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Nonstationary Data

§
21.1	 Introduction

Most economic variables that exhibit strong trends, such as GDP, consumption, or the 
price level, are not stationary and are thus not amenable to the analysis of the previous 
chapter. In many cases, stationarity can be achieved by simple differencing or some other 
simple transformation. But new statistical issues arise in analyzing nonstationary series 
that are understated by this superficial observation. This chapter will survey a few of the 
major issues in the analysis of nonstationary data.1 We begin in Section 21.2 with results 
on analysis of a single nonstationary time series. Section 21.3 examines the implications 
of nonstationarity for analyzing regression relationship. Finally, Section 21.4 turns to the 
extension of the time-series results to panel data.

21.2	N onstationary Processes and Unit Roots

This section will begin the analysis of nonstationary time series with some basic results 
for univariate time series. The fundamental results concern the characteristics of 
nonstationary series and statistical tests for identification of nonstationarity in observed 
data.

21.2.1  T  he Lag and Difference Operators

The lag operator, L, is a device that greatly simplifies the mathematics of time-series 
analysis. The operator defines the lagging operation,

Lyt = yt - 1.

From the definition,

L2yt = L(Lyt) = Lyt - 1 = yt - 2.

It follows that

LPyt = yt - P,

(LP)Qyt = LPQyt = yt - PQ,

(LP)(LQ)yt = LPyt - Q = LQ + Pyt = yt - Q - P.

1With panel data, this is one of the rapidly growing areas in econometrics, and the literature advances rapidly. We 
can only scratch the surface. Several surveys and books provide useful extensions. Three that will be very helpful 
are Hamilton (1994), Enders (2004), and Tsay (2005).
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Finally, for the autoregressive series yt = byt - 1 + et, where �b � 6 1, we find 
(1 - bL)yt = et or

yt = a 1
1 - bL

bet = [1 + bL + b2L2 + c]et = a
∞

s = 0
 bset - s.

The first difference operator is a useful shorthand that follows from the definition of L,

(1 - L)yt = yt - yt - 1 = ∆yt .

So, for example,

∆2yt = ∆(∆yt) = ∆(yt - yt - 1) = (yt - yt - 1) - (yt - 1 - yt - 2).

21.2.2    Integrated Processes and Differencing

A process that figures prominently in this setting is the random walk with drift,

yt = m + yt - 1 + et.

By direct substitution,

yt =
m + et

1 - L
= a

∞

s = 0
(m + et - s).

That is, yt is the simple sum of what will eventually be an infinite number of random 
variables, possibly with nonzero mean. If the innovations, et, are being generated by the 
same zero-mean, constant-variance process, then the variance of yt would obviously be 
infinite. As such, the random walk is clearly a nonstationary process, even if m equals 
zero. On the other hand, the first difference of yt,

zt = yt - yt - 1 = ∆yt = m + et,

is simply the innovation plus the mean of zt, which we have already assumed is 
stationary.

The series yt is said to be integrated of order one, denoted I(1), because taking a 
first difference produces a stationary process. A nonstationary series is integrated of 
order d, denoted I(d), if it becomes stationary after being first differenced d times. A 
generalization of the autoregressive moving average model, yt = gyt - 1 + et - uet - 1, 
would be the series

zt = (1 - L)dyt = ∆dyt.

The resulting model is denoted an autoregressive integrated moving-average model, or 
ARIMA (p, d, q).2 In full, the model would be

∆dyt = m + g1∆dyt - 1 + g2∆dyt - 2 + g + gp∆dyt - p + et - u1et - 1 - g - uqet - q,

2There are yet further refinements one might consider, such as removing seasonal effects from zt by differencing 
by quarter or month. See Harvey (1990) and Davidson and MacKinnon (1993). Some recent work has relaxed the 
assumption that d is an integer. The fractionally integrated series or ARFIMA has been used to model series in 
which the very long-run multipliers decay more slowly than would be predicted otherwise.
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1024	 Part V  ✦  Time Series and Macroeconometrics

where

∆yt = yt - yt - 1 = (1 - L)yt.

This result may be written compactly as

C(L)[(1 - L)dyt] = m + D(L)et,

where C(L) and D(L) are the polynomials in the lag operator and (1 - L)dyt = ∆dyt 
is the dth difference of yt.

An I(1) series in its raw (undifferenced) form will typically be constantly growing or 
wandering about with no tendency to revert to a fixed mean. Most macroeconomic flows 
and stocks that relate to population size, such as output or employment, are I(1). An I(2) 
series is growing at an ever-increasing rate. The price-level data in Appendix Table F5.2 
and shown later appear to be I(2). Series that are I(3) or greater are extremely unusual, 
but they do exist. Among the few manifestly I(3) series that could be listed, one would 
find, for example, the money stocks or price levels in hyperinflationary economies such 
as interwar Germany or Hungary after World War II.

Example 21.1    A Nonstationary Series
The nominal GDP and consumer price index variables in Appendix Table F5.2 are strongly 
trended, so the mean is changing over time. Figures 21.1–21.3 plot the log of the consumer 
price index series in Table F5.2 and its first and second differences. The original series and 
first differences are obviously nonstationary, but the second differencing appears to have 
rendered the series stationary.

The first 10 autocorrelations of the log of the GNP deflator series are shown in 
Table 21.1. (See Example 20.4 for details on the ACF.) The autocorrelations of the original 
series show the signature of a strongly trended, nonstationary series. The first difference 
also exhibits nonstationarity, because the autocorrelations are still very large after a lag of 10 
periods. The second difference appears to be stationary, with mild negative autocorrelation 

FIGURE 21.1    Quarterly Data on Log Consumer Price Index.
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at the first lag, but essentially none after that. Intuition might suggest that further differencing 
would reduce the autocorrelation further, but that would be incorrect. We leave as an exercise 
to show that, in fact, for values of g less than about 0.5, first differencing of an AR(1) process 
actually increases autocorrelation.

