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Limited Dependent  
Variables—Truncation, Censoring, 

and Sample Selection

§
19.1	 INTRODUCTION

This chapter is concerned with truncation and censoring. As we saw in Section 18.4.6, 
these features complicate the analysis of data that might otherwise be amenable to 
conventional estimation methods such as regression. Truncation effects arise when one 
attempts to make inferences about a larger population from a sample that is drawn 
from a distinct subpopulation. For example, studies of income based on incomes above 
or below some poverty line may be of limited usefulness for inference about the whole 
population. Truncation is essentially a characteristic of the distribution from which 
the sample data are drawn. Censoring is a more common feature of recent studies. To 
continue the example, suppose that instead of being unobserved, all incomes below the 
poverty line are reported as if they were at the poverty line. The censoring of a range 
of values of the variable of interest introduces a distortion into conventional statistical 
results that is similar to that of truncation. Unlike truncation, however, censoring is a 
feature of the sample data. Presumably, if the data were not censored, they would be 
a representative sample from the population of interest. We will also examine a form 
of truncation called the sample selection problem. Although most empirical work in 
this area involves censoring rather than truncation, we will study the simpler model of 
truncation first. It provides most of the theoretical tools we need to analyze models of 
censoring and sample selection.

The discussion will examine the general characteristics of truncation, censoring, and 
sample selection, and then, in each case, develop a major area of application of the 
principles. The stochastic frontier model is a leading application of results for truncated 
distributions in empirical models.1 Censoring appears prominently in the analysis of 
labor supply and in modeling of duration data. Finally, the sample selection model has 
appeared in all areas of the social sciences and plays a significant role in the evaluation 
of treatment effects and program evaluation.

19.2	 TRUNCATION

In this section, we are concerned with inferring the characteristics of a full population 
from a sample drawn from a restricted part of that population.

1See Aigner, Lovell, and Schmidt (1977) and Fried, Lovell, and Schmidt (2008).
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19.2.1    TRUNCATED DISTRIBUTIONS

A truncated distribution is the part of an untruncated distribution that is above or below 
some specified value. For instance, in Example 19.2, we are given a characteristic of the 
distribution of incomes above $100,000. This subset is a part of the full distribution of 
incomes which range from zero to (essentially) infinity.

Most recent applications based on continuous random variables use the truncated 
normal distribution. If x has a normal distribution with mean m and standard deviation 
s, then

prob(x 7 a) = 1 - Φa a - m

s
b = 1 - Φ(a),

where a = (a - m)/s and Φ(.) is the standard normal cdf. The density of the truncated 
normal distribution is then

f(x � x 7 a) =
f(x)

1 - Φ(a)
=

(2ps2)-1/2 e-(x - m)2/(2s2)

1 - Φ(a)
=

1
s

 fa x - m

s
b

1 - Φ(a)
,

where f(.) is the standard normal pdf. The truncated standard normal distribution, with 
m = 0 and s = 1, is illustrated for a = -0.5, 0, and 0.5 in Figure 19.1. Another truncated 
distribution that has appeared in the recent literature, this one for a discrete random 
variable, is the truncated at zero Poisson distribution,

 prob[Y = y � y 7 0] =
(e-lly)/y!

prob[Y 7 0]
=

(e-lly)/y!

1 - prob[Y = 0]

 =
(e-lly)/y!

1 - e-l ,  l 7 0, y = 1, c.

This distribution is used in models of uses of recreation and other kinds of facilities 
where observations of zero uses are discarded.3

3See Shaw (1988) and Smith (1988). An application of this model appears in Section 18.4.6 and Example 18.18.

THEOREM 19.1  Density of a Truncated Random Variable
If a continuous random variable x has pdf f(x) and a is a constant, then2

f(x � x 7 a) =
f(x)

prob(x 7 a)
.

The proof follows from the definition of conditional probability and amounts 
merely to scaling the density so that it integrates to one over the range above a. 
Note that the truncated distribution is a conditional distribution.

2The case of truncation from above instead of below is handled in an analogous fashion and does not require any 
new results.
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920	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

For convenience in what follows, we shall call a random variable whose distribution 
is truncated a truncated random variable.

19.2.2    MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interested in the mean and variance of the truncated random variable. 
They would be obtained by the general formula,

E[x � x 7 a] = L
∞

a
 xf(x � x 7 a) dx,

for the mean and likewise for the variance.

Example 19.1    Truncated Uniform Distribution
If x has a standard uniform distribution, denoted U(0, 1), then

f(x) = 1,  0 … x … 1.

The truncated at x = 1
3 distribution is also uniform:

fax � x 7
1
3
b =

f(x)

Prob(x 7 1
3)

=
1

12
32 =

3
2

, 
1
3

… x … 1.

The expected value is

E c x � x 7
1
3
d = L

1

1/3
 xa3

2
bdx =

2
3

.

For a variable distributed uniformly between L and U, the variance is (U - L)2/12.
Thus,

Var c x � x 7
1
3
d =

1
27

.

The mean and variance of the untruncated distribution are 12 and 1
12, respectively.

FIGURE 19.1    Truncated Normal Distributions.
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Example 19.1 illustrates two results.

1.	 If the truncation is from below, then the mean of the truncated variable is greater 
than the mean of the original one. If the truncation is from above, then the mean of 
the truncated variable is smaller than the mean of the original one.

2.	 Truncation reduces the variance compared with the variance in the untruncated 
distribution.

Henceforth, we shall use the terms truncated mean and truncated variance to refer to 
the mean and variance of the random variable with a truncated distribution.

For the truncated normal distribution, we have the following theorem:4

An important result is

0 6 d(a) 6 1 for all values of a,

which implies point 2 after Example 19.1. A result that we will use at several points below 
is df(a)/da = -af(a). The function l(a) is called the inverse Mills ratio. The function 
in (19-3a) is also called the hazard function for the standard normal distribution.

Example 19.2    A Truncated Lognormal Income Distribution
An article that appeared in the New York Post in 1987 claimed that “The typical ‘upper affluent 
American’ . . . makes $142,000 per year . . . The people surveyed had household income 
of at least $100,000.” Would this statistic tell us anything about the typical American? As it 
stands, it probably does not (popular impressions notwithstanding). The 1987 article where 
this appeared went on to state, “If you’re in that category, pat yourself on the back—only 2% 
of American households make the grade, according to the survey.” Because the degree of 
truncation in the sample is 98%, the $142,000 was probably quite far from the mean in the 
full population.

Suppose that incomes, x, in the population were lognormally distributed—see Section B.4.4. 
Then the log of income, y, had a normal distribution with, say, mean m and standard deviation, s. 

4Details may be found in Johnson, Kotz, and Balakrishnan (1994, pp. 156–158). Proofs appear in Cameron and 
Trivedi (2005).

THEOREM 19.2  Moments of the Truncated Normal Distribution
If x ∼ N[m, s2] and a is a constant, then

	 E[x � truncation] = m + sl(a),� (19-1)

	 Var[x � truncation] = s2[1 - d(a)],� (19-2)

where a = (a - m)/s, f(a) is the standard normal density and

	 l(a) = f(a)/[1 - Φ(a)] if truncation is x 7 a,� (19-3a)

	 l(a) = -f(a)/Φ(a)   if truncation is x 6 a,� (19-3b)

and

	 d(a) = l(a)[l(a) - a].� (19-4)
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922	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

Suppose that the survey was large enough for us to treat the sample average as the true mean. 
Assuming so, we’ll deduce m and s and then determine the population mean income.

Two useful numbers for this example are In 100 = 4.605 and In 142 = 4.956. The article 
states that Prob[x Ú 100] = Prob[exp(y) Ú 100] = 0.02, or Prob(y 6 4.605) = 0.98. This 
implies that

Prob[(y - m)/s 6 (4.605 - m)/s] = 0.98.

Because Φ[(4.605 - m)/s] = 0.98, we know that Φ-1(0.98) = 2.054 = (4.605 - m)/s, or

4.605 = m + 2.054s.

The article also states that

E[x � x 7 100] = E[exp(y) � exp(y) 7 100] = 142,

or
E[exp(y) � y 7 4.645] = 142.

To proceed, we need another result for the lognormal distribution:5

If y ∼ N[m, s2], then E[exp(y) � y 7 a] = exp(m + s2/2) *
Φ(s - (a - m)/s)
1 - Φ((a - m)/s)

.

For our application, we would equate this expression to 142, and a to In 100 = 4.605. 
This provides a second equation. To estimate the two parameters, we used the method of 
moments. We solved the minimization problem,

Minimizem, s[4.605 - (m + 2.054s)]2

+ [142Φ((m - 4.605)/s) - exp(m + s2/2)Φ(s - (4.605 - m)/s)]2.

The two solutions are 2.89372 and 0.83314 for m and s, respectively. To obtain the mean 
income, we now use the result that if y ∼ N[m, s2] and x = exp(y), then E[x] = exp(m + s2/2). 
Inserting our values for m and s gives E[x] = $25,554. The 1987 Statistical Abstract of the 
United States gave the mean of household incomes across all groups for the United States 
was about $25,000. So, the estimate based on surprisingly little information would have 
been relatively good. These meager data did, indeed, tell us something about the average 
American. To recap, we were able to deduce the overall mean from estimates of the truncated 
mean and variance and the theoretical relationships between the truncated and untruncated 
mean and variance.

19.2.3    THE TRUNCATED REGRESSION MODEL

In the model of the earlier examples, we now assume that

m = x′B

is the deterministic part of the classical regression model. Then

y = x′B + e,

where

e � x ∼ N[0, s2],

5See Johnson, Kotz, and Balakrishnan (1995, p. 241).
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so that

	 y � x ∼ N[x′B, s2].	 (19-5)

We are interested in the distribution of y given that y is greater than the truncation point 
a. This is the result described in Theorem 19.2. It follows that

	 E[y � y 7 a] = x′B + s 
f[(a - x′B)/s]

1 - Φ[(a - x′B)/s]
.	 (19-6)

The conditional mean is therefore a nonlinear function of a, s, x, and B.
The partial effects in this model in the subpopulation can be obtained by writing

	 E[y � y 7 a] = x′B + sl(a),	 (19-7)

where now a = (a - x′B)/s. For convenience, let l = l(a) and d = d(a). Then

 
0E[y � y 7 a]

0x
= B + s(dl/da) 

0A
0x

 = B + s(l2 - al)(-B/s)

 = B(1 - l2 + al)

 = B(1 - d). �

(19-8)

Note the appearance of the scale factor 1 - d from the truncated variance. Because 
(1 - d) is between zero and one, we conclude that for every element of x, the partial 
effect is less than the corresponding coefficient. There is a similar attenuation of the 
variance. In the subpopulation y 7 a, the regression variance is not s2 but

	 Var[y � y 7 a] = s2(1 - d).	 (19-9)

Whether the partial effect in (19-7) or the coefficient B itself is of interest depends on the 
intended inferences of the study. If the analysis is to be confined to the subpopulation, 
then (19-7) is of interest. If the study is intended to extend to the entire population, 
however, then it is the coefficients B that are actually of interest.

One’s first inclination might be to use ordinary least squares (OLS) to estimate the 
parameters of this regression model. For the subpopulation from which the data are 
drawn, we could write (19-6) in the form

	 y � y 7 a = E[y � y 7 a] + u = x′B + sl + u,	 (19-10)

where u is y minus its conditional expectation. By construction, u has a zero mean, but 
it is heteroscedastic,

Var[u] = s2(1 - l2 + la) = s2(1 - d),

which is a function of x. If we estimate (19-10) by least squares regression of y on X, then 
we have omitted a variable, the nonlinear term l. All the biases that arise because of an 
omitted variable can be expected.6

Without some knowledge of the distribution of x, it is not possible to determine how 
serious the bias is likely to be. A result obtained by Chung and Goldberger (1984) is 

6See Heckman (1979) who formulates this as a “specification error.”
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924	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

broadly suggestive. If E[x � y] in the full population is a linear function of y, then plim 
b = Bt for some proportionality constant t. This result is consistent with the widely 
observed (albeit rather rough) proportionality relationship between least squares 
estimates of this model and maximum likelihood estimates.7 The proportionality result 
appears to be quite general. In applications, it is usually found that, compared with 
consistent maximum likelihood estimates, the OLS estimates are biased toward zero. 
(See Example 19.5.)

19.2.4    THE STOCHASTIC FRONTIER MODEL

A lengthy literature commencing with theoretical work by Knight (1933), Debreu (1951), 
and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and Schmidt 
(1977) has been directed at models of production that specifically account for the 
textbook proposition that a production function is a theoretical ideal.8 If y = f(x) 
defines a production relationship between inputs, x, and an output, y, then for any given 
x, the observed value of y must be less than or equal to f(x). The implication for an 
empirical regression model is that in a formulation such as y = h(x, B) + u, u must be 
negative. Because the theoretical production function is an ideal—the frontier of 
efficient production—any nonzero disturbance must be interpreted as the result of 
inefficiency. A strictly orthodox interpretation embedded in a Cobb–Douglas production 
model might produce an empirical frontier production model such as

ln y = b1 + a
k
bk ln xk - u, u Ú 0.9

One-sided disturbances such as this one present a particularly difficult estimation 
problem. The primary theoretical problem is that any measurement error in ln y must 
be embedded in the disturbance. The practical problem is that the entire estimated 
function becomes a slave to any single errantly measured data point.

Aigner, Lovell, and Schmidt proposed instead a formulation within which observed 
deviations from the production function could arise from two sources: (1) productive 
inefficiency, as we have defined it earlier and that would necessarily be negative, and 
(2) idiosyncratic effects that are specific to the firm and that could enter the model with 
either sign. The end result was what they labeled the stochastic frontier:

 ln y = b1 + a
k
bk ln xk - u + v, u Ú 0, v ∼ N30, sv

24
 = b1 + a

k
bk ln xk + e.

The frontier for any particular firm is h(x, B) + v, hence the name stochastic frontier. 
The inefficiency term is u, a random variable of particular interest in this setting. 
Because  the  data are in log terms, u is a measure of the percentage by which the 
particular observation fails to achieve the frontier, ideal production rate.

7See the appendix in Hausman and Wise (1977), Greene (1983), Stoker (1986, 1992), and Powell (1994).
8A survey by Greene (2007a) appears in Fried, Lovell, and Schmidt (2008). Kumbhakar and Lovell (2000) and 
Kumbhakar and Parmeter (2014) are comprehensive references on the subject.
9For example, Greene (1990).
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To complete the specification, they suggested two possible distributions for the 
inefficiency term: the absolute value of a normally distributed variable, which has the 
truncated at zero distribution shown in Figure 19.1, and an exponentially distributed 
variable. The density functions for these two compound variables are given by Aigner, 
Lovell, and Schmidt; let e = v - u, l = su/sv, s = (su

2 + sv
2)1/2, and Φ(z) = the 

probability to the left of z in the standard normal distribution (see Section B.4.1). The 
random variable that is obtained as v – u where v and u are normal and half normal has 
a skew normal density,

f(e) =
2
s

 fa e
s
bΦa -le

s
b .

This implies the log likelihood for the “half-normal” model,

a
n

i= 1
 ln h(ei �B, l, s) = a

n

i= 1
J - ln s + a 1

2
b  ln 

2
p

-
1
2

 a ei

s
b

2

+ ln Φa -eil

s
b R .

For the normal-exponential model with parameter u, the log likelihood is

a
n

i= 1
 ln h(ei �B, u, sv) = a

n

i= 1
J ln u +

1
2

 u2 sv
2 + uei + ln Φa -

ei

sv
- u svb R .

Both distributions are asymmetric. We thus have a regression model with a nonnormal 
distribution specified for the disturbance. The disturbance, e, has a nonzero mean as 
well; E[e] = -su(2/p)1/2 for the half-normal model and -1/u for the exponential model. 
Figure 19.2 illustrates the density for the half-normal model with s = 1 and l = 2. By 
writing b0 = b1 + E[e] and e* = e - E[e], we obtain a more conventional formulation,

ln y = b0 + a
k
bk ln xk + e*,

FIGURE 19.2  �  Skew Normal Density for the Disturbance in the Stochastic Frontier 
Model.
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926	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

which does have a disturbance with a zero mean but an asymmetric, nonnormal 
distribution. The asymmetry of the distribution of e* does not negate our basic results 
for least squares in this classical regression model. This model satisfies the assumptions 
of the Gauss–Markov theorem, so least squares is unbiased and consistent (save for the 
constant term) and efficient among linear unbiased estimators. In this model, however, 
the maximum likelihood estimator is not linear, and it is more efficient than least squares.

The log-likelihood function for the half-normal model is given in Aigner, Lovell, 
and Schmidt (1977),

	 ln L = -n ln s +
n
2

 ln 
2
p

-
1
2

 a
n

i= 1
a ei

s
b

2

+ a
n

i= 1
 ln Φa -eil

s
b .	 (19-11)

Maximization programs for this model are built into modern software packages such as 
Stata, SAS and NLOGIT. The log likelihood is simple enough that it can also be readily 
adapted to the generic optimization routines in, for example, Gauss. Some treatments in 
the literature use the parameterization employed by Battese and Coelli (1992) and Coelli 
(1996), g = su

2/s2. This is a one-to-one transformation of l; l = (g/(1 - g))1/2, so which 
parameterization is employed is a matter of convenience; the empirical results will be the 
same. The log-likelihood function for the exponential model can be built up from the 
density given earlier. For the half-normal model, we would also rely on the invariance of 
maximum likelihood estimators to recover estimates of the structural variance parameters, 
sv

2 = s2/(1 + l2) and su
2 = s2l2/(1 + l2).10 (Note, the variance of the truncated variable, 

u, is not su
2; using (19-2), it reduces to [(1 - 2/p)su

2].) In addition, a structural parameter 
of interest is the proportion of the total variance of e that is due to the inefficiency term. 
For the half-normal model, Var[e] = Var[u] + Var[v] =(1 - 2/p)su

2 + sv
2, whereas for 

the exponential model, the counterpart is 1/u2 + sv
2.

Modeling in the stochastic frontier setting is rather unlike what we are accustomed 
to up to this point, in that the inefficiency part of the disturbance, specifically u, not the 
model parameters, is the central focus of the analysis. The reason is that in this context, 
the disturbance, u, rather than being the catchall for the unknown and unknowable 
factors omitted from the equation, has a particular interpretation—it is the firm-specific 
inefficiency. Ideally, we would like to estimate ui for each firm in the sample to compare 
them on the basis of their productive efficiency. Unfortunately, the data do not permit 
a direct estimate, because with estimates of B in hand, we are only able to compute a 
direct estimate of ei = yi - xi

=B. Jondrow et al. (1982), however, have derived a useful 
approximation that is now the standard measure in these settings,

E[ui � ei] =
sl

1 + l2 c f(zi)

1 - Φ(zi)
- zi d , zi =

eil

s

for the half-normal model, and

E[ui � ei] = zi + sv 
f(zi/sv)

Φ(zi/sv)
, zi = -(ei + usv

2)

10A vexing problem for estimation of the model is that if the OLS residuals are skewed in the positive (wrong) 
direction (see Figure 19.2), OLS with ln = 0 will be the MLE. OLS residuals with a positive skew are apparently 
inconsistent with a model in which, in theory, they should have a negative skew. [See Waldman (1982) for 
theoretical development of this result.] There is a substantial literature on this issue, including, for example, 
Hafner, Manner, and Simar (2013).
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for the exponential model. These values can be computed using the maximum likelihood 
estimates of the structural parameters in the model. In some cases in which researchers 
are interested in discovering best practice, the estimated values are sorted and the ranks 
of the individuals in the sample become of interest.11

Research in this area since the methodological developments beginning in the 1930s 
and the building of the empirical foundations in 1977 and 1982 has proceeded in several 
directions. Most theoretical treatments of inefficiency as envisioned here attribute it to 
aspects of management of the firm. It remains to establish a firm theoretical connection 
between the theory of firm behavior and the stochastic frontier model as a device for 
measurement of inefficiency.

