is a 
substantive restriction. By treating this structure as a multivariate probit model with the 
restriction that the coefficient vector be the same in every period, one can obtain a model 
with free correlations across periods.77 Hyslop (1999), Bertschek and Lechner (1998), 
Greene (2004 and Example 17.26), and Cappellari and Jenkins (2006) are applications.

Example 17.36    A Multivariate Probit Model for Product Innovations
Bertschek and Lechner applied the panel probit model to an analysis of the innovation activity 
of 1,270 German firms observed in five years, 1984–1988, in response to imports and foreign 
direct investment.78 The probit model to be estimated is based on the latent regression

76Studies that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and especially 
Börsch-Supan and Hajivassiliou (1993), Geweke (1989), and Keane (1994). A symposium in the November 1994 issue 
of Review of Economics and Statistics presents discussion of numerous issues in specification and estimation of models 
based on simulation of probabilities. Applications that employ simulation techniques for evaluation of multivariate 
normal integrals are now fairly numerous. See, for example, Hyslop (1999) (Example 17.26), which applies the 
technique to a panel data application with T = 7. Example 17.23 develops a five-variate application.
77By assuming the coefficient vectors are the same in all periods, we actually obviate the normalization that the 
diagonal elements of R are all equal to one as well. The restriction identifies T - 1 relative variances rtt = st

2/sT
2 . This 

aspect is examined in Greene (2004).
78See Bertschek (1995).
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yit* = b1 + a
8

k= 2
xk,itbk + eit, yit = 1(yit* 7 0), i = 1, c, 1,270, t = 1984, c, 1988,

where

 yit = 1 if a product innovation was realized by firm i in year t, 0 otherwise,
 x2,it = Log of industry sales in DM,

 x3,it = Import share = ratio of industry imports to (industry sales plus imports),
 x4,it = �Relative firm size = ratio of employment in business unit to employment in the 

industry (times 30),
 x5,it = �FDI share = ratio of industry foreign direct investment to, (industry sales plus 

imports),
 x6,it = Productivity = ratio of industry value added to industry employment,
 x7,it = Raw materials sector = 1 if the firm is in this sector,
 x8,it = Investment goods sector = 1 if the firm is in this sector.

The coefficients on import share (b3) and FDI share (b5) were of particular interest. The 
objectives of the study were the empirical investigation of innovation and the methodological 
development of an estimator that could obviate computing the five-variate normal probabilities 
necessary for a full maximum likelihood estimation of the model.

Table 17.28 presents the single-equation, pooled probit model estimates.79 Given the 
structure of the model, the parameter vector could be estimated consistently with any single 
period’s data. Hence, pooling the observations, which produces a mixture of the estimators, 
will also be consistent. Given the panel data nature of the data set, however, the conventional 
standard errors from the pooled estimator are dubious. Because the marginal distribution will 
produce a consistent estimator of the parameter vector, this is a case in which the cluster 
estimator (see Section 14.8.2) provides an appropriate asymptotic covariance matrix. Note 

79We are grateful to the authors of this study who have generously loaned us their data for our continued analysis. 
The data are proprietary and cannot be made publicly available, unlike the other data sets used in our examples.

Estimated Standard Errors Partial Effects

Variable Estimatea SE(1)b SE(2)c SE(3)d SE(4)e Partial Std. Err. t ratio

Constant -1.960 0.239 0.377 0.230 0.373 –– –– ––
ln Sales 0.177 0.0250 0.0375 0.0222 0.0358 0.0683f 0.0138 4.96
Rel Size 1.072 0.206 0.306 0.142 0.269 0.413f 0.103 4.01
Imports 1.134 0.153 0.246 0.151 0.243 0.437f 0.0938 4.66
FDI 2.853 0.467 0.679 0.402 0.642 1.099f 0.247 4.44
Prod. -2.341 1.114 1.300 0.715 1.115 -0.902f 0.429 -2.10
Raw Mtl -0.279 0.0966 0.133 0.0807 0.126 -0.110g 0.0503 -2.18
Inv Good 0.188 0.0404 0.0630 0.0392 0.0628 0.0723g 0.0241 3.00

aRecomputed. Only two digits were reported in the earlier paper.
bObtained from results in Bertschek and Lechner, Table 9.
cBased on the Avery et al. (1983) GMM estimator.
dSquare roots of the diagonals of the negative inverse of the Hessian.
eBased on the cluster estimator.
fCoefficient scaled by the density evaluated at the sample means.
gComputed as the difference in the fitted probability with the dummy variable equal to one, then zero.

TABLE 17.28  Estimated Pooled Probit Model
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that the standard errors in column SE(4) of the table are considerably higher than the 
uncorrected ones in columns 1 and 3.