FIGURE 21.2    First Difference of Log Consumer Price Index.
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FIGURE 21.3    Second Difference of Log Consumer Price Index.
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1026	 Part V  ✦  Time Series and Macroeconometrics

21.2.3  R  andom Walks, Trends, and Spurious Regressions

In a seminal paper, Granger and Newbold (1974) argued that researchers had not paid 
sufficient attention to the warning of very high autocorrelation in the residuals from 
conventional regression models. Among their conclusions were that macroeconomic 
data, as a rule, were integrated and that in regressions involving the levels of such data, 
the standard significance tests were usually misleading. The conventional t and F tests 
would tend to reject the hypothesis of no relationship when, in fact, there might be none. 
The general result at the center of these findings is that conventional linear regression, 
ignoring serial correlation, of one random walk on another is virtually certain to suggest 
a significant relationship, even if the two are, in fact, independent. Among their extreme 
conclusions, Granger and Newbold suggested that researchers use a critical t value of 11.2 
rather than the standard normal value of 1.96 to assess the significance of a coefficient 
estimate. Phillips (1986) took strong issue with this conclusion. Based on a more general 
model and on an analytical rather than a Monte Carlo approach, he suggested that the 
normalized statistic tb/2T be used for testing purposes rather than tB itself. For the 50 
observations used by Granger and Newbold, the appropriate critical value would be 
close to 15! If anything, Granger and Newbold were too optimistic

The random walk with drift,

	 zt = m + zt - 1 + et,	 (21-1)

and the trend stationary process,

	 zt = m + bt + et,	 (21-2)

where, in both cases, et is a white noise process, appear to be reasonable characterizations 
of many macroeconomic time series.3 Clearly, both of these will produce strongly trended, 

3The analysis to follow has been extended to more general disturbance processes, but that complicates matters 
substantially. In this case, in fact, our assumption does cost considerable generality, but the extension is beyond the 
scope of our work. Some references on the subject are Phillips and Perron (1988) and Davidson and MacKinnon 
(1993).

Lag
Autocorrelation Function 
Original Series, log Price

Autocorrelation Function 
First Difference of log  
Price

Autocorrelation Function 
Second Difference of log 
Price

1 0.989 ••••••••••• 0.654 ••••••• -0.422 ••••••
2 0.979 ••••••••••• 0.600 ••••••• -0.111 •
3 0.968 ••••••••••• 0.621 ••••••• 0.075 •
4 0.958 ••••••••••• 0.600 ••••••• 0.147 •
5 0.947 •••••••••• 0.469 •••••• -0.112 •
6 0.936 •••••••••• 0.418 •••••• -0.037 •
7 0.925 •••••••••• 0.393 ••••• 0.008 •
8 0.914 •••••••••• 0.361 ••••• 0.034 •
9 0.903 •••••••••• 0.303 ••••• -0.023 •

10 0.891 •••••••••• 0.262 ••• -0.041 •

Table 21.1  Autocorrelations for ln Consumer Price Index
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nonstationary series,4 so it is not surprising that regressions involving such variables 
almost always produce significant relationships. The strong correlation would seem to 
be a consequence of the underlying trend, whether or not there really is any regression 
at work. But Granger and Newbold went a step further. The intuition is less clear if there 
is a pure random walk at work,

	 zt = zt - 1 + et,	 (21-3)

but even here, they found that regression “relationships” appear to persist even in 
unrelated series.

Each of these three series is characterized by a unit root. In each case, the data-
generating process (DGP) can be written

	 (1 - L)zt = a + vt,	 (21-4)

where a = m, b, and 0, respectively, and vt is a stationary process. Thus, the characteristic 
equation has a single root equal to one, hence the name. The upshot of Granger and 
Newbold’s and Phillips’s findings is that the use of data characterized by unit roots has 
the potential to lead to serious errors in inferences.

In all three settings, differencing or detrending would seem to be a natural first step. 
On the other hand, it is not going to be immediately obvious which is the correct way to 
proceed—the data are strongly trended in all three cases—and taking the incorrect 
approach will not necessarily improve matters. For example, first differencing in (21-1) 
or (21-3) produces a white noise series, but first differencing in (21-2) trades the trend 
for autocorrelation in the form of an MA(1) process. On the other hand, detrending—
that is, computing the residuals from a regression on time—is obviously counterproductive 
in (21-1) and (21-3), even though the regression of zt on a trend will appear to be 
significant for the reasons we have been discussing, whereas detrending in (21-2) appears 
to be the right approach.5 Because none of these approaches is likely to be obviously 
preferable at the outset, some means of choosing is necessary. Consider nesting all three 
models in a single equation,

zt = m + bt + zt - 1 + et.

Now subtract zt - 1 from both sides of the equation and introduce the artificial 
parameter g , Then,

 zt - zt - 1 = mg + bgt + (g - 1)zt - 1 + et

	  = a0 + a1t + (g - 1)zt - 1 + et, 	 (21-5)

where, by hypothesis, g = 1. Equation (21-5) provides the basis for a variety of tests for 
unit roots in economic data. In principle, a test of the hypothesis that g - 1 equals zero 
gives confirmation of the random walk with drift, because if g equals 1 (and a1 equals 
zero), then (21-1) results. If g - 1 is less than zero, then the evidence favors the trend 
stationary (or some other) model, and detrending (or some alternative) is the preferable 

4The constant term m produces the deterministic trend in the random walk with drift. For convenience, suppose 
that the process starts at time zero. Then zt = a t

s= 0(m + es) = mt + a t
s= 0es. Thus, zt consists of a deterministic 

trend plus a stochastic trend consisting of the sum of the innovations. The result is a variable with increasing 
variance around a linear trend.
5See Nelson and Kang (1984).
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1028	 Part V  ✦  Time Series and Macroeconometrics

approach. The practical difficulty is that standard inference procedures based on least 
squares and the familiar test statistics are not valid in this setting. The issue is discussed 
in the next section.

21.2.4  T  ests for Unit Roots in Economic Data

The implications of unit roots in macroeconomic data are, at least potentially, profound. 
If a structural variable, such as real output, is truly I(1), then shocks to it will have 
permanent effects. If confirmed, then this observation would mandate some rather 
serious reconsideration of the analysis of macroeconomic policy. For example, the 
argument that a change in monetary policy could have a transitory effect on real output 
would vanish.6 The literature is not without its skeptics, however. This result rests on a 
razor’s edge. Although the literature is thick with tests that have failed to reject the 
hypothesis that g = 1, many have also not rejected the hypothesis that g Ú 0.95, and 
at 0.95 (or even at 0.99), the entire issue becomes moot.7

Consider the simple AR(1) model with zero-mean, white noise innovations,

yt = gyt - 1 + et.

The downward bias of the least squares estimator when g approaches one has been 
widely documented.8 For �g � 6 1, however, the least squares estimator,

c = a T
t= 2ytyt - 1

a T
t= 2yt - 1

2
,

does have

plim c = g

and 2T(c - g) ¡d
N[0, 1 - g2].

