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Serial Correlation

§
20.1	 INTRODUCTION

Time-series data often display autocorrelation or serial correlation of the disturbances 
across periods. Consider, for example, the plot of the least squares residuals in the 
following example.

Example 20.1    Money Demand Equation
Appendix Table F5.2 contains quarterly data from 1950I to 2000IV on the U.S. money stock 
(M1), output (real GDP), and the price level (CPI_U). Consider a simple (extremely) model of 
money demand,1

ln M1t = b1 + b2 ln GDPt + b3 ln CPIt + et.

A plot of the least squares residuals is shown in Figure 20.1. The pattern in the residuals 
suggests that knowledge of the sign of a residual in one period is a good indicator of 
the sign of the residual in the next period. This knowledge suggests that the effect of a 

1Because this chapter deals exclusively with time-series data, we shall use the index t for observations and T for 
the sample size throughout.

FIGURE 20.1    Autocorrelated Least Squares Residuals.
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982	 Part V  ✦  Time Series and Macroeconometrics

given disturbance is carried, at least in part, across periods. This sort of memory in the 
disturbances creates the long, slow swings from positive values to negative ones that are 
evident in Figure 20.1. One might argue that this pattern is the result of an obviously naïve 
model, but that is one of the important points in this discussion. Patterns such as this usually 
do not arise spontaneously; to a large extent, they are, indeed, a result of an incomplete or 
flawed model specification.

One explanation for autocorrelation is that relevant factors omitted from the time-
series regression, like those included, are correlated across periods. This fact may be due 
to serial correlation in factors that should be in the regression model. It is easy to see 
why this situation would arise. Example 20.2 shows an obvious case.

Example 20.2    Autocorrelation Induced by Misspecification of the Model
In Examples 2.3, 4.2, 4.7, and 4.8, we examined yearly time-series data on the U.S. 
gasoline market from 1953 to 2004. The evidence in the examples was convincing that a 
regression model of variation in ln G/Pop should include, at a minimum, a constant, ln PG 
and ln Income/Pop price variables and a time trend also provide significant explanatory 
power, but these two are a bare minimum. Moreover, we also found on the basis of a 
Chow test of structural change that apparently this market changed structurally after 1974. 
Figure 20.2 displays plots of four sets of least squares residuals. Parts (a) through (c) show 
clearly that as the specification of the regression is expanded, the autocorrelation in the 
“residuals” diminishes. Part (c) shows the effect of forcing the coefficients in the equation 
to be the same both before and after the structural shift. In part (d), the residuals in the 
two subperiods 1953 to 1974 and 1975 to 2004 are produced by separate unrestricted 
regressions. This latter set of residuals is almost nonautocorrelated. (Note: The range of 
variation of the residuals falls as the model is improved, i.e., as its fit improves.) The full 
equation is

FIGURE 20.2    Regression Residuals.
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 ln 
Gt

Popt
= b1 + b2 ln PGt + b3 ln 

It
Popt

+ b4 ln PNCt + b5 ln PUCt

 + b6 ln PPTt + b7 ln PNt + b8 ln PDt + b9 ln PSt + b10t + et.

Finally, we consider an example in which serial correlation is an anticipated part of the 
model.

Example 20.3    Negative Autocorrelation in the Phillips Curve
The Phillips curve [Phillips (1957)] has been one of the most intensively studied relationships 
in the macroeconomics literature. As originally proposed, the model specifies a negative 
relationship between wage inflation and unemployment in the United Kingdom over a period 
of 100 years. Recent research has documented a similar relationship between unemployment 
and price inflation. It is difficult to justify the model when cast in simple levels; labor market 
theories of the relationship rely on an uncomfortable proposition that markets persistently fall 
victim to money illusion, even when the inflation can be anticipated. Recent research2 has 
reformulated a short-run (disequilibrium) “expectations augmented Phillips curve” in terms of 
unexpected inflation and unemployment that deviates from a long-run equilibrium or “natural 
rate.” The expectations-augmented Phillips curve can be written as

∆pt - E[∆pt � Ψt - 1] = b[ut - u*] + et,

where ∆pt is the rate of inflation in year t, E[∆pt � Ψt - 1] is the forecast of ∆pt made in period 
t - 1 based on information available at time t - 1, Ψt - 1, ut is the unemployment rate, and u* 
is the natural, or equilibrium rate. (Whether u* can be treated as an unchanging parameter, as 
we are about to do, is controversial.) By construction, [ut - u*] is disequilibrium, or cyclical 
unemployment. In this formulation, et would be the supply shock (i.e., the stimulus that 
produces the disequilibrium situation). To complete the model, we require a model for the 
expected inflation. For the present, we’ll assume that economic agents are rank empiricists. 
The forecast of next year’s inflation is simply this year’s value. This produces the estimating 
equation,

∆pt - ∆pt - 1 = b1 + b2ut + et,

where b2 = b and b1 = -bu*. Note that there is an implied estimate of the natural rate of 
unemployment embedded in the equation. After estimation, u* can be estimated by -b1/b2. 
The equation was estimated with the 1950.1 to 2000.4 data in Appendix Table F5.2 that were 
used in Example 20.1 (minus two quarters for the change in the rate of inflation). Least squares 
estimates (with standard errors in parentheses) are as follows:

∆pt - ∆pt - 1 = 2.23567 (0.49213) - 0.04155 (0.08360) ut +  et, R2 = 0.00123, T = 202.

The implied estimate of the natural rate of unemployment is 5.67 percent, which is in line with 
other estimates. The estimated asymptotic covariance of b1 and b2 is -0.03964. Using the 
delta method, we obtain a standard error of 3.17524 for this estimate, so a confidence interval 
for the natural rate is 5.67% { 1.96(3.17%) = (-0.55%, 11.89%). (This seems fairly wide, 
but, again, whether it is reasonable to treat this as a parameter is at least questionable). The 
regression of the least squares residuals on their past values gives a slope of -0.51843 with 
a highly significant t ratio of -8.48. We thus conclude that the residuals (and, apparently, the 
disturbances) in this model are highly negatively autocorrelated. This is consistent with the 
striking pattern in Figure 20.3.

2For example, Staiger et al. (1996).
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984	 Part V  ✦  Time Series and Macroeconometrics

The problems for estimation and inference caused by autocorrelation are similar to 
(although, unfortunately, more involved than) those caused by heteroscedasticity. As 
before, least squares is inefficient, and inference based on the least squares estimates is 
adversely affected. Depending on the underlying process, however, GLS and FGLS 
estimators can be devised that circumvent these problems. There is one qualitative 
difference to be noted. In Section 20.10, we will examine models in which the generalized 
regression model can be viewed as an extension of the regression model to the conditional 
second moment of the dependent variable. In the case of autocorrelation, the 
phenomenon arises in almost all cases from a misspecification of the model. Views differ 
on how one should react to this failure of the classical assumptions, from a pragmatic 
one that treats it as another problem in the data to an orthodox methodological view 
that it represents a major specification issue.3

We should emphasize that the models we shall examine here are quite far removed 
from the classical regression. The exact or small-sample properties of the estimators are 
rarely known, and only their asymptotic properties have been derived.

20.2	 THE ANALYSIS OF TIME-SERIES DATA

The treatment in this chapter will be the first structured analysis of time-series data in 
the text. Time-series analysis requires some revision of the interpretation of both data 
generation and sampling that we have maintained thus far.

3See, for example, “A Simple Message to Autocorrelation Correctors: Don’t” [Mizon (1995)].

FIGURE 20.3    Negatively Autocorrelated Residuals.
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A time-series model will typically describe the path of a variable yt in terms of 
contemporaneous (and perhaps lagged) factors xt, disturbances (innovations), et, and 
its own past, yt - 1, c. For example,

yt = b1 + b2xt + b3yt - 1 + et.

The time series is a single occurrence of a random event. For example, the quarterly series 
on real output in the United States from 1950 to 2000 that we examined in Example 20.1 
is a single realization of a process, GDPt. The entire history over this period constitutes a 
realization of the process. At least in economics, the process could not be repeated. There 
is no counterpart to repeated sampling in a cross section or replication of an experiment 
involving a time-series process in physics or engineering. Nonetheless, were circumstances 
different at the end of World War II, the observed history could have been different. In 
principle, a completely different realization of the entire series might have occurred. The 
sequence of observations, {yt}t= -∞

t= ∞ , is a time-series process, which is characterized by its 
time ordering and its systematic correlation between observations in the sequence. The 
signature characteristic of a time-series process is that empirically, the data-generating 
mechanism produces exactly one realization of the sequence. Statistical results based 
on sampling characteristics concern not random sampling from a population, but from 
distributions of statistics constructed from sets of observations taken from this realization 
in a time window, t = 1, c, T. Asymptotic distribution theory in this context concerns 
behavior of statistics constructed from an increasingly long window in this sequence.

The properties of yt as a random variable in a cross section are straightforward 
and are conveniently summarized in a statement about its mean and variance or the 
probability distribution generating yt. The statement is less obvious here. It is common 
to assume that innovations are generated independently from one period to the next, 
with the familiar assumptions

 E[et] = 0,

 Var[et] = se
2,

and

Cov[et, es] = 0 for t ≠ s.

In the current context, this distribution of et is said to be covariance stationary or weakly 
stationary. Thus, although the substantive notion of random sampling must be extended 
for the time series et, the mathematical results based on that notion apply here. It can be 
said, for example, that et is generated by a time-series process whose mean and variance 
are not changing over time. As such, by the method we will discuss in this chapter, 
we could, at least in principle, obtain sample information and use it to characterize 
the distribution of et. Could the same be said of yt? There is an obvious difference 
between the series et and yt; observations on yt at different points in time are necessarily 
correlated. Suppose that the yt series is weakly stationary and that, for the moment, 
b2 = 0. Then we could say that

E [yt] = b1 + b3E[yt - 1] + E[et] = b1/(1 - b3)

and

Var[yt] = b3
2 Var[yt - 1] + Var[et],
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986	 Part V  ✦  Time Series and Macroeconometrics

or

g0 = b3
2g0 + se

2,

so that

g0 =
se

2

1 - b3
2
.

Thus, g0, the variance of yt, is a fixed characteristic of the process generating yt. Note 
how the stationarity assumption, which apparently includes �b3 � 6 1, has been used. 
The assumption that �b3 � 6 1 is needed to ensure a finite and positive variance.4 Finally, 
the same results can be obtained for nonzero b2 if it is further assumed that xt is a weakly 
stationary series.5

Alternatively, consider simply repeated substitution of lagged values into the 
expression for yt,

	 yt = b1 + b3(b1 + b3yt - 2 + et - 1) + et,	 (20-1)

and so on. We see that, in fact, the current yt is an accumulation of the entire history of 
the innovations, et. So if we wish to characterize the distribution of yt, then we might 
do so in terms of sums of random variables. By continuing to substitute for yt - 2, then 
yt - 3, c in (20-1), we obtain an explicit representation of this idea,

yt = a
∞

i= 0
b3

i (b1 + et - i).

Do sums that reach back into infinite past make any sense? We might view the process as 
having begun generating data at some remote, effectively infinite past. As long as distant 
observations become progressively less important, the extension to an infinite past is 
merely a mathematical convenience. The diminishing importance of past observations 
is implied by �b3 � 6 1. Notice that, not coincidentally, this requirement is the same as 
that needed to solve for g0 in the preceding paragraphs. A second possibility is to assume 
that the observation of this time series begins at some time 0 [with (x0, e0) called the 
initial conditions], by which time the underlying process has reached a state such that the 
mean and variance of yt are not (or are no longer) changing over time. The mathematics 
is slightly different, but we are led to the same characterization of the random process 
generating yt. In fact, the same weak stationarity assumption ensures both of them.

Except in very special cases, we would expect all the elements in the T component 
random vector (y1, c, yT) to be correlated. In this instance, said correlation is called 
autocorrelation. As such, the results pertaining to estimation with independent or 
uncorrelated observations that we used in the previous chapters are no longer usable. In 
point of fact, we have a sample of but one observation on the multivariate random variable 
[yt, t = 1, c, T]. There is a counterpart to the cross-sectional notion of parameter 
estimation, but only under assumptions (e.g., weak stationarity) that establish that 
parameters in the familiar sense even exist. Even with stationarity, it will emerge that for 

4The current literature in macroeconometrics and time series analysis is dominated by analysis of cases in which 
b3 = 1 (or counterparts in different models). We will return to this subject in Chapter 21.
5See Section 20.4.1 on the stationarity assumption.
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estimation and inference, none of our earlier finite-sample results are usable. Consistency 
and asymptotic normality of estimators are somewhat more difficult to establish in time-
series settings because results that require independent observations, such as the central 
limit theorems, are no longer usable. Nonetheless, counterparts to our earlier results have 
been established for most of the estimation problems we consider here.