The pooled estimator is consistent, so the further development of the estimator is a matter 
of (1) obtaining a more efficient estimator of B and (2) computing estimates of the cross-period 
correlation coefficients. The FIML estimates of the model can be computed using the GHK 
simulator. The FIML estimates and the random effects model using the Butler and Moffitt 
(1982) quadrature method are reported in Table 17.29. The correlations reported are based on 
the FIML estimates. Also noteworthy in Table 17.30 is the divergence of the random effects 
estimates from the FIML estimates. The log-likelihood function is -3,535.55 for the random 
effects model and -3,522.85 for the unrestricted model. The chi-squared statistic for the nine 
restrictions of the equicorrelation model is 25.4. The critical value from the chi-squared table 
for nine degrees of freedom is 16.9 for 95% and 21.7 for 99% significance, so the hypothesis 
of the random effects model would be rejected in favor of the more general panel probit model.

17.11	 SUMMARY AND CONCLUSIONS

This chapter has surveyed a large range of techniques for modeling binary choice variables. 
The model for choice between two alternatives provides the framework for a large 
proportion of the analysis of microeconomic data. Thus, we have given a very large amount 

Full Maximum Likelihood Random Effects
Coefficients Using GHK Simulator R = 0.578 (0.0189)

Constant -1.797** (0.341) -2.839 (0.534)
ln Sales 0.154** (0.0334) 0.245 (0.052)
Relative size 0.953** (0.160) 1.522 (0.259)
Imports 1.155** (0.228) 1.779 (0.360)
FDI 2.426** (0.573) 3.652 (0.870)
Productivity -1.578  (1.216) -2.307 (1.911)
Raw material -0.292** (0.130) -0.477 (0.202)
Investment goods 0.224** (0.0605 0.331 (0.095)
log likelihood -3,522.85 -3,535.55

Estimated Correlations

1984, 1985 0.460** (0.0301)
1984, 1986 0.599** (0.0323)
1985, 1986 0.643** (0.0308)
1984, 1987 0.540** (0.0308)
1985, 1987 0.546** (0.0348)
1986, 1987 0.610** (0.0322)
1984, 1988 0.483** (0.0364)
1985, 1988 0.446** (0.0380)
1986, 1988 0.524** (0.0355)
1987, 1988 0.605** (0.0325)

*Indicates significant at 95% level,
**Indicates significant at 99% level based on a two-tailed test.

Table 17.29  �Estimated Constrained Multivariate Probit Model (Estimated standard errors in 
parentheses)
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of space to this model in its own right. In addition, many issues in model specification and 
estimation that appear in more elaborate settings, such as those we will examine in the next 
chapter, can be formulated as extensions of the binary choice model of this chapter. Binary 
choice modeling provides a convenient point to study endogeneity in a nonlinear model, 
issues of nonresponse in panel data sets, and general problems of estimation and inference 
with longitudinal data. The binary probit model in particular has provided the laboratory 
case for theoretical econometricians such as those who have developed methods of bias 
reduction for the fixed effects estimator in dynamic nonlinear models.

We began the analysis with the fundamental parametric probit and logit models for 
binary choice. Estimation and inference issues such as the computation of appropriate 
covariance matrices for estimators and partial effects are considered here. We then 
examined familiar issues in modeling, including goodness of fit and specification 
issues such as the distributional assumption, heteroscedasticity, and missing variables. 
As in other modeling settings, endogeneity of some right-hand variables presents a 
substantial complication in the estimation and use of nonlinear models such as the 
probit model. We examined models with endogenous right-hand-side variables, and 
in two applications, problems of endogenous sampling. The analysis of binary choice 
with panel data provides a setting to examine a large range of issues that reappear 
in other applications. We reconsidered the familiar pooled, fixed, and random effects 
estimator estimators, and found that much of the wisdom obtained in the linear case 
does not carry over to the nonlinear case. The incidental parameters problem, in 
particular, motivates a considerable amount of effort to reconstruct the estimators 
of binary choice models. Finally, we considered some multivariate extensions of the 
probit model. As before, the models are useful in their own right. Once again, they also 
provide a convenient setting in which to examine broader issues, such as more detailed 
models of endogeneity nonrandom sampling, and computation requiring simulation.

Chapter 18 will continue the analysis of discrete choice models with three 
frameworks: unordered multinomial choice, ordered choice, and models for count data. 
Most of the estimation and specification issues we have examined in this chapter will 
reappear in these settings.