Does the result hold up if g = 1? The case is called the unit root case, because in the 
ARMA representation C(L)yt = et, the characteristic equation 1 - gz = 0 has one 
root equal to one. That the limiting variance appears to go to zero should raise suspicions. 
The literature on the question dates back to Mann and Wald (1943) and Rubin (1950). 
But for econometric purposes, the literature has a focal point at the celebrated papers 
of Dickey and Fuller (1979, 1981). They showed that if g equals one, then

T(c - g) ¡d
v,

where v is a random variable with finite, positive variance, and in finite samples, E[c] 6 1.9

There are two important implications in the Dickey–Fuller results. First, the estimator 
of g is biased downward if g equals one. Second, the OLS estimator of g converges to its 

6The 1980s saw the appearance of literally hundreds of studies, both theoretical and applied, of unit roots 
in economic data. An important example is the seminal paper by Nelson and Plosser (1982). There is little 
question but that this observation is an early part of the radical paradigm shift that has occurred in empirical 
macroeconomics.
7A large number of issues are raised in Maddala (1992, pp. 582–588).
8See, for example, Evans and Savin (1981, 1984).
9A full derivation of this result is beyond the scope of this book. For the interested reader, a fairly comprehensive 
treatment at an accessible level is given in Chapter 17 of Hamilton (1994, pp. 475–542).
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probability limit more rapidly than the estimators to which we are accustomed. That is, 
the variance of c under the null hypothesis is O(1/T 2), not O(1/T). (In a mean squared 
error sense, the OLS estimator is superconsistent.) It turns out that the implications of 
this finding for the regressions with trended data are considerable.

We have already observed that in some cases, differencing or detrending is 
required to achieve stationarity of a series. Suppose, though, that the preceding AR(1) 
model is fit to an I(1) series, despite that fact. The upshot of the preceding discussion 
is that the conventional measures will tend to hide the true value of g; the sample 
estimate is biased downward, and by dint of the very small true sampling variance, 
the conventional t test will tend, incorrectly, to reject the hypothesis that g = 1. The 
practical solution to this problem devised by Dickey and Fuller was to derive, through 
Monte Carlo methods, an appropriate set of critical values for testing the hypothesis 
that g equals one in an AR(1) regression when there truly is a unit root. One of their 
general results is that the test may be carried out using a conventional t statistic, but 
the critical values for the test must be revised: The standard t table is inappropriate. 
A number of variants of this form of testing procedure have been developed. We will 
consider several of them.

21.2.5  T  he Dickey–Fuller Tests

The simplest version of the model to be analyzed is the random walk,

yt = gyt - 1 + et, et ∼ N[0, s2], and Cov[et, es] = 0 5 t ≠ s.

Under the null hypothesis that g = 1, there are two approaches to carrying out the 
test. The conventional t ratio, DFt = (gn - 1)/Est. std. Error(gn), with the revised set of 
critical values may be used for a one-sided test. Critical values for this test are shown in 
the top panel of Table 21.2. Note that, in general, the critical value is considerably larger 
in absolute value than its counterpart from the t distribution. The second approach is 
based on the statistic DFg = T(gn - 1). Critical values for this test are shown in the top 
panel of Table 21.3.

The simple random walk model is inadequate for many series. Consider the rate 
of inflation from 1950.2 to 2000.4 (plotted in Figure 21.4) and the log of GDP over the 
same period (plotted in Figure 21.5). The first of these may be a random walk, but it is 
clearly drifting. The log GDP series, in contrast, has a strong trend. For the first of these, 
a random walk with drift may be specified,

 yt = m + zt,

 zt = gzt - 1 + et,

or

yt = m(1 - g) + gyt - 1 + et.

For the second type of series, we may specify the trend stationary form,

 yt = m + bt + zt,

 zt = gzt - 1 + et

or

yt = [m(1 - g) + gb] + b(1 - g)t + gyt - 1 + et.
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1030	 Part V  ✦  Time Series and Macroeconometrics

Sample Size

25 50 100 H
F ratio (D–F)a 7.24 6.73 6.49 6.25
F ratio (standard) 3.42 3.20 3.10 3.00
AR modelb (random walk)
0.01 -2.66 -2.62 -2.60 -2.58
0.025 -2.26 -2.25 -2.24 -2.23
0.05 -1.95 -1.95 -1.95 -1.95
0.10 -1.60 -1.61 -1.61 -1.62
0.975 1.70 1.66 1.64 1.62
AR model with constant (random walk with drift)
0.01 -3.75 -3.59 -3.50 -3.42
0.025 -3.33 -3.23 -3.17 -3.12
0.05 -2.99 -2.93 -2.90 -2.86
0.10 -2.64 -2.60 -2.58 -2.57
0.975 0.34 0.29 0.26 0.23
AR model with constant and time trend (trend stationary)
0.01 -4.38 -4.15 -4.04 -3.96
0.025 -3.95 -3.80 -3.69 -3.66
0.05 -3.60 -3.50 -3.45 -3.41
0.10 -3.24 -3.18 -3.15 -3.13
0.975 -0.50 -0.58 -0.62 -0.66

aFrom Dickey and Fuller (1981, p. 1063). Degrees of freedom are 2 and T - p - 3.
bFrom Fuller (1976, p. 373 and 1996, Table 10.A.2).

Table 21.2  Critical Values for the Dickey–Fuller DFt Test.

The tests for these forms may be carried out in the same fashion. For the model with 
drift only, the center panels of Tables 21.2 and 21.3 are used. When the trend is included, 
the lower panel of each table is used.

Example 21.2    Tests for Unit Roots
Cecchetti and Rich (2001) studied the effect of monetary policy on the U.S. economy. The 
data used in their study were the following variables:

 p = one period rate of inflation = the rate of change in the CPI,
 y = log of real GDP,
 i = nominal interest rate = the quarterly average yield on a 90@day T@bill,

 ∆m = change in the log of the money stock, M1,
 i - p = ex-post real interest rate,

 ∆m - p = real growth in the money stock,

Data used in their analysis were from the period 1959.1 to 1997.4. As part of their analysis, 
they checked each of these series for a unit root and suggested that the hypothesis of a unit 
root could only be rejected for the last two variables. We will reexamine these data for the 
longer interval, 1950II to 2000IV. The data are in Appendix Table F5.2. Figures 21.6–21.9 show 
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FIGURE 21.4    Rate of Inflation in the Consumer Price Index.
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Sample Size

25 50 100 H
AR modela (random walk)
0.01 -11.8 -12.8 -13.3 -13.8
0.025 -9.3 -9.9 -10.2 -10.5
0.05 -7.3 -7.7 -7.9 -8.1
0.10 -5.3 -5.5 -5.6 -5.7
0.975 1.78 1.69 1.65 1.60
AR model with constant (random walk with drift)
0.01 -17.2 -18.9 -19.8 -20.7
0.025 -14.6 -15.7 -16.3 -16.9
0.05 -12.5 -13.3 -13.7 -14.1
0.10 -10.2 -10.7 -11.0 -11.3
0.975 0.65 0.53 0.47 0.41
AR model with constant and time trend (trend stationary)
0.01 -22.5 -25.8 -27.4 -29.4
0.025 -20.0 -22.4 -23.7 -24.4
0.05 -17.9 -19.7 -20.6 -21.7
0.10 -15.6 -16.8 -17.5 -18.3
0.975 -1.53 -1.667 -1.74 -1.81

a From Fuller (1976, p. 373 and 1996, Table 10.A.1).