20.3	 DISTURBANCE PROCESSES

The preceding section has introduced a bit of the vocabulary and aspects of time-series 
specification. To obtain the theoretical results, we need to draw some conclusions about 
autocorrelation and add some details to that discussion.

20.3.1    CHARACTERISTICS OF DISTURBANCE PROCESSES

In the usual time-series setting, the disturbances are assumed to be homoscedastic but 
correlated across observations, so that

E[EE′ � X] = s2�,

where s2� is a full, positive definite matrix with a constant s2 = Var[et � X] on the 
diagonal. As will be clear in the following discussion, we shall also assume that �ts is 
a function of � t - s � , but not of t or s alone, which is a stationarity assumption. (See 
the preceding section.) It implies that the covariance between observations t and s is a 
function only of � t - s � , the distance apart in time of the observations. Because s2 is 
not restricted, we normalize �tt = 1. We define the autocovariances,

Cov[et, et - s � X] = Cov[et + s, et � X] = s2�t,t - s = gs = g-s.

Note that s2�tt = g0. The correlation between et and et - s is their autocorrelation,

Corr[et, et - s � X] =
Cov[et, et - s � X]2Var[et � X]Var[et - s � X]

=
gs

g0
= rs = r-s.

We can then write
E[EE′ � X] = � = g0R,

where � is an autocovariance matrix and R is an autocorrelation matrix—the ts element 
is an autocorrelation coefficient,

rs =
g�t - s�

g0
.

(Note: The matrix � = g0R is the same as s2 �.) We will usually use the abbreviation 
rs to denote the autocorrelation between observations s periods apart.

Different types of processes imply different patterns in R. For example, the most 
frequently analyzed process is a first-order autoregression or AR(1) process,

et = ret - 1 + ut,

where ut is a stationary, nonautocorrelated (white noise) process and r is a parameter. We will 
verify later that for this process, rs = rs. Higher-order autoregressive processes of the form

et = u1et - 1 + u2et - 2 + g + upet - p + ut
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988	 Part V  ✦  Time Series and Macroeconometrics

imply more involved patterns, including, for some values of the parameters, cyclical 
behavior of the autocorrelations.6 Stationary autoregressions are structured so that the 
influence of a given disturbance fades as it recedes into the more distant past but 
vanishes only asymptotically. For example, for the AR(1), Cov[et, et - s] is never zero, but 
it does become negligible if �r �  is less than 1. Moving-average processes, conversely, have 
a short memory. For the MA(1) process,

et = ut - lut - 1,

the memory in the process is only one period: g0 = su
2(1 + l2), g1 = -lsu

2, but gs = 0 
if s 7 1.

Example 20.4    Autocorrelation Function for the Rate of Inflation
The autocorrelation function for a time series is a useful statistic for describing the nature of 
the underlying process. The function is computed as

ACF(s) = rs =
cs

c0
=

(1/(T - S))Σt= s + 1
T (zt - z)(zt - s - z)

(1/T)Σt= s + 1
T (zt - z)2

, s = 1, c.

The pattern of values of the ACF will help reveal the form of the time-series process. For an 
AR(1) process, the autocorrelations rs will tend to appear like a geometric series, rs. For a 
moving average series such as the MA(1), rs will show one or a few significant values, then 
fall sharply to (approximately) zero. The characteristic pattern of an MA(1) process is rs = r 
for s = 1 and rs = 0 for s 7 1.

Figure 20.4 shows the quarterly percentage change in the U.S. Consumer Price Index 
from 1950 to 2000. (We will examine these data in some detail in Chapter 21.) The first 
10 autocorrelations for this series are as follows:

6This model is considered in more detail in Section 20.9.2.

FIGURE 20.4    Rate of Inflation in the Consumer Price Index.

%Chg CPI
5

4

3

2

C
ha

ng
e 

in
 C

P
I_

U

1

0

–1

1950 1963 1976 1989 2002

Quarter

M20_GREE1366_08_SE_C20.indd   988 2/24/17   1:56 PM



	 CHAPTER 20  ✦  Serial Correlation  989

Lag
ACF

1
0.657

2
0.602

3
0.624

4
0.599

5
0.469

6
0.418

7
0.390

8
0.360

9
0.302

10
0.260

The persistence of the autocorrelations indicates a strongly autoregressive process.

20.3.2    AR(1) DISTURBANCES

Time-series processes such as the ones listed here can be characterized by their order, 
the values of their parameters, and the behavior of their autocorrelations.7 We shall 
consider various forms at different points. The received empirical literature is 
overwhelmingly dominated by the AR(1) model, which is partly a matter of convenience. 
Processes more involved than this model are usually extremely difficult to analyze. There 
is, however, a more practical reason. It is very optimistic to expect to know precisely the 
correct form of the appropriate model for the disturbance in any given situation. The 
first-order autoregression has withstood the test of time and experimentation as a 
reasonable model for underlying processes that probably, in truth, are impenetrably 
complex. AR(1) works as a first pass—higher-order models are often constructed as a 
refinement.

The first-order autoregressive disturbance, or AR(1) process, is represented in the 
autoregressive form as

	 et = ret - 1 + ut,	 (20-2)

where

 E[ut � X] = 0,

 E[ut
2 � X] = su

2,

and

Cov[ut, us � X] = 0 if t ≠ s.

Because ut is white noise, the conditional moments equal the unconditional moments. 
Thus E[et � X] = E[et] and so on.

By repeated substitution, we have

	 et = ut + rut - 1 + r2ut - 2 + g.	 (20-3)

From the preceding moving-average form, it is evident that each disturbance et embodies 
the entire past history of the u’s, with the most recent observations receiving greater 
weight than those in the distant past. Depending on the sign of r, the series will exhibit 
clusters of positive and then negative observations or, if r is negative, regular oscillations 
of sign (as in Example 20.3).

Because the successive values of ut are uncorrelated, the variance of et is the variance 
of the right-hand side of (20-3):

	 Var[et] = su
2 + r2su

2 + r4su
2 + g.	 (20-4)

To proceed, a restriction must be placed on r,

	 �r � 6 1,	 (20-5)

7See Box and Jenkins (1984) for an authoritative study.
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990	 Part V  ✦  Time Series and Macroeconometrics

because otherwise, the right-hand side of (20-4) will become infinite. This result 
is the stationarity assumption discussed earlier. With (20-5), which implies that 
limsS ∞ rs = 0, E[et] = 0 and

	 Var[et] =
su

2

1 - r2 = se
2.	 (20-6)

With the stationarity assumption, there is an easier way to obtain the variance

Var[et] = r2 Var[et - 1] + su
2

because Cov[ut, es] = 0 if t 7 s. With stationarity, Var[et - 1] = Var[et], which implies 
(20-6). Proceeding in the same fashion,

	 Cov[et, et - 1] = E[etet - 1] = E[et - 1(ret - 1 + ut)] = r Var[et - 1] =
rsu

2

1 - r2
.	 (20-7)

By repeated substitution in (20-2), we see that for any s,

et = rset - s + a
s - 1

i= 0
riut - i

(e.g., et = r3et - 3 + r2ut - 2 + rut - 1 + ut). Therefore, because es is not correlated with 
any ut for which t 7 s (i.e., any subsequent ut), it follows that

	 Cov[et, et - s] = E[etet - s] =
rssu

2

1 - r2
.	 (20-8)

Dividing by g0 = su
2/(1 - r2) provides the autocorrelations,

	 Corr[et, et - s] = rs = rs.	 (20-9)

With the stationarity assumption, the autocorrelations fade over time. Depending on the 
sign of r, they will either be declining in geometric progression or alternating in sign if 
r is negative. Collecting terms, we have

	 s2� =
su

2

1 - r2 E1 r r2 r3 g rT - 1

r 1 r r2 g rT - 2

r2 r 1 r g rT - 3

f f f f g r

rT - 1 rT - 2 rT - 3 g r 1

U .	 (20-10)

20.4	 SOME ASYMPTOTIC RESULTS FOR ANALYZING TIME-SERIES DATA

Because � is not equal to I, the now-familiar complications will arise in establishing the 
properties of estimators of B, in particular of the least squares estimator. The finite sample 
properties of the OLS and GLS estimators remain intact. Least squares will continue 
to be unbiased. The earlier general proof allows for autocorrelated disturbances. The 
Aitken theorem (Theorem 9.4) and the distributional results for normally distributed 
disturbances can still be established conditionally on X. (However, even these will 
be complicated when X contains lagged values of the dependent variable.) But finite 
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sample properties are of very limited usefulness in time-series contexts. Nearly all that 
can be said about estimators involving time-series data is based on their asymptotic 
properties.

As we saw in our analysis of heteroscedasticity, whether least squares is consistent 
or not depends on the matrices

QT = (1/T)X′X

and

QT
* = (1/T)X′�X.

In our earlier analyses, we were able to argue for convergence of QT to a positive definite 
matrix of constants, Q, by invoking laws of large numbers. But these theorems assume 
that the observations in the sums are independent, which as suggested in Section 20.2, is 
surely not the case here. Thus, we require a different tool for this result. We can expand 
the matrix QT

*  as

	 QT
* =

1
T a

T

t= 1
a
T

s = 1
rtsxtxs

=,	 (20-11)

where xt
= and xs

= are rows of X and rts is the autocorrelation between et and es. Sufficient 
conditions for this matrix to converge are that QT converge and that the correlations 
between disturbances diminish reasonably rapidly as the observations become further 
apart in time. For example, if the disturbances follow the AR(1) process described 
earlier, then rts = r�t - s� and if xt is sufficiently well behaved, QT

*  will converge to a 
positive definite matrix Q* as T S ∞ . Asymptotic normality of the least squares and 
GLS estimators will depend on the behavior of sums such as2T wT = 2Ta 1

T a
T

t= 1
xtetb = 2T a 1

T
 X′Eb .

Asymptotic normality of least squares is difficult to establish for this general model. The 
central limit theorems we have relied on thus far do not extend to sums of dependent 
observations. The results of Amemiya (1985), Mann and Wald (1943), and Anderson 
(1971) do carry over to most of the familiar types of autocorrelated disturbances, 
including those that interest us here, so we shall ultimately conclude that ordinary least 
squares, GLS, and instrumental variables continue to be consistent and asymptotically 
normally distributed, and, in the case of OLS, inefficient. This section will provide a 
brief introduction to some of the underlying principles that are used to reach these 
conclusions.

20.4.1    CONVERGENCE OF MOMENTS—THE ERGODIC THEOREM

The discussion thus far has suggested (appropriately) that stationarity (or its absence) is 
an important characteristic of a process. The points at which we have encountered this 
notion concerned requirements that certain sums converge to finite values. In particular, 
for the AR(1) model, et = ret - 1 + ut, for the variance of the process to be finite, we 
require �r � 6 1, which is a sufficient condition. However, this result is only a byproduct. 
Stationarity (at least, the weak stationarity we have examined) is only a characteristic 
of the sequence of moments of a distribution.

M20_GREE1366_08_SE_C20.indd   991 2/24/17   1:56 PM



992	 Part V  ✦  Time Series and Macroeconometrics

For example, in (20-2), if we add ut ∼ N[0, su
2], then the resulting process, {et}t= -∞

t= ∞ , can 
easily be shown to be strongly stationary.

DEFINITION 20.2  Weak Stationarity
A time-series process, {zt}t= -∞

t= ∞ , is weakly stationary (or covariance stationary) if 
E[zt] is finite and is the same for all t and if the covariances between any two 
observations (labeled their autocovariance), Cov[zt, zt - k], is a finite function only 
of model parameters and their distance apart in time, k, but not of the absolute 
location of either observation on the time scale.

DEFINITION 20.3  Ergodicity
A strongly stationary time-series process, {zt}t= -∞

t= ∞ , is ergodic if for any two bounded 
functions that map vectors in the a and b dimensional real vector spaces to real 
scalars, f: Ra S R1 and g: Rb S R1,

 lim
kS ∞

� E[f(zt, zt + 1, c, zt + a - 1)g(zt + k, zt + k + 1, c, zt + k + b - 1)] �

 = � E[f(zt, zt + 1, c, zt + a - 1)] � � E[g(zt + k, zt + k + 1, c, zt + k + b - 1)] � .

DEFINITION 20.1  Strong Stationarity
A time-series process, {zt}t= -∞

t= ∞ , is strongly stationary, or “stationary,” if the 
joint probability distribution of any adjacent set of k observations in the 
sequence [zt, zt + 1, c, zt + k - 1] is the same regardless of the origin, t , in the 
time scale.