In the context of the model, many studies have developed alternative, more flexible 
functional forms that (it is hoped) can provide a more realistic model for inefficiency. Two 
that are relevant in this chapter are Stevenson’s (1980) truncated normal model and the 
normal-gamma frontier. One intuitively appealing form of the truncated normal model is

Ui ∼ N[m + zi
=A, su

2], ui = � Ui � .

The original normal–half-normal model results if m equals zero and A equals zero. This 
is a device by which the environmental variables noted in the next paragraph can enter 
the model of inefficiency. A truncated normal model is presented in Example 19.3. The 
half-normal, truncated normal, and exponential models all take the form of distribution 
shown in Figure 19.1. The gamma model,

f(u) = [uP/Γ(P)]exp(-uu)uP - 1,

is a flexible model that presents the advantage that the distribution of inefficiency can 
move away from zero. If P is greater than one, then the density at u = 0 equals zero and 
the entire distribution moves away from the origin. The implication is that the distribution 
of inefficiency among firms can move away from zero. The gamma model is estimated 
by simulation methods—either Bayesian MCMC12 or maximum simulated likelihood.13 
Many other functional forms have been proposed.14

There are usually elements in the environment in which the firm operates that 
impact the firm’s output and/or costs but are not, themselves, outputs, inputs, or input 
prices. In Example 19.3, the costs of the Swiss railroads are affected by three variables: 
track width, long tunnels, and curvature. It is not yet specified how such factors should 
be incorporated into the model; four candidates are in the mean and variance of ui, 
directly in the function, or in the variance of vi.15 All of these can be found in the received 
studies. This aspect of the model was prominent in the discussion of the famous World 
Health Organization (WHO) efficiency study of world health systems.16 In Example 19.3, 
we have placed the environmental factors in the mean of the inefficiency distribution. 
This produces a rather extreme set of results for the JLMS estimates of 

11For example, the World Health Organization (2000) and Tandon et al. (2000).
12Huang (2003) and Tsionas (2002).
13Greene (2003).
14See Greene (2007a) for a survey.
15See Hadri, Guermat, and Whittaker (2003) and Kumbhakar (1997a).
16WHO (2000), Tandon et al. (2000), and Greene (2004b).
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928	 Part IV  ✦   Cross Sections, Panel Data, and Microeconometrics

inefficiency—many railroads are estimated to be extremely inefficient. An alternative 
formulation would be a heteroscedastic model in which su,i = su exp(z=iD) or 
sv,i = sv exp(z=iH), or both. We can see from the JLMS formula that the term 
heteroscedastic is actually a bit misleading, because both standard deviations enter 
(now) li, which is, in turn, a crucial parameter in the mean of inefficiency.

How should inefficiency be modeled in panel data, such as in our example? It might 
be tempting to treat it as a time-invariant effect.17 A string of studies, including Battese 
and Coelli (1992, 1995), Cuesta (2000), Kumbhakar (1997a), Kumbhakar and Orea 
(2004), and many others have proposed hybrid forms that treat the core random part of 
inefficiency as a time-invariant firm-specific effect that is modified over time by a 
deterministic, possibly firm-specific, function. The Battese–Coelli form,

uit = exp[-h(t - T)] � Ui � where UiN[0, su
2],

has been used in a number of applications. Cuesta (2000) suggests allowing h to 
vary across firms, producing a model that bears some relationship to a fixed-effects 
specification. Greene (2004b) argued that a preferable approach would be to allow 
inefficiency to vary freely over time in a panel, and to the extent that there is a common 
time-invariant effect in the model, that should be treated as unobserved heterogeneity, 
not inefficiency. This produces the “true random effects model,”

ln yit = a + wi + xit
 =B + vit - uit.

This is simply a random effects stochastic frontier model, as opposed to a random effects 
linear regression analyzed in Chapter 10. At first glance, it appears to be an extremely 
optimistic specification with three disturbances. The key to estimation and inference is 
to note that it is only a familiar two-part disturbance, the sum of a time-varying skew 
normal variable, eit = vit - uit, and a time-invariant normal variable wi. Maximum 
simulated likelihood estimation of the model is developed in Greene (2004b).18

Is it reasonable to use a possibly restrictive parametric approach to modeling 
inefficiency? Sickles (2005) and Kumbhakar et al. (2007) are among numerous studies 
that have explored less parametric approaches to efficiency analysis. Proponents of data 
envelopment analysis have developed methods that impose absolutely no parametric 
structure on the production function.19 Among the costs of this high degree of flexibility 
is a difficulty to include environmental effects anywhere in the analysis, and the 
uncomfortable implication that any unmeasured heterogeneity of any sort is necessarily 
included in the measure of inefficiency. That is, data envelopment analysis returns to the 
deterministic frontier approach where this section began.

Example 19.3    Stochastic Cost Frontier for Swiss Railroads
Farsi, Filippini, and Greene (2005) analyzed the cost efficiency of Swiss railroads. In order to 
use the stochastic frontier approach to analyze costs of production, rather than production, 
they rely on the fundamental duality of production and cost.20 An appropriate cost frontier 

17As in Schmidt and Sickles (1984) and Pitt and Lee (1984) in two pioneering papers.
18Colombi et al. (2014) and Filippini and Greene (2016) have extended this approach to a “generalized true random 
effects model,” yit = a + xit

 =B + wi - hi + vit - uit. In this case, both components of the random effects model have 
skew normal, rather than normal distributions. Estimation is carried out using maximum simulated likelihood.
19See, for example, Simar and Wilson (2000, 2007).
20See Samuelson (1938), Shephard (1953), and Kumbhakar and Lovell (2000).
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model for a firm that produces more than one output—the Swiss railroads carry both freight 
and passengers—will appear as the following:

ln(C/PK) = a + a
K - 1

k= 1
 bk ln (Pk/PK) + a

M

m= 1
 gm ln Qm + v + u.

The requirement that the cost function be homogeneous of degree one in the input prices 
has been imposed by normalizing total cost, C, and the first K - 1 prices by the Kth input 
price. In this application, the three factors are labor, capital, and electricity—the third is used 
as the numeraire in the cost function. Notice that the inefficiency term, u, enters the cost 
function positively; actual cost is above the frontier cost. [The MLE is modified simply by 
replacing ei with -ei in (19-11).] In analyzing costs of production, we recognize that there is 
an additional source of inefficiency that is absent when we analyze production. On the 
production side, inefficiency measures the difference between output and frontier output, 
which arises because of technical inefficiency. By construction, if output fails to reach the 
efficient level for the given input usage, then costs must be higher than frontier costs. 
However, costs can be excessive even if the firm is technically efficient if it is allocatively 
inefficient. That is, the firm can be technically efficient while not using inputs in the cost 
minimizing mix (equating the ratio of marginal products to the input price ratios). It follows 
that on the cost side, “u” can contain both elements of inefficiency while on the production 
side, we would expect to measure only technical inefficiency.21

The data for this study are an unbalanced panel of 50 railroads with Ti ranging from 1 to 13. 
(Thirty-seven of the firms are observed 13 times, 8 are observed 12 times, and the remaining 
5 are observed 10, 7, 7, 3, and 1 times, respectively.) The variables we will use here are:

CT:	 Total costs adjusted for inflation (1,000 Swiss francs),
QP:	 Total passenger-output in passenger-kilometers,
QF:	 Total goods-output in ton-kilometers,
PL:	 Labor price adjusted for inflation (in Swiss francs per person per year),
PK:	 Capital price with capital stock proxied by total number of seats,
PE:	 Price of electricity (Swiss francs per kWh).

Logs of costs and prices (ln CT, ln PK, ln PL) are normalized by PE. We will also use these 
environmental variables:

NARROW_T:	� Dummy for the networks with narrow track (1 meter wide) The usual width 
is 1.435 meters;

TUNNEL:	� Dummy for networks that have tunnels with an average length of more than 
300 meters;

VIRAGE:	� Dummy for the networks whose minimum radius of curvature is 100 meters 
or less.

The full data set is given in Appendix Table F19.1. Several other variables not used here are 
presented in the appendix table. In what follows, we will ignore the panel data aspect of the 
data set. This would be a focal point of a more extensive study.

There have been dozens of models proposed for the inefficiency component of the 
stochastic frontier model. Table 19.1 presents several different forms. The basic half-normal 
model is given in the first column. The estimated cost function parameters across the different 
forms are broadly similar, as might be expected as (a, B) are consistently estimated in all 
cases. There are fairly pronounced differences in the implications for the components of e, 
however. There is an ambiguity in the model as to whether modifications to the distribution 
of ui will affect the mean of the distribution, the variance, or both. The following results 

21See Kumbhakar (1997b).
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suggest that it is both for these data. The gamma and exponential models appear to remove 
most of the inefficiency from the data. Note that the estimates of su are considerably smaller 
under these specifications, and sv is correspondingly larger. The second-to-last row shows 
the sample averages of the Jondrow estimators—this estimates EeE[u � e] = E[u]. There is 
substantial difference across the specifications.

The estimates in the rightmost two columns illustrate two different placements of the 
measured heterogeneity: in the variance of ui and directly in the cost function. The log-likelihood 
function appears to favor the first of these. However, the models are not nested and involve 
the same number of parameters. We used the Vuong test (see Section 14.6.6), instead and 
obtained a value of -2.65 in favor of the heteroscedasticity model. Figure 19.3 describes the 
values of E[ui � ei] estimated for the sample observations for the half-normal, heteroscedastic, 
and heterogeneous models. The smaller estimate of su for the third of these is evident in the 
figure, which suggests a somewhat tighter concentration of values than the other two.

19.3	 CENSORED DATA

A very common problem in microeconomic data is censoring of the dependent variable. 
When the dependent variable is censored, values in a certain range are all transformed 
to (or reported as) a single value. Some examples that have appeared in the empirical 
literature are as follows:22

22More extensive listings may be found in Amemiya (1984) and Maddala (1983).

Model

Variable
Half 

Normal
Truncated 
Normal Exponential Gamma Heterosced. Heterogen.

Constant -10.0799 -9.80624 -10.1838 -10.1944 -9.82189 -10.2891
ln QP 0.64220 0.62573 0.64403 0.64401 0.61976 0.63576
ln QF 0.06904 0.07708 0.06803 0.06810 0.07970 0.07526
ln PK 0.26005 0.26625 0.25883 0.25886 0.25464 0.25893
ln PL 0.53845 0.50474 0.56138 0.56047 0.53953 0.56036
Constant 0.44116 -2.48218b

Narrow 0.29881 2.16264b 0.14355
Virage -0.20738 -1.52964b -0.10483
Tunnel 0.01118 0.35748b -0.01914
s 0.44240 0.38547 (0.34325) (0.34288) 0.45392c 0.40597
l 1.27944 2.35055 0.91763
P 1.0000 1.22920
u 13.2922 12.6915
su (0.34857) (0.35471) (0.07523) (0.09685) 0.37480c 0.27448
sv (0.27244) (0.15090) 0.33490 0.33197 0.25606 0.29912
mean E[u � e] 0.27908 0.52858 0.075232 0.096616 0.29499 0.21926
ln L -210.495 -200.67 -211.42 -211.091 -201.731 -208.349

aEstimates in parentheses are derived from other MLEs.
bEstimates used in computation of su.
cObtained by averaging l = su,i /sv over observations.

TABLE 19.1  Estimated Stochastic Frontier Cost Functionsa
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1.	 Household purchases of durable goods [Tobin (1958)],
2.	 The number of extramarital affairs [Fair (1977, 1978)],
3.	 The number of hours worked by a woman in the labor force [Quester and Greene 

(1982)],
4.	 The number of arrests after release from prison [Witte (1980)],
5.	 Household expenditures on various commodity groups [Jarque (1987)],
6.	 Vacation expenditures [Melenberg and van Soest (1996)],
7.	 Charitable donations [Brown, Harris, and Taylor (2009)].

Each of these studies analyzes a dependent variable that is zero for a significant fraction 
of the observations. Conventional regression methods fail to account for the qualitative 
difference between limit (zero) observations and nonlimit (continuous) observations.

19.3.1    THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a censored variable is similar to that for a truncated 
one. Once again, we begin with the normal distribution, as much of the received work 
has been based on an assumption of normality. We also assume that the censoring point 
is zero, although this is only a convenient normalization. In a truncated distribution, 
only the part of distribution above y = 0 is relevant to our computations. To make the 
distribution integrate to one, we scale it up by the probability that an observation in 
the untruncated population falls in the range that interests us. When data are censored, 
the distribution that applies to the sample data is a mixture of discrete and continuous 
distributions. Figure 19.4 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from 
the original one, y*, by

y = 0 if y* … 0,
y = y* if y* 7 0.

FIGURE 19.3    Kernel Density Estimator for JLMS Estimates.
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The two-part distribution that applies if y* ∼ N[m, s2] is

prob(y = 0) = prob(y* … 0) = Φ(-m/s) = 1 - Φ(m/s),

 and if y* 7 0, then y has the density of y*.

This distribution is a mixture of discrete and continuous parts. The total probability 
is one, as required, but instead of scaling the second part, we simply assign the full 
probability in the censored region to the censoring point, in this case, zero.

For the special case of a = 0, the mean simplifies to

E[y � a = 0] = Φ(m/s)(m + sl), where l =
f(m/s)

Φ(m/s)
.

For censoring of the upper part of the distribution instead of the lower, it is only 
necessary to reverse the role of Φ and 1 - Φ and redefine l as in Theorem 19.2.

FIGURE 19.4    Partially Censored Distribution.

Capacity Seats Demanded

Capacity Tickets Sold

THEOREM 19.3  Moments of the Censored Normal Variable
If y* ∼ N[m, s2] and y = a if y* … a or else y = y*, then

E[y] = Φa + (1 - Φ)(m + sl),

and

Var[y] = s2(1 - Φ)[(1 - d) + (a - l)2Φ],

where

Φ[(a - m)/s] = Φ(a) = prob(y* … a) = Φ, l = f/(1 - Φ),
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Example 19.4    Censored Random Variable
We are interested in the number of tickets demanded for events at a certain arena. Our only 
measure is the number actually sold. Whenever an event sells out, however, we know that the 
actual number demanded is larger than the number sold. The number of tickets demanded 
is censored when it is transformed to obtain the number sold. Suppose that the arena in 
question has 20,000 seats and, in a recent season, sold out 25% of the time. If the average 
attendance, including sellouts, was 18,000, then what are the mean and standard deviation 
of the demand for seats? According to Theorem 19.3, the 18,000 is an estimate of

E[sales] = 20,000(1 - Φ) + (m + sl)Φ.

Because this is censoring from above, rather than below, l = -f(a)/Φ(a). The argument 
of Φ, f, and l is a = (20,000 - m)/s. If 25% of the events are sellouts, then Φ = 0.75. 
Inverting the standard normal at 0.75 gives a = 0.675. In addition, if a = 0.675, 
then -f(0.675)/0.75 = l = -0.424. This result provides two equations in m and s, 
(a) 18,000 = 0.25(20,000) + 0.75(m - 0.424s) and (b) 0.675s = 20,000 - m. The solutions 
are s = 2426 and m = 18,362.

For comparison, suppose that we were told that the mean of 18,000 applies only to the 
events that were not sold out and that, on average, the arena sells out 25% of the time. 
Now our estimates would be obtained from the equations (a) 18,000 = m - 0.424s and 
(b) 0.675s = 20,000 - m. The solutions are s = 1820 and m = 18,772.

19.3.2    THE CENSORED REGRESSION (TOBIT) MODEL

The regression model based on the preceding discussion is referred to as the censored 
regression model or the tobit model [in reference to Tobin (1958), where the model 
was first proposed]. The regression is obtained by making the mean in the preceding 
correspond to a classical regression model. The general formulation is usually given in 
terms of an index function,

y* = x′B + e,

y = 0 if y* … 0,

yi = yi* if yi* 7 0.

There are potentially three conditional mean functions to consider, depending on the 
purpose of the study. For the index variable, sometimes called the latent variable, E[y* � x] 

and
d = l2 - la.

Proof: For the mean,

 E[y] = prob(y = a) * E[y � y = a] + prob(y 7 a) * E[y � y 7 a]

 = prob(y* … a) * a + prob(y* 7 a) * E[y* � y* 7 a]

 = Φa + (1 - Φ)(m + sl)

using Theorem 19.2. For the variance, we use a counterpart to the decomposition in 
(B-69); that is, Var[y] = E[conditional variance] + Var[conditional mean], and 
Theorem 19.2.
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is x′B. If the data are always censored, however, then this result will usually not be useful. 
Consistent with Theorem 19.3, for an observation randomly drawn from the population, 
which may or may not be censored,

E[y � x] = Φa x′B
s

b(x′B + sl),

where

	 l =
f[(0 - x′B)/s]

1 - Φ[(0 - x′B)/s]
=

f(x′B/s)

Φ(x′B/s)
.	 (19-12)

Finally, if we intend to confine our attention to uncensored observations, then the results 
for the truncated regression model apply. The limit observations should not be discarded, 
however, because the truncated regression model is no more amenable to least squares 
than the censored data model. It is an unresolved question which of these functions 
should be used for computing predicted values from this model. Intuition suggests that 
E[y � x] is correct, but authors differ on this point. For the setting in Example 19.4, for 
predicting the number of tickets sold, say, to plan for an upcoming event, the censored 
mean is obviously the relevant quantity. On the other hand, if the objective is to study 
the need for a new facility, then the mean of the latent variable y* would be more 
interesting.

There are differences in the partial effects as well. For the index variable, 
0E[y* � x]

0x
= B. But this result is not what will usually be of interest, because yi* is 

unobserved. For the observed data, yi, the following general result will be useful:23

23See Greene (1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura (1983) for 
applications based on the normal distribution.

THEOREM 19.4  Partial Effects in the Censored Regression Model
In the censored regression model with latent regression y* = x′B + e and observed 
dependent variable, y = a if y* … a, y = b if y* Ú b, and y = y* otherwise, where 
a and b are constants with b 7 a, let f(e) and F(e) denote the density and cdf of 
the standardized variable e/s where e is a continuous random variable with mean 
0 and variance s2, and f(e � x) = f(e). Then

0E[y � x]

0x
= B * prob[a 6 y* 6 b].

Proof: By definition,

 E[y � x] = a prob[y* … a � x] + b prob[y* Ú b � x]

 + prob[a 6 y* 6 b � x]E[y* � a 6 y* 6 b � x].