Table 21.3  Critical Values for the Dickey–Fuller DFt Test.
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FIGURE 21.6    T-Bill Rate.
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the behavior of the last four variables. The first two are shown in Figures 21.4 and 21.5. Only 
the real output figure shows a strong trend, so we will use the random walk with drift for all 
the variables except this one.

The Dickey–Fuller tests are carried out in Table 21.4. There are 203 observations used in 
each one. The first observation is lost when computing the rate of inflation and the change in 
the money stock, and one more is lost for the difference term in the regression. The critical 
values from interpolating to the second row, last column in each panel for 95% significance 

FIGURE 21.5    Log of Gross Domestic Product.
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FIGURE 21.7    Percentage Change in the Money Stock.
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FIGURE 21.8    Ex-Post Real T-Bill Rate.
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and a one-tailed test are -3.68 and -24.2, respectively, for DFt and DFg for the output 
equation, which contains the time trend, and -3.14 and -16.8 for the other equations, which 
contain a constant but no trend. For the output equation (y), the test statistics are

DFt =
0.9584940384 - 1

.017880922
= -2.32 7 -3.44,
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FIGURE 21.9    Change in the Real Money Stock.
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and

DFg = 202(0.9584940384 - 1) = -8.38 7 -21.2.

Neither is less than the critical value, so we conclude (as have others) that there is a unit root 
in the log GDP process. The results of the other tests are shown in Table 21.4. Surprisingly, 
these results do differ sharply from those obtained by Cecchetti and Rich (2001) for p and 
∆m. The sample period appears to matter; if we repeat the computation using Cecchetti 
and Rich’s interval, 1959.4 to 1997.4, then DFt equals -3.51. This is borderline, but less 
contradictory. For ∆m, we obtain a value of -4.204 for DFt when the sample is restricted to 
the shorter interval.

Table 21.4  �Unit Root Tests (standard errors of estimates in parentheses).

M B G DFT DFG Conclusion

P 0.332 0.659 -6.40 -68.88 Reject H0

(0.0696) (0.0532) R2 = 0.432 s = 0.643

y 0.320 0.00033 0.958 -2.35 -8.48 Do not reject H0

(0.134) (0.00015) (0.0179) R2 = 0.999 s = 0.001

i 0.228 0.961 -2.14 -7.88 Do not reject H0

(0.109) (0.0182) R2 = 0.933 s = 0.743

�m 0.448 0.596 -7.05 -81.61 Reject H0

(0.0923) (0.0573) R2 = 0.351 s = 0.929

i − P 0.615 0.557 -7.57 -89.49 Reject H0

(0.185) (0.0585) R2 = 0.311 s = 2/395

�m − P 0.0700 0.490 -8.25t -103.02 Reject H0

(0.0833) (0.0618) R2 = 0.239 s = 1.176
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The Dickey–Fuller tests described in this section assume that the disturbances in 
the model as stated are white noise. An extension which will accommodate some forms 
of serial correlation is the augmented Dickey–Fuller test. The augmented Dickey–Fuller 
test is the same one as described earlier, carried out in the context of the model

yt = m + bt + gyt - 1 + g1∆yt - 1 + g + gp∆yt - p + et.

The random walk form is obtained by imposing m = 0 and b = 0; the random walk 
with drift has b = 0; and the trend stationary model leaves both parameters free. The 
two test statistics are

DFt =
gn - 1

Est. std. Error(gn)
,

exactly as constructed before, and

DFg =
T(gn - 1)

1 - gn1 - g - gnp

.

The advantage of this formulation is that it can accommodate higher-order autoregressive 
processes in et.

An alternative formulation may prove convenient. By subtracting yt - 1 from both 
sides of the equation, we obtain

∆yt = m + bt + g*yt - 1 + a
p

j= 1
fj∆yt - j + et,

where

fj = - a
p

k = j + 1
gk  and   g* = a a

p

i= 1
gib - 1.

The unit root test is carried out as before by testing the null hypothesis g* = 0 
against g* 6 0.10 The t test, DFt, may be used. If the failure to reject the unit root is taken 
as evidence that a unit root is present, that is, g* = 0, then the model specializes to the 
ar(p - 1) model in the first differences, which is an ariMa(p - 1, 1, 0) model for 
yt. For a model with a time trend,

∆yt = m + bt + g*yt - 1 + a
p - 1

j= 1
fj∆yt - j + et,

the test is carried out by testing the joint hypothesis that b = g* = 0. Dickey and Fuller 
(1981) present counterparts to the critical F statistics for testing the hypothesis. Some of 
their values are reproduced in the first row of Table 21.2. (Authors frequently focus on g* 
and ignore the time trend, maintaining it only as part of the appropriate formulation. In 
this case, one may use the simple test of g* = 0 as before, with the DFt critical values.)

The lag length, p, remains to be determined. As usual, we are well advised to 
test down to the right value instead of up. One can take the familiar approach and 
sequentially examine the t statistic on the last coefficient—the usual t test is appropriate. 

10It is easily verified that one of the roots of the characteristic polynomial is 1/(g1 + g2 + c + gP).
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An alternative is to combine a measure of model fit, such as the regression s2, with one 
of the information criteria. The Akaike and Schwarz (Bayesian) information criteria 
would produce the two information measures

 IC(p) = lna e′e
T - pmax - K*

b + (p + K*)a A*
T - pmax - K*

b ,

 K* = 1 for random walk, 2 for random walk with drift, 3 for trend stationary,

 A* = 2 for akaike criterion, ln(T - pmax - K*) for Bayesian criterion,

 pmax = the largest lag length being considered.