Weak stationary is obviously implied by strong stationary, although it requires less 
because the distribution can, at least in principle, be changing on the time axis. The 
distinction is rarely necessary in applied work. In general, save for narrow theoretical 
examples, it will be difficult to come up with a process that is weakly but not strongly 
stationary. The reason for the distinction is that in much of our work, only weak 
stationary is required, and, as always, when possible, econometricians will dispense with 
unnecessary assumptions.

As we will discover shortly, stationarity is a crucial characteristic at this point in 
the analysis. If we are going to proceed to parameter estimation in this context, we 
will also require another characteristic of a time series, ergodicity. There are various 
ways to delineate this characteristic, none of them particularly intuitive. We borrow 
one definition from Davidson and MacKinnon (1993, p. 132) which comes close:

The definition states essentially that if events are separated far enough in time, then they 
are asymptotically independent. An implication is that in a time series, every observation 
will contain at least some unique information. Ergodicity is a crucial element of our 
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theory of estimation. When a time series has this property (with stationarity), then we 
can consider estimation of parameters in a meaningful sense.8 The analysis relies heavily 
on the following theorem:

8Much of the analysis to follow will involve nonstationary series, which are the focus of most of the current 
literature—tests for nonstationarity largely dominate the recent study in time-series analysis. Ergodicity is a much 
more subtle and difficult concept. For any process that we will consider, ergodicity will have to be a given, at least 
at this level. A classic reference on the subject is Doob (1953). Another authoritative treatise is Billingsley (1995). 
White (2001) provides a concise analysis of many of these concepts as used in econometrics, and some useful 
commentary.

THEOREM 20.1  The Ergodic Theorem
If {zt}t= -∞

t= ∞  is a time-series process that is strongly stationary and ergodic and E[ � zt � ] 
is a finite constant, and if zT = (1/T)a T

t= 1zt, then zT ¡a.s.
m, where m = E[zt]. 

Note that the convergence is almost surely not in probability (which is implied) or 
in mean square (which is also implied). [See White (2001, p. 44) and Davidson and 
MacKinnon (1993, p. 133).]

THEOREM 20.2  Ergodicity of Functions
If {zt}t= -∞

t= ∞  is a time-series process that is strongly stationary and ergodic and if 
yt = f{zt} is a measurable function in the probability space that defines zt, then 
yt is also stationary and ergodic. Let {zt}t= -∞

t= ∞  define a K * 1 vector valued 
stochastic process—each element of the vector is an ergodic and stationary series, 
and the characteristics of ergodicity and stationarity apply to the joint distribution 
of the elements of {zt}t= -∞

t= ∞ . Then, the ergodic theorem applies to functions 
of {zt}t= -∞

t= ∞ .9

9See White (2001, pp. 44–45) for discussion.

What we have in the ergodic theorem is, for sums of dependent observations, a 
counterpart to the laws of large numbers that we have used at many points in the 
preceding chapters. Note, once again, the need for this extension is that to this point, 
our laws of large numbers have required sums of independent observations. But, in this 
context, by design, observations are distinctly not independent.

For this result to be useful, we will require an extension.

Theorem 20.2 produces the results we need to characterize the least squares (and other) 
estimators. In particular, by applying the assumptions of Theorem 20.2 to the data series, 
[xt, et]t= -∞

t= ∞  we obtain that yt = xt
=B + et is a stationary and ergodic process.
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By analyzing terms element by element we can use these results directly to assert that 
averages of wt = xtet, Qtt = xtxt

=, and Qtt* = et
2xtxt

= will converge to their population 
counterparts, 0, Q and Q*.

20.4.2    CONVERGENCE TO NORMALITY—A CENTRAL LIMIT THEOREM

To form a distribution theory for least squares, GLS, ML, and GMM, we will need a 
counterpart to the central limit theorem. In particular, we need to establish a large 
sample distribution theory for quantities of the form2Ta 1

T a
T

t= 1
xtetb = 2Tw.

As noted earlier, we cannot invoke the familiar central limit theorems (Lindeberg–Levy, 
Lindeberg–Feller, Liapounov) because the observations in the sum are not independent. 
But, with the assumptions already made, we do have an alternative result. Some needed 
preliminaries are as follows:

DEFINITION 20.4  Martingale Sequence
A vector sequence zt is a martingale sequence if E[zt � zt - 1, zt - 2, c] = zt - 1.

DEFINITION 20.5  Martingale Difference Sequence
A vector sequence zt is a martingale difference sequence if E[zt � zt - 1, zt - 2, c] = 0.

THEOREM 20.3  Martingale Difference Central Limit Theorem

If zt is a vector valued stationary and ergodic martingale difference sequence, with 

E[ztzt
=] = �, where � is a finite positive definite matrix, and if zT = (1/T)a T

t= 1zt, 

then 2T zT ¡d
N[0, �]. [For discussion, see Davidson and MacKinnon (1993, 

Sections. 4.7 and 4.8).]10

10For convenience, we are bypassing a step in this discussion: establishing multivariate normality requires that 
the result first be established for the marginal normal distribution of each component, then that every linear 
combination of the variables also be normally distributed. (See Theorems D.17 and D.18A.) Our interest at this 
point is merely to collect the useful end results. Interested users may find the detailed discussions of the many 
subtleties and narrower points in White (2001) and Davidson and MacKinnon (1993, Chapter 4).

An important example of a martingale sequence is the random walk,

zt = zt - 1 + ut,

where Cov[ut, us] = 0 for all t ≠ s. Then

E[zt � zt - 1, zt - 2, c] = E[zt - 1 � zt - 1, zt - 2, c] + E[ut � zt - 1, zt - 2, c] = zt - 1 + 0 = zt - 1.

With Definition 20.5, we have the following broadly encompassing result:
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Theorem 20.3 is a generalization of the Lindeberg–Levy central limit theorem. It is not 
yet broad enough to cover cases of autocorrelation, but it does go beyond Lindeberg–
Levy, for example, in extending to the GARCH model of Section 20.13.3.11 But, looking 
ahead, this result encompasses what will be a very important application. Suppose in the 
classical linear regression model, {xt}t= -∞

t= ∞  is a stationary and ergodic multivariate 
stochastic process and {et}t= -∞

t= ∞  is an i.i.d. process—that is, not autocorrelated and not 
heteroscedastic. Then, this is the most general case of the classical model that still 
maintains the assumptions about et that we made in Chapter 2. In this case, the process 
{wt}t= -∞

t= ∞ = {xtet}t= -∞
t= ∞  is a martingale difference sequence, so that with sufficient 

assumptions on the moments of xt we could use this result to establish consistency and 
asymptotic normality of the least squares estimator.12

We now consider a central limit theorem that is broad enough to include the case 
that interested us at the outset, stochastically dependent observations on xt and 
autocorrelation in et.13 Suppose as before that {zt}t= -∞

t= ∞  is a stationary and ergodic 
stochastic process. We consider 2T zT. The following conditions are assumed:14

1.	 Asymptotic uncorrelatedness: E[zt � zt - k, zt - k - 1, c] converges in mean square to 
zero as k S ∞ . Note that is similar to the condition for ergodicity. White (2001) 
demonstrates that a (nonobvious) implication of this assumption is E[zt] = 0.

2.	 Summability of autocovariances: With dependent observations,

lim
TS ∞

Var[2T zT] = a
∞

t= 1
a
∞

s = 1
Cov[zt, zs

=] = a
∞

k = -∞
�k = �*.

To begin, we will need to assume that this matrix is finite, a condition called 
summability. Note this is the condition needed for convergence of QT*  in (20-11). If 
the sum is to be finite, then the k = 0 term must be finite, which gives us a necessary 
condition,

E[ztzt
=] = Γ0, a finite matrix.

3.	 Asymptotic negligibility of innovations: Let

rtk = E[zt � zt - k, zt - k - 1, c] - E[zt � zt - k - 1, zt - k - 2, c].

An observation zt may be viewed as the accumulated information that has entered the 
process since it began up to time t. Thus, it can be shown that

zt = a
∞

s = 0
rts.

The vector rtk can be viewed as the information in this accumulated sum that entered the 
process at time t - k. The condition imposed on the process is that a ∞

s = 02E[rts
= rts] be 

11Forms of the theorem that surpass Lindeberg–Feller (D.19) and Liapounov (Theorem D.20) by allowing for 
different variances at each time, t, appear in Ruud (2000, p. 479) and White (2001, p. 133). These variants extend 
beyond our requirements in this treatment.
12See, for example, Hamilton (1994, pp. 208–212).
13Detailed analysis of this case is quite intricate and well beyond the scope of this book. Some fairly terse analysis 
may be found in White (2001, pp. 122–133) and Hayashi (2000).
14See Hayashi (2000, p. 405) who attributes the results to Gordin (1969).
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finite. In words, condition 3 states that information eventually becomes negligible as it 
fades far back in time from the current observation. The AR(1) model (as usual) helps 
illustrate this point. If zt = rzt - 1 + ut, then

 rt0 = E[zt � zt, zt - 1, c] - E[zt � zt - 1, zt - 2, c] = zt - rzt - 1 = ut  ,

 rt1 = E[zt � zt - 1, zt - 2 c] - E[zt � zt - 2, zt - 3 c]

 = E[rzt - 1 + ut � zt - 1, zt - 2 c] - E[r(rzt - 2 + ut - 1) + ut � zt - 2, zt - 3, c]

 = r(zt - 1 - rzt - 2)
 = rut - 1.

By a similar construction, rtk = rkut - k from which it follows that zt = a ∞
s = 0 r

sut - s, 
which we saw earlier in (20-3). You can verify that if �r � 6 1, the negligibility condition 
will be met.

THEOREM 20.4  Gordin’s Central Limit Theorem
If zt is strongly stationary and ergodic and if conditions 1 - 3 are met, then 2T zT ¡d

N[0, �*].

With all this machinery in place, we now have the theorem we will need. We will be able 
to employ these tools when we consider the least squares, IV, and GLS estimators in the 
discussion to follow.

20.5	 LEAST SQUARES ESTIMATION

The least squares estimator is

b = (X′X)-1X′y = B + aX′X
T

b
-1

aX′E
T

b .

Unbiasedness follows from the results in Chapter 4—no modification is needed. We know 
from Chapter 9 that the Gauss–Markov theorem has been lost—assuming it exists (that 
remains to be established), the GLS estimator is efficient, and OLS is not. How much 
information is lost by using least squares instead of GLS depends on the data. Broadly, 
least squares fares better in data that have long periods and little cyclical variation, such 
as aggregate output series. As might be expected, the greater the autocorrelation in e, 
the greater will be the benefit to using generalized least squares (when this is possible). 
Even if the disturbances are normally distributed, the usual F and t statistics do not have 
those distributions. So, not much remains of the finite sample properties we obtained in 
Chapter 4. The asymptotic properties remain to be established.

20.5.1    ASYMPTOTIC PROPERTIES OF LEAST SQUARES

The asymptotic properties of b are straightforward to establish given our earlier results. 
If we assume that the process generating xt is stationary and ergodic, then by Theorems 
20.1 and 20.2, (1/T)(X′X) converges to Q and we can apply the Slutsky theorem to the 
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inverse. If et is not serially correlated, then wt = xtet is a martingale difference sequence, 
so (1/T)(X′E) converges to zero. This establishes consistency for the simple case. On the 
other hand, if [xt, et] are jointly stationary and ergodic, then we can invoke the ergodic 
theorems 20.1 and 20.2 for both moment matrices and establish consistency. Asymptotic 
normality is a bit more subtle. For the case without serial correlation in et, we can employ 
Theorem 20.3 for 2T w. The involved case is the one that interested us at the outset of this 
discussion, that is, where there is autocorrelation in et and dependence in xt. Theorem 20.4 
is in place for this case. Once again, the conditions described in the preceding section 
must apply and, moreover, the assumptions needed will have to be established both for 
xt and et. Commentary on these cases may be found in Davidson and MacKinnon (1993), 
Hamilton (1994), White (2001), and Hayashi (2000). Formal presentation extends beyond 
the scope of this text, so at this point, we will proceed, and assume that the conditions 
underlying Theorem 20.4 are met. The results suggested here are quite general, albeit 
only sketched for the general case. For the remainder of our examination, at least in 
this chapter, we will confine attention to fairly simple processes in which the necessary 
conditions for the asymptotic distribution theory will be fairly evident.