Key Terms and Concepts

•	Attributes
•	Average partial effect
•	Binary choice model
•	Bivariate probit
•	Butler and Moffitt method
•	Characteristics
•	Choice-based sampling
•	Complementary log log 

model
•	Conditional likelihood 

function
•	Control function
•	Event count
•	Fixed effects model
•	Generalized residual
•	Gumbel model

•	Incidental parameters 
problem

•	Index function model
•	Initial conditions
•	Interaction effect
•	Inverse probability 

weighted (IPW)
•	Latent regression
•	Linear probability model 

(LPM)
•	Logit
•	Marginal effects
•	Maximum simulated 

likelihood (MSL)
•	Method of scoring
•	Microeconometrics

•	Minimal sufficient statistic
•	Multinomial choice
•	Multivariate probit model
•	Nonresponse bias
•	Ordered choice model
•	Persistence
•	Quadrature
•	Qualitative response (QR)
•	Random effects model
•	Recursive model
•	Selection on unobservables
•	State dependence
•	Tetrachoric correlation
•	Unbalanced sample
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Exercises

1.	 A binomial probability model is to be based on the following index function model:

 y* = a + Bd + e,

 y = 1, if y* 7 0,

 y = 0 otherwise.

The only regressor, d, is a dummy variable. The data consist of 100 observations 
that have the following:

y
0 1

d
0 24 28
1 32 16

Obtain the maximum likelihood estimators of a and b, and estimate the asymptotic 
standard errors of your estimates. Test the hypothesis that b equals zero by using a 
Wald test (asymptotic t test) and a likelihood ratio test. Use the probit model and 
then repeat, using the logit model. Do your results change? (Hint: Formulate the 
log likelihood in terms of a and d = a + b.)

2.	 Suppose that a linear probability model is to be fit to a set of observations on a 
dependent variable y that takes values zero and one, and a single regressor x that 
varies continuously across observations. Obtain the exact expressions for the least 
squares slope in the regression in terms of the mean(s) and variance of x, and 
interpret the result.

3.	 Given the data set

y 1 0 0 1 1 0 0 1 1 1

x 9 2 5 4 6 7 3 5 2 6

estimate a probit model and test the hypothesis that x is not influential in 
determining the probability that y equals one.

4.	 Construct the Lagrange multiplier statistic for testing the hypothesis that all the 
slopes (but not the constant term) equal zero in the binomial logit model. Prove 
that the Lagrange multiplier statistic is nR2 in the regression of (yi - p) on the x s, 
where p is the sample proportion of 1s.

5.	 The following hypothetical data give the participation rates in a particular type of 
recycling program and the number of trucks purchased for collection by 10 towns 
in a small mid-Atlantic state:

Town 1 2 3 4 5 6 7 8 9 10

Trucks 160 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to 
achieve a 95% rate of participation. Using a probit model for your analysis,

,
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a.	 How many trucks would the town expect to have to purchase to achieve its goal? 
(Hint : You can form the log likelihood by replacing yi with the participation rate 
(for example, 0.11 for observation 1) and (1 - yi) with (1 -  the rate), in (17-16).

b.	 If trucks cost $20,000 each, then is a goal of 90% reachable within a budget of 
$6.5 million? (That is, should they expect to reach the goal?)

c.	 According to your model, what is the marginal value of the 301st truck in terms 
of the increase in the percentage participation?

6.	 A data set consists of n = n1 + n2 + n3 observations on y and x. For the first n1 
observations, y = 1 and x = 1. For the next n2 observations, y = 0 and x = 1. For 
the last n3 observations, y = 0 and x = 0. Prove that neither (17-18) nor (17-20) 
has a solution.

7.	 Prove (17-26).
8.	 In the panel data models estimated in Section 17.7, neither the logit nor the probit 

model provides a framework for applying a Hausman test to determine whether 
fixed or random effects is preferred. Explain. (Hint : Unlike our application in the 
linear model, the incidental parameters problem persists here.)

Application

1.	 Appendix Table F17.2 provides Fair’s (1978) Redbook survey on extramarital affairs. 
The data are described in Application 1 at the end of Chapter 18 and in Appendix F. 
The variables in the data set are as follows:

id = an identification number,
C = constant, value = 1,

yrb = a constructed measure of time spent in extramarital affairs,
v1 = a rating of the marriage, coded 1 to 4,
v2 = age, in years, aggregated,
v3 = number of years married,
v4 = number of children, top coded at 5,
v5 = religiosity, 1 to 4, 1 = not, 4 = very,
v6 = education, coded 9, 12, 14, 16, 17, 20,
v7 = occupation,
v8 = husband’s occupation,

and three other variables that are not used. The sample contains a survey of 6,366 
married women, conducted by Redbook magazine. For this exercise, we will analyze, 
first, the binary variable,

A = 1 if yrb 7 0, 0 otherwise.

The regressors of interest are v1 to v8; however, not all of them necessarily belong 
in your model. Use these data to build a binary choice model for A. Report all 
computed results for the model. Compute the partial effects for the variables you 
choose. Compare the results you obtain for a probit model to those for a logit 
model. Are there any substantial differences in the results for the two models?
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