Let aj = (j - x′B)/s, Fj = F(aj), fj = f(aj), and j = a, b. then

E[y � x] = aFa + b(1 - Fb) + (Fb - Fa)E[y* � a 6 y* 6 b, x].
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Note that this general result includes censoring in either or both tails of the distribution, 
and it does not assume that e is normally distributed. For the standard case with censoring 
at zero and normally distributed disturbances, the result specializes to

0E[y � x]

0x
= BΦa x′B

s
b .

Although not a formal result, this does suggest a reason why, in general, least squares 
estimates of the coefficients in a tobit model usually resemble the MLEs times the 
proportion of nonlimit observations in the sample.

McDonald and Moffitt (1980) suggested a useful decomposition of 0E[yi � xi]/0xi,

0E[y � x]

0x
= B * 5Φ[1 - l(a + l)] + f(a + l)6,

where a = x′B/s, Φ = Φ(a), and l = f/Φ. Taking the two parts separately, this result 
decomposes the slope vector into

0E[y � x]

0x
= prob[y 7 0] 

0E[y � x, y 7 0]

0x
+ E[y � x, y 7 0] 

0 prob[y 7 0]

0x
.

Because y* = x′B + s[(y* - x′B)/s], the conditional mean may be written

 E[y* � a 6 y* 6 b, x] = x′B + sE c y* - x′B
s

` a - x′B
s

6
y* - x′B

s
6

b - x′B
s

d

 = x′B + sL
ab

aa

 
(e/s)f(e/s)

Fb - Fa
 da e

s
b .

Collecting terms, we have

E[y � x] = a Fa + b(1 - Fb) + (Fb - Fa)x′B + sL
ab

aa

a e
s
b  fa e

s
bda e

s
b .

Now, differentiate with respect to x. The only complication is the last term, 
for which the differentiation is with respect to the limits of integration. We use 
Leibnitz’s theorem and use the assumption that f(e) does not involve x. Thus,

 
0E[y � x]

0x
= a -B

s
ba fa - a -B

s
bbfb + (Fb - Fa)B + (x′B)(fb - fa)a

-B

s
b

 + s[abfb - aafa]a
-B

s
b .

After inserting the definitions of aa and ab, and collecting terms, we find all terms 
sum to zero save for the desired result,

0E[y � x]

0x
= (Fb - Fa)B = B * prob[a 6 yi* 6 b].
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Thus, a change in x has two effects: It affects the conditional mean of y* in the 
positive part of the distribution, and it affects the probability that the observation will 
fall in that part of the distribution.

19.3.3    ESTIMATION

The tobit model has become so routine and been incorporated in so many computer 
packages that despite formidable obstacles in years past, estimation is now essentially 
on the level of ordinary linear regression. The log likelihood for the censored regression 
model is

	 ln L = a
yi 7 0

-
1
2

 c ln(2p) + ln s2 +
(yi - xi

=B)2

s2 d + a
yi = 0

 ln J1 - Φa xi
=B

s
b R .	 (19-13)

The two parts correspond to the linear regression for the nonlimit observations and 
the relevant probabilities for the limit observations, respectively. This likelihood is a 
nonstandard type, because it is a mixture of discrete and continuous distributions. In 
a seminal paper, Amemiya (1973) showed that despite the complications, proceeding 
in the usual fashion to maximize ln L would produce an estimator with all the familiar 
desirable properties attained by MLEs.

The log-likelihood function is fairly involved, but Olsen’s reparameterization (1978) 
simplifies things considerably. With G = B/s and u = 1/s, the log likelihood is

	 ln L = a
yi 7 0

-
1
2

 [ln(2p) - ln u2 + (uyi - xi
=G)2] + a

yi = 0
 ln[1 - Φ(xi

=G)].	 (19-14)

The results in this setting are now very similar to those for the truncated regression. The 
Hessian is always negative definite, so Newton’s method is simple to use and usually 
converges quickly. After convergence, the original parameters can be recovered using 
s = 1/u and b = G/u. The asymptotic covariance matrix for these estimates can be 
obtained from that for the estimates of [G, u] using the delta method:

est.asy.Var[Bn , sn ] = Jn asy.Var[Gn , Un]Jn′,

where

J = J0B/0G= 0b/0u
0s/0G= 0s/0u

R = J(1/u)I (-1/u2)g
0′ (-1/u2)

R .

Researchers often compute OLS estimates despite their inconsistency. Almost 
without exception, it is found that the OLS estimates are smaller in absolute value than 
the MLEs. A striking empirical regularity is that the maximum likelihood estimates can 
often be approximated by dividing the OLS estimates by the proportion of nonlimit 
observations in the sample.24 The effect is illustrated in the last two columns of Table 
19.2. Another strategy is to discard the limit observations, but we now see that just trades 
the censoring problem for the truncation problem.

24This concept is explored further in Greene (1980b), Goldberger (1981), and Chung and Goldberger (1984).
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Example 19.5    Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives, 
Quester and Greene (1982) were interested in whether wives whose marriages were 
statistically more likely to dissolve hedged against that possibility by spending, on average, 
more time working. They reported the tobit estimates given in Table 19.2. The last figure in the 
table implies that a very large proportion of the women reported zero hours, so least squares 
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the estimated 
asymptotic standard error. The dependent variable is hours worked in the survey year. Small 
kids is a dummy variable indicating whether there were children in the household. The 
education difference and relative wage variables compare husband and wife on these two 
dimensions. The wage rate used for wives was predicted using a previously estimated 
regression model and is thus available for all individuals, whether working or not. Second 
marriage is a dummy variable. Divorce probabilities were produced by a large microsimulation 
model presented in another study.25 The variables used here were dummy variables indicating 
mean if the predicted probability was between 0.01 and 0.03 and high if it was greater 
than 0.03. The slopes are the partial effects described earlier.

Note the partial effects compared with the tobit coefficients. Likewise, the estimate of s 
is quite misleading as an estimate of the standard deviation of hours worked. The effects of 
the divorce probability variables were as expected and were quite large. One of the questions 
raised in connection with this study was whether the divorce probabilities could reasonably be 
treated as independent variables. It might be that for these individuals, the number of hours 
worked was a significant determinant of the probability.

25Orcutt, Caldwell, and Wertheimer (1976).

White Wives Black Wives Least 
Squares

Scaled 
OLSCoefficient Slope Coefficient Slope

Constant -1,803.13 -2,753.87
(-8.64) (-9.68)

Small kids -1324.84 -385.89 -824.19 -376.53 -352.63 -766.56
(-19.78) (-10.14)

Education -48.08 -14.00 22.59 10.32 11.47 24.93
  difference (-4.77) (1.96)
Relative wage 312.07 90.90 286.39 130.93 123.95 269.46

(5.71) (3.32)
Second marriage 175.85 51.51 25.33 11.57 13.14 28.57

(3.47) (0.41)
Mean divorce 417.39 121.58 481.02 219.75 219.22 476.57
  robability (6.52) (5.28)
High divorce 670.22 195.22 578.66 264.36 244.17 530.80
  probability (8.40) (5.33)
s 1,559 618 1,511 826
Sample size 7459 2798
Proportion working 0.29 0.46

TABLE 19.2  Tobit Estimates of an Hours Worked Equation
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19.3.4    TWO-PART MODELS AND CORNER SOLUTIONS

The tobit model contains a restriction that might be unreasonable in an economic setting. 
Consider a behavioral outcome, y =  charitable donation. Two implications of the tobit 
model are that

prob(y 7 0 � x) = prob(x′B + e 7 0 � x) = Φ(x′B/s)

and [from (19-7)]

E[y � y 7 0, x] = x′B + s f(x′B/s)/Φ(x′B/s).

Differentiating both of these, we find from (17-11) and (19-8),

0 prob(y 7 0 � x)/0x = [f(x′B/s)/s]B = a positive multiple of B,

0E[y � y 7 0, x]/0x = 5[1 - d(x′B/s)]/s6B = a positive multiple of B.

Thus, any variable that appears in the model affects the participation probability and the 
intensity equation with the same sign. In the case suggested, for example, it is conceivable 
that age might affect participation and intensity in different directions. Fin and Schmidt 
(1984) suggest another application, loss due to fire in buildings; older buildings might be 
more likely to have fires but, because of the greater value of newer buildings, the actual 
damage might be greater in newer buildings. This fact would require the coefficient on 
age to have different signs in the two functions, which is impossible in the tobit model 
because they are the same coefficient.

In an early study in this literature, Cragg (1971) proposed a somewhat more general 
model in which the probability of a limit observation is independent of the regression 
model for the nonlimit data. One can imagine, for instance, the decision of whether or 
not to purchase a car as being different from the decision of how much to spend on the 
car, having decided to buy one.

A more general, two-part model that accommodates these objections is as follows:

1.	 Participation equation:

prob[y* 7 0] = Φ(x′G), d = 1 if y* 7 0,

prob[y* … 0] = 1 - Φ(x′G), d = 0 if y* … 0.�
(19-15)

2.	 Intensity equation for nonlimit observations:

E[y � d = 1] = x′B + sl,

according to Theorem 19.2. This two-part model is a combination of the truncated 
regression model of Section 19.2 and the univariate probit model of Section 17.3, 
which suggests a method of analyzing it. Note that it is precisely the same approach we 
considered in Section 18.4.8 and Example 18.21 where we used a hurdle model to model 
doctor visits. The tobit model returns if G =  B/s. The parameters of the regression 
(intensity) equation can be estimated independently using the truncated regression 
model of Section 19.2. An application is Melenberg and van Soest (1996).

Based only on the tobit model, Fin and Schmidt (1984) devised a Lagrange 
multiplier test of the restriction of the tobit model that, although a bit cumbersome 
algebraically, can be computed without great difficulty. If one is able to estimate the 
truncated regression model, the tobit model, and the probit model separately, then 
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there is a simpler way to test the hypothesis. The tobit log likelihood is the sum of 
the log likelihoods for the truncated regression and probit models. To show this result, 
add and subtract a yi = 1ln Φ(xi

=B) in (19-13). This produces the log likelihood for the 
truncated regression model (considered in the exercises) plus (17-19) for the probit 
model. Therefore, a likelihood ratio statistic can be computed using

l = -2[ln LT - (ln LP + ln LTR)],

where

 LT = likelihood for the tobit model in (19@13), with the same coefficients,

 LP = likelihood for the probit model in (17@16), fit separately,

 LTR = likelihood for the truncated regression model, fit separately.

The two-part model just considered extends the tobit model, but it stops a bit short 
of the generality we might achieve. In the preceding hurdle model, we have assumed 
that the same regressors appear in both equations. Although this produces a convenient 
way to retreat to the tobit model as a parametric restriction, it couples the two decisions 
perhaps unreasonably. In our example to follow, where we model extramarital affairs, the 
decision whether or not to spend any time in an affair may well be an entirely different 
decision from how much time to spend having once made that commitment. The obvious 
way to proceed is to reformulate the hurdle model as

1.	 Participation equation

prob[d* 7 0] = Φ(z′G),      d = 1 if d* 7 0,
prob[d* … 0] = 1 - Φ(z′G),  d = 0 if d* … 0.� (19-16)

2.	 Intensity equation for nonlimit observations

E[y � d = 1] = x′B + s l.

This extension, however, omits an important element; it seems unlikely that the two decisions 
would be uncorrelated; that is, the implicit disturbances in the equations should be correlated. 
The combination of these produces what has been labeled a type II tobit model. [Amemiya 
(1985) identified five possible permutations of the model specification and observation 
mechanism. The familiar tobit model is type I; this is type II.] The full model is:

1.	 Participation equation

 d* = z′G + u,   u ∼ N[0, 1]
 d = 1 if d* 7 0,  0 otherwise.

2.	 Intensity equation

y* = x′B + e, e ∼ N[0, s2].

3.	 Observation mechanism

(a) y* = 0 if d = 0 and y = y* if d = 1.
(b) y = y* if d = 1 and y is unobserved if d = 0.

4.	 Endogeneity

(u, e) ∼ bivariate normal with correlation r.
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Mechanism (a) produces Amemiya’s type II model. Amemiya (1984) blends these two 
interpretations. In the statement of the model, he presents (a), but in the subsequent 
discussion, assumes (b). The difference is substantive if x is observed in case (b). 
Otherwise, they are the same, and “y = 0” is not actually meaningful. Amemiya notes, 
“y* = 0 merely signifies the event d* … 0.” If x is observed when d = 0, then these 
observations will contribute to the likelihood for the full sample. If not, then they will 
not. We will develop this idea later when we consider Heckman’s selection model [which 
is case (b) without observed x when d = 0].

There are two estimation strategies that can be used to fit the type II model. A two-
step method can proceed as follows: The probit model for d can be estimated using 
maximum likelihood as shown in Section 17.3. For the second step, we make use of our 
theorems on truncation (and Theorem 19.5 that will appear later) to write

 E[y � d = 1, x, z] = x′B + E[e � d = 1, x, z]

 = x′B + rs 
f(z′G)

Φ(z′G)

 = x′B + rsl. � (19-17)

Since we have estimated G at step 1, we can compute ln = f(z′Gn )/Φ(z′Gn ) using the 
first-step estimates, and we can estimate B and u = (rs) by least squares regression 
of y on x and ln. It will be necessary to correct the asymptotic covariance matrix that 
is computed for (Bn , un). This is a template application of the Murphy and Topel (2002) 
results that appear in Section 14.7. The second approach is full information maximum 
likelihood, estimating all the parameters in both equations simultaneously. We will return 
to the details of estimation of the type II tobit model in Section 19.4 where we examine 
Heckman’s model of “sample selection” model (which is the type II tobit model).

Many of the applications of the tobit model in the received literature are 
constructed not to accommodate censoring of the underlying data, but, rather, to model 
the appearance of a large cluster of zeros. Cragg’s application is clearly related to this 
phenomenon. Consider, for example, survey data on purchases of consumer durables, 
firm expenditure on research and development, household charitable contributions, or 
consumer savings. In each case, the observed data will consist of zero or some positive 
amount. Arguably, there are two decisions at work in these scenarios: First, whether to 
engage in the activity or not, and second, given that the answer to the first question is 
yes, how intensively to engage in it—how much to spend, for example. This is precisely 
the motivation behind the hurdle model. This specification has been labeled a “corner 
solution model”; see Wooldridge (2010, chapter 17).

In practical terms, the difference between the hurdle model and the tobit model 
should be evident in the data. Often overlooked in tobit analyses is that the model predicts 
not only a cluster of zeros (or limit observations), but also a grouping of observations 
near zero (or the limit point). For example, the tobit model is surely misspecified for 
the sort of (hypothetical) spending data shown in Figure 19.5 for a sample of 1,000 
observations. Neglecting for the moment the earlier point about the underlying decision 
process, Figure 19.6 shows the characteristic appearance of a (substantively) censored 
variable. The implication for the model builder is that an appropriate specification would 
consist of two equations, one for the “participation decision,” and one for the distribution 
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FIGURE 19.5  �  Hypothetical Spending Data; Vertical Axis Is Sample 
Proportions.
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FIGURE 19.6  �  Hypothetical Censored Data; Vertical Axis Is Sample 
Proportions.
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of the positive dependent variable. Formally, we might, continuing the development of 
Cragg’s specification, model the first decision with a binary choice (e.g., probit or logit 
model). The second equation is a model for y � y 7 0, for which the truncated regression 
model of Section 19.2.3 is a natural candidate. As we will see, this is essentially the model 
behind the sample selection treatment developed in Section 19.4.

Two practical issues frequently intervene at this point. First, one might well have 
a model in mind for the intensity (regression) equation, but none for the participation 
equation. This is the usual backdrop for the uses of the tobit model, which produces the 
considerations in the previous section. The second issue concerns the appropriateness of 
the truncation or censoring model to data such as those in Figure 19.6. If we consider only 
the nonlimit observations in Figure 19.5, the underlying distribution does not appear to be 
truncated at all. The truncated regression model in Section 19.2.3 fit to these data will not 
depart significantly from the linear model fit by OLS [because the underlying probability 
in the denominator of (19-6) will equal one and the numerator will equal zero]. But this is 
not the case of a tobit model forced on these same data. Forcing the model in (19-13) on 
data such as these will significantly distort the estimator—all else equal, it will significantly 
attenuate the coefficients, the more so the larger the proportion of limit observations in 
the sample. Once again, this stands as a caveat for the model builder. The tobit model is 
manifestly misspecified for data such as those in Figure 19.5.

Example 19.6    Two-Part Model for Extramarital Affairs
In Example 18.18, we examined Fair’s (1977) Psychology Today survey data on extramarital 
affairs. The 601 observations in the data set are mostly zero—451 of the 601. This feature 
of the data motivated the author to use a tobit model to analyze these data. In our example, 
we reconsidered the model, because the nonzero observations were a count, not a 
continuous variable. Another data set in Fair’s study was the Redbook Magazine survey 
of 6,366 married women. Once again, the outcome variable of interest was extramarital 
affairs. However, in this instance, the outcome data were transformed to a measure of 
time spent, which, being continuous, lends itself more naturally to the tobit model we are 
studying here. The variables in the data set are as follows (excluding three unidentified 
and not used):

id = Identification number,
C = Constant, value = 1

yrb = Constructed measure of time spent in extramarital affairs,
v1 = Rating of the marriage, coded 1 to 5,
v2 = Age, in years, aggregated,
v3 = Number of years married,
v4 = Number of children, top coded at 5,
v5 = Religiosity, 1 to 4, 1 = not, 4 = very,
v6 = Education, coded 9, 12, 14, 16, 17, 20,
v7 = Wife’s occupation—Hollingshead scale,
v8 = Husband’s occupation—Hollingshead scale.

This is a cross section of 6,366 observations with 4,313 zeros and 2,053 positive values.
Table 19.3 presents estimates of various models for yrb. The leftmost column presents 

the OLS estimates. The least squares estimator is inconsistent in this model. The empirical 
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regularity is that the OLS estimator appears to be biased toward zero, the more so the larger 
the proportion of limit observations. Here, the ratio, based on the tobit estimates in the 
second column, appears to be about 4 or 5 to 1. Likewise, the OLS estimator of s appears 
to be greatly underestimated. This would be expected, as the OLS estimator is treating the 
limit observations, which have no variation in the dependent variable, as if they were nonlimit 
observations. The third set of results is the truncated regression estimator. In principle, the 
truncated regression estimator is also consistent. However, it will be less efficient as it is 
based on less information. In our example, this estimator seems to be quite erratic, again 
compared to the tobit estimator. Note, for example, the coefficient on years married, which, 
although it is “significant” in both cases, changes sign. The t ratio on Religiousness falls from 
-11.11 to -1.29 in the truncation model. The probit estimator based on yrb 7 0 appears 
next. As a rough check on the corner solution aspect of our model, we would expect the 
normalized tobit coefficients (B/s) to approximate the probit coefficients, which they appear 
to. However, the likelihood ratio statistic for testing the internal consistency based on the 
three estimated models is 2[7,804.38 - 3,463.71 - 3,469.58] = 1,742.18 with nine degrees 
of freedom. The hypothesis of parameter constancy implied by the tobit model is rejected. 
The last two sets of results are for a hurdle model in which the intensity equation is fit by the 
two-step method.