There is an important exception to the results in the preceding paragraph. If the 
regression contains any lagged values of the dependent variable, then in most cases, 
least squares will no longer be unbiased or consistent. (We will examine the exceptions 
in Section 20.9.3.) To take the simplest case, suppose that

 yt = byt - 1 + et,

 et = ret - 1 + ut,	 (20-12)

and assume �b � 6 1, �r � 6 1. In this model, the regressor and the disturbance are 
correlated. There are various ways to approach the analysis. One useful way is to 
rearrange (20-12) by subtracting ryt - 1 from yt. Then,

	 yt = (b + r)yt - 1 - bryt - 2 + ut,	 (20-13)

which is a classical regression with stochastic regressors. Because ut is an innovation 
in period t, it is uncorrelated with both regressors, and least squares regression 
of yt on (yt - 1, yt - 2) estimates r1 = (b + r) and r2 = -br. What is estimated by 
regression of yt on yt - 1 alone? Let gk = Cov[yt, yt - k] = Cov[yt, yt + k]. By stationarity, 
Var[yt] = Var[yt - 1], and Cov[yt, yt - 1] = Cov[yt - 1, yt - 2], and so on. These and (20-13) 
imply the following relationships:

 g0 = r1g1 + r2g2 + su
2,

 g1 = r1g0 + r2g1,

 g2 = r1g1 + r2g0.	 (20-14)

(These are the Yule–Walker equations for this model.) The slope in the simple regression 
estimates g1/g0, which can be found in the solutions to these three equations. (An 
alternative approach is to use the left-out variable formula, which is a useful way to 
interpret this estimator.) In this case, we see that the slope in the short regression is an 
estimator of (b + r) - br(g1/g0). In either case, solving the three equations in (20-14) 
for g0, g1, and g2 in terms of r1, r2, and su

2 produces

	 plim b =
b + r

1 + br
.	 (20-15)
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This result is between b (when r = 0) and 1 (when both b and r = 1). Therefore, 
least squares is inconsistent unless r equals zero. The more general case that includes 
regressors, xt, involves more complicated algebra but gives essentially the same result. 
This is a general result; when the equation contains a lagged dependent variable in the 
presence of autocorrelation, OLS and GLS are inconsistent. The problem can be viewed 
as one of an omitted variable.

20.5.2    ESTIMATING THE VARIANCE OF THE LEAST SQUARES ESTIMATOR

As usual, s2(X′X)-1 is an inappropriate estimator of s2(X′X)-1(X′ΩX)(X′X)-1, both 
because s2 is a biased estimator of s2 and because the matrix is incorrect. Generalities 
are scarce, but in general, for economic time series that are positively related to their 
past values, the standard errors conventionally estimated by least squares are likely to 
be too small. For slowly changing, trending aggregates such as output and consumption, 
this is probably the norm. For highly variable data such as inflation, exchange rates, 
and market returns, the situation is less clear. Nonetheless, as a general proposition, 
one would normally not want to rely on s2(X′X)-1 as an estimator of the asymptotic 
covariance matrix of the least squares estimator.

In view of this situation, if one is going to use least squares, then it is desirable to 
have an appropriate estimator of the covariance matrix of the least squares estimator. 
There are two approaches. If the form of the autocorrelation is known, then one can 
estimate the parameters of � directly and compute a consistent estimator. Of course, 
if so, then it would be more sensible to use feasible generalized least squares instead 
and not waste the sample information on an inefficient estimator. The second approach 
parallels the use of the White estimator for heteroscedasticity.

The extension of White’s result to the more general case of autocorrelation is 
much more difficult than in the heteroscedasticity case. The natural counterpart for 
estimating

Q* =
1
n a

n

i= 1
a
n

j= 1
sijxixj

=	 (20-16)

in (9-3) would be

Q* =
1
T a

T

t= 1
a
T

s = 1
etesxtxs

=.

But there are two problems with this estimator, one theoretical and one practical.
Unlike the heteroscedasticity case, the matrix in (20-16) is 1/T times a sum of T 2 terms, 

so it is difficult to conclude yet that it will converge to anything at all. This application 
is most likely to arise in a time-series setting. To obtain convergence, it is necessary to 
assume that the terms involving unequal subscripts in (20-16) diminish in importance as T 
grows. A sufficient condition is that terms with subscript pairs � t - s �  grow smaller as the 
distance between them grows larger. In practical terms, observation pairs are progressively 
less correlated as their separation in time grows. Intuitively, if one can think of weights with 
the diagonal elements getting a weight of 1.0, then in the sum, the weights in the sum grow 
smaller as we move away from the diagonal. If we think of the sum of the weights rather 
than just the number of terms, then this sum falls off sufficiently rapidly that as n grows 
large, the sum is of order T rather than T 2. Thus, we achieve convergence of Q* by assuming 
that the rows of X are well behaved and that the correlations diminish with increasing 
separation in time. (See Section 9.2. for a more formal statement of this condition.)

M20_GREE1366_08_SE_C20.indd   998 2/24/17   1:56 PM



	 CHAPTER 20  ✦  Serial Correlation  999

The practical problem is that Qn * need not be positive definite. Newey and West 
(1987a) have devised an estimator that overcomes this difficulty,

 Qn * = S0 +
1
T a

L

l= 1
a
T

t= l + 1
wl etet - l(xtxt - l

= + xt - lxt
=),

 wl = 1 -
l

(L + 1)
.	 (20-17)

[See (9-5).] [The weight in (20-17) is the Bartlett weight.] The Newey–West 
autocorrelation consistent covariance estimator is surprisingly simple and relatively easy 
to implement.15 There is a final problem to be solved. It must be determined in advance 
how large L is to be. In general, there is little theoretical guidance. Current practice 
specifies L ≈ T 1/4. Unfortunately, the result is not quite as crisp as that for the 
heteroscedasticity consistent estimator.

We have the result that b and biV are asymptotically normally distributed, and 
we have an appropriate estimator for the asymptotic covariance matrix. We have not 
specified the distribution of the disturbances, however. Thus, for inference purposes, 
the F statistic is approximate at best. Moreover, for more involved hypotheses, the 
likelihood ratio and Lagrange multiplier tests are unavailable. That leaves the Wald 
statistic, including asymptotic t ratios, as the main tool for statistical inference. We will 
examine a number of applications in the chapters to follow.

The White and Newey–West estimators are standard in the econometrics literature. 
We will encounter them at many points in the discussion to follow.

Example 20.5    Autocorrelation Consistent Covariance Estimation
For the model shown in Example 20.1, the regression results with the uncorrected standard 
errors and the Newey–West autocorrelation robust covariance matrix for lags of five quarters 
are shown in Table 20.1. The effect of the very high degree of autocorrelation is evident.

20.6	 GMM ESTIMATION

The GMM estimator in the regression model with autocorrelated disturbances is 
produced by the empirical moment equations,

	
1
T a

T

t= 1
xt(yt - xt

=BnGMM) =
1
T

 X′en(BnGMM) = m(BnGMM) = 0.	 (20-18)

15Both estimators are now standard features in modern econometrics computer programs. Further results on 
different weighting schemes may be found in Hayashi (2000, pp. 406–410).

Variable OLS Estimate OLS SE Corrected SE

Constant -1.6331 0.2286 0.3335
ln Output 0.2871 0.04738 0.07806
ln CPI 0.9718 0.03377 0.06585

R2 = 0.98952, r = 0.98762

Table 20.1  Robust Covariance Estimation

M20_GREE1366_08_SE_C20.indd   999 2/24/17   1:56 PM



1000	 Part V  ✦  Time Series and Macroeconometrics

The estimator is obtained by minimizing

q = m =(BnGMM)W m(BnGMM)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {asy. Var[2T m(B)]}-1,

which is the inverse of

asy. Var [2T m(B)] = asy. Var c 12T
a
n

i= 1
xiei d = plim

TS ∞

1
T a

T

t= 1
a
T

s = 1
s2rtsxtxs

= = s2Q*.

The optimal weighting matrix would be [s2Q*]-1. As in the heteroscedasticity case, this 
minimization problem is an exactly identified case, so, the weighting matrix is actually 
irrelevant to the solution. The GMM estimator for the regression model with autocorrelated 
disturbances is ordinary least squares. We can use the results in Section 20.5.2 to construct 
the asymptotic covariance matrix. We will require the assumptions in Section 20.4 to 
obtain convergence of the moments and asymptotic normality. We will wish to extend 
this simple result in one instance. In the common case in which xt contains lagged values 
of yt, we will want to use an instrumental variable estimator. We will return to that 
estimation problem in Section 20.9.3.

20.7	 TESTING FOR AUTOCORRELATION

The available tests for autocorrelation are based on the principle that if the true 
disturbances are autocorrelated, then this fact can be detected through the autocorrelations 
of the least squares residuals. The simplest indicator is the slope in the artificial regression

 et = ret - 1 + vt,

 et = yt - xt
=b,

 r = ¢ aT
t= 2

etet - 1≤n ¢ a
T - 1

t= 1
et

2≤.	 (20-19)

If there is autocorrelation, then the slope in this regression will be an estimator of 
r = Corr[et, et - 1]. The complication in the analysis lies in determining a formal means 
of evaluating when the estimator is large, that is, on what statistical basis to reject the 
null hypothesis that r equals zero. As a first approximation, treating (20-19) as a classical 
linear model and using a t or F (squared t) test to test the hypothesis is a valid way to 
proceed based on the Lagrange multiplier principle. We used this device in Example 20.3. 
The tests we consider here are refinements of this approach.

20.7.1    LAGRANGE MULTIPLIER TEST

The Breusch (1978)–Godfrey (1978) test is a Lagrange multiplier test of H0: no auto- 
correlation versus H1: et = ar(P) or et = Ma(P). The same test is used for either 
structure. The test statistic is

	 LM = T¢ e′X0(X0
=X0)

-1X0
=e

e′e
≤ = TR0

2,	 (20-20)
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where X0 is the original X matrix augmented by P additional columns containing the 
lagged OLS residuals, et - 1, c, et - P. The test can be carried out simply by regressing 
the ordinary least squares residuals et on xt0 (filling in missing values for lagged residuals 
with zeros) and referring TR0

2 to the tabled critical value for the chi-squared distribution 
with P degrees of freedom.16 Because X′e = 0, the test is equivalent to regressing et on 
the part of the lagged residuals that is unexplained by X. There is therefore a compelling 
logic to it; if any fit is found, then it is due to correlation between the current and lagged 
residuals. The test is a joint test of the first P autocorrelations of et, not just the first.

Example 20.6    Test for Autocorrelation
For the model shown in Examples 20.1 and 20.4, the regression of the least squares residuals 
on a constant, lnGDP, lnCPI and two lagged values of the residuals (with initial values filled 
with zeros) produces R2 = 0.97632. With T = 204, the Lagrange multiplier statistic is 199.17. 
The critical value from the chi-squared table for 2 degrees of freedom is 5.99. The hypothesis 
that there is no second (or greater) degree autocorrelation is rejected.

20.7.2    BOX AND PIERCE’S TEST AND LJUNG’S REFINEMENT

An alternative test that is asymptotically equivalent to the LM test when the null 
hypothesis, r = 0, is true and when X does not contain lagged values of y is due to Box 
and Pierce (1970). The Q test is carried out by referring

	 Q = Ta
P

j= 1
r j

2,	 (20-21)

where rj = a a T
t= j + 1etet - jbn a a T

t= 1et
2b , to the critical values of the chi-squared table 

with P degrees of freedom. A refinement suggested by Ljung and Box (1979) is

	 Q′ = T(T + 2)a
P

j= 1

r j
2

T - j
.	 (20-22)

The essential difference between the Godfrey–Breusch and the Box–Pierce tests is 
the use of partial correlations (controlling for X and the other variables) in the former and 
simple correlations in the latter. Under the null hypothesis, there is no autocorrelation in 
et, and no correlation between xt and es in any event, so the two tests are asymptotically 
equivalent. On the other hand, because it does not condition on xt, the Box–Pierce test is 
less powerful than the LM test when the null hypothesis is false, as intuition might suggest.

20.7.3    THE DURBIN–WATSON TEST

The Durbin–Watson statistic17 was the first formal procedure developed for testing for 
autocorrelation using the least squares residuals. The test statistic is

	 d = a T
t= 2(et - et - 1)

2

a T
t= 1et

2
= 2(1 - r) -

e1
2 + eT

2

a T
t= 1et

2
,	 (20-23)

16A warning to practitioners: Current software varies on whether the lagged residuals are filled with zeros or the 
first P observations are simply dropped when computing this statistic. In the interest of replicability, users should 
determine which is the case before reporting results.
17Durbin and Watson (1950, 1951, 1971).
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where r is the same first-order autocorrelation that underlies the preceding two 
statistics. If the sample is reasonably large, then the last term will be negligible, leaving 
d ≈ 2(1 - r). The statistic takes this form because the authors were able to determine 
the exact distribution of this transformation of the autocorrelation and could provide 
tables of critical values for specific values of T and K. The one-sided test for H0: r = 0 
against H1: r 7 0 is carried out by comparing d to values dL(T, K) and dU(T, K). If 
d 6 dL, the null hypothesis is rejected; if d 7 dU, the hypothesis is not rejected. If d lies 
between dL and dU, then no conclusion is drawn.