The remaining detail is to decide upon pmax. The theory provides little guidance here. 
On the basis of a large number of simulations, Schwert (1989) found that

pmax = integer part of [12 * (T/100).25]

gave good results.
Many alternatives to the Dickey–Fuller tests have been suggested, in some cases to 

improve on the finite sample properties and in others to accommodate more general 
modeling frameworks. The Phillips (1987) and Phillips and Perron (1988) statistic may 
be computed for the same three functional forms,

	 yt = dt + gyt - 1 + g1∆yt - 1 + g + gp∆yt - p + et,� (21-6)

where dt may be 0, m, or m + bt. The procedure modifies the two Dickey–Fuller statistics 
we previously examined,

 Zt = Ac0

a
 agn - 1

v
b -

1
2

 (a - c0) 
Tv2as2

,

 Zg =
T(gn - 1)

1 - gn1 - g - gnp
-

1
2

 aT 2v2

s2 b(a - c0),

where

 s2 = a T
t= 1et

2

T - K
,

 v2 = estimated asymptotic variance of gn ,

 cj =
1
T

 a
T

s = j + 1
etet - s, j = 0, c, L = jth autocovariance of residuals,

 c0 = [(T - K)/T]s2,

 a = c0 + 2a
L

j= 1
a1 -

j

L + 1
bcj.

[Note the Newey–West (Bartlett) weights in the computation of a. As before, the analyst 
must choose L.] The test statistics are referred to the same Dickey–Fuller tables we have 
used before.
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Elliot, Rothenberg, and Stock (1996) have proposed a method they denote the ADF-
GLS procedure, which is designed to accommodate more general formulations of e; the 
process generating et is assumed to be an I(0) stationary process, possibly an ARMA(r, s). 
The null hypothesis, as before, is g = 1 in (21-6) where dt = m or m + bt. The method 
proceeds as follows:

Step 1. Linearly regress

y* = D y1

y2 - r y1

g
yT - r yT - 1

T on X* = D 1
1 - r

g
1 - r

T or X* = D 1 1
1 - r 2 - r

g
1 - r T - r(T - 1)

T
for the random walk with drift and trend stationary cases, respectively. (Note that the 
second column of the matrix is simply r + (1 - r)t.) Compute the residuals from this 
regression, y∼t = yt - dnt. r = 1 - 7/T for the random walk model and 1 - 13.5/T for 
the model with a trend.

Step 2. The Dickey–Fuller DFt test can now be carried out using the model

y∼t = gy∼t - 1 + g1∆y∼t - 1 + g + gp∆y∼t - p + ht.

If the model does not contain the time trend, then the t statistic for (g - 1) may be 
referred to the critical values in the center panel of Table 21.2. For the trend stationary 
model, the critical values are given in a table presented in Elliot et al. The 97.5% critical 
values for a one-tailed test from their table is -3.15.

As in many such cases of a new technique, as researchers develop large and small 
modifications of these tests, the practitioner is likely to have some difficulty deciding 
how to proceed. The Dickey–Fuller procedures have stood the test of time as robust tools 
that appear to give good results over a wide range of applications. The Phillips–Perron 
tests are very general but appear to have less than optimal small sample properties. 
Researchers continue to examine it and the others such as the Elliot et al. method. Other 
tests are catalogued in Maddala and Kim (1998).

Example 21.3    Augmented Dickey–Fuller Test for a Unit Root in GDP
Dickey and Fuller (1981) apply their methodology to a model for the log of a quarterly series 
on output, the Federal Reserve Board Production Index. The model used is

	 yt = m + bt + gyt - 1 + f(yt - 1 - yt - 2) + et.� (21-7)

The test is carried out by testing the joint hypothesis that both b and g* are zero in the 
model

yt - yt - 1 = m* + bt + g*yt - 1 + f(yt - 1 - yt - 2) + et.

(If g = 0, then m* will also by construction.) We will repeat the study with our data on real 
GDP from Appendix Table F5.2 using observations 1950.1–2000.4.

We will use the augmented Dickey–Fuller test first. Thus, the first step is to determine the 
appropriate lag length for the augmented regression. Using Schwert’s suggestion, we find that the 
maximum lag length should be allowed to reach pmax = [integer part of 12(204/100)0.25] = 14. 
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The specification search uses observations 18 to 204, because as many as 17 coefficients 
will be estimated in the equation

yt = m + bt + gyt - 1 + a
p

j= 1
gj∆yt - j + et.

In the sequence of 14 regressions with j = 14, 13, c, the only statistically significant lagged 
difference is the first one, in the last regression, so it would appear that the model used by 
Dickey and Fuller would be chosen on this basis. The two information criteria produce a similar 
conclusion. Both of them decline monotonically from j = 14 all the way down to j = 1, so on 
this basis, we end the search with j = 1, and proceed to analyze Dickey and Fuller’s model.

The linear regression results for the equation in (21-7) are

yt = 0.368 + 0.000391t + 0.952yt - 1 + 0.36025∆yt - 1 + et, s = 0.00912
	 (0.125)	 (0.000138)	 (0.0167)	 (0.0647)	 R2 = 0.999647.

The two test statistics are

DFt =
0.95166 - 1

0.016716
= -2.892

and

DFg =
201(0.95166 - 1)

1 - 0.36025
= -15.263.

Neither statistic is less than the respective critical value, -3.70 and -24.5. On this basis, we 
conclude, as have many others, that there is a unit root in log GDP.

For the Phillips and Perron statistic, we need several additional intermediate statistics. Following 
Hamilton (1994, p. 512), we choose L = 4 for the long-run variance calculation. Other values 
we need are T = 202, gn = 0.9516613, s2 = 0.00008311488, v2 = 0.00027942647, and the 
first five autocovariances, c0 = 0.000081469,  c1 = -0.00000351162, c2 = 0.00000688053,
 c3 = 0.000000597305, and c4 = -0.00000128163. Applying these to the weighted sum 
produces a = 0.0000840722, which is only a minor correction to c0. Collecting the results, we 
obtain the Phillips–Perron statistics, Zt = -2.89921 and Zg = -15.44133. Because these are 
applied to the same critical values in the Dickey–Fuller tables, we reach the same conclusion 
as before—we do not reject the hypothesis of a unit root in log GDP.