Model

Linear 
OLS

Tobit Truncated 
Regression

Probit Tobit/S Hurdle 
Participation

Hurdle 
Intensity

Constant 3.62346 7.83653 8.89449 2.21010 1.74189 1.56419 4.84602
(13.63) (10.98) (2.90) (12.60) (17.75) (5.87)

RateMarr -0.42053 -1.53071 -0.44303 -0.42874 -0.34024 -0.42582 -0.24603
(-14.79) (-20.85) (-1.45) (-23.40) (-23.61) (- .46)

Age -0.01457 -0.10514 -0.22394 -0.03542 -0.02337 -0.01903
(-1.59) (-4.24) (-1.83) (-5.87) (- .77)

YrsMarr -0.01599 0.12829 -0.94437 0.06563 0.02852 -0.16822
(-1.62) (4.86) (-7.27) (10.18) (-6.52)

NumKids -0.01705 -0.02777 -0.02280 -0.00394 -0.00617 0.14024 -0.28365
(- .57) (-0.36) (-0.06) (-0.21) (11.55) (-1.49)

Religious -0.24374 -0.94350 -0.50490 -0.22281 -0.20972 -0.21466 -0.05452
(-7.83) (-11.11) (-1.29) (-10.88) (-10.64) (-0.19)

Education -0.01743 -0.08598 -0.06406 -0.02373 -0.01911 0.00338
(-1.24) (-2.28) (-0.38) (-2.60) (0.09)

Wife Occ. 0.06577 0.31284 0.00805 0.09539 0.06954 0.01505
(2.10) (3.82) (0.02) (4.75) (0.19)

Hus. Occ. 0.00405 0.01421 -0.09946 0.00659 0.00316 -0.02911
(0.19) (0.26) (-0.41) (0.49) (-0.53)

s 2.14351 4.49887 5.46846 3.43748
ln L r2 = 0.05479 -7,804.38 -3,463.71 -3,469.58

TABLE 19.3  Estimated Censored Regression Models (t ratios in parentheses)
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19.3.5    SPECIFICATION ISSUES

Three issues that commonly arise in microeconomic data, endogeneity, heteroscedasticity, 
and nonnormality, have been analyzed at length in the tobit setting.26

19.3.5A    ENDOGENOUS RIGHT-HAND-SIDE VARIABLES

We consider the case of an endogenous variable on the right-hand side of the tobit 
model. The structure is

(latent variable) y* = x=B + gT + e, (observed variable)y = max(0,y*)

(latent variable) T* = z=A + u, (observed variable)T = h(T*)

(u,e) ∼ bivariate normal [(0, 1), (su
 2, sue, se

 2)], r = sue/(suse).

As usual, there are two cases to consider, the continuous variable, h(T*) = T*, and 
the endogenous dummy variable, h(T*) = 1(T* 7 0). (A probit model governs the 
observation of T.)

For the continuous case, again as usual, there are two-step and FIML estimators. We 
can use the reduced form to set up the two-step estimator. If (u,e) are bivariate normally 
distributed, then e = du + w where w is independent of u, Var[w] = se

 2(1 - r2) and 
d = sue/su

 2 = rse/su. Insert this in the tobit equation,

y* = x=B + gT + du + w, y = max(0, y*),

and recall u = T - z=A, so

y* = x=B + gT + d(T - z=A) + w, y = max(0, y*).

The model can now be estimated in two steps: (1) Least squares regression of T on z 
consistently estimates A. Use these OLS estimates to construct residuals (control 
functions), un i for each observation. (2) The second step consists of ML estimation of B, g 
and d by ML tobit estimation of y on (x, T, un). The original parameters can be deduced 
from the second-step estimators, using d = rse/su, the ML estimator of sw

 2, which 
estimates se

 2(1 - r2), and sn u
2 = (1/n)Σi= 1

n un i
2. 27 For inference purposes, the covariance 

matrix at the second step must be corrected for the presence of An . The Murphy and Topel 
correction promises to be quite complicated; bootstrapping would seem to be an 
appealing alternative.28

Blundell and Smith (1986) have devised an FIML estimator by reparameterizing 
the bivariate normal f(u, e) = f(e � u)f(u) and concentrating the log-likelihood function 

26Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986b). An 
application that explores these two issues in detail is Melenberg and van Soest (1996). Developing specification 
tests for the tobit model has been a popular enterprise. A sampling of the received literature includes Nelson 
(1981), Bera, Jarque, and Lee (1982), Chesher and Irish (1987), Chesher, Lancaster, and Irish (1985), Gourieroux 
et al. (1984, 1987), Newey (1985a,b, 1986), Rivers and Vuong (1988), Horowitz and Neumann (1989), and Pagan 
and Vella (1989) are useful references on the general subject of conditional moment testing. More general 
treatments of specification testing are Godfrey (1988) and Ruud (1982).

27For example, tn2 = dn2sn u
2/sn w

2  then rn = sgn(dn)tn/21 + tn2.
28A test for endogeneity can be carried out in the tobit model without correcting the covariance matrix with a 
simple t test of the hypothesis that d equals zero.
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over sn u
2 = (1/n)Σi= 1

n (Ti - z=iA)2 = (1/n)Σi= 1
n ui

2. However A is estimated, this will be 
the estimator of su

 2 .  This is inserted into the log likelihood to concentrate su out of 
this estimation step. Then, define ei = (yi - xi

=B - gTi - cui), where c = sue/su
 2 and 

v = [se
2(1 - r2)]1/2. Assembling the parts,

ln Lc(B, g, A, c, v) =
-n
2

 ln 
1
n

 a
n

i= 1
(Ti - z=iA)2 + a

yi 7 0
lnJ 1

c
 fa ei

c
b R + a

yi = 0
 ln Φ c ei - yi

v
d .

The function is maximized over B, g, A, c, and v; su is estimated residually with the 
mean squared residual from Ti. Estimates of r and se can be recovered by the method 
of moments.

There is no simple two-step approach when h(T*) = 1(T* 7 0), the endogenous 
treatment case. However, there is a straightforward FIML estimator. There are four 
terms in the log likelihood for (yi,Ti). For the two “limit” cases when y = 0, the terms 
are exactly those in the log likelihood for the bivariate probit with endogenous treatment 
effect in Section 17.6.1. Thus, for these two cases, (y = 0, T = 0) and (y = 0, T = 1),

ln Li = ln Φ2 c
-x=

iB - gTi

se
, (2Ti - 1)z=iA, - (2Ti - 1)r d .

For the cases when y* is observed, the terms in the log likelihood are exactly those in 
the FIML estimator for the sample selection model in (19-25) (Section 19.4.3). For these 
cases with (y,T = 0) and (y,T = 1),

ln Li = lnJexp(-(yi - x=
iB - gTi)

2/(2se
2))

se22p
 Φar(yi - x=

iB - gTi)/se + (2T - 1)z=iA21 - r2
bR .

With any of these consistent estimators in hand, estimates of the average partial 
effects can be estimated based on 0E[y � x,T]/0T = gΦ[(x=B + gT)/se] and likewise for 
the variables in x. For the treatment effect case, we would use

∆E[y � x,T] =J(x=B + g)Φa x=B + g

se
b + sefa x=B + g

se
b R - J ax=BbΦa x=B

se
b + sefa x=B

se
b R .

19.3.5.B    HETEROSCEDASTICITY

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and Brown 
and Moffitt (1982) all suggest varying degrees of pessimism regarding how inconsistent the 
maximum likelihood estimator will be when heteroscedasticity occurs. Not surprisingly, 
the degree of censoring is the primary determinant. Unfortunately, all the analyses have 
been carried out in the setting of very specific models—for example, involving only a single 
dummy variable or one with groupwise heteroscedasticity—so the primary lesson is the 
very general conclusion that heteroscedasticity emerges as a potentially serious problem.

One can approach the heteroscedasticity problem directly. Petersen and Waldman 
(1981) present the computations needed to estimate a tobit model with heteroscedasticity 
of several types. Replacing s with si in the log-likelihood function and including si

2 in 
the summations produces the needed generality. Specification of a particular model for 
si provides the empirical model for estimation.
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Example 19.7 Multiplicative Heteroscedasticity in the Tobit Model
Petersen and Waldman (1981) analyzed the volume of short interest in a cross section 
of common stocks. The regressors included a measure of the market component of 
heterogeneous expectations as measured by the firm’s BETA coefficient; a company-specific 
measure of heterogeneous expectations, NONMARKET; the NUMBER of analysts making 
earnings forecasts for the company; the number of common shares to be issued for the 
acquisition of another firm, MERGER; and a dummy variable for the existence of OPTIONs. 
They report the results listed in Table 19.4 for a model in which the variance is assumed to 
be of the form si

2 = exp(x=
iA). The values in parentheses are the ratio of the coefficient to the 

estimated asymptotic standard error.
The effect of heteroscedasticity on the estimates is extremely large. We do note, however, 

a common misconception in the literature. The change in the coefficients is often misleading. 
The average partial effects in the heteroscedasticity model will generally be very similar 
to those computed from the model which assumes homoscedasticity. (The calculation is 
pursued in the exercises.)

A test of the hypothesis that A = 0  (except for the constant term) can be based on the 
likelihood ratio statistic. For these results, the statistic is -2[-547.30 - (-466.27)] = 162.06. 
This statistic has a limiting chi-squared distribution with five degrees of freedom. The sample 
value exceeds the critical value in the table of 11.07, so the hypothesis can be rejected.

In the preceding example, we carried out a likelihood ratio test against the 
hypothesis of homoscedasticity. It would be desirable to be able to carry out the 
test without having to estimate the unrestricted model. A Lagrange multiplier test 
can be used for that purpose. Consider the heteroscedastic tobit model in which we 
specify that

	 si
2 = s2[exp(w=

iA)]2.	 (19-18)

This model is a fairly general specification that includes many familiar ones as special 
cases. The null hypothesis of homoscedasticity is A = 0. (We used this specification in the 
probit model in Section 17.5.5 and in the linear regression model in Section 9.7.1) Using 
the BHHH estimator of the Hessian as usual, we can produce a Lagrange multiplier 
statistic as follows: Let zi = 1 if yi is positive and 0 otherwise and

Homoscedastic Heteroscedastic

B B A

Constant -18.28 (5.10) -4.11 (3.28) -0.47 (0.60)
Beta 10.97 (3.61) 2.22 (2.00) 1.20 (1.81)
Nonmarket 0.65 (7.41) 0.12 (1.90) 0.08 (7.55)
Number 0.75 (5.74) 0.33 (4.50) 0.15 (4.58)
Merger 0.50 (5.90) 0.24 (3.00) 0.06 (4.17)
Option 2.56 (1.51) 2.96 (2.99) 0.83 (1.70)
ln L -547.30 -466.27
Sample size 200 200

TABLE 19.4  �Estimates of a Tobit Model (Standard errors in  
parentheses)
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 ai = zia
ei

s2 b           + (1 - zi)a
(-1)li

s
b ,

 bi = zia
(ei

2/s2 - 1)

2s2 b  + (1 - zi)a
(x=

iB)li

2s3 b ,

 ei = yi - x=
iB,    li =

f(x=
iB/s)

1 - Φ(x=
iB/s)

. 	 (19-19)

The data vector is gi = [aix
=
i, bi, biw

=
i]′. The sums are taken over all observations, and 

all functions involving unknown parameters (ei, fi, Φi, x
=
iB, s, li) are evaluated at the 

restricted (homoscedastic) maximum likelihood estimates. Then,

	 Lm = i′G[G′G]-1G′i = nR2	 (19-20)

in the regression of a column of ones on the K + 1 + P derivatives of the log-likelihood 
function for the model with multiplicative heteroscedasticity, evaluated at the estimates 
from the restricted model. (If there were no limit observations, then it would reduce to 
the Breusch–Pagan statistic discussed in Section 9.6.2.) Given the maximum likelihood 
estimates of the tobit model coefficients, it is quite simple to compute. The statistic has 
a limiting chi-squared distribution with degrees of freedom equal to the number of 
variables in wi.

19.3.5.C    NONNORMALITY

Nonnormality is an especially difficult problem in this setting. It has been shown that if 
the underlying disturbances are not normally distributed, then the estimator based on 
(19-13) may be inconsistent. Of course, the pertinent question is how the misspecification 
affects estimation of the quantities of interest, usually the partial effects. Here, the issue 
is less clear, as we saw for the binary choice models in Section 17.2.4. Research is ongoing 
both on alternative estimators and on methods for testing for this type of 
misspecification.29

One approach to the estimation is to use an alternative distribution. Kalbfleisch 
and Prentice (2002) present a unifying treatment that includes several distributions 
such as the exponential, lognormal, and Weibull. (Their primary focus is on survival 
analysis in a medical statistics setting, which is an interesting convergence of the 
techniques in very different disciplines.) Of course, assuming some other specific 
distribution does not necessarily solve the problem and may make it worse. A preferable 
alternative would be to devise an estimator that is robust to changes in the distribution. 
Powell’s (1981, 1984) least absolute deviations (LAD) estimator offers some promise.30 
The main drawback to its use is its computational complexity. An extensive application 
of the LAD estimator is Melenberg and van Soest (1996). Although estimation in the 
nonnormal case is relatively difficult, testing for this failure of the model is worthwhile 
to assess the estimates obtained by the conventional methods. Among the tests that 

29See Duncan (1986a,b), Goldberger (1983), Pagan and Vella (1989), Lee (1996), and Fernandez (1986).
30See Duncan (1986a,b) for a symposium on the subject and Amemiya (1984). Additional references are Newey, 
Powell, and Walker (1990), Lee (1996), and Robinson (1988).
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have been developed are Hausman tests, Lagrange multiplier tests [Bera and Jarque 
(1981, 1982) and Bera, Jarque, and Lee (1982)], and conditional moment tests [Nelson 
(1981)].

19.3.6    PANEL DATA APPLICATIONS

Extension of the familiar panel data results to the tobit model parallel the probit model, 
with the attendant problems. The random effects or random parameters models discussed 
in Chapter 17 can be adapted to the censored regression model using simulation or 
quadrature. The same reservations with respect to the orthogonality of the effects and 
the regressors will apply here, as will the applicability of the Mundlak (1978) correction 
to accommodate it.

Much of the attention in the theoretical literature on panel data methods for 
the tobit model has been focused on fixed effects. The departure point would be the 
maximum likelihood estimator for the static fixed effects model,

 yit* = ai + xit
=b + eit, eit ∼ n[0, s2],

 yit = max(0, yit).

However, there are no firm theoretical results on the behavior of the MLE in this 
model. Intuition might suggest, based on the findings for the binary probit model, that 
the MLE would be biased in the same fashion, away from zero. Perhaps surprisingly, 
the results in Greene (2004a) persistently found that not to be the case in a variety 
of model specifications. Rather, the incidental parameters, such as it is, manifests in a 
downward bias in the estimator of s, not an upward (or downward) bias in the MLE of 
B. However, this is less surprising when the tobit estimator is juxtaposed with the MLE 
in the linear regression model with fixed effects. In that model, the MLE is the within-
groups (LSDV) estimator, which is unbiased and consistent. But, the ML estimator 
of the disturbance variance in the linear regression model is e=

LsdVeLsdV/(nT), which 
is biased downward by a factor of (T - 1)/T. [This is the result found in the original 
source on the incidental parameters problem, Neyman and Scott (1948).] So, what 
evidence there is suggests that unconditional estimation of the tobit model behaves 
essentially like that for the linear regression model. That does not settle the problem, 
however; if the evidence is correct, then it implies that although consistent estimation 
of B is possible, appropriate statistical inference is not. The bias in the estimation of s 
shows up in the computation of partial effects.

There is no conditional estimator of B for the tobit (or truncated regression) 
model. First differencing or taking group mean deviations does not preserve the model. 
Because the latent variable is censored before observation, these transformations are 
not meaningful. Some progress has been made on theoretical, semiparametric estimators 
for this model. See, for example, Honoré and Kyriazidou (2000) for a survey. Much 
of the theoretical development has also been directed at dynamic models where the 
benign result of the previous paragraph (such as it is) is lost once again. Arellano (2001) 
contains some general results. Hahn and Kuersteiner (2004) have characterized the bias 
of the MLE and suggested methods of reducing the bias of the estimators in dynamic 
binary choice and censored regression models.
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19.4	 SAMPLE SELECTION AND INCIDENTAL TRUNCATION

The topic of sample selection, or incidental truncation, has been the subject of an 
enormous literature, both theoretical and applied.31 This analysis combines both of the 
previous topics.

Example 19.8    Incidental Truncation
In the high-income survey discussed in Example 19.2, respondents were also included in 
the survey if their net worth, not including their homes, was at least $500,000. Suppose 
that the survey of incomes was based only on people whose net worth was at least 
$500,000. This selection is a form of truncation, but not quite the same as in Section 19.2. 
This selection criterion does not necessarily exclude individuals whose incomes might 
be quite low. Still, one would expect that individuals with higher than average high net 
worth would have higher than average incomes as well. Thus, the average income in this 
subpopulation would in all likelihood also be misleading as an indication of the income 
of the typical American. The data in such a survey would be nonrandomly selected or 
incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects 
of sample selection on the properties of conventional estimators such as least squares; 
have produced a variety of alternative estimation techniques; and, in the process, 
have yielded a rich crop of empirical models. In some cases, the analysis has led to a 
reinterpretation of earlier results.

19.4.1    INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation r. We are interested in 
the distribution, in particular, the mean of y given that z exceeds a particular value. Intuition 
suggests that if y and z are positively correlated, then the truncation of z should push the 
distribution and the mean of y to the right. As before, we are interested in (1) the form of 
the incidentally truncated distribution and (2) the mean and variance of the incidentally 
truncated random variable. We will develop some generalities, and then, because it has 
dominated the empirical literature, focus on the bivariate normal distribution.

The truncated joint density of y and z is

f(y, z � z 7 a) =
f(y, z)

prob(z 7 a)
.

To obtain the incidentally truncated marginal density for y, we would then integrate z 
out of this expression. The moments of the incidentally truncated normal distribution 
are given in Theorem 19.5.32

31A large proportion of the analysis in this framework has been in the area of labor economics. See, for example, 
Vella (1998), which is an extensive survey for practitioners. The results, however, have been applied in many other 
fields, including, for example, long series of stock market returns by financial economists (“survivorship bias”) and 
medical treatment and response in long-term studies by clinical researchers (“attrition bias”). Some studies that 
comment on methodological issues are Barnow, Cain, and Goldberger (1981), Heckman (1990), Manski (1989, 
1990, 1992), Newey, Powell, and Walker (1990), and Wooldridge (1995).
32More general forms of the result that apply to multivariate distributions are given in Kotz, Balakrishnan, and 
Johnson (2000).
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Note that the expressions involving z are analogous to the moments of the truncated 
distribution of x given in Theorem 19.2. If the truncation is z 6 a, then we make the 
replacement l(az) = -f(az)/Φ(az). It is clear that if r is positive, then E[y � z 7 a] 7 E[y] 
as sy and l(az) are both positive. As expected, the truncated mean is pushed in the 
direction of the correlation if the truncation is from below and in the opposite direction if 
it is from above. In addition, the incidental truncation reduces the variance, because both 
d(a) and r2 are between zero and one. This second result is less obvious, but essentially 
it follows from the general principle that conditioning reduces variance.

19.4.2    REGRESSION IN A MODEL OF SELECTION

To motivate a regression model that corresponds to the results in Theorem 19.5, we 
consider the following example.