20.7.4    TESTING IN THE PRESENCE OF A LAGGED DEPENDENT VARIABLE

The Durbin–Watson test is not likely to be valid when there is a lagged dependent 
variable in the equation.18 The statistic will usually be biased toward a finding of no 
autocorrelation. Three alternatives have been devised. The LM and Q tests can be used 
whether or not the regression contains a lagged dependent variable. (In the absence of 
a lagged dependent variable, they are asymptotically equivalent.) As an alternative to 
the standard test, Durbin (1970) derived a Lagrange multiplier test that is appropriate 
in the presence of a lagged dependent variable. The test may be carried out by referring

	 h = r2T/(1 - Tsc
2),	 (20-24)

where sc
2 is the estimated variance of the least squares regression coefficient on yt - 1, to 

the standard normal tables. Large values of h lead to rejection of H0. The test has the 
virtues that it can be used even if the regression contains additional lags of yt, and it can 
be computed using the standard results from the initial regression without any further 
regressions. If sc

2 7 1/T, however, then it cannot be computed. An alternative is to regress 
et on xt, yt - 1, c, et - 1, and any additional lags that are appropriate for et and then to 
test the joint significance of the coefficient(s) on the lagged residual(s) with the standard 
F test. This method is a minor modification of the Breusch–Godfrey test. Under H0, the 
coefficients on the remaining variables will be zero, so the tests are the same asymptotically.

20.7.5    SUMMARY OF TESTING PROCEDURES

The preceding has examined several testing procedures for locating autocorrelation in 
the disturbances. In all cases, the procedure examines the least squares residuals. We can 
summarize the procedures as follows:

�LM test. LM = TR2 in a regression of the least squares residuals on [xt, et - 1, c et - P]. 
Reject H0 if LM 7 x*

2[P]. This test examines the covariance of the residuals with 
lagged values, controlling for the intervening effect of the independent variables.
�Q test. Q = T(T + 2)a P

j= 1r j
2/(T - j). Reject H0 if Q 7 x*

2[P]. This test examines 
the raw correlations between the residuals and P lagged values of the residuals.
�Durbin–Watson test. d = 2(1 - r). Reject H0: r = 0 if d 6 dL

* . This test looks 
directly at the first-order autocorrelation of the residuals.
�Durbin’s test. FD = the F statistic for the joint significance of P lags of the residuals 
in the regression of the least squares residuals on [xt, yt - 1, cyt - R, et - 1, cet - P]. 
Reject H0 if FD 7 F*[P, T - K - P]. This test examines the partial correlations 
between the residuals and the lagged residuals, controlling for the intervening effect 
of the independent variables and the lagged dependent variable.

18This issue has been studied by Nerlove and Wallis (1966), Durbin (1970), and Dezhbaksh (1990).
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The Durbin–Watson test has some major shortcomings. The inconclusive region 
is large if T is small or moderate. The bounding distributions, while free of the 
parameters B and s, do depend on the data (and assume that X is nonstochastic). 
An exact version based on an algorithm developed by Imhof (1980) avoids the 
inconclusive region, but is rarely used. The LM and Box–Pierce statistics do not 
share these shortcomings—their limiting distributions are chi squared independently 
of the data and the parameters. For this reason, the LM test has become the standard 
method in applied research.

20.8	 EFFICIENT ESTIMATION WHEN �  IS KNOWN

As a prelude to deriving feasible estimators for B in this model, we consider full 
generalized least squares estimation assuming that � is known. In the next section, we 
will turn to the more realistic case in which � must be estimated as well.

If the parameters of � are known, then the GLS estimator,

	 Bn = (X′�-1X)-1(X′�-1y),	 (20-25)

and the estimate of its sampling variance,

	 est.asy.Var[Bn] = sn e
2[X′�-1X]-1,	 (20-26)

where

	 sn e
2 =

(y - XBn)′�-1(y - XBn)

T
	 (20-27)

can be computed in one step. For the AR(1) case, data for the transformed model are

	 y* = E 21 - r2y1

y2 - ry1

y3 - ry2

f
yT - ryT - 1

U ,  X* = E 21 - r2x1

x2 - rx1

x3 - rx2

f
xT - rxT - 1

U .	 (20-28)

These transformations are variously labeled partial differences, quasi differences, or 
pseudo-differences. Note that in the transformed model, every observation except 
the first contains a constant term. What was the column of 1s in X is transformed to 
[(1 - r2)1/2, (1 - r), (1 - r), c]. Therefore, if the sample is relatively small, then the 
problems with measures of fit noted in Section 3.5 will reappear.

The variance of the transformed disturbance is

Var[et - ret - 1] = Var[ut] = su
2.

The variance of the first disturbance is also su
2; [see (20-6)]. This can be estimated using 

(1 - r2)sn e
2.

Corresponding results have been derived for higher-order autoregressive processes. 
For the AR(2) model,

	 et = u1et - 1 + u2et - 2 + ut,	 (20-29)
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the transformed data for generalized least squares are obtained by

 z*1 = J (1 + u2)[(1 - u2)
2 - u1

2]

1 - u2
R 1/2

z1,

 z*2 = (1 - u2
2)1/2z2 -

u1(1 - u1
2)1/2

1 - u2
z1,

 z*t = zt - u1zt - 1 - u2zt - 2, t 7 2,	 (20-30)

where zt is used for yt or xt. The transformation becomes progressively more complex 
for higher-order processes.19

Note that in both the AR(1) and AR(2) models, the transformation to y* and X* 
involves starting values for the processes that depend only on the first one or two 
observations. We can view the process as having begun in the infinite past. Because the 
sample contains only T observations, however, it is convenient to treat the first one or 
two (or P) observations as shown and consider them as initial values. Whether we view 
the process as having begun at time t = 1 or in the infinite past is ultimately immaterial 
in regard to the asymptotic properties of the estimators.

The asymptotic properties for the GLS estimator are quite straightforward given the 
apparatus we assembled in Section 20.4. We begin by assuming that {xt, et} are jointly an 
ergodic, stationary process. Then, after the GLS transformation, {x*t, e*t} is also stationary 
and ergodic. Moreover, e*t is nonautocorrelated by construction. In the transformed 
model, then, {w*t} = {x*te*t} is a stationary and ergodic martingale difference sequence. 
We can use the ergodic theorem to establish consistency and the central limit theorem 
for martingale difference sequences to establish asymptotic normality for GLS in this 
model. Formal arrangement of the relevant results is left as an exercise.

20.9	 ESTIMATION WHEN �  IS UNKNOWN

For an unknown �, there are a variety of approaches. Any consistent estimator of �(r) 
will suffice—recall from Theorem 9.5 in Section 9.4.2, all that is needed for efficient 
estimation of B is a consistent estimator of �(r). The complication arises, as might be 
expected, in estimating the autocorrelation parameter(s).

20.9.1    AR(1) DISTURBANCES

The AR(1) model is the one most widely used and studied. The most common procedure 
is to begin FGLS with a natural estimator of r, the autocorrelation of the residuals. 
Because b is consistent, we can use r. Others that have been suggested include Theil’s 
(1971) estimator, r[(T - K)/(T - 1)] and Durbin’s (1970), the slope on yt - 1 in a 
regression of yt on yt - 1, xt and xt - 1. The second step is FGLS based on (20-25)–(20-28).  
This is the Prais and Winsten (1954) estimator. The Cochrane and Orcutt (1949) 
estimator (based on computational ease) omits the first observation.

It is possible to iterate any of these estimators to convergence. Because the estimator 
is asymptotically efficient at every iteration, nothing is gained by doing so. Unlike the 
heteroscedastic model, iterating when there is autocorrelation does not produce the 

19See Box and Jenkins (1984) and Fuller (1976).
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maximum likelihood estimator. The iterated FGLS estimator, regardless of the estimator 
of r, does not account for the term (1/2) ln(1 - r2) in the log-likelihood function [see 
the following (20-31)].

Maximum likelihood estimators can be obtained by maximizing the log likelihood 
with respect to B, su

2, and r. The log-likelihood function may be written

	 ln L = - a T
t= 1ut

2

2su
2 +

1
2

 ln(1 - r2) -
T
2

 (ln 2p + ln su
2),	 (20-31)

where, as before, the first observation is computed differently from the others using 
(20-28). Based on the MLE, the standard approximations to the asymptotic variances 
of the estimators are

 est.asy.Var[BnML] = sn e,ML
2 [X′�n ML

-1 X]-1,

 est.asy.Var[sn u,ML
2 ] = 2sn u,ML

4 /T,

 est.asy.Var[rnML] = (1 - rnML
2 )/T. 	 (20-32)

All the foregoing estimators have the same asymptotic properties. The available evidence 
on their small-sample properties comes from Monte Carlo studies and is, unfortunately, 
only suggestive. Griliches and Rao (1969) find evidence that if the sample is relatively 
small and r is not particularly large, say, less than 0.3, then least squares is as good as or 
better than FGLS. The problem is the additional variation introduced into the sampling 
variance by the variance of r. Beyond these, the results are rather mixed. Maximum 
likelihood seems to perform well in general, but the Prais–Winsten estimator is evidently 
nearly as efficient. Both estimators have been incorporated in all contemporary software. 
In practice, the Prais and Winsten (1954) and Beach and MacKinnon (1978a) maximum 
likelihood estimators are probably the most common choices.

20.9.2    APPLICATION: ESTIMATION OF A MODEL WITH AUTOCORRELATION

The model of the U.S. gasoline market that appears in Example 6.20 is

lna G
Pop

b
t
= b1 + b2 lna Income

Pop
b

t
+ b3 ln PG, t + b4 ln PNC, t + b5 ln PUC, t + b6t + et.

The results in Figure 20.2 suggest that the specification may be incomplete, and, if so, 
there may be autocorrelation in the disturbances in this specification. Least squares 
estimates of the parameters using the data in Appendix Table F2.2 appear in the first 
row of Table 20.2. [The dependent variable is ln (Gas expenditure/(price * population)). 
These are the OLS results reported in Example 6.20.] The first five autocorrelations of 
the least squares residuals are 0.667, 0.438, 0.142, -0.018, and -0.198. This produces 
Box–Pierce and Box–Ljung statistics of 36.217 and 38.789, respectively, both of which 
are larger than the critical value from the chi-squared table of 11.07. We regressed the 
least squares residuals on the independent variables and five lags of the residuals. (The 
missing values in the first five years were filled with zeros.) The coefficients on the lagged 
residuals and the associated t statistics are 0.741(4.635), 0.153(0.789), -0.246(-1.262), 
0.0942(0.472), and -0.125(-0.658). The R2 in this regression is 0.549086, which produces 
a chi-squared value of 28.55. This is larger than the critical value of 11.07, so once again, 
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the null hypothesis of zero autocorrelation is rejected. The plot of the residuals shown 
in Figure 20.5 seems consistent with this conclusion.

The Prais and Winsten FGLS estimates appear in the second row of Table 20.2, 
followed by the Cochrane and Orcutt results, then the maximum likelihood estimates. 
[The autocorrelation coefficient computed using (1 - d/2) (see Section 20.7.3) is 
0.78750. The MLE is computed using the Beach and MacKinnon algorithm.] Finally, 
we fit the AR(2) model by first regressing the least squares residuals, et, on et - 1 and 
et - 2 (without a constant term and filling the first two observations with zeros). The two 
estimates are 0.751941 and -0.022464, respectively. With the estimates of u1 and u2, we 
transformed the data using yt* = yt - u1yt - 1 - u2yt - 2 and likewise for each regressor. 
Two observations are then discarded, so the AR(2) regression uses 50 observations while 

FIGURE 20.5    Least Squares Residuals.

Residual Plot for Regression of LOGG on x
(Unstandardized Residuals)

1952
–0.1250

–0.1000

–0.0750

–0.0500

–0.0250

0.0000

0.0250

0.0500

0.0750
Residual

1958 1964 1970 1976 1982 1988 1994 2000 2006
Year

b1 b2 b3 b4 b5 b6 r

OLS -26.68 1.6250 -0.05392 -0.0834 -0.08467 -0.01393 0.0000

R2 = 0.96493 (2.000) (0.1952) (0.04216) (0.1765) (0.1024) (0.00477) (0.0000)

Prais– -18.58 0.7447 -0.1138 -0.1364 -0.08956 0.006689 0.9567
Winsten (1.768) (0.1761) (0.03689) (0.1528) (0.07213) (0.004974) (0.04078)
Cochrane– -18.76 0.7300 -0.1080 -0.06675 0.04190 -0.0001653 0.9695
Orcutt (1.382) (0.1377) (0.02885) (0.1201) (0.05713) (0.004082) (0.03434)
Maximum -16.25 0.4690 -0.1387 -0.09682 -0.001485 0.01280 0.9792
Likelihood (1.391) (0.1350) (0.02794) (0.1270) (0.05198) (0.004427) (0.02816)
AR(2) -19.45 0.8116 -0.09538 -0.09099 0.04091 -0.001374 0.8610

(1.495) (0.1502) (0.03117) (0.1297) (0.06558) (0.004227) (0.07053)

Table 20.2  Parameter Estimates (Standard errors in parentheses)
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the Prais–Winsten estimator uses 52 and the Cochrane–Orcutt regression uses 51. In 
each case, the autocorrelation of the FGLS residuals is computed and reported in the 
last column of the table.