21.2.6  T  he KPSS test of Stationarity

Kwiatkowski et al. (1992) (KPSS) have devised an alternative to the Dickey–Fuller test 
for stationarity of a time series. The procedure is a test of nonstationarity against the 
null hypothesis of stationarity in the model

 yt = a + bt + ga
t

i= 1
zi + et,  t = 1, c, T

 = a + bt + gZt + et,

where et is a stationary series and zt is an i.i.d. stationary series with mean zero and 
variance one. (These are merely convenient normalizations because a nonzero mean 
would move to a and a nonunit variance is absorbed in g.) If g equals zero, then the 
process is stationary if b = 0 and trend stationary if b ≠ 0. Because Zt, is I(1), yt is 
nonstationary if g is nonzero.
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The KPSS test of the null hypothesis, H0 : g = 0, against the alternative that g 
is nonzero reverses the strategy of the Dickey–Fuller statistic (which tests the null 
hypothesis g 6 1 against the alternative g = 1). Under the null hypothesis, a and b 
can be estimated by OLS. Let et denote the tth OLS residual,

et = yt - a - bt,

and let the sequence of partial sums be

Et = a
t

s = 1
es, t = 1, c, T.

(Note ET = 0.) The KPSS statistic is

KPss = a T
t= 1Et

2

T 2sn 2
,

where

 sn 2 = a T
t= 1et

2

T
+ 2a

L

j= 1
a1 -

j

L + 1
brj,

 rj =
a T

s = j + 1eses - j

T
,

and L is chosen by the analyst. [See (20-17).] Under normality of the disturbances, et, 
the KPSS statistic is an LM statistic. The authors derive the statistic under more general 
conditions. Critical values for the test statistic are estimated by simulation. The 0.05 
upper-tail values reported by the authors (in their Table 1, p. 166) for b = 0 and b ≠ 0 
are 0.463 and 0.146, respectively.

Example 21.4    Is There a Unit Root in GDP?
Using the data used for the Dickey–Fuller tests in Example 21.3, we repeated the procedure 
using the KPSS test with L = 10. The two statistics are 1.953 without the trend and 0.312 
with it. Comparing these results to the values in Table 21.4 we conclude (again) that there is, 
indeed, a unit root in In GDP. Or, more precisely, we conclude that In GDP is not a stationary 
series, nor even a trend stationary series.

21.3	C ointegration

Studies in empirical macroeconomics almost always involve nonstationary and trending 
variables, such as income, consumption, money demand, the price level, trade flows, and 
exchange rates. Accumulated wisdom and the results of the previous sections suggest 
that the appropriate way to manipulate such series is to use differencing and other 
transformations (such as seasonal adjustment) to reduce them to stationarity and then 
to analyze the resulting series as VARs or with the methods of Box and Jenkins (1984). 
But recent research and a growing literature have shown that there are more interesting, 
appropriate ways to analyze trending variables.

In the fully specified regression model,

yt = bxt + et,
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there is a presumption that the disturbances et are a stationary, white noise series.11 But 
this presumption is unlikely to be true if yt and xt are integrated series. Generally, if two 
series are integrated to different orders, then linear combinations of them will be 
integrated to the higher of the two orders. Thus, if yt and xt are I(1)—that is, if both are 
trending variables—then we would normally expect yt - bxt to be I(1) regardless of the 
value of b, not I(0) (i.e., not stationary). If yt and xt are each drifting upward with their 
own trend, then unless there is some relationship between those trends, the difference 
between them should also be growing, with yet another trend. There must be some kind 
of inconsistency in the model. On the other hand, if the two series are both I(1), then 
there may be a b such that

et = yt - bxt

is I(0). Intuitively, if the two series are both I(1), then this partial difference between 
them might be stable around a fixed mean. The implication would be that the series are 
drifting together at roughly the same rate. Two series that satisfy this requirement are 
said to be cointegrated, and the vector [1, -b] (or any multiple of it) is a cointegrating 
vector. In such a case, we can distinguish between a long-run relationship between yt and 
xt, that is, the manner in which the two variables drift upward together, and the short-run 
dynamics, that is, the relationship between deviations of yt from its long-run trend and 
deviations of xt from its long-run trend. If this is the case, then differencing of the data 
would be counterproductive, because it would obscure the long-run relationship between 
yt and xt. Studies of cointegration and a related technique, error correction, are concerned 
with methods of estimation that preserve the information about both forms of 
covariation.12

Example 21.5    Cointegration in Consumption and Output
Consumption and income provide one of the more familiar examples of the phenomenon 
described previously. The logs of GDP and consumption for 1950.1 to 2000.4 are plotted 
in Figure 21.10. Both variables are obviously nonstationary. We have already verified that 
there is a unit root in the income data. We leave as an exercise for the reader to verify 
that the consumption variable is likewise I(1). Nonetheless, there is a clear relationship 
between consumption and output. Consider a simple regression of the log of consumption 
on the log of income, where both variables are manipulated in mean deviation form (so, 
the regression includes a constant). The slope in that regression is 1.056765. The residuals 
from the regression, ut = [ln Cons*, ln GDP*][1, -1.056765]′ (where the “*” indicates mean 
deviations) are plotted in Figure 21.11. The trend is clearly absent from the residuals. But 
it remains to verify whether the series of residuals is stationary. In the ADF regression of 
the least squares residuals on a constant (random walk with drift), the lagged value and 
the lagged first difference, the coefficient on ut - 1 is 0.838488 (0.0370205) and that on 
ut - 1 - ut - 2 is -0.098522. (The constant differs trivially from zero because two observations 
are lost in computing the ADF regression.) With 202 observations, we find DFt = -4.63 
and DFg = -29.55. Both are well below the critical values, which suggests that the residual 
series does not contain a unit root. We conclude (at least it appears so) that even after 

11Any autocorrelation in the model has been removed through an appropriate transformation.
12See, for example, Engle and Granger (1987) and the lengthy literature cited in Hamilton (1994). A survey paper 
on VARs and cointegration is Watson (1994).
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FIGURE 21.10    Cointegrated Variables: Logs of Consumption and GDP.
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FIGURE 21.11    Residuals from Consumption—Income Regression.
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accounting for the trend, although neither of the original variables is stationary, there is a 
linear combination of them that is. If this conclusion holds up after a more formal treatment of 
the testing procedure, we will conclude that log GDP and log consumption are cointegrated.

Example 21.6    Several Cointegrated Series
The theory of purchasing power parity specifies that in long-run equilibrium, exchange rates 
will adjust to erase differences in purchasing power across different economies. Thus, if 
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p1 and p0 are the price levels in two countries and E is the exchange rate between the two 
currencies, then in equilibrium,

vt = Et 
p1t

p0t
= m,  a constant.