Example 19.9    A Model of Labor Supply
A simple model of female labor supply consists of two equations:33

1.	 Wage equation. The difference between a person’s market wage, what she could command 
in the labor market, and her reservation wage, the wage rate necessary to make her choose 
to participate in the labor market, is a function of characteristics such as age and education 
as well as, for example, number of children and where a person lives.

2.	 Hours equation. The desired number of labor hours supplied depends on the wage, home 
characteristics such as whether there are small children present, marital status, and so on.

The problem of truncation surfaces when we consider that the second equation describes 
desired hours, but an actual figure is observed only if the individual is working. (In most 
such studies, only a participation equation, that is, whether hours are positive or zero, is 
observable.) We infer from this that the market wage exceeds the reservation wage. Thus, 
the hours variable in the second equation is incidentally truncated based on (offered wage – 
reservation wage).

To put the preceding examples in a general framework, let the equation that 
determines the sample selection be

z* = w′G + u,

33See, for example, Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and 
Lewis (1974).

THEOREM 19.5  Moments of the Incidentally Truncated Bivariate Normal 
Distribution
If y and z have a bivariate normal distribution with means my and mz, standard 
deviations sy and sz, and correlation r, then

E[y � z 7 a] = my + rsyl(az),

Var[y � z 7 a] = sy
2[1 - r2d(az)],

where

az = (a - mz)/sz, l(az) = f(az)/[1 - Φ(az)], and d(az) = l(az)[l(az) - az].
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where w is exogenous (mean independent of u and e), and let the equation of primary 
interest be

y = x′B + e.

The sampling rule is that y is observed only when z* is greater than zero. The conditional 
mean that applies to the “selected” observations is

 E[y � x,z* 7 0] = x′B +  E[e � w′G +  u 7 0]

 = x′B +  E[e � u 7 -w′G].

If e and u are uncorrelated, then E[e � u 7 a] = E[e] = 0. But, if they are correlated, 
then we would expect E[e � u 7 a] to be a function of a, as in Theorem 9.5 for the 
bivariate normal distribution. For this case, if E[e � u 7 -w′G] = h(w′G,su), then the 
relevant regression is

E[y � x,z* 7 0] = x′B + h(w′G, r, su, se) + v,

where E[v � x, h(w′G, r, su, se)] = 0. The immediate implication is that simple linear 
regression of y on x will not consistently estimate B because of the omitted variable(s) 
contained in h(w′G, r, su, se). In our example, the suggested wage equation contains age 
and education. But, conditioned on positive hours, which are being determined by 
children and marital status, the simple regression conditioned on positive hours is 
missing (a function of) these two variables. This omitted variables bias of least squares 
in this setting is “selection bias.”34

In order to progress from this point, it will be necessary to be more specific about 
the omitted term in the tainted regression. If e and u have a bivariate normal distribution 
with zero means and correlation r, then we may insert these in Theorem 19.5 to obtain 
the specific model that applies to the observations in the selected sample:

 E[y � y is observed] = E[y � z* 7 0]

 = E[y � u 7 -w′G]

 = x′B + E[e � u 7 -w′G]

 = x′B + rsel(au)

 = x′B + bll(au),

where au = (-w′G - 0)/su and

	 l(au) = f(-w′G/su)/[1 - Φ(-w′G/su)] = f(w′G/su)/Φ(w′G/su).	 (19-21)

[We have used the symmetry of the normal distribution, f(-b) = f(b) and (1 - Φ(-b)) =
Φ(b).] So,

 y � z* 7 0 = E[y � z* 7 0] + vi

 = x′B + bll(w′G/su) + v.

Least squares regression using the observed data—for instance, OLS regression of hours 
on its determinants, using only data for women who are working—produces inconsistent 

34Any number of commentators have suggested in a given context that “the data are subject to selection bias.” As we 
can see in the preceding, it is the OLS estimator, not the data, that is biased. We will find shortly that under suitable 
assumptions, there is a different estimator, based on the same data, that is not biased. (Or at least is consistent.)
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estimates of B. Once again, we can view the problem as an omitted variable. Least squares 
regression of y on x and l would be a consistent estimator, but if l is omitted, then the 
specification error of an omitted variable is committed. Finally, note that the second 
part of Theorem 19.5 implies that even if l(w′G/su) were observed and included in the 
regression, then least squares would be inefficient. The disturbance, v, is heteroscedastic.

The partial effect of the regressors on E[y � x, w] in the observed sample consists of 
two components. There is the direct effect on the mean of y, which is B. In addition, for 
a particular independent variable, if it appears in the probability that z* is positive, then 
it will influence E[y � x, w] through its presence in l(w′G/su). The full effect of changes 
in a regressor that appears in both xi and wi on y is

0E[y � z* 7 0]

0xk
= bk - gkb arsesu

b [d(w′G/su)] r ,

d(w′G/su) = l2 - a l,

where l is defined in (19-21) and a = -w′G/su. Suppose that r is positive and E[y � x, w] 
is greater when z* is positive than when it is negative. Because 0 6 d 6 1, the additional 
term serves to reduce the partial effect. The change in the probability affects the mean 
of y in that the mean in the group z* 7 0 is higher. The second term in the derivative 
compensates for this effect, leaving only the partial effect of a change given that zi* 7 0 to 
begin with. Consider Example 19.11, and suppose that education affects both the probability 
of migration and the income in either state. If we suppose that the income of migrants 
is higher than that of otherwise identical people who do not migrate, then the partial 
effect of education has two parts, one due to its influence in increasing the probability of 
the individual’s entering a higher-income group and one due to its influence on income 
within the group. As such, the coefficient on education in the regression overstates the 
partial effect of the education of migrants and understates it for nonmigrants. The sizes of 
the various parts depend on the setting. It is quite possible that the magnitude, sign, and 
statistical significance of the effect might all be different from those of the estimate of B, 
a point that appears frequently to be overlooked in empirical studies.

In most cases, the selection variable z* is not observed. Rather, we observe only its 
sign. To consider our two examples, the observation might be only whether someone is 
working outside the home or whether an individual migrated or not. We can infer the sign 
of z*, but not its magnitude, from such information. Because there is no information on the 
scale of z*, the disturbance variance in the selection equation cannot be estimated. (We 
encountered this problem in Chapter 17 in connection with the binary choice models.) 
Thus (retaining the joint normality assumption), we reformulate the model as follows:

selection mechanism: z* = w′G + u, z = 1(z* 7 0),

prob(z = 1 � w) = Φ(w′G),

prob(z = 0 � w) = 1 - Φ(w′G).	 (19-22)

regression model  y = x′B + e observed only if z = 1,

(e,u) ∼ bivariate normal[0, 0, se, 1, r].35

35In some treatments of this model, it is noted (invoking Occam’s razor) that this specification actually relies 
only on the marginal normality of u and E[e � u 7 -w′G] = u l(w′G). Neither joint normality nor even marginal 
normality of e is essential. It is debatable how narrow the bivariate normality assumption is given the very specific 
assumption made about E[e � u 7 -w′G].
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Suppose that zi and wi are observed for a random sample of individuals but yi is observed 
only when zi = 1. This model is precisely the one we examined earlier, with

E[yi � zi = 1, xi, wi] = xi
=B + rsel(wi

=G).

19.4.3    TWO-STEP AND MAXIMUM LIKELIHOOD ESTIMATION

The parameters of the sample selection model in (19-22) can be estimated by maximum 
likelihood.36 However, Heckman’s (1979) two-step estimation procedure is usually used 
instead. Heckman’s method is as follows:37

1.	 Estimate the probit equation by maximum likelihood to obtain estimates of G. 
For each observation in the selected sample, compute lni = f(wi

=Gn )/Φ(wi
=Gn ) and 

dni = lni(lni + wi
=Gn ).

2.	 Estimate B and bl = rse by least squares regression of y on x and ln.38

It is possible also to construct consistent estimators of the individual parameters r and se 
(again, assuming bivariate normality). At each observation, the true conditional variance 
of the disturbance would be

si
2 = se

2(1 - r2di).

The average conditional variance for the sample would converge to

plim 
1
n

 a
n

i= 1
si

2 = se
2(1 - r2d),

which is what is estimated by the least squares residual variance e′e/n. For the square 
of the coefficient on ln, we have

plim bl
2 = r2se

2,

whereas based on the probit results we have

plim 
1
n

 a
n

i= 1
dni = d.

We can then obtain a consistent estimator of se
2 using

sn e
2 =

e′e
n

+ d
n

bl
2.

Finally, an estimator of r2 is

	 rn = sgn(bl)Bbl
2

sn e
2,	 (19-23)

36See Greene (1995a). Note in view of footnote 39, the MLE is only appropriate under the specific assumption of 
bivariate normality. Absent that assumption, we would use two-step least squares or instrumental variables in all 
cases. See, also, Newey (1991) for details.
37Perhaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be known as the 
“Heckit” estimator.
38As a modest first step, it is possible to “test for selectivity,” that is, the null hypothesis that bl equals zero, simply 
by regressing y on (x, ln) using the selected sample and using a conventional t test based on the usual estimator of 
the asymptotic covariance matrix. Under the null hypothesis, this amounts to an ordinary test of the specification 
of the linear regression. Upon rejection of the null hypothesis, one would proceed with the additional calculations 
about to be suggested.
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which provides a complete set of estimators of the model’s parameters.39

To test hypotheses, an estimator of the asymptotic covariance matrix of [b′, bl]′ is 
needed. We have two problems to contend with. First, we can see in Theorem 19.5 that 
the disturbance term in

(yi � zi = 1, xi, wi) = xi
=B + rseli + vi	 (19-24)

is heteroscedastic;

Var[vi � zi = 1, xi, wi] = se
2(1 - r2di).

Second, there are estimated parameters in lni. Suppose that we assume for the moment 
that li and di are known (i.e., we do not have to estimate G). For convenience, let 
xi* = [xi, li], and let b* be the least squares coefficient vector in the regression of y on 
x* in the selected data. Then, using the appropriate form of the variance of OLS in a 
heteroscedastic model from Chapter 9, we would have to estimate

 Var[b* � X*] = se
2[X*

=X*]
-1 c a

n

i= 1
(1 - r2di)xi*xi*

= d [X=
*X*]

-1

 = se
2[X*

=X*]
-1[X*

=(I - r2�)X*][X*
=X*]

-1,

where I - r2∆ is a diagonal matrix with (1 - r2di) on the diagonal. (Note that this 
collapses to the simple least squares result if r equals zero, which motivates the test in 
footnote 38.) Without any other complications, this result could be computed fairly easily 
using X, the sample estimates of se

2 and r2, and the assumed known values of li and di.
The parameters in G do have to be estimated using the probit equation. Rewrite 

(19-24) as

(yi � zi = 1, xi, wi) = xi
=B + bll

n

i + vi - bl(lni - li).

In this form, we see that in the preceding expression we have ignored both an additional 
source of variation in the compound disturbance and correlation across observations; the 
same estimate of G is used to compute lni for every observation. Heckman has shown that the 
earlier covariance matrix can be appropriately corrected by adding a term inside the brackets,

Q = rn2(X=
*�n W)est.asy.Var[Gn ](W′�n X*) = rn2FnVn Fn′,

where Vn = est.asy.Var[Gn ], the estimator of the asymptotic covariance of the probit 
coefficients. Any of the estimators in (17-22) to (17-24) may be used to compute Vn . The 
complete expression is

est.asy.Var[b, bl] = sn e
2[X*

=X*]
-1[X*

′ (I - rn2∆n )X* + Q][X*
′ X*]

-1.

This is the estimator that is embedded in contemporary software such as Stata. We note 
three useful further aspects of the two-step estimator:

1.	 This is an application of the two-step procedures we developed in Section 8.4.1 and 
14.7 and that were formalized by Murphy and Topel (1985).40

39The proposed estimator is suggested in Heckman (1979). Note that rn  is not a sample correlation and, as such, is 
not limited to [0, 1]. See Greene (1981) for discussion.
40This matrix formulation is derived in Greene (1981). Note that the Murphy and Topel (2002) results for two-
step estimators given in Theorem 14.8 would apply here as well. Asymptotically, this method would give the same 
answer. The Heckman formulation has become standard.
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2.	 The two-step estimator is a control function estimator. See Section 14.7. The control 
function is a generalized residual [see Chesher, Lancaster, and Irish (1985)] so this 
estimator is an example for Terza, Basu, and Rathouz’s (2008) residual inclusion 
method.

3.	 Absent the bivariate normality assumption (or with it), the appropriate asymptotic 
covariance matrix could be estimated by bootstrapping the two-step least squares 
estimator.

The sample selection model can also be estimated by maximum likelihood. The 
full log-likelihood function for the data is built up from the two components for the 
observed data:

prob(selection) * density � selection for observations with zi = 1,

and

prob(nonselection) for observations with zi = 0.

Combining the parts produces the full log-likelihood function,

ln L = a
z = 1

lnJexp(-(1/2)ei
2/se

2)

se22p
 Φarei/se + wi

=G21 - r2
b R + a

z = 0
ln [1 - Φ (wi

=G)],	 (19-25)

where ei = yi - xi
=B.41

Two virtues of the FIML estimator will be the greater efficiency brought by using 
the full likelihood function rather than the method of moments and, second, the 
estimation of r subject to the constraint -1 6 r 6 1. (This is typically done by 
reparameterizing the model in terms of the monotonic inverse hyperbolic tangent, 
t = (1/2) ln[(1 + r)/(1 - r)] = atanh(r). The transformed parameter, t, is unrestricted. 
The inverse transformation is r = [exp(2t) - 1]/[exp(2t) + 1] which is bounded 
between zero and one.) One possible drawback (it might be argued) could be the 
complexity of the likelihood function that would make estimation more difficult than 
the two-step estimator. However, the MLE for the selection model appears as a built-in 
procedure in modern software such as Stata and NLOGIT, and it is straightforward to 
implement in Gauss, so this might be a moot point. Surprisingly, the MLE is by far less 
common than the two-step estimator in the received applications. The estimation of r is 
the difficult part of the estimation process (this is often the case). It is quite common for 
the method of moments estimator and the FIML estimator to be very different—our 
application in Example 19.10 is such a case. Perhaps surprisingly so, the moment-based 
estimator of r in (19-23) is not bounded by zero and one.42 This would seem to recommend 
the MLE.

The fully parametric bivariate normality assumption of the model has been viewed 
as a potential drawback. However, relatively little progress has been made on devising 
informative semi- and nonparametric estimators—see, for one example, Gallant and 

41Note the FIML estimator does suggest an alternative two-step estimator. Because G can be estimated by the 
probit estimator at a first step, the index wi

=Gn  can be inserted into the log likelihood, then B, r, and se can be 
estimated by maximizing only the first sum (over the selected observations). The usefulness of this third approach 
remains to be investigated.
42See Greene (1981).
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Nychka (1987). The obstacle here is that, ultimately, the model hangs on a parameterization 
of the correlation of the unobservables in the two equations. So, method of moment 
estimators, IV or kernel-based estimators must still incorporate some feature of a 
bivariate distribution. Some results have been obtained using the method of copula 
functions.43 Martins (2001) considers other semiparametric approaches.

Example 19.10    Female Labor Supply
Example 17.15 proposed a labor force participation model for a sample of 753 married women 
in a sample analyzed by Mroz (1987). The data set contains wage and hours information 
for the 428 women who participated in the formal market (LFP = 1). Following Mroz, we 
suppose that for these 428 individuals, the offered wage exceeded the reservation wage 
and, moreover, the unobserved effects in the two wage equations are correlated. As such, a 
wage equation based on the market data should account for the sample selection problem. 
We specify a simple wage model:

ln Wage = b1 + b2 Exper + b3 Exper2 + b4 Education + e44,

where Exper is labor market experience. Maximum likelihood, Heckman two-step, and OLS 
estimates of the wage equation are shown in Table 19.5. The maximum likelihood estimates 
are FIML estimates—the labor force participation equation is reestimated at the same time. 
Only the parameters of the wage equation are shown next. Note as well that the two-step 
estimator estimates the single coefficient on li and the structural parameters s and r are 
deduced by the method of moments. The maximum likelihood estimator computes estimates 
of these parameters directly.

The two-step and ML estimators both provide a direct test of “selectivity,” that is, r = 0. 
In both cases, the estimate is small and the standard error is large. Both tests fail to reject 
the hypothesis. The correction to the standard errors in the two-step estimator is also minor. 
This is to be expected. Both terms in the adjustment involve r2, which is small here—the 
unadjusted OLS standard error for the two-step estimator is essentially the same, 0.13439. (It 
does not follow algebraically that the adjustment will increase the estimated standard errors.) 
Because there is scant impact of the sample selection correction in this model, the OLS 
estimates will provide reasonable values for the average partial effects. The OLS education 
coefficient, in particular, is 0.107. The average partial effects from the two-step and ML results 
are 0.10668 and 0.10821, respectively.

43See Smith (2003, 2005) and Trivedi and Zimmer (2007). Extensive commentary appears in Wooldridge (2010).
44As in Example 17.15, for comparison purposes, we have replicated the specification in Wooldridge (2010, p. 807).

Two-Step Maximum Likelihood Least Squares

Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant -0.57810 (0.30502) -0.55270 (0.32495) -0.52204 (0.19863)
Experience 0.04389 (0.01626) 0.04284 (0.01729) 0.04157 (0.01318)

Experience2 -0.00086 (0.00044) -0.00084 (0.00048) -0.00081 (0.00039)

Education 0.10907 (0.01552) 0.10835 (0.01674) 0.10749 (0.01415)
(rs) 0.03226 (0.13362)
r 0.04861 0.02661 (0.18227) 0.00000
s 0.66363 0.66340 (0.01445) 0.66642

TABLE 19.5  Estimated Selection Corrected Wage Equation
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Example 19.11    A Mover-Stayer Model for Migration
The model of migration analyzed by Nakosteen and Zimmer (1980) fits into the framework 
described in this section. The equations of the model are

Net benefit of moving:    M* = w=G + u,
Income if moves:        I1  = x1

 =B1 + e1,
Income if stays:          I0  = x0

 =B0 + e0.

One component of the net benefit is the market wage individuals could achieve if they move, 
compared with what they could obtain if they stay. Therefore, among the determinants of 
the net benefit are factors that also affect the income received in either place. An analysis 
of income in a sample of migrants must account for the incidental truncation of the mover’s 
income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated 
on a nonpositive net benefit. The model implies an income after moving for all observations, 
but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied 
the selectivity model to a sample of 9,223 individuals with data for two years (1971 and 1973) 
sampled from the Social Security Administration’s Continuous Work History Sample. Over the 
period, 1,078 individuals migrated and the remaining 8,145 did not. The independent variables 
in the migration equation were as follows:

SE  = self@employment dummy variable; 1 if yes,
∆EMP = rate of growth of state employment,

∆PCI  = growth of per capita income
x  = age, race (nonwhite = 1), sex (female = 1),
∆SIC  = 1 if individual changes industry.

The earnings equations included ∆SIC and SE. The authors reported the results in Table 19.6.

19.4.4    SAMPLE SELECTION IN NONLINEAR MODELS

The preceding analysis has focused on an extension of the linear regression (or the 
estimation of simple averages of the data). The method of analysis changes in nonlinear 
models. To begin, it is not necessarily obvious what the impact of the sample selection 
is on the response variable, or how it can be accommodated in a model. Consider the 
model analyzed by Boyes, Hoffman, and Low (1989):

yi1 = 1 if individual i defaults on a loan, 0 otherwise,

yi2 = 1 if the individual is granted a loan, 0 otherwise.