One might want to examine the residuals after estimation to ascertain whether 
the AR(1) model is appropriate. In the results just presented, there are two large 
autocorrelation coefficients listed with the residual-based tests, and in computing the 
LM statistic, we found that the first two coefficients were statistically significant. If 
the AR(1) model is appropriate, then one should find that only the coefficient on the 
first lagged residual is statistically significant in this auxiliary, second-step regression. 
Another indicator is provided by the FGLS residuals themselves. After computing the 
FGLS regression, the estimated residuals,

en = yt - xt
=Bn ,

will still be autocorrelated. In our results using the Prais–Winsten estimates, the 
autocorrelation of the FGLS residuals is 0.957. This is to be expected. However, if the 
model is correct, then the transformed residuals,

un t = ent - rnent - 1,

should be at least close to nonautocorrelated. But, for our data, the autocorrelation of 
these adjusted residuals is only 0.292. It appears on this basis that, in fact, the AR(1) 
model has largely completed the specification.

20.9.3    ESTIMATION WITH A LAGGED DEPENDENT VARIABLE

In Section 20.5.1, we encountered the problem of estimation by least squares when the 
model contains both autocorrelation and lagged dependent variable(s). Because the OLS 
estimator is inconsistent, the residuals on which an estimator of r would be based are 
likewise inconsistent. Therefore, rn  will be inconsistent as well. The consequence is that 
the FGLS estimators described earlier are not usable in this case. There is, however, an 
alternative way to proceed, based on the method of instrumental variables. The method 
of instrumental variables was introduced in Section 8.3.2. To review, the general problem 
is that in the regression model, if

plim(1/T)X′E ≠ 0,

then the least squares estimator is not consistent. A consistent estimator is

biV = (Z′X)-1(Z′y),

where Z is a set of K variables chosen such that plim(1/T)Z′E = 0 but plim(1/T)Z′X ≠ 0. 
For the purpose of consistency only, any such set of instrumental variables will suffice. 
The relevance of that here is that the obstacle to consistent FGLS is, at least for the 
present, the lack of a consistent estimator of r. By using the technique of instrumental 
variables, we may estimate B consistently, then estimate r and proceed.

Hatanaka (1974, 1976) has devised an efficient two-step estimator based on this 
principle. To put the estimator in the current context, we consider estimation of the 
model

 yt = x=
tB + gyt - 1 + et,

 et = ret - 1 + ut.
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To get to the second step of FGLS, we require a consistent estimator of the slope 
parameters. These estimates can be obtained using an IV estimator, where the column 
of Z corresponding to yt - 1 is the only one that need be different from that of X. An 
appropriate instrument can be obtained by using the fitted values in the regression of yt 
on xt and xt - 1. The residuals from the IV regression are then used to construct

	 rn = a T
t= 3 ent ent - 1

a T
t= 3ent

2
,	 (20-33)

where

ent = yt - biV
= xt - ciVyt - 1.

FGLS estimates may now be computed by regressing y*t
= yt - rnyt - 1 on

 x*t
= xt - rnxt - 1,

 y*t - 1
= yt - 1 - rnyt - 2,

 ent - 1 = yt - 1 - biV
= xt - 1 - ciVyt - 2.

Let d be the coefficient on ent - 1 in this regression. The efficient estimator of r is

rnn = rn + d.

Appropriate asymptotic standard errors for the estimators, including rnn,  are obtained 
from the s2[X*

=X*]
-1 computed at the second step. These estimators are asymptotically 

equivalent to maximum likelihood estimators.20

One could argue that the concern about the bias of least squares is misdirected. 
Consider, again, the model in (20-12),

 yt = byt - 1 + et,

 et = ret - 1 + ut.

We established that linear regression of yt on yt - 1 estimates not b, but 
g = (b + r)/(1 - br). It would follow that

E[yt � yt - 1] = gyt - 1,

and this is what was of interest from the outset. If so, then the existence of autocorrelation 
in et is a moot point. In a more completely specified model,

yt = x=
tB + gyt - 1 + et,

what is likely to be of interest is E[yt � xt, yt - 1] = x=
tl + dyt - 1, and the question of 

autocorrelation of et is a side issue. The nature of the autocorrelation in et will determine 
whether B = L and g = d. In the simplest case, as we saw earlier, if Cov[et, et - s] = 0 
for all s, then these equalities will hold. If et is autocorrelated, then they will not. There 
is a fundamental ambiguity in this treatment, however. In the simple model, we also 
found earlier that e[yt � yt - 1,yt - 2] = g1yt - 1 + g2yt - 2. There is no argument that the 
second-order equation is more or less correct than the first. They are two different 

20See Hatanaka (2000).
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representations of the same time series.21 This idea calls into question the notion of 
“correcting” for autocorrelation in a regression. We saw in Example 20.2 another 
implication. The objective of the model builder would be to build residual autocorrelation 
out of the model. The presence of autocorrelation in the disturbance suggests that the 
regression part of the equation is incomplete.

Example 20.7    Dynamically Complete Regression
Figure 20.6 shows the residuals from two specifications of the gasoline demand model from 
Section 20.9.2: a static form,

lna G
pop

b
t
= b1 + b2 lna Income

Pop
b

t
+ b3 ln PG, t + b4 ln PNC, t + b5 ln PUC, t + b6t + et,

and a dynamic form,

lna G
Pop

b
t
= b1 + b2 lna Income

Pop
b

t
+ b3 ln PG, t + b4 ln PNC, t + b5 ln PUC, t + b6t

+ g lna G
Pop

b
t - 1

+ et.

The residuals from the dynamic model are shown with the solid lines. The horizontal bars 
contain the full range of variation of these residuals. The dashed figure shows the residuals from 
the static model. The much narrower range of the first set reflects the better fit of the model 
with the additional (highly significant) regressor. Note, as well, the more substantial amount 
of fluctuation which suggests less autocorrelation of the residuals from the more dynamically 
complete regression. To test for autocorrelation of the residuals, we computed the residuals 
from each regression and regressed them on the lagged residual and the other variables in 
the equations. For the dynamic model, the LM statistic (TR2) equaled 1.641. This would be a 

21This is an implication of Wold’s Decomposition Theorem. See Anderson (1971) or Greene (2003b, p. 619).

FIGURE 20.6    Regression Residuals.
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chi-squared variable with one degree of freedom. The critical value is 3.84, so the hypothesis 
of no autocorrelation is not rejected. The equation would appear to be dynamically complete. 
The same computation for the static model produces a chi-squared value of 29.787.

The estimates of the parameters for the two equations are given in Table 20.3. The fit of 
the model is high in both cases, but approaches one in the dynamic case. Long-run income 
and price elasticities are computed as h = bk /(1 - g).

20.10	 AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

Heteroscedasticity is often associated with cross-sectional data, whereas time series are 
usually studied in the context of homoscedastic processes. In analyses of macroeconomic 
data, Engle (1982, 1983) and Cragg (1982) found evidence that for some kinds of data, 
the disturbance variances in time-series models were less stable than usually assumed. 
Engle’s results suggested that in models of inflation, large and small forecast errors 
appeared to occur in clusters, suggesting a form of heteroscedasticity in which the 
variance of the forecast error depends on the size of the previous disturbance. He 
suggested the autoregressive, conditionally heteroscedastic, or ARCH, model as an 
alternative to the usual time-series process. More recent studies of financial markets 
suggest that the phenomenon is quite common. The ARCH model has proven to be 
useful in studying the volatility of inflation,22 the term structure of interest rates,23 the 
volatility of stock market returns,24 and the behavior of foreign exchange markets,25 to 
name but a few. This section will describe specification, estimation, and testing, in the 
basic formulations of the ARCH model and some extensions.26

22Coulson and Robins (1985).
23Engle, Hendry, and Trumble (1985).
24Engle, Lilien, and Robins (1987).
25Domowitz and Hakkio (1985) and Bollerslev and Ghysels (1996).
26Engle and Rothschild (1992) give a survey of this literature which describes many extensions. Mills (1993) also 
presents several applications. See, as well, Bollerslev (1986) and Li, Ling, and McAleer (2001). See McCullough 
and Renfro (1999) for discussion of estimation of this model.

Dynamic Model Static Model

Std. Elasticity Std.

Variable Estimate Error S.R. L.R. Estimate Error

Constant -5.31920 1.45463 – – -26.4319 1.83501
ln Income 0.33945 0.10203 0.339 1.642 1.60170 0.17904
ln Price -0.07617 0.01463 -0.076 -0.368 -0.06167 0.03872
ln P New Cars -0.11713 0.06144 -0.117 -0.567 -0.14083 0.16284
ln P Used Cars 0.10016 0.03709 0.100 0.484 -0.01293 0.09664
Time trend -0.00362 0.00180 – – -0.01518 0.00439
ln Demand[-1] 0.79327 0.04807 – – – –

R2 0.99552 0.96780

LM Statistic (1) 1.641 29.787

Table 20.3  Estimated Gasoline Demand Equations
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Example 20.8    Stochastic Volatility
Figure 20.7 shows Bollerslev and Ghysel’s 1974 data on the daily percentage nominal return 
for the Deutschmark/Pound exchange rate. (These data are given in Appendix Table F20.1.) 
The variation in the series appears to be fluctuating, with several clusters of large and small 
movements.

20.10.1    THE ARCH(1) MODEL

The simplest form of this model is the ARCH(1) model,

 yt = xt
=B + et,

 et = ut2a0 + a1et - 1
2  .	 (20-34)

where ut is distributed as standard normal.27 It follows that E[et � xt, et - 1] = 0, so that 
E[et � xt] = 0 and E[yt � xt] = xt

=B. Therefore, this model is a classical regression model. But

Var[et � et - 1] = E[et
2 � et - 1] = E[ut

2][a0 + a1et - 1
2 ] = a0 + a1et - 1

2 ,

so et is conditionally heteroscedastic, not with respect to xt as we considered in Chapter 9, 
but with respect to et - 1. The unconditional variance of et is

Var[et] = Var{E[et � et - 1]} + E{Var[et � et - 1]} = a0 + a1E[et - 1
2 ] = a0 + a1Var[et - 1].

If the process generating the disturbances is weakly (covariance) stationary (see 
Definition 19.2),28 then the unconditional variance is not changing over time so

27The assumption that ut has unit variance is not a restriction. The scaling implied by any other variance would be 
absorbed by the other parameters.
28This discussion will draw on the results and terminology of time-series analysis in Section 20.3. The reader may 
wish to peruse this material at this point.

FIGURE 20.7    Nominal Exchange Rate Returns.
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Var[et] = Var[et - 1] = a0 + a1 Var[et - 1] =
a0

1 - a1

.

For this ratio to be finite and positive, �a1 �  must be less than 1. Then, unconditionally, 
et is distributed with mean zero and variance s2 = a0/(1 - a1). Therefore, the model 
obeys the classical assumptions, and ordinary least squares is the most efficient linear 
unbiased estimator of B.

But there is a more efficient nonlinear estimator. The log-likelihood function for 
this model is given by Engle (1982). Conditioned on starting values y0 and x0 (and e0), 
the conditional log likelihood for observations t = 1, c, T is the one we examined in 
Section 14.9.2.a for the general heteroscedastic regression model [see (14-58)],

ln L = -
T
2

 ln(2p) -
1
2 a

T

t= 1
ln(a0 + a1et - 1

2 ) -
1
2 a

T

t= 1

et
2

a0 + a1et - 1
2 , et = yt - B′xt.  (20-35)

Maximization of log L can be done with the conventional methods, as discussed in 
Appendix E.29

20.10.2    ARCH(q), ARCH-IN-MEAN, AND GENERALIZED ARCH MODELS

The natural extension of the ARCH(1) model presented before is a more general model 
with longer lags. The ARCH(q) process,

st
2 = a0 + a1et - 1

2 + a2et - 2
2 + g + aqet - q

2 ,

is a qth order moving average [MA(q)] process.30 This section will generalize the 
ARCH(q) model, as suggested by Bollerslev (1986), in the direction of an autoregressive-
moving average (ARMA) model of Section 21.2. The discussion will parallel his 
development, although many details are omitted for brevity. The reader is referred to 
that paper for background and for some of the less critical details.