The price levels in any two countries are likely to be strongly trended. But allowing for short-
term deviations from equilibrium, the theory suggests that for a particular B = (ln m, -1, 1)′, 
in the model

ln Et = b1 + b2 ln p1t + b3 ln p0t + et,

et = ln vt would be a stationary series, which would imply that the logs of the three variables 
in the model are cointegrated.

We suppose that the model involves M variables, yt = [y1t, c, yMt]′, which individually 
may be I(0) or I(1), and a long-run equilibrium relationship,

yt
=G - xt

=B = 0.

The regressors may include a constant, exogenous variables assumed to be I(0), and/or a 
time trend. The vector of parameters G is the cointegrating vector. In the short run, the 
system may deviate from its equilibrium, so the relationship is rewritten as

yt
=G - xt

=B = et,

where the equilibrium error et must be a stationary series. In fact, because there 
are M variables in the system, at least in principle, there could be more than one 
cointegrating vector. In a system of M variables, there can only be up to M - 1 
linearly independent cointegrating vectors. A proof of this proposition is very simple, 
but useful at this point.

Proof: Suppose that Gi is a cointegrating vector and that there are M linearly 
independent cointegrating vectors. Then, neglecting xt

=B for the moment, 
for every Gi, yt

=Gi is a stationary series nti. Any linear combination of a set of 
stationary series is stationary, so it follows that every linear combination of the 
cointegrating vectors is also a cointegrating vector. If there are M such M * 1 
linearly independent vectors, then they form a basis for the M-dimensional 
space, so any M * 1 vector can be formed from these cointegrating vectors, 
including the columns of an M * M identity matrix. Thus, the first column of 
an identity matrix would be a cointegrating vector, or yt1 is I(0). This result is a 
contradiction, because we are allowing yt1 to be I(1). It follows that there can 
be at most M - 1 cointegrating vectors.

The number of linearly independent cointegrating vectors that exist in the 
equilibrium system is called its cointegrating rank. The cointegrating rank may 
range  from 1 to M - 1. If it exceeds one, then we will encounter an interesting 
identification problem. As a consequence of the observation in the preceding proof, 
we have the unfortunate result that, in general, if the cointegrating rank of a system 
exceeds one, then without out-of-sample, exact information, it is not possible to estimate 
behavioral relationships as cointegrating vectors. Enders (1995) provides a useful 
example.
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Example 21.7    Multiple Cointegrating Vectors
We consider the logs of four variables, money demand m, the price level p, real income y, 
and an interest rate r. The basic relationship is

m = g0 + g1p + g2y + g3r + e.

The price level and real income are assumed to be I(1). The existence of long-run equilibrium 
in the money market implies a cointegrating vector A1. If the Fed follows a certain feedback 
rule, increasing the money stock when nominal income (y + p) is low and decreasing it when 
nominal income is high—which might make more sense in terms of rates of growth—then 
there is a second cointegrating vector in which g1 = g2 and g3 = 0. Suppose that we label 
this vector A2. The parameters in the money demand equation, notably the interest elasticity, 
are interesting quantities, and we might seek to estimate A1 to learn the value of this quantity. 
Because every linear combination of A1 and A2 is a cointegrating vector, to this point we are 
only able to estimate a hash of the two cointegrating vectors.

In fact, the parameters of this model are identifiable from sample information (in principle). 
We have specified two cointegrating vectors,

A1 = [1, -g10, -g11, -g12, -g13]′

and

A2 = [1, -g20, g21, g21, 0]′.

Although it is true that every linear combination of A1 and A2 is a cointegrating vector, only 
the original two vectors, as they are, have a 1 in the first position of both and a 0 in the 
last position of the second. (The equality restriction actually overidentifies the parameter 
matrix.) This result is, of course, exactly the sort of analysis that we used in establishing the 
identifiability of a simultaneous equations system in Chapter 10.

21.3.1  C  ommon Trends

If two I(1) variables are cointegrated, then some linear combination of them is I(0). 
Intuition should suggest that the linear combination does not mysteriously create a 
well-behaved new variable; rather, something present in the original variables must be 
missing from the aggregated one. Consider an example. Suppose that two I(1) variables 
have a linear trend,

 y1t = a + bt + ut, 
 y2t = g + dt + vt,

where ut and vt are white noise. A linear combination of y1t and y2t with vector (1, u) 
produces the new variable,

zt = (a + ug) + (b + ud)t + ut + uvt,

which, in general, is still I(1). In fact, the only way the zt series can be made stationary is 
if u = -b/d. If so, then the effect of combining the two variables linearly is to remove 
the common linear trend, which is the basis of Stock and Watson’s (1988) analysis of the 
problem. But their observation goes an important step beyond this one. The only way that 
y1t and y2t can be cointegrated to begin with is if they have a common trend of some sort. To 
continue, suppose that instead of the linear trend t, the terms on the left-hand side, y1 and 
y2, are functions of a random walk, wt = wt - 1 + ht, where ht is white noise. The analysis 
is identical. But now suppose that each variable yit has its own random walk component 

M21_GREE1366_08_SE_C21.indd   1043 2/23/17   2:02 PM



1044	 Part V  ✦  Time Series and Macroeconometrics

wit, i = 1, 2. Any linear combination of y1t and y2t must involve both random walks. It is 
clear that they cannot be cointegrated unless, in fact, w1t = w2t. That is, once again, they 
must have a common trend. Finally, suppose that y1t and y2t share two common trends,

 y1t = a + bt + lwt + ut, 

 y2t = g + dt + pwt + vt.

We place no restriction on l and p. Then, a bit of manipulation will show that it is not 
possible to find a linear combination of y1t and y2t that is cointegrated, even though 
they share common trends. The end result for this example is that if y1t and y2t are 
cointegrated, then they must share exactly one common trend.

As Stock and Watson determined, the preceding is the crux of the cointegration of 
economic variables. A set of M variables that are cointegrated can be written as a 
stationary component plus linear combinations of a smaller set of common trends. If the 
cointegrating rank of the system is r, then there can be up to M - r linear trends and 
M - r common random walks.13 (The two-variable case is special. In a two-variable 
system, there can be only one common trend in total.) The effect of the cointegration is 
to purge these common trends from the resultant variables.