Migration Migrant Earnings Nonmigrant Earnings

Constant -1.509 9.041 8.593
SE -0.708 (-5.72) -4.104 (-9.54) -4.161 (-57.71)
∆EMP -1.488 (-2.60) — —
∆PCI 1.455 (3.14) — —
Age -0.008 (-5.29) — —
Race -0.065 (-1.17) — —
Sex -0.082 (-2.14) — —
∆SIC 0.948 (24.15) -0.790 (-2.24) -0.927 (-9.35)
l — 0.212 (0.50) 0.863 (2.84)

TABLE 19.6  Estimated Earnings Equations (Asymptotic t ratios in parentheses)
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Wynand and van Praag (1981) also used this framework to analyze consumer insurance 
purchases in the first application of the selection methodology in a nonlinear model. 
Greene (1992) applied the same model to y1 = default on credit card loans, in which yi2 
denotes whether an application for the card was accepted or not. [Mohanty (2002) also 
used this model to analyze teen employment in California.] For a given individual, y1 is 
not observed unless y2 = 1. Following the lead of the linear regression case in Section 
19.4.3, a natural approach might seem to be to fit the second (selection) equation using a 
univariate probit model, compute the inverse Mills ratio, li, and add it to the first equation 
as an additional “control” variable to accommodate the selection effect. [This is the 
approach used by Wynand and van Praag (1981) and Greene (1994).] The problems with 
this control function approach are, first, it is unclear what in the model is being “controlled” 
and, second, assuming the first model is correct, the appropriate model conditioned on 
the sample selection is unlikely to contain an inverse Mills ratio anywhere in it. [See 
Terza (2009) for discussion.] That result is specific to the linear model, where it arises as 
E[ei � selection]. What would seem to be the apparent counterpart for this probit model,

prob(yi1 = 1 � selection on yi2 = 1) = Φ(xi1
=  B1 + u li),

is not, in fact, the appropriate probability.45 For this particular application, the appropriate 
conditional probability (extending the bivariate probit model of Section 17.9) would be

prob[yi1 = 1 � yi2 = 1] =
Φ2(x=

i1B1, x
=
i2B2, r)

Φ(x=
i2B2)

.

We would use this result to build up the likelihood function for the three observed 
outcomes, as follows: The three types of observations in the sample, with their 
unconditional probabilities, are

 yi2 = 0: prob(yi2 = 0     � xi1, xi2) = 1 - Φ(x=
i2B2),

 yi1 = 0, yi2 = 1: prob(yi1 = 0, yi2 = 1) � xi1, xi2)  = Φ2(-x=
i1B1, x

=
i2B2, -r),

 yi1 = 1, yi2 = 1: prob(yi1 = 1, yi2 = 1 � xi1, xi2)  = Φ2(x=
i1B1, x

=
i2b2, r). �

(19-26)

The log-likelihood function is based on these probabilities.46 An application appears in 
Section 17.6.

Example 19.12    Doctor Visits and Insurance
Continuing our analysis of the utilization of the German health care system, we observe 
that the data set contains an indicator of whether the individual subscribes to the “Public” 
health insurance or not. Roughly 87% of the observations in the sample do. We might ask 
whether the selection on public insurance reveals any substantive difference in visits to the 
physician. We estimated a logit specification for this model in Example 17.19. Using (19-26) 
as the framework, we define yi2 to be presence of insurance and yi1 to be the binary variable 
defined to equal 1 if the individual makes at least one visit to the doctor in the survey year.

45As in the linear case, the augmented single-equation model does provide a valid framework for a simple t test of 
the null hypothesis that u equals zero, but if the test rejects the null hypothesis, an altogether different approach is 
called for.
46Extensions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and Abowd 
and Farber (1982).
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The estimation results are given in Table 19.7. Based on these results, there does appear 
to be a very strong relationship. The coefficients do change somewhat in the conditional 
model. A Wald test for the presence of the selection effect against the null hypothesis that r 
equals zero produces a test statistic of (-7.188)2 = 51.667, which is larger than the critical 
value of 3.84. Thus, the hypothesis is rejected. A likelihood ratio statistic is computed as the 
difference between the log likelihood for the full model and the sum of the two separate log 
likelihoods for the independent probit models when r equals zero. The result is

lLR = 2[-23969.58 - (-15536.39 + (-8471.508)) = 77.796.

The hypothesis is rejected once again. Partial effects were computed using the results in 
Section 17.6.

The large correlation coefficient can be misleading. The estimated -0.9299 does not 
state that the presence of insurance makes it much less likely to go to the doctor. This is the 
correlation among the unobserved factors in each equation. The factors that make it more 
likely to purchase public insurance make it less likely to use a physician. (In this system, 
everyone has insurance. We are actully examining the difference between those who obtain 
the public insurance and those who obtain private insurance.) To obtain a simple correlation 
between the two variables, we might use the tetrachoric correlation defined in Example 17.31. 
This would be computed by fitting a bivariate probit model for the two binary variables without 
any other variables. The estimated value is 0.120.

More general cases are typically much less straightforward. Greene (2005, 2007d) 
and Terza (1998, 2010) present sample selection models for nonlinear specifications 
based on the underlying logic of the Heckman model in Section 19.4.3, that the influence 
of the incidental truncation acts on the unobservable variables in the model. (That is 
the source of the “selection bias” in conventional estimators.) The modeling extension 
introduces the unobservables into the model in a natural fashion that parallels the 
regression model. Terza (1985b, 2009) presents a survey of the general results.

Independent: No Selection Sample Selection Model

Variable Estimate
Std. 

Error
Partial 
Effect Estimate

Std. 
Error Partial Effect

Constant 0.05588 0.0656 -9.4366 0.0676
Age 0.01331 0.0008 0.0050 0.0128 0.0008 0.0050
Income -0.1034 0.0509 -0.0386 -0.1030 0.0458 -0.0406
Kids -0.1349 0.0195 -0.0506 -0.1264 0.0179 -0.0498
Education -0.0192 0.0043 -0.0072 0.0366 0.0047 0.0027
Married 0.03586 0.0217 0.0134 0.0356 0.0202 0.0140
ln L -15,536.39
Constant 3.3585 0.0700 3.2699 0.0692
Age 0.0002 0.0010 -0.0003 0.0010
Education -0.1854 0.0039 -0.1807 0.0039
Female 0.1150 0.0219 0.0000a 0.2230 0.0210 0.0145a
ln L -8,471.51
r 0.0000 0.0000 -0.9299 0.1294
ln L -24,007.91 -23,969.58

aIndirect effect from second equation.

TABLE 19.7  Estimated Probit Equations for Doctor Visits
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The generic model will take the form

1.	 Probit selection equation:

 z* = w=A + u in which u ∼ n[0, 1],

 z = 1(z* 7 0),

2.	 Nonlinear index function model with unobserved heterogeneity and sample 
selection:

m � e = x=B + se, e ∼ n[0, 1],

y � x, e ∼ density g(y � x, e) = f(y � x=B + se),� (19-27)

y, x are observed only when z = 1,

[u, e] ∼ n[(0, 1), (1, r, 1)].

For example, in a Poisson regression model, the conditional mean function becomes 
E(y � x) = l = exp(x′B + se) = exp(m). (We used this specification of the model in 
Chapter 18 to introduce random effects in the Poisson regression model for panel data.)

The log-likelihood function for the full model is the joint density for the observed 
data. When z equals one, (y, x, z, w) are all observed. To obtain the joint density 
p(y, z = 1 � x, w), we proceed as follows:

p(y, z = 1 � x, w) = L
∞

-∞
 p(y, z = 1 � x, w, e)f(e)de.

Conditioned on e, z and y are independent. Therefore, the joint density is the product,

p(y, z = 1 � x, w, e) = f(y � x′B + se)prob(z = 1 � w, e).

The first part, f(y � x′B + se) is the conditional index function model in (19-27). By 
joint normality, f(u � e) = N[re, (1 - r2)], so u � e = re + (u - re) = re + vi where 
E[v] = 0 and Var[v] = (1 - r2). Therefore,

prob(z = 1 � w, e) = Φaw′A + re21 - r2
b .

Combining terms and using the earlier approach, the unconditional joint density is

	 p(y, z = 1 � x, w) = L
∞

-∞
 f(y � x=B + se)Φaw=A + re21 - r2

b  
exp(-e2/2)22p

 de.	 (19-28)

The other part of the likelihood function for the observations with zi = 0 will be

 prob(z = 0 � w) = L
∞

-∞
prob(z = 0 � w, e)f(e)de.

 = L
∞

-∞
 J1 - Φaw=A + re21 - r2

b R  f(e)de � (19-29)

 = L
∞

-∞
 Φa -(w=A + re)21 - r2

b  
exp(-e2/2)22p

 de.
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For convenience, we can use the invariance principle to reparameterize the log-likelihood 

function in terms of G = A/21 - r2 and t = r/21 - r2. Combining all the preceding 
terms, the log-likelihood function to be maximized is

	 ln L = a
n

i= 1
lnL

∞

-∞
[(1 - zi) + zif(yi � x=

iB + sei)]Φ[(2zi - 1)(w=
iG + tei)]f(ei)dei.

� (19-30)

This can be maximized with respect to (B, s, G, T) using quadrature or simulation. When 
done, r can be recovered from r = t/(1 + t2)1/2 and A = (1 - r2)1/2G. All that differs 
from one model to another is the specification of f(yi � x=

iB + sei). This is the specification 
used in Terza (1998) and Terza and Kenkel (2001). (In these two papers, the authors also 
analyzed E[y � z = 1]. This estimator was based on nonlinear least squares, but as earlier, 
it is necessary to integrate the unobserved heterogeneity out of the conditional mean 
function.) Greene (2010a) applies the method to a stochastic frontier model.

19.4.5    PANEL DATA APPLICATIONS OF SAMPLE SELECTION MODELS

The development of methods for extending sample selection models to panel data 
settings parallels the literature on cross-section methods. It begins with Hausman and 
Wise (1977, 1979) who devised a maximum likelihood estimator for a two-period model 
with attrition—the “selection equation” was a formal model for attrition from the sample. 
Subsequent research has drawn the analogy between attrition and sample selection in a 
variety of applications, such as Keane et al. (1988) and Verbeek and Nijman (1992), and 
produced theoretical developments including Wooldridge (1995, 2010, Section 19.9). We 
have noted some of these issues in Section 11.2.5.

The direct extension of panel data methods to sample selection brings several new 
issues for the modeler. An immediate question arises concerning the nature of the selection 
itself. Although much of the theoretical literature [For example, Kyriazidou (1997, 2001) 
and Honoré and Kyrizadou (1997, 2000)] treat the panel as if the selection mechanism is run 
anew in every period, in practice, the selection process often comes in two very different 
forms. First, selection may take the form of selection of the entire group of observations 
into the panel data set. Thus, the selection mechanism operates once, perhaps even before 
the observation window opens. Consider the entry (or not) of eligible candidates for a job 
training program. In this case, it is not appropriate to build the model to allow entry, exit, 
and then reentry. Second, for most applications, selection comes in the form of attrition 
or retention. Once an observation is “deselected,” it does not return. Leading examples 
would include “survivorship” in time-series–cross-section models of firm performance and 
attrition in medical trials and in panel data applications involving large national survey 
data bases, such as Contoyannis et al. (2004). Each of these cases suggests the utility of a 
more structured approach to the selection mechanism.

19.4.5.a    Common Effects in Sample Selection Models 
A formal “effects” treatment for sample selection was first suggested in complete form 
by Verbeek (1990), who formulated a random effects model for the probit equation and 
a fixed effects approach for the main regression. Zabel (1992) criticized the specification 
for its asymmetry in the treatment of the effects in the two equations. He also argued that 
the likelihood function that neglected correlation between the effects and regressors in 
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the probit model would render the FIML estimator inconsistent. His proposal involved 
fixed effects in both equations. Recognizing the difficulty of fitting such a model, he then 
proposed using the Mundlak correction (Section 11.5.7). The full model is

yit* = hi + x=
itB + eit,  hi = x=

iP + twi, wi ∼ N[0, 1],

dit
* = ui + z=ita + uit,  ui = z=iD + vvi, vi ∼ N[0, 1],� (19-31)

(eit, uit) ∼ N2[(0, 0), (s2, 1, rs)].

The selectivity in the model is carried through the correlation between eit and uit. The 
resulting log likelihood is built up from the contribution of individual i,

Li = L
∞

-∞
 q
dit = 0

Φ[-zit
=A - zi

=D - vvi]f(vi)dvi

* L
∞

-∞ L
∞

-∞
 q
dit = 1

Φ c zit
=A + zi

=D + vvi + (r/s)eit21 - r2
d

*
1
s

 fa eit

s
bf2(vi, wi) dvidwi, 	 (19-32)

eit = yit - x=
itB - x=

iP - twi.

The log likelihood is then ln L = a iln Li.
The log likelihood requires integration in two dimensions for any selected 

observations. Vella (1998) suggested two-step procedures to avoid the integration. 
However, the bivariate normal integration is actually the product of two univariate 
normals, because in the preceding specification, vi and wi are assumed to be uncorrelated. 
As such, the likelihood function in (19-32) can be readily evaluated using familiar 
simulation or quadrature techniques.47 To show this, note that the first line in the log 

likelihood is of the form Ev c q d = 0Φ( c) d  and the second line is of the form 

Ew[Ev[Φ( c)f( c)/s]]. Either of these expectations can be satisfactorily 
approximated with the average of a sufficient number of draws from the standard normal 
populations that generate wi and vi. The term in the simulated likelihood that follows 
this prescription is

Li
S =

1
R

 a
R

r = 1
q

dit = 0
[Φ - z=itA - z=iD - vvi,r]

*
1
R

 a
R

r = 1
 q
dit = 1

ΦJ zit
=A + zi

=D + vvi,r + (r/s)eit,r21 - r2
R  

1
s

 fa eit,r

s
b � (19-33)

eit,r = yit - xit
=B - xi

=P - Twi,r.

Maximization of this log likelihood with respect to (B, s, r, A, D, P, t, v) by conventional 
gradient methods is quite feasible. Indeed, this formulation provides a means by which 
the likely correlation between vi and wi can be accommodated in the model. Suppose 

47See Sections 14.14.4 and 15.6.2.b. Vella and Verbeek (1999) suggest this in a footnote, but do not pursue it.

M19_GREE1366_08_SE_C19.indd   962 2/24/17   1:55 PM



	 CHAPTER 19  ✦  Limited Dependent Variables	 963

that wi and vi are bivariate standard normal with correlation rvw. We can project wi on 
vi and write

wi = rvwvi + 11 - rvw
2 21/2hi,

where hi has a standard normal distribution. To allow the correlation, we now simply 
substitute this expression for wi in the simulated (or original) log likelihood and add 
rvw to the list of parameters to be estimated. The simulation is still over independent 
normal variates, vi and hi.

Notwithstanding the preceding derivation, much of the recent attention has focused 
on simpler two-step estimators. Building on Ridder and Wansbeek (1990) and Verbeek 
and Nijman (1992),48 Vella and Verbeek (1999) propose a two-step methodology that 
involves a random effects framework similar to the one in (19-31). As they note, there 
is some loss in efficiency by not using the FIML estimator. But, with the sample sizes 
typical in contemporary panel data sets, that efficiency loss may not be large. As they 
note, their two-step template encompasses a variety of models including the tobit model 
examined in the preceding sections and the mover-stayer model noted earlier.

The Vella and Verbeek model requires some fairly intricate maximum likelihood 
procedures. Wooldridge (1995) proposes an estimator that, with a few probably—but 
not necessarily—innocent assumptions, can be based on straightforward applications of 
conventional, everyday methods. We depart from a fixed effects specification,

yit* = hi + x=
iTB + eit,

dit
* = ui + z=iT 

A + uit,

(eit, uit) ∼ N2[(0, 0), (s2, 1, rs)].

Under the mean independence assumption,

E[eit �hi, ui, zi1, c, ziT, vi1, c, vit, di1, c, dit] = ruit,

it will follow that

E[yit � xi1, c, xiT, hi, ui, zi1, c, ziT, vi1, c, viT, di1, c, diT] = hi + x=
itB + ruit.

This suggests an approach to estimating the model parameters; however, it requires 
computation of uit. That would require estimation of ui, which cannot be done, at least 
not consistently—and that precludes simple estimation of uit. To escape the dilemma, 
Wooldridge (2002c) suggests Chamberlain’s approach to the fixed effects model,

ui = f0 + z=i1f1 + z=i2f2 + g + z=iTfT + hi.

With this substitution,

 dit
* = z=iT 

A + f0 + z=i1f1 + z=i2f2 + g + z=iTfT + hi + uit

 = z=iT 

A + f0 + z=i1f1 + z=i2f2 + g + z=iTfT + wit,

where wit is independent of ziT, t = 1, c, T. This now implies that

E[yit � xi1, c, xiT, hi, ui, zi1, c, ziT, vi1, c, viT, di1, c, diT] = hi + x=
itB + r(wit - hi)

= (hi - rhi) + x=
itB + rwit.

48See Vella (1998) for numerous additional references.
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To complete the estimation procedure, we now compute T cross-sectional probit models 
(reestimating f0, f1, c each time) and compute lnit from each one. The resulting 
equation,

yit = ai + x=
itB + rlnit + vit,

now forms the basis for estimation of B and r by using a conventional fixed effects linear 
regression with the observed data.

19.4.5.b    Attrition 
The literature on sample selection contains numerous analyses of two-period 
models, such as Kyriazidou (1997, 2001). They generally focus on nonparametric and 
semiparametric analyses. An early parametric contribution of Hausman and Wise 
(1979) is also a two-period model of attrition, which would seem to characterize many 
of the studies suggested in the current literature. The model formulation is a two-period 
random effects specification,

yi1 = x=
i1B + ei1 + ui (first period regression),

yi2 = x=
i2B + ei2 + ui (second period regression).

Attrition is likely in the second period (to begin the study, the individual must have been 
observed in the first period). The authors suggest that the probability that an observation 
is made in the second period varies with the value of yi2 as well as some other variables,

zi2* = dyi2 + x=
i2U + w=

i2A + vi2.

Attrition occurs if zi2* … 0, which produces a probit model,

zi2 = 1(zi2* 7 0) (attrition indicator observed in period 2).

An observation is made in the second period if zi2 = 1, which makes this an early version 
of the familiar sample selection model. The reduced form of the observation equation is

 zi2* = x=
i2(dB + U) + w=

i2A + dei2 + vi2

 = x=
i2P + w=

i2A + hi2

 = r=i2G + hi2.

The variables in the probit equation are all those in the second period regression plus 
any additional ones dictated by the application. The estimable parameters in this model 
are B, G, s2 = Var[eit + ui], and two correlation coefficients, and r12 = corr[ei1 +
ui, ei2 + ui] = Var[ui]/s

2. All disturbances are assumed to be normally distributed. 
(Readers are referred to the paper for motivation and details on this specification.)

The authors propose a full information maximum likelihood estimator. Estimation 
can be simplified somewhat by using two steps. The parameters of the probit model can 
be estimated first by maximum likelihood. Then the remaining parameters are estimated 
by maximum likelihood, conditionally on these first-step estimates. The Murphy and 
Topel adjustment is made after the second step. [See Greene (2007d).]