Among the many variants of the capital asset pricing model (CAPM) is an 
intertemporal formulation by Merton (1980) that suggests an approximate linear 
relationship between the return and variance of the market portfolio. One of the possible 
flaws in this model is its assumption of a constant variance of the market portfolio. In this 
connection, then, the ARCH-in-Mean, or ARCH-M, model suggested by Engle, Lilien, 
and Robins (1987) is a natural extension. The model states that

yt = B′xt + dst
2 + et,

Var[et � Ψt] = arCH(q).

Among the interesting implications of this modification of the standard model is that 
under certain assumptions, d is the coefficient of relative risk aversion. The ARCH-M 
model has been applied in a wide variety of studies of volatility in asset returns, including 

29Engle (1982) and Judge et al. (1985, pp. 441–444) suggest a four-step procedure based on the method of scoring 
that resembles the two-step method we used for the multiplicative heteroscedasticity model in Section 14.10.3. 
However, the full MLE is now incorporated in most modern software, so the simple regression-based methods, 
which are difficult to generalize, are less attractive in the current literature. But see McCullough and Renfro 
(1999) and Fiorentini, Calzolari, and Panattoni (1996) for commentary and some cautions related to maximum 
likelihood estimation.

30Once again, see Engle (1982).
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the daily Standard & Poor’s Index31 and weekly New York Stock Exchange returns.32 A 
lengthy list of applications is given in Bollerslev, Chou, and Kroner (1992).

The ARCH-M model has several noteworthy statistical characteristics. Unlike the 
standard regression model, misspecification of the variance function does affect the 
consistency of estimators of the parameters of the mean.33 Recall that in the classical 
regression setting, weighted least squares is consistent even if the weights are misspecified 
as long as the weights are uncorrelated with the disturbances. That is not true here. If 
the ARCH part of the model is misspecified, then conventional estimators of B and d 
will not be consistent. Bollerslev, Chou, and Kroner (1992) list a large number of studies 
that called into question the specification of the ARCH-M model, and they subsequently 
obtained quite different results after respecifying the model. A closely related practical 
problem is that the mean and variance parameters in this model are no longer 
uncorrelated. In analysis up to this point, we made quite profitable use of the block 
diagonality of the Hessian of the log-likelihood function for the model of 
heteroscedasticity. But the Hessian for the ARCH-M model is not block diagonal. In 
practical terms, the estimation problem cannot be segmented as we have done previously 
with the heteroscedastic regression model. All the parameters must be estimated 
simultaneously.

The generalized autoregressive conditional heteroscedasticity (GARCH) model is 
defined as follows.34 The underlying regression is the usual one in (20-34). Conditioned on 
an information set at time t, denoted Ψt, the distribution of the disturbance is assumed to be

et � Ψt ∼ N[0, st
2],

where the conditional variance is

	 st
2 = a0 + d1st - 1

2 + d2st - 2
2 + g + dpst - p

2 + a1et - 1
2 + a2et - 2

2 + g + aqet - q
2 .

(20-36)

Define

zt = [1, st - 1
2 , st - 2

2 , c, st - p
2 , et - 1

2 , et - 2
2 , c, et - q

2 ]′

and

G = [a0, d1, d2, c, dp, a1, c, aq]′ = [a0, D′, A′]′.

Then,

st
2 = G′zt.

Notice that the conditional variance is defined by an autoregressive-moving average 
[ARMA (p, q)] process in the innovations et

2. The difference here is that the mean of the 

31See French, Schwert, and Stambaugh (1987).
32See Chou (1988).
33See Pagan and Ullah (1988) for a formal analysis of this point.
34As have most areas in time-series econometrics, the line of literature on GARCH models has progressed rapidly 
in recent years and will surely continue to do so. We have presented Bollerslev’s model in some detail, despite 
many recent extensions, not only to introduce the topic as a bridge to the literature, but also because it provides a 
convenient and interesting setting in which to discuss several related topics such as double-length regression and 
pseudo-maximum likelihood estimation.
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random variable of interest yt is described completely by a heteroscedastic, but otherwise 
ordinary, regression model. The conditional variance, however, evolves over time in what 
might be a very complicated manner, depending on the parameter values and on p and q. 
The model in (20-36) is a GARCH(p,q) model, where p refers, as before, to the order of 
the autoregressive part.35 As Bollerslev (1986) demonstrates with an example, the virtue 
of this approach is that a GARCH model with a small number of terms appears to 
perform as well as or better than an ARCH model with many.

The stationarity conditions are important in this context to ensure that the moments 
of the normal distribution are finite. The reason is that higher moments of the normal 
distribution are finite powers of the variance. A normal distribution with variance st

2 
has fourth moment 3st

4, sixth moment 15st
6, and so on. [The precise relationship of the 

even moments of the normal distribution to the variance is m2k = (s2)k(2k)!/(k!2k).] 
Simply ensuring that st

2 is stable does not ensure that higher powers are as well.36 
Bollerslev presents a useful figure that shows the conditions needed to ensure stability 
for moments up to order 12 for a GARCH(1,1) model and gives some additional 
discussion. For example, for a GARCH(1,1) process, for the fourth moment to exist, 
3a1

2 + 2a1d1 + d1
2 must be less than 1.

It is convenient to write (20-36) in terms of polynomials in the lag operator,

st
2 = a0 + D(L)st

2 + A(L)et
2.

The stationarity condition for such an equation is that the roots of the characteristic 
equation, 1 - D(z) = 0, must lie outside the unit circle. For the present, we will assume 
that this case is true for the model we are considering and that A(1) + D(1) 6 1. 
[This assumption is stronger than that needed to ensure stationarity in a higher-
order autoregressive model, which would depend only on D(L).] The implication is 
that the GARCH process is covariance stationary with E[et] = 0 (unconditionally), 
Var[et] = a0/[1 - A(1) - D(1)], and Cov[et, es] = 0 for all t ≠ s. Thus, unconditionally 
the model is the classical regression model that we examined in Chapters 2–6.

The usefulness of the GARCH specification is that it allows the variance to evolve 
over time in a way that is much more general than the simple specification of the ARCH 
model. For the example discussed in his paper, Bollerslev reports that although Engle 
and Kraft’s (1983) ARCH(8) model for the rate of inflation in the GNP deflator appears 
to remove all ARCH effects, a closer look reveals GARCH effects at several lags. By 
fitting a GARCH(1,1) model to the same data, Bollerslev finds that the ARCH effects 
out to the same eight-period lag as fit by Engle and Kraft and his observed GARCH 
effects are all satisfactorily accounted for.

20.10.3    MAXIMUM LIKELIHOOD ESTIMATION OF THE GARCH MODEL

Bollerslev describes a method of estimation based on the BHHH algorithm. As he 
shows, the method is relatively simple, although with the line search and first derivative 

35We have changed Bollerslev’s notation slightly so as not to conflict with our previous presentation. He used B 
instead of our D in (20-36) and b instead of our B in (20-34).
36The conditions cannot be imposed a priori. In fact, there is no nonzero set of parameters that guarantees stability 
of all moments, even though the normal distribution has finite moments of all orders. As such, the normality 
assumption must be viewed as an approximation.
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method that he suggests, it probably involves more computation and more iterations 
than necessary. Following the suggestions of Harvey (1976), it turns out that there is a 
simpler way to estimate the GARCH model that is also very illuminating. This model is 
actually very similar to the more conventional model of multiplicative heteroscedasticity 
that we examined in Section 14.10.3.

For normally distributed disturbances, the log likelihood for a sample of T obser
vations is37

ln L = a
T

t= 1
- 1

2
 J ln(2p) + ln st

2 +
et

2

st
2 R = a

T

t= 1
ln ft(U) = a

T

t= 1
lt(U),

where et = yt - xt
=B and U = (B′, a0, A′, D′)′ = (B′, G′)′. Derivatives of ln L are 

obtained by summation. Let lt denote ln ft(U). The first derivatives with respect to the 
variance parameters are

	
0lt
0G

= -
1
2

 c 1
st

2 -
et

2

(st
2)2 d  

0st
2

0G
=

1
2

 ¢ 1
st

2 ≤  
0st

2

0G
 ¢ et

2

st
2 - 1≤ =

1
2

 ¢ 1
st

2 ≤gtvt = btvt.	 (20-37)

Note that E[vt] = 0. Suppose, for now, that there are no regression parameters. Newton’s 
method for estimating the variance parameters would be

	 Gn i + 1 = Gn i - H-1g,	 (20-38)

where H indicates the Hessian and g is the first derivatives vector. Following 
Harvey’s suggestion (see Section 14.10.3), we will use the method of scoring instead. 
To do this, we make use of E[vt] = 0 and E[et

2/st
2] = 1. After taking expectations in  

(20-37), the iteration reduces to a linear regression of v*t
= (1/22)vt on regressors 

w*t
= (1/22)gt/st

2. That is,

	 Gn i + 1 = Gn i + [W*
=W*]

-1W*
=v* = Gn i + [W*

=W*]
-1a 0 ln L

0G
b ,	 (20-39)

where row t of W* is w*t
= . The iteration has converged when the slope vector is zero, which 

happens when the first derivative vector is zero. When the iterations are complete, the 
estimated asymptotic covariance matrix is simply

est.asy.Var[Gn ] = [Wn *
=W*]

-1

based on the estimated parameters.
The usefulness of the result just given is that E[02 ln L/0G0B′] is, in fact, zero. Because 

the expected Hessian is block diagonal, applying the method of scoring to the full 
parameter vector can proceed in two parts, exactly as it did in Section 14.10.3 for the 
multiplicative heteroscedasticity model. That is, the updates for the mean and variance 

37There are three minor errors in Bollerslev’s derivation that we note here to avoid the apparent inconsistencies. 
In his (22), 12 ht should be 12 ht

-1. In (23), -2ht
-2 should be -ht

-2. In (28), h 0h/0v should, in each case, be (1/h) 0h/0v. 
[In his (8), a0a1 should be a0 + a1, but this has no implications for our derivation.]
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parameter vectors can be computed separately. Consider then the slope parameters, B. 
The same type of modified scoring method as used earlier produces the iteration

 Bn i + 1 = Bn i + c a
T

t= 1

xtxt
=

st
2 +

1
2

 ¢ dt

st
2 ≤ ¢ dt

st
2 ≤′ R -1JaT

t= 1

xtet

st
2 +

1
2

 ¢ dt

st
2 ≤vtR

 = Bn i + JaT
t= 1

xtxt
=

st
2 +

1
2

 ¢ dt

st
2 ≤ ¢ dt

st
2 ≤′ R -1

a 0 ln L
0B

b

 = Bn i + hi, � (20-40)

which has been referred to as a double-length regression.38 The update vector hi is the 
vector of slopes in an augmented or double-length generalized regression,

	 hi = [C′�-1C]-1[C′�-1a],	 (20-41)

where C is a 2T * K matrix whose first T rows are the X from the original regression 
model and whose next T rows are (1/22)dt

=/st
2, t = 1, c, T; a is a 2T * 1 vector whose 

first T elements are et and whose next T elements are (1/22)vt/st
2, t = 1, c, T; and 

� is a diagonal matrix with 1/st
2 in positions 1, . . . , T and ones below observation T. At 

convergence, [C′�-1C]-1 provides the asymptotic covariance matrix for the MLE. The 
resemblance to the familiar result for the generalized regression model is striking, but 
note that this result is based on the double-length regression.

The iteration is done simply by computing the update vectors to the current 
parameters as defined earlier.39 An important consideration is that to apply the scoring 
method, the estimates of B and G are updated simultaneously. That is, one does not use 
the updated estimate of G in (20-39) to update the weights for the GLS regression to 
compute the new B in (20-40). The same estimates (the results of the prior iteration) 
are used on the right-hand sides of both (20-39) and (20-40). The remaining problem is 
to obtain starting values for the iterations. One obvious choice is b, the OLS estimator, 
for B, e′e/T = s2 for a0, and zero for all the remaining parameters. The OLS slope 
vector will be consistent under all specifications. A useful alternative in this context 
would be to start A at the vector of slopes in the least squares regression of et

2, the 
squared OLS residual, on a constant and q lagged values.40 As discussed later, an LM 
test for the presence of GARCH effects is then a byproduct of the first iteration. In 
principle, the updated result of the first iteration is an efficient two-step estimator of all 
the parameters. But having gone to the full effort to set up the iterations, nothing is 
gained by not iterating to convergence. One virtue of allowing the procedure to iterate 
to convergence is that the resulting log-likelihood function can be used in likelihood 
ratio tests.