21.3.2  E  rror Correction and Var Representations

Suppose that the two I(1) variables yt and zt are cointegrated and that the cointegrating 
vector is [1, -u]. Then all three variables, ∆yt = yt - yt - 1, ∆zt, and (yt - uzt) are I(0). 
The error correction model,

∆yt = xt
=B + g(∆zt) + l(yt - 1 - uzt - 1) + et,

describes the variation in yt around its long-run trend in terms of a set of I(0) exogenous 
factors xt, the variation of zt around its long-run trend, and the error correction (yt - uzt), 
which is the equilibrium error in the model of cointegration. There is a tight connection 
between models of cointegration and models of error correction. The model in this form 
is reasonable as it stands, but in fact, it is only internally consistent if the two variables 
are cointegrated. If not, then the third term, and hence the right-hand side, cannot be I(0), 
even though the left-hand side must be. The upshot is that the same assumption that we 
make to produce the cointegration implies (and is implied by) the existence of an error 
correction model.14 As we will examine in the next section, the utility of this representation 
is that it suggests a way to build an elaborate model of the long-run variation in yt as well 
as a test for cointegration. Looking ahead, the preceding suggests that residuals from an 
estimated cointegration model—that is, estimated equilibrium errors—can be included 
in an elaborate model of the long-run covariation of yt and zt. Once again, we have the 
foundation of Engel and Granger’s approach to analyzing cointegration.

Pesaran, Shin, and Smith (2001) suggest a method of testing for a relationship in 
levels between a yt and an xt when there exist significant lags in the error correction 
form. Their bounds test accommodates the possibility that the regressors may be trend 
or difference stationary. The critical values they provide give a band that covers the 
polar cases in which all regressors are I(0), or are I(1), or are mutually cointegrated. The 

13See Hamilton (1994, p. 578).
14The result in its general form is known as the Granger representation theorem. See Hamilton (1994, p. 582).
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statistic is able to test for the existence of a levels equation regardless of whether the 
variables are I(0), I(1), or are cointegrated. In their application, yt is real earnings in the 
UK while xt includes a measure of productivity, the unemployment rate, unionization of 
the workforce, a replacement ratio that measures the difference between unemployment 
benefits and real wages, and a wedge between the real product wage and the real 
consumption wage. It is found that wages and productivity have unit roots. The issue 
then is to discern whether unionization, the wedge, and the unemployment rate, which 
might be I(0), have level effects in the model.

Consider the vector autoregression, or VAR representation of the model¢yt

zt
≤ = Jg11 g12

g21 g22
R ¢yt - 1

zt - 1
≤ + ¢e1t

e2t
≤,

or

yt = �yt - 1 + et,

where the vector yt is [yt, zt]′. Now take first differences to obtain

 yt - yt - 1 = (� - I)yt - 1 + Et,

or

 ∆yt = �yt - 1 + Et.

If all variables are I(1), then all M variables on the left-hand side are I(0). Whether 
those on the right-hand side are I(0) remains to be seen. The matrix � produces linear 
combinations of the variables in yt. But as we have seen, not all linear combinations 
can be cointegrated. The number of such independent linear combinations is r 6 M. 
Therefore, although there must be a VAR representation of the model, cointegration 
implies a restriction on the rank of �. It cannot have full rank; its rank is r. From another 
viewpoint, a different approach to discerning cointegration is suggested. Suppose that we 
estimate this model as an unrestricted VAR. The resultant coefficient matrix should be 
short-ranked. The implication is that if we fit the VAR model and impose short rank on 
the coefficient matrix as a restriction—how we could do that remains to be seen—then 
if the variables really are cointegrated, this restriction should not lead to a loss of fit. 
This implication is the basis of Johansen’s (1988) and Stock and Watson’s (1988) analysis 
of cointegration.

21.3.3  T  esting for Cointegration

A natural first step in the analysis of cointegration is to establish that it is indeed a 
characteristic of the data. Two broad approaches for testing for cointegration have 
been developed. The Engle and Granger (1987) method is based on assessing whether 
single-equation estimates of the equilibrium errors appear to be stationary. The second 
approach, due to Johansen (1988, 1991) and Stock and Watson (1988), is based on the 
VAR approach. As noted earlier, if a set of variables is truly cointegrated, then we should 
be able to detect the implied restrictions in an otherwise unrestricted VAR. We will 
examine these two methods in turn.

Let yt denote the set of M variables that are believed to be cointegrated. Step one of 
either analysis is to establish that the variables are indeed integrated to the same order. 
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The Dickey–Fuller tests discussed in Section 21.2.4 can be used for this purpose. If the 
evidence suggests that the variables are integrated to different orders or not at all, then 
the specification of the model should be reconsidered.

If the cointegration rank of the system is r, then there are r independent vectors, 
Gi = [1, -Ui], where each vector is distinguished by being normalized on a different 
variable. If we suppose that there are also a set of I(0) exogenous variables, including 
a constant, in the model, then each cointegrating vector produces the equilibrium 
relationship,

yt
=Gi = xt

=B + eit,

which we may rewrite as

yit = Yit
=Ui + xt

=B + eit.

We can obtain estimates of Ui by least squares regression. If the theory is correct and if 
this OLS estimator is consistent, then residuals from this regression should estimate the 
equilibrium errors. There are two obstacles to consistency. First, because both sides of 
the equation contain I(1) variables, the problem of spurious regressions appears. Second, 
a moment’s thought should suggest that what we have done is extract an equation from 
an otherwise ordinary simultaneous equations model and propose to estimate its 
parameters by ordinary least squares. As we examined in Chapter 10, consistency is 
unlikely in that case. It is one of the extraordinary results of this body of theory that in 
this setting, neither of these considerations is a problem. In fact, as shown by a number 
of authors,15 not only is ci, the OLS estimator of Ui, consistent, it is superconsistent in 
that its asymptotic variance is O(1/T 2) rather than O(1/T) as in the usual case. 
Consequently, the problem of spurious regressions disappears as well. Therefore, the 
next step is to estimate the cointegrating vector(s), by OLS. Under all the assumptions 
thus far, the residuals from these regressions, eit, are estimates of the equilibrium errors, 
eit. As such, they should be I(0). The natural approach would be to apply the familiar 
Dickey–Fuller tests to these residuals. The logic is sound, but the Dickey–Fuller tables 
are inappropriate for these estimated errors. Estimates of the appropriate critical values 
for the tests are given by Engle and Granger (1987), Engle and Yoo (1987), Phillips and 
Ouliaris (1990), and Davidson and MacKinnon (1993). If autocorrelation in the 
equilibrium errors is suspected, then an augmented Engle and Granger test can be based 
on the template

∆eit = dei,t - 1 + f1(∆ei,t - 1) + g + ut.

If the null hypothesis