The Hausman and Wise model covers the case of two periods in which there is a 
formal mechanism in the model for retention in the second period. It is unclear how the 
procedure could be extended to a multiple-period application such as that in Contoyannis 
et al. (2004), which involved a panel data set with eight waves. In addition, in that study, 
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the variables in the main equations were counts of hospital visits and physican visits, 
which complicates the use of linear regression. A workable solution to the problem of 
attrition in a multiperiod panel is the inverse probability weighted estimator [Wooldridge 
(2010, 2006b) and Rotnitzky and Robins (2005)]. In the Contoyannis application, there 
are eight waves in the panel. Attrition is taken to be “ignorable” so that the unobservables 
in the attrition equation and in the main equation(s) of interest are uncorrelated. (Note 
that Hausman and Wise do not make this assumption.) This enables Contoyannis et al. 
to fit a “retention” probit equation for each observation present at wave 1, for waves 2–8, 
using characteristics observed at the entry to the panel. [This defines, then, “selection 
(retention) on observables.” See Moffitt, Fitzgerald, and Gottschalk (1999) for discussion.] 
Defining dit to be the indicator for presence (dit = 1) or absence (dit = 0) of observation 
i in wave t, it will follow that the sequence of observations will begin at 1 and either stay 
at 1 or change to 0 for the remaining waves. Let pn it denote the predicted probability from 
the probit estimator at wave t. Then, their full log likelihood is constructed as

ln L = a
n

i= 1
a
T

t= 1
 
dit

pn it
 ln Lit.

Wooldridge (2010) presents the underlying theory for the properties of this weighted 
maximum likelihood estimator. [Further details on the use of the inverse probability 
weighted estimator in the Contoyannis et al. (2004) study appear in Jones, Koolman, 
and Rice (2006) and in Section 17.7.7.]

19.5	 MODELS FOR DURATION

The leading application of the censoring models we examined in Section 19.3 is models 
for durations and events. We consider the time until some kind of transition as the 
duration, and the transition, itself, as the event. The length of a spell of unemployment 
(until rehire or exit from the market), the duration of a strike, the amount of time until 
a patient ends a health-related spell in connection with a disease or operation, and 
the length of time between origination and termination (via prepayment, default, or 
some other mechanism) of a mortgage are all examples of durations and transitions. 
The role that censoring plays in these scenarios is that, in almost all cases in which we, 
as analysts, study duration data, some or even many of the spells we observe do not end 
in transitions. For example, in studying the lengths of unemployment spells, many of 
the individuals in the sample may still be unemployed at the time the study ends—the 
analyst observes (or believes) that the spell will end some time after the observation 
window closes. These data on spell lengths are, by construction, censored. Models of 
duration will generally account explicitly for censoring of the duration data.

This section is concerned with models of duration. In some aspects, the regression-
like models we have studied, such as the discrete choice models, are the appropriate tools. 
As in the previous two chapters, however, the models are nonlinear, and the familiar 
regression methods are not appropriate. Most of this analysis focuses on maximum 
likelihood estimators. In modeling duration, although an underlying regression model 
is, in fact, at work, it is generally not the conditional mean function that is of interest. 
More likely, as we will explore next, the objects of estimation are certain probabilities 
of events, for example in the conditional probability of a transition in a given interval 
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given that the spell has lasted up to the point of interest. These are known as hazard 
models—the probability is labeled the hazard function—and are a central focus of this 
type of analysis.

19.5.1    MODELS FOR DURATION DATA49

Intuition might suggest that the longer a strike persists, the more likely it is that it will 
end within, say, the next week. Or is it? It seems equally plausible to suggest that the 
longer a strike has lasted, the more difficult must be the problems that led to it in the 
first place, and hence the less likely it is that it will end in the next short time interval. 
A similar kind of reasoning could be applied to spells of unemployment or the interval 
between conceptions. In each of these cases, it is not only the duration of the event, per 
se, that is interesting, but also the likelihood that the event will end in the next period 
given that it has lasted as long as it has.

Analysis of the length of time until failure has interested engineers for decades. For 
example, the models discussed in this section were applied to the durability of electric 
and electronic components long before economists discovered their usefulness. Likewise, 
the analysis of survival times—for example, the length of survival after the onset of 
a disease or after an operation such as a heart transplant—has long been a staple of 
biomedical research. Social scientists have recently applied the same body of techniques 
to strike duration, length of unemployment spells, intervals between conception, time 
until business failure, length of time between arrests, length of time from purchase until 
a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration 
data. As usual, we will restrict our attention to a few straightforward, relatively 
uncomplicated techniques and applications, primarily to introduce terms and concepts. 
The reader can then wade into the literature to find the extensions and variations. We 
will concentrate primarily on what are known as parametric models. These apply familiar 
inference techniques and provide a convenient departure point. Alternative approaches 
are considered at the end of the discussion.

19.5.2    DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses 
from the beginning of some event either until its end or until the measurement is taken, 
which may precede termination. Observations will typically consist of a cross section of 
durations, t1, t2, c, tn. The process being observed may have begun at different points 
in calendar time for the different individuals in the sample. For example, the strike 
duration data examined in Example 19.14 are drawn from nine different years.

Censoring is a pervasive and usually unavoidable problem in the analysis of duration 
data. The common cause is that the measurement is made while the process is ongoing. 
An obvious example can be drawn from medical research. Consider analyzing the 
survival times of heart transplant patients. Although the beginning times may be known 
with precision, at the time of the measurement, observations on any individuals who 

49There are a large number of highly technical articles on this topic, but relatively few accessible sources for the 
uninitiated. A particularly useful introductory survey is Kiefer (1985, 1988), upon which we have drawn heavily 
for this section. Other useful sources are Kalbfleisch and Prentice (2002), Heckman and Singer (1984a), Lancaster 
(1990), Florens, Fougere, and Mouchart (1996), and Cameron and Trivedi (2005, Chapters 17–19).
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are still alive are necessarily censored. Likewise, samples of spells of unemployment 
drawn from surveys will probably include some individuals who are still unemployed 
at the time the survey is taken. For these individuals, duration or survival is at least the 
observed ti, but not equal to it. Estimation must account for the censored nature of the 
data for the same reasons as considered in Section 19.3. The consequences of ignoring 
censoring in duration data are similar to those that arise in regression analysis.

In a conventional regression model that characterizes the conditional mean and 
variance of a distribution, the regressors can be taken as fixed characteristics at the point 
in time or for the individual for which the measurement is taken. When measuring duration, 
the observation is implicitly on a process that has been under way for an interval of time 
from zero to t. If the analysis is conditioned on a set of covariates (the counterparts to 
regressors) xt, then the duration is implicitly a function of the time path of the variable 
x(t), t = (0, t), which may have changed during the interval. For example, the observed 
duration of employment in a job may be a function of the individual’s rank in the firm. But 
that rank may have changed several times between the time of hire and when the 
observation was made. As such, observed rank at the end of the job tenure is not necessarily 
a complete description of the individual’s rank while he or she was employed. Likewise, 
marital status, family size, and amount of education are all variables that can change during 
the duration of unemployment and that one would like to account for in the duration 
model. The treatment of time-varying covariates is a considerable complication.50

19.5.3    A REGRESSION-LIKE APPROACH: PARAMETRIC MODELS OF DURATION

We will use the term spell as a catchall for the different duration variables we might 
measure. Spell length is represented by the random variable T. A simple approach to 
duration analysis would be to apply regression analysis to the sample of observed spells. 
By this device, we could characterize the expected duration, perhaps conditioned on a 
set of covariates whose values were measured at the end of the period. We could also 
assume that conditioned on an x that has remained fixed from T = 0 to T = t, t has 
a normal distribution, as we commonly do in regression. We could then characterize 
the probability distribution of observed duration times. But normality turns out not to 
be particularly attractive in this setting for a number of reasons, not least of which is 
that duration is positive by construction, while a normally distributed variable can take 
negative values. (Log normality turns out to be a palatable alternative, but it is only one 
in a long list of candidates.)

19.5.3.a    Theoretical Background 
Suppose that the random variable T has a continuous probability distribution f(t), where 
t is a realization of T. The cumulative probability is

F(t) = L
t

0
f(s) ds = prob(T … t).

We will usually be more interested in the probability that the spell is of length at least t, 
which is given by the survival function,

S(t) = 1 - F(t) = prob(T Ú t).

50See Petersen (1986) for one approach to this problem.
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Consider the question raised in the introduction: Given that the spell has lasted until 
time t, what is the probability that it will end in the next short interval of time, say, ∆t? It is

l(t, ∆t) = prob(t … T … t + ∆t � T Ú t).

A useful function for characterizing this aspect of the distribution is the hazard rate,

l(t) = lim
∆tS0

 
prob(t … T … t + ∆t � T Ú t)

∆t
= lim

∆tS0
 
F(t + ∆t) - F(t)

∆t S(t)
=

f(t)

S(t)
.

Roughly, the hazard rate is the rate at which spells are completed after duration t, given 
that they last at least until t. As such, the hazard function gives an answer to our original 
question.

The hazard function, the density, the CDF, and the survival function are all related. 
The hazard function is

l(t) =
-d ln S(t)

dt
,

so

f(t) = S(t)l(t).

Another useful function is the integrated hazard function,

Λ(t) = L
t

0
l(s) ds,

for which

S(t) = e-Λ(t),

so

Λ(t) = - ln S(t).

The integrated hazard function is a generalized residual in this setting.51

19.5.3.b    Models of the Hazard Function 
For present purposes, the hazard function is more interesting than the survival rate or the 
density. Based on the previous results, one might consider modeling the hazard function 
itself, rather than, say, modeling the survival function and then obtaining the density and 
the hazard. For example, the base case for many analyses is a hazard rate that does not 
vary over time. That is, l(t) is a constant l. This is characteristic of a process that has 
no memory; the conditional probability of failure in a given short interval is the same 
regardless of when the observation is made. Thus,

l(t) = l.

From the earlier definition, we obtain the simple differential equation,

-d ln S(t)

dt
= l.

The solution is

ln S(t) = k - lt,

51See Chesher and Irish (1987) and Example 19.13.
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or

S(t) = Ke-lt,

where K is the constant of integration. The terminal condition that S(0) = 1 implies that 
K = 1, and the solution is

S(t) = e-lt.

This solution is the exponential distribution, which has been used to model the time until 
failure of electronic components. Estimation of l is simple, because with an exponential 
distribution, E[t] = 1/l. The maximum likelihood estimator of l would be the reciprocal 
of the sample mean.

A natural extension might be to model the hazard rate as a linear function, 
l(t) = a + bt. Then Λ(t) = at + 1

2 bt2 and f(t) = l(t)S(t) = l(t) exp[-Λ(t)]. To avoid 
a negative hazard function, one might depart from l(t) = exp[g(t, U)], where U is a 
vector of parameters to be estimated. With an observed sample of durations, estimation 
of a and b is, at least in principle, a straightforward problem in maximum likelihood.52

A distribution whose hazard function slopes upward is said to have positive duration 
dependence. For such distributions, the likelihood of failure at time t, conditional upon 
duration up to time t, is increasing in t. The opposite case is that of decreasing hazard or 
negative duration dependence. Our question in the introduction about whether the 
strike is more or less likely to end at time t given that it has lasted until time t can be 
framed in terms of positive or negative duration dependence. The assumed distribution 
has a considerable bearing on the answer. If one is unsure at the outset of the analysis 
whether the data can be characterized by positive or negative duration dependence, then 
it is counterproductive to assume a distribution that displays one characteristic or the 
other over the entire range of t. Thus, the exponential distribution and our suggested 
extension could be problematic. The literature contains a variety of choices for duration 
models: normal, inverse normal,53 lognormal, F, gamma, Weibull (which is a popular 
choice), and many others.54 To illustrate the differences, we will examine a few of the 
simpler ones. Table 19.8 lists the hazard functions and survival functions for four 

52Kennan (1985) used a similar approach.
53Inverse Gaussian; see Lancaster (1990).
54Three sources that contain numerous specifications are Kalbfleisch and Prentice (2002), Cox and Oakes (1985), 
and Lancaster (1990).

Distribution Hazard Function, l(t) Survival Function, S(t)

Exponential l(t) = l S(t) = e-lt

Weibull l(t) = lp(lt)p - 1 S(t) = e-(lt)p

Lognormal f(t) = (p/t)f[p ln(lt)] S(t) = Φ[-p ln(lt)]
[ln t is normally distributed with mean - ln l and standard deviation 1/p.]

Loglogistic l(t) = lp(lt)p - 1/[1 + (lt)p] S(t) = 1/[1 + (lt)p]

[ln t has a logistic distribution with mean - ln l and variance p2/(3p2).]

TABLE 19.8  Survival Distributions
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commonly used distributions. Each involves two parameters, a location parameter, l, 
and a scale parameter, p.55

All these are distributions for a nonnegative random variable. Their hazard functions 
display very different behaviors, as can be seen in Figure 19.7. The hazard function for 
the exponential distribution is constant, that for the Weibull is monotonically increasing 
or decreasing depending on p, and the hazards for lognormal and loglogistic distributions 
first increase and then decrease. Which among these or the many alternatives is likely to 
be best in any application is uncertain.

19.5.3.c    Maximum Likelihood Estimation 
The parameters l and p of the models in Table 19.8 can be estimated by maximum 
likelihood. For observed duration data, t1, t2, c, tn, the log-likelihood function can be 
formulated and maximized in the ways we have become familiar with in earlier chapters. 
Censored observations can be incorporated as in Section 19.3 for the tobit model. [See 
(19-13).] As such,

ln L(U) = a
uncensored 
observations

 ln f(t �U) + a
censored 

observations

 ln S(t �U),

where U = (l, p). For some distributions, it is convenient to formulate the log-likelihood 
function in terms of f(t) = l(t)S(t) so that

ln L(U) = a
uncensored 
observations

 ln l(t �U) + a
all 

observations

 ln S(t �U).

55Note: In the benchmark case of the exponential distribution, l is the hazard function. In all other cases, the hazard 
function is a function of l, p, and, where there is duration dependence, t as well. Different authors, for example, Kiefer 
(1988), use different parameterizations of these models. We follow the convention of Kalbfleisch and Prentice (2002).

FIGURE 19.7    Parametric Hazard Functions.
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Inference about the parameters can be done in the usual way. Either the BHHH 
estimator or actual second derivatives can be used to estimate asymptotic standard 
errors for the estimates.56 The transformation to w = p(ln t + ln l) for these distributions 
greatly facilitates maximum likelihood estimation. For example, for the Weibull model, 
by defining w = p(ln t + ln l), we obtain the very simple density f(w) = exp[w - exp(w)] 
and survival function S(w) = exp(-exp(w)).57 Therefore, by using ln t instead of t, we 
greatly simplify the log-likelihood function. Details for these and several other 
distributions may be found in Kalbfleisch and Prentice (2002, pp. 68–70). The Weibull 
distribution is examined in detail in the next section.

19.5.3.d    Exogenous Variables 
One limitation of the models given earlier is that external factors are not given a role in the 
survival distribution. The addition of covariates to duration models is fairly straightforward, 
although the interpretation of the coefficients in the model is less so. Consider, for example, 
the Weibull model. (The extension to other distributions will be similar.) Let

li = e-xi
=B,

where xi is a constant term and a set of variables that are assumed not to change from 
time T = 0 until the failure time, T = ti. Making li a function of a set of covariates is 
equivalent to changing the units of measurement on the time axis. For this reason, these 
models are sometimes called accelerated failure time models. Note as well that in all 
the models listed (and generally), the regressors do not bear on the question of duration 
dependence, which, when it varies, is a function of p.

Let s = 1/p and let di = 1 if the spell is completed and di = 0 if it is censored. As 
before, let

wi = p ln(liti) =
(ln ti - x=

iB)
s

,

and denote the density and survival functions f(wi) and S(wi). The observed random 
variable is ln ti = swi + x=

iB. The Jacobian of the transformation from wi to ln ti is 
dwi/d ln ti = 1/s, so the density and survival functions for ln ti are

f(ln ti � xi, B, s) =
1
s

  f a ln ti - x=
iB

s
b , and S(ln ti � xi, B, s) = Sa ln ti - x=

iB

s
b .

The log likelihood for the observed data is

ln L(B, s � data) = a
n

i= 1
[di ln f(ln ti � xi, B, s) + (1 - di) ln S(ln ti � xi, B, s)].

For the Weibull model, for example (see footnote 57),

f(wi) = exp(wi - ewi),

56One can compute a robust covariance matrix as considered in Chapter 14. It is unclear in this context what 
failures of the model assumptions would be considered.
57The transformation is exp(w) = (lt)p so t = (1/l)[exp(w)]1/p. The Jacobian of the transformation is 
dt/dw = [exp(w)]1/p/(lp). The density in Table 19.8 is lp[exp(w)]-(1/p) - 1[exp(-exp(w))]. Multiplying by the Jacobian 
produces the result, f(w) = exp[w - exp(w)]. The survival function is the antiderivative, [exp(-exp(w))].
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and

S(wi) = exp(-ewi).

Making the transformation to ln ti and collecting terms reduces the log likelihood to

ln L(B, s � data) = a
i
Jdia

ln ti - xi
=B

s
- ln sb - expa ln ti - x=

iB

s
b R .

(Many other distributions, including the others in Table 19.8, simplify in the same way. The 
exponential model is obtained by setting s to one.) The derivatives can be equated to 
zero using the methods described in Section E.3. The individual terms can also be used to 
form the BHHH estimator of the asymptotic covariance matrix for the estimator.58 The 
Hessian is also simple to derive, so Newton’s method could be used instead.59

Note that the hazard function generally depends on t, p, and x. The sign of an 
estimated coefficient suggests the direction of the effect of the variable on the hazard 
function when the hazard is monotonic. But in those cases, such as the loglogistic, in 
which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of 
the effects may also be difficult to interpret in terms of the hazard function. In a few 
cases, we do get a regression-like interpretation. In the Weibull and exponential models, 
E[t � xi] = exp(x=

iB)Γ[(1/p) + 1], whereas for the lognormal and loglogistic models, 
E[ln t � xi] = x=

iB. In these cases, bk is the derivative (or a multiple of the derivative) of 
this conditional mean. For some other distributions, the conditional median of t is easily 
obtained. Numerous cases are discussed by Kiefer (1985, 1988), Kalbfleisch and Prentice 
(2002), and Lancaster (1990).

19.5.3.e    Heterogeneity 
The problem of unobserved heterogeneity in duration models can be viewed essentially 
as the result of an incomplete specification. Individual specific covariates are intended 
to incorporate observation specific effects. But if the model specification is incomplete 
and if systematic individual differences in the distribution remain after the observed 
effects are accounted for, then inference based on the improperly specified model is 
likely to be problematic. We have already encountered several settings in which the 
possibility of heterogeneity mandated a change in the model specification; the fixed 
and random effects regression, logit, and probit models all incorporate observation-
specific effects. Indeed, all the failures of the linear regression model discussed in the 
preceding chapters can be interpreted as a consequence of heterogeneity arising from 
an incomplete specification.