38See Orme (1990) and Davidson and MacKinnon (1993, Chapter 14).
39See Fiorentini et al. (1996) on computation of derivatives in GARCH models.
40A test for the presence of ARCH(q) effects against none can be carried out by carrying TR2 from this regression 
into a table of critical values for the chi-squared distribution. But in the presence of GARCH effects, this 
procedure loses its validity.
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20.10.4    TESTING FOR GARCH EFFECTS

The preceding development appears fairly complicated. In fact, it is not, because at each 
step, nothing more than a linear least squares regression is required. The intricate part 
of the computation is setting up the derivatives. On the other hand, it does take a fair 
amount of programming to get this far.41 As Bollerslev suggests, it might be useful to test 
for GARCH effects first.

The simplest approach is to examine the squares of the least squares residuals. 
The autocorrelations (correlations with lagged values) of the squares of the residuals 
provide evidence about ARCH effects. An LM test of ARCH(q) against the hypothesis 
of no ARCH effects [ARCH(0), the classical model] can be carried out by computing 
x2 = TR2 in the regression of et

2 on a constant and q lagged values. Under the null 
hypothesis of no ARCH effects, the statistic has a limiting chi-squared distribution with 
q degrees of freedom. Values larger than the critical table value give evidence of the 
presence of ARCH (or GARCH) effects.

Bollerslev suggests a Lagrange multiplier statistic that is, in fact, surprisingly simple 
to compute. The LM test for GARCH(p,0) against GARCH(p,q) can be carried out by 
referring T times the R2 in the linear regression defined in (20-42) to the chi-squared 
critical value with q degrees of freedom. There is, unfortunately, an indeterminacy in this 
test procedure. The test for ARCH(q) against GARCH(p,q) is exactly the same as that 
for ARCH(p) against arCH(p + q). For carrying out the test, one can use as starting 
values a set of estimates that includes D = 0 and any consistent estimators for B and A. 
Then TR2 for the regression at the initial iteration provides the test statistic.42 A number 
of recent papers have questioned the use of test statistics based solely on normality. 
Wooldridge (1991) is a useful summary with several examples.

Example 20.9    GARCH Model for Exchange Rate Volatility
Bollerslev and Ghysels analyzed the exchange rate data in Appendix Table F20.1 using a 
GARCH(1,1) model,

yt = m + et,
E[et � et - 1] = 0,

Var[et � et - 1] = st
2 = a0 + a1et - 1

2 + dst - 1
2 .

The least squares residuals for this model are simply et = yt - y. Regression of the squares 
of these residuals on a constant and 10 lagged squared values using observations 11–1974 
produces an R2 = 0.09795. With T = 1964, the chi-squared statistic is 192.37, which is larger 
than the critical value from the table of 18.31. We conclude that there is evidence of GARCH 
effects in these residuals. The maximum likelihood estimates of the GARCH model are given 
in Table 20.4. Note the resemblance between the OLS unconditional variance (0.221128) and 
the estimated equilibrium variance from the GARCH model, 0.2631.

41Because this procedure is available as a preprogrammed procedure in many computer programs, including 
EViews, Stata, RATS, NLOGIT, Shazam, and other programs, this warning might itself be overstated.
42Bollerslev argues that, in view of the complexity of the computations involved in estimating the GARCH model, 
it is useful to have a test for GARCH effects. This case is one (as are many other maximum likelihood problems) 
in which the apparatus for carrying out the test is the same as that for estimating the model. Having computed the 
LM statistic for GARCH effects, one can proceed to estimate the model just by allowing the program to iterate to 
convergence. There is no additional cost beyond waiting for the answer.
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20.10.5    PSEUDO–MAXIMUM LIKELIHOOD ESTIMATION

We now consider an implication of nonnormality of the disturbances. Suppose that the 
assumption of normality is weakened to only

E[et � Ψt] = 0,  EJ et
2

st
2
2 ΨtR = 1,  EJ et

4

st
4
2 ΨtR = k 6 ∞ ,

where st
2 is as defined earlier. Now the normal log-likelihood function is inappropriate. 

In this case, the nonlinear (ordinary or weighted) least squares estimator would have 
the properties discussed in Chapter 7. It would be more difficult to compute than the 
MLE discussed earlier, however. It has been shown44 that the pseudo-MLE obtained by 
maximizing the same log likelihood as if it were correct produces a consistent estimator 
despite the misspecification.45 The asymptotic covariance matrices for the parameter 
estimators must be adjusted, however.

The general result for cases such as this one46 is that the appropriate asymptotic 
covariance matrix for the pseudo-MLE of a parameter vector U would be

	 asy. Var [Un] = H-1FH-1,	 (20-42)

where

H = -EJ 02 ln L
0U 0U′

R ,

and

F = EJ a 0 ln L
0U

b a 0 ln L
0U′

b R ,

(i.e., the BHHH estimator), and ln L is the used but inappropriate log-likelihood 
function. For current purposes, H and F are still block diagonal, so we can treat the 
mean and variance parameters separately. In addition, E[vt] is still zero, so the second 
derivative terms in both blocks are quite simple. (The parts involving 02st

2/0G 0G′ and 

44See White (1982a) and Weiss (1982).
45White (1982a) gives some additional requirements for the true underlying density of et. Gourieroux, Monfort, 
and Trognon (1984) also consider the issue. Under the assumptions given, the expectations of the matrices in 
(20-36) and (20-41) remain the same as under normality. The consistency and asymptotic normality of the pseudo-
MLE can be argued under the logic of GMM estimators.
46See Gourieroux, Monfort, and Trognon (1984).

M A0 A1 D A0 /(1 − A1 − D)

Estimate -0.006190 0.01076 0.1531 0.8060 0.2631
Std. Error 0.00873 0.00312 0.0273 0.0302 0.594
t ratio -0.709 3.445 5.605 26.731 0.443

ln L = -1106.61, ln LolS = -1311.09, y = -0.01642, s2 = 0.221128

Table 20.4  Maximum Likelihood Estimates of a GARCH(1,1) Model43

43These data have become a standard data set for the evaluation of software for estimating GARCH models. The 
values given are the benchmark estimates. Standard errors differ substantially from one method to the next. Those 
given are the Bollerslev and Wooldridge (1992) results. See McCullough and Renfro (1999).
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02st
2/0B 0B′ fall out of the expectation.) Taking expectations and inserting the parts 

produces the corrected asymptotic covariance matrix for the variance parameters,

est.asy.Var[GnPMle] = [W*
=W*]

-1B′B[W*
=W*]

-1,

where the rows of W* are defined in (20-39) and those of B are in (20-37). For the slope 
parameters, the adjusted asymptotic covariance matrix would be

est.asy.Var[BnPMle] = [C′�-1C]-1JaT
t= 1

bt bt
= R [C′�-1C]-1,

where the outer matrix is defined in (20-41) and, from the first derivatives given in 
(20-37) and (20-40),47

bt =
xtet

st
2 +

1
2

 ¢ vt

st
2 ≤dt.

20.11	 SUMMARY AND CONCLUSIONS

This chapter has examined the generalized regression model with serial correlation in 
the disturbances. We began with some general results on analysis of time-series data. 
When we consider dependent observations and serial correlation, the laws of large 
numbers and central limit theorems used to analyze independent observations no longer 
suffice. We presented some useful tools that extend these results to time-series settings. 
We then considered estimation and testing in the presence of autocorrelation. As usual, 
OLS is consistent but inefficient. The Newey–West estimator is a robust estimator for 
the asymptotic covariance matrix of the OLS estimator. This pair of estimators also 
constitute the GMM estimator for the regression model with autocorrelation. We 
then considered two-step feasible generalized least squares and maximum likelihood 
estimation for the special case usually analyzed by practitioners, the AR(1) model. The 
model with a correction for autocorrelation is a restriction on a more general model with 
lagged values of both dependent and independent variables. We considered a means of 
testing this specification as an alternative to fixing the problem of autocorrelation. The 
final section, on ARCH and GARCH effects, describes an extension of the models of 
autoregression to the conditional variance of e as opposed to the conditional mean. This 
model embodies elements of both autocorrelation and heteroscedasticity. The set of 
methods plays a fundamental role in the modern analysis of volatility in financial data.

47McCullough and Renfro (1999) examined several approaches to computing an appropriate asymptotic 
covariance matrix for the GARCH model, including the conventional Hessian and BHHH estimators and three 
sandwich-style estimators, including the one suggested earlier and two based on the method of scoring suggested 
by Bollerslev and Wooldridge (1992). None stands out as obviously better, but the Bollerslev and QMLE 
estimator based on an actual Hessian appears to perform well in Monte Carlo studies.

Key Terms and Concepts

•	AR(1)
•	ARCH
•	ARCH-in-mean
•	Asymptotic negligibility

•	Asymptotic normality
•	Autocorrelation coefficient
•	Autocorrelation function
•	Autocorrelation matrix

•	Autocovariance
•	Autocovariance matrix
•	Autoregressive form
•	Autoregressive processes
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Exercises

1.	 Does first differencing reduce autocorrelation? Consider the models yt = B′xt + et, 
where et = ret - 1 + ut and et = ut - lut - 1. Compare the autocorrelation of et 
in the original model with that of vt in yt - yt - 1 = B′(xt - xt - 1) + vt, where 
vt = et - et - 1.

2.	 Derive the disturbance covariance matrix for the model

 yt = B′xt + et,

 et = ret - 1 + ut - lut - 1.

What parameter is estimated by the regression of the OLS residuals on their lagged 
values?

3.	 It is commonly asserted that the Durbin–Watson statistic is only appropriate for 
testing for first-order autoregressive disturbances. The Durbin–Watson statistic 
estimates 2(1 - r) where r is the first-order autocorrelation of the residuals. What 
combination of the coefficients of the model is estimated by the Durbin–Watson 
statistic in each of the following cases: AR(1), AR(2), MA(1)? In each case, assume 
that the regression model does not contain a lagged dependent variable. Comment 
on the impact on your results of relaxing this assumption.

Applications

1.	 The data used to fit the expectations augmented Phillips curve in Example 20.3 
are given in Appendix Table F5.2. Using these data, reestimate the model given in 
the example. Carry out a formal test for first-order autocorrelation using the LM 
statistic. Then, reestimate the model using an AR(1) model for the disturbance 
process. Because the sample is large, the Prais–Winsten and Cochrane–Orcutt 
estimators should give essentially the same answer. Do they? After fitting the model, 
obtain the transformed residuals and examine them for first-order autocorrelation. 
Does the AR(1) model appear to have adequately fixed the problem?

2.	 Data for fitting an improved Phillips curve model can be obtained from many 
sources, including the Bureau of Economic Analysis’s (BEA) own Web site, www.
economagic.com, and so on. Obtain the necessary data and expand the model of 

•	Cochrane–Orcutt estimator
•	Covariance stationarity
•	Double-length regression
•	Durbin–Watson test
•	Efficient two-step estimator
•	Ergodicity
•	Expectations-augmented 

Phillips curve
•	First-order autoregression
•	Innovation
•	LM test

•	Martingale sequence
•	Martingale difference 

sequence
•	Moving-average form
•	Moving-average process
•	Newey–West 

autocorrelation consistent 
covariance estimator

•	Partial difference
•	Prais–Winsten estimator
•	Pseudo-differences

•	Q test
•	Quasi differences
•	Random walk
•	Stationarity
•	Stationarity conditions
•	Summability
•	Time-series process
•	Time window
•	Weakly stationary
•	White noise
•	Yule–Walker equations
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Example 20.3. Does adding additional explanatory variables to the model reduce 
the extreme pattern of the OLS residuals that appears in Figure 20.3?

3.	 (This exercise requires appropriate computer software. The computations required 
can be done with RATS, EViews, Stata, LIMDEP, and a variety of other software 
using only preprogrammed procedures.) Quarterly data on the consumer price 
index for 1950.1 to 2000.4 are given in Appendix Table F5.2. Use these data to fit 
the model proposed by Engle and Kraft (1983). The model is

pt = b0 + b1pt - 1 + b2pt - 2 + b3pt - 3 + b4pt - 4 + et,

where pt = 100 ln[pt/pt - 1] and pt is the price index.
a.	 Fit the model by ordinary least squares, then use the tests suggested in the text 

to see if ARCH effects appear to be present.
b.	 The authors fit an ARCH(8) model with declining weights,

st
2 = a0 + a

8

i= 1
a 9 - i

36
bet - i

2 .

Fit this model. If the software does not allow constraints on the coefficients, you 
can still do this with a two-step least squares procedure, using the least squares 
residuals from the first step. What do you find?

c.	 Bollerslev (1986) recomputed this model as a GARCH(1, 1). Use the GARCH(1, 1) 
to form and refit your model.
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