There are a number of ways of extending duration models to account for 
heterogeneity. The strictly nonparametric approach of the Kaplan–Meier (1958) 
estimator (see Section 19.5.4) is largely immune to the problem, but it is also rather 
limited in how much information can be obtained from it. One direct approach is to 
model heterogeneity in the parametric model. Suppose that we posit a survival function 
conditioned on the individual specific effect vi. We treat the survival function as S(ti � vi). 
Then add to that a model for the unobserved heterogeneity f(vi). (Note that this is a 

58Note that the log-likelihood function has the same form as that for the tobit model in Section 19.3.2. By just 
reinterpreting the nonlimit observations in a tobit setting, we can, therefore, use this framework to apply a wide 
range of distributions to the tobit model.
59See Kalbfleisch and Prentice (2002) for numerous other examples.
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counterpart to the incorporation of a disturbance in a regression model and follows the 
same procedures that we used in the Poisson model with random effects.) Then

S(t) = Ev[S(t � v)] = Lv
S(t � v)f(v) dv.

The gamma distribution is frequently used for this purpose.60 Consider, for example, 
using this device to incorporate heterogeneity into the Weibull model we used earlier. 
As is typical, we assume that v has a gamma distribution with mean 1 and variance 
u = 1/k. Then

f(v) =
kk

Γ(k)
 e-kvvk - 1,

and

S(t � v) = e-(vlt)p
.

After a bit of manipulation, we obtain the unconditional distribution,

S(t) = L
∞

0
S(t � v) f(v) dv = [1 + u(lt)p]-1/u.

The limiting value, with u = 0, is the Weibull survival model, so u = 0 corresponds to 
Var[v] = 0, or no heterogeneity.61 The hazard function for this model is

l(t) = lp(lt)p - 1[S(t)]u,

which shows the relationship to the Weibull model.
This approach is common in parametric modeling of heterogeneity. In an important 

paper on this subject, Heckman and Singer (1984b) argued that this approach tends 
to overparameterize the survival distribution and can lead to rather serious errors in 
inference. They gave some dramatic examples to make the point. They also expressed 
some concern that researchers tend to choose the distribution of heterogeneity more 
on the basis of mathematical convenience than on any sensible economic basis. (We 
examined Heckman and Singer’s approach in a probit model in Example 17.27.)

19.5.4    NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much 
structure on the data as they do, the models may distort the estimated hazard rates. 
It may be that a more accurate representation can be obtained by imposing fewer 
restrictions.

The Kaplan–Meier (1958) product limit estimator is a strictly empirical, 
nonparametric approach to survival and hazard function estimation. Assume that the 
observations on duration are sorted in ascending order so that t1 … t2 and so on and, 
for now, that no observations are censored. Suppose as well that there are K distinct 
survival times in the data, denoted Tk; K will equal n unless there are ties. Let nk denote 

60See, for example, Hausman, Hall, and Griliches (1984), who use it to incorporate heterogeneity in the Poisson 
regression model. The application is developed in Section 18.4.7.c.
61For the strike data analyzed in Figure 19.7, the maximum likelihood estimate of u is 0.0004, which suggests that at 
least in the context of the Weibull model, latent heterogeneity does not appear to be a feature of these data.
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the number of individuals whose observed duration is at least Tk. The set of individuals 
whose duration is at least Tk is called the risk set at this duration. (We borrow, once 
again, from biostatistics, where the risk set is those individuals still “at risk” at time Tk.) 
Thus, nk is the size of the risk set at time Tk. Let hk denote the number of observed spells 
completed at time Tk. A strictly empirical estimate of the survivor function would be

Sn(Tk) = q
k

i= 1
 
ni - hi

ni
=

ni - hi

n1
.

The estimator of the hazard rate is

	 ln(Tk) =
hk

nk
.	 (19-34)

Corrections are necessary for observations that are censored. Lawless (1982), Kalbfleisch 
and Prentice (2002), Greene (1995a) and  Kiefer (1988) and give details. Susin (2001) 
points out a fundamental ambiguity in this calculation (one which he argues appears 
in the 1958 source). The estimator in (19-34) is not a rate as such, as the width of the 
time window is undefined, and could be very different at different points in the chain of 
calculations. Because many intervals, particularly those late in the observation period, 
might have zeros, the failure to acknowledge these intervals should impart an upward 
bias to the estimator. His proposed alternative computes the counterpart to (19-34) over 
a mesh of defined intervals as follows,

ln(I a
b) =

a b
j= ahj

a b
j= anjbj

,

where the interval is from t = a to t = b, hj is the number of failures in each period in 
this interval, nj is the number of individuals at risk in that period, and bj is the width of 
the period. Thus, an interval (a, b) is likely to include several “periods.”

Cox’s (1972) approach to the proportional hazard model is another popular, 
semiparametric method of analyzing the effect of covariates on the hazard rate. The 
model specifies that

l(ti) = exp(xi
=B)l0(ti).

The function l0 is the “baseline” hazard, which is the individual heterogeneity. In principle, 
this hazard is a parameter for each observation that must be estimated. Cox’s partial 
likelihood estimator provides a method of estimating B without requiring estimation of 
l0. The estimator is somewhat similar to Chamberlain’s estimator for the logit model 
with panel data in that a conditioning operation is used to remove the heterogeneity. (See 
Section 17.7.3.a) Suppose that the sample contains K distinct exit times, T1, c, TK. For any 
time Tk, the risk set, denoted Rk, is all individuals whose exit time is at least Tk. The risk set 
is defined with respect to any moment in time T as the set of individuals who have not yet 
exited just prior to that time. For every individual i in risk set Rk, ti Ú Tk. The probability 
that an individual exits at time Tk given that exactly one individual exits at this time (which 
is the counterpart to the conditioning in the binary logit model in Chapter 17) is

prob[ti = Tk � risk setk] =
exi

=B

a j∈Rk
 exj

=B
.
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Thus, the conditioning sweeps out the baseline hazard functions. For the simplest case 
in which exactly one individual exits at each distinct exit time and there are no censored 
observations, the partial log likelihood is

ln L = a
K

k = 1
Jxk

=B - ln a
j∈Rk

 exj
=BR .

If mk individuals exit at time Tk, then the contribution to the log likelihood is the sum 
of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations because 
it is a reasonable compromise between the Kaplan–Meier estimator and the possibly 
excessively structured parametric models. Hausman and Han (1990) and Meyer (1988), 
among others, have devised other, semiparametric specifications for hazard models.

Example 19.13    Survival Models for Strike Duration
The strike duration data given in Kennan (1985, pp. 14–16) have become a familiar standard 
for the demonstration of hazard models. Appendix Table F19.2 lists the durations, in days, of 
62 strikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000 
workers and began at the expiration or reopening of a contract. Kennan reported the actual 
duration. In his survey, Kiefer (1985), using the same observations, censored the data at 80 
days to demonstrate the effects of censoring. We have kept the data in their original form; 
the interested reader is referred to Kiefer for further analysis of the censoring problem.62

Parameter estimates for the four duration models are given in Table 19.8. The estimate 
of the median of the survival distribution is obtained by solving the equation S(t) = 0.5. 
For example, for the Weibull model, S(M ) = 0.5 = exp[- (lM)P ], or M = [(ln 2)1/P  ]/l. For 
the exponential model, p = 1. For the lognormal and loglogistic models, M = 1/l. The 
delta method is then used to estimate the standard error of this function of the parameter 
estimates. (See Section 4.6.) All these distributions are skewed to the right. As such, E[t] is 
greater than the median. For the exponential and Weibull models, E[t] = [1/l]  Γ  [(1/p) + 1]; for 
the normal, E[t] = (1/l)[exp(1/p2)]1/2. The implied hazard functions are shown in Figure 19.7.

The variable x reported with the strike duration data is a measure of unanticipated 
aggregate industrial production net of seasonal and trend components. It is computed as 
the residual in a regression of the log of industrial production in manufacturing on time, time 
squared, and monthly dummy variables. With the industrial production variable included as 
a covariate, the estimated Weibull model is

- ln l = 3.7772 - 9.3515 x, p = 1.00288,
         (0.1394)    (2.973)          (0.1217),
median strike length = 27.35(3.667) days, E [t] = 39.83 days.

62Our statistical results are nearly the same as Kiefer’s despite the censoring.

L p Median Duration

Exponential 0.02344 (0.00298) 1.00000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27.543 (3.997)
Loglogistic 0.04153 (0.00707) 1.33148 (0.17201) 24.079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08865) 22.152 (3.954)

TABLE 19.9  Estimated Duration Models (Estimated standard errors in parentheses)
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Note that the Weibull model is now almost identical to the exponential model ( p = 1). 
Because the hazard conditioned on x is approximately equal to li, it follows that the hazard 
function is increasing in unexpected industrial production. A 1% increase in x leads to a 
9.35% increase in l, which because p ≈ 1 translates into a 9.35% decrease in the median 
strike length or about 2.6 days. (Note that M = ln 2/l.)

The proportional hazard model does not have a constant term. (The baseline hazard is an 
individual specific constant.) The estimate of b is -9.0726, with an estimated standard error 
of 3.225. This is very similar to the estimate obtained for the Weibull model.

Example 19.14    Time Until Retirement
Christensen and Kallestrup-Lamb (2012) studied the duration of labor market attachment 
until retirement in a large sample of Danish workers. The observations were a sample of 
9,329 individuals who were 50 years old in 1985. They were followed until 2001. Duration is 
defined as the number of years since 1985 until retirement, with right censoring occurring 
at T = 17. This is a stock sample—all individuals enter the initial state at the same point in 
time (1985), and are observed with reference to the same absolute time interval, 1985, where 
T = 0, to 2001, where T = 17. In a flow sample, individuals would enter at different points in 
the observation window, and time T = 0 would vary with each person as he or she entered. 
Data on labor market experience were augmented with matched data on health measures 
and health shocks, as well as socioeconomic and financial information including wealth and 
own and household income. The authors were interested in controlling for a sample selection 
effect suggested by initial participation in the program, and in other forms of unobserved 
heterogeneity. For the latter, they considered discrete, semiparametric approaches based 
on Heckman and Singer (1984a,b)  (see Section 17.7.6) and the continuous forms in 
section 19.5.3e. The primary approach involved a single “risk,” identified broadly as exit from 
the labor force for any reason. However, the authors were also interested in a competing risks 
framework. They noted that exit could be motivated by five states: early retirement, disability, 
unemployment then early retirement, unemployment then some other form of exit, some 
other form. A variety of models were investigated. The Kaplan-Meier approach suggested 
the overall pattern of retirements, but did not allow for the influence of the time-varying 
covariates, especially the health status. Formal models based on the exponential (no duration 
dependence) and the Weibill model (with variable duration dependence) were considered. The 
two noted forms of latent heterogeneity were added to the specifications. This paper provides 
a lengthy application of most of the methods discussed in this section.

19.6	 SUMMARY AND CONCLUSIONS

This chapter has examined settings in which, in principle, the linear regression model of 
Chapter 2 would apply, but the data-generating mechanism produces a nonlinear form: 
truncation, censoring, and sample selection or endogenous sampling. For each case, we 
develop the basic theory of the effect and then use the results in a major area of research 
in econometrics.

In the truncated regression model, the range of the dependent variable is restricted 
substantively. Certainly all economic data are restricted in this way—aggregate 
income data cannot be negative, for example. But when data are truncated so that 
plausible values of the dependent variable are precluded, for example, when zero 
values for expenditure are discarded, the data that remain are analyzed with models 
that explicitly account for the truncation. The stochastic frontier model is based on 
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a composite disturbance in which one part follows the assumptions of the familiar 
regression model while the second component is built on a platform of the truncated 
regression.

When data are censored, values of the dependent variable that could in principle be 
observed are masked. Ranges of values of the true variable being studied are observed 
as a single value. The basic problem this presents for model building is that in such 
a case, we observe variation of the independent variables without the corresponding 
variation in the dependent variable that might be expected. Consistent estimation 
and useful interpretation of estimation results are based on maximum likelihood or 
some other technique that explicitly accounts for the censoring mechanism. The most 
common case of censoring in observed data arises in the context of duration analysis, 
or survival functions (which borrows a term from medical statistics where this style 
of model building originated). It is useful to think of duration, or survival data, as the 
measurement of time between transitions or changes of state. We examined three 
modeling approaches that correspond to the description in Chapter 12, nonparametric 
(survival tables), semiparametric (the proportional hazard models), and parametric 
(various forms such as the Weibull model).

Finally, the issue of sample selection arises when the observed data are not drawn 
randomly from the population of interest. Failure to account for this nonrandom 
sampling produces a model that describes only the nonrandom subsample, not the 
larger population. In each case, we examined the model specification and estimation 
techniques which are appropriate for these variations of the regression model. Maximum 
likelihood is usually the method of choice, but for the third case, a two-step estimator 
has become more common. The leading contemporary application of selection methods 
and endogenous sampling is in the measure of treatment effects that are examined in 
Chapter 6.

Key Terms and Concepts

•	Accelerated failure time 
model

•	Attenuation
•	Censored regression model
•	Censored variable
•	Conditional moment test
•	Corner solution model
•	Data envelopment analysis
•	Degree of truncation
•	Exponential
•	Generalized residual
•	Hazard function
•	Hazard rate
•	Incidental truncation
•	Integrated hazard function
•	Inverse Mills ratio

•	Mean independence 
assumption

•	Negative duration 
dependence

•	Olsen’s reparameterization
•	Partial likelihood
•	Positive duration 

dependence
•	Product limit estimator
•	Proportional hazard
•	Risk set
•	Sample selection
•	Semiparametric estimator
•	Stochastic frontier model
•	Survival function
•	Time-varying covariate

•	Tobit model
•	Truncated distribution
•	Truncated mean
•	Truncated normal 

distribution
•	Truncated random variable
•	Truncated standard normal 

distribution
•	Truncated variance
•	Truncation
•	Two-part distribution
•	Two-step estimation
•	Weibull model
•	Weibull survival model
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Exercises

1.	 The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040 0.00000 0.00000 4.4132 8.0230
5.7971 7.0828 0.00000 0.80260 13.0670 4.3211
0.00000 8.6801 5.4571 0.00000 8.1021 0.00000
1.2526 5.6016

The applicable model is

 yi* = m + ei,

 yi = yi* if m + ei 7 0, 0 otherwise,

 ei ∼ N[0, s2].

Exercises 1 through 4 in this section are based on the preceding information. The 
OLS estimator of m in the context of this tobit model is simply the sample mean. 
Compute the mean of all 20 observations. Would you expect this estimator to over- or 
underestimate m? If we consider only the nonzero observations, then the truncated 
regression model applies. The sample mean of the nonlimit observations is the least 
squares estimator in this context. Compute it and then comment on whether this 
sample mean should be an overestimate or an underestimate of the true mean.

2.	 We now consider the tobit model that applies to the full data set.
a.	 Formulate the log likelihood for this very simple tobit model.
b.	 Reformulate the log likelihood in terms of u = 1/s and g = m/s. Then derive the 

necessary conditions for maximizing the log likelihood with respect to u and g.
c.	 Discuss how you would obtain the values of u and g to solve the problem in 

part b.
d.	 Compute the maximum likelihood estimates of m and s.

3.	 Using only the nonlimit observations, repeat Exercise 2 in the context of the 
truncated regression model. Estimate m and s by using the method of moments 
estimator outlined in Example 19.2. Compare your results with those in the previous 
exercises.

4.	 Continuing to use the data in Exercise 1, consider once again only the nonzero 
observations. Suppose that the sampling mechanism is as follows: y* and another 
normally distributed random variable z have population correlation 0.7. The two 
variables, y* and z, are sampled jointly. When z is greater than zero, y is reported. 
When z is less than zero, both z and y are discarded. Exactly 35 draws were required 
to obtain the preceding sample. Estimate m and s. (Hint: Use Theorem 19.5.)

5.	 Derive the partial effects for the tobit model with heteroscedasticity that is 
described in Section 19.3.5.b.

6.	 Prove that the Hessian for the tobit model in (19-14) is negative definite after 
Olsen’s transformation is applied to the parameters.

Applications

1.	 We examined Ray Fair’s famous analysis (Journal of Political Economy, 1978) of a 
Psychology Today survey on extramarital affairs in Example 18.18 using a Poisson 
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regression model. Although the dependent variable used in that study was a count, 
Fair (1978) used the tobit model as the platform for his study. You can reproduce 
the tobit estimates in Fair’s paper easily with any software package that contains 
a tobit estimator—most do. The data appear in Appendix Table F18.1. Reproduce 
Fair’s least squares and tobit estimates. Compute the partial effects for the model 
and interpret all results.

2.	 The Mroz (1975) data used in Example 19.10 (see Appendix Table F5.1) also 
describe a setting in which the tobit model has been frequently applied. The sample 
contains 753 observations on labor market outcomes for married women, including 
the following variables:

 lfp = indicator (0/1) for whether in the formal labor market (lfp = 1)

or not (lfp = 0),

 whrs = wife’s hours worked,

 kl6 = number of children under 6 years old in the household,

 k618 = number of children from 6 to 18 years old in the household,

 we = wife’s age,

 we = wife’s education,

 ww = wife’s hourly wage,

 hhrs = husband’s hours worked,

 ha = husband’s age,

 hw = husband’s wage,

 faminc = family income from other sources,

 wmed = wife’s mother’s education

 wfed = wife’s father’s education

 cit = dummy variable for living in an urban area,

 ax = labor market experience = wa - we - 5,

and several variables that will not be useful here. Using these data, estimate a tobit 
model for the wife’s hours worked. Report all results including partial effects and 
relevant diagnostic statistics. Repeat the analysis for the wife’s labor earnings, ww 
: whrs. Which is a more plausible model?

3.	 Continuing the analysis of the previous application, note that these data conform 
precisely to the description of corner solutions in Section 19.3.4. The dependent 
variable is not censored in the fashion usually assumed for a tobit model. To 
investigate whether the dependent variable is determined by a two-part decision 
process (yes/no and, if yes, how much), specify and estimate a two-equation model 
in which the first equation analyzes the binary decision lfp = 1 if whrs 7 0 
and 0 otherwise and the second equation analyzes whrs � whrs 7 0. What is the 
appropriate model? What do you find? Report all results.

4.	 Stochastic Frontier Model. Section 10.3.1 presents estimates of a Cobb–Douglas cost 
function using Nerlove’s 1955 data on the U.S. electric power industry. Christensen 
and Greene’s 1976 update of this study used 1970 data for this industry. The 
Christensen and Greene data are given in Appendix Table F4.4. These data have 
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provided a standard test data set for estimating different forms of production and 
cost functions, including the stochastic frontier model discussed in Section 19.2.4. It 
has been suggested that one explanation for the apparent finding of economies of 
scale in these data is that the smaller firms were inefficient for other reasons. The 
stochastic frontier might allow one to disentangle these effects. Use these data to 
fit a frontier cost function which includes a quadratic term in log output in addition 
to the linear term and the factor prices. Then examine the estimated Jondrow et al. 
residuals to see if they do indeed vary negatively with output, as suggested. (This 
will require either some programming on your part or specialized software. The 
stochastic frontier model is provided as an option in Stata and NLOGIT. Or, the 
likelihood function can be programmed easily for R, or GAUSS.) (Note: For a cost 
frontier as opposed to a production frontier, it is necessary to reverse the sign on 
the argument in the Φ function that appears in the log likelihood.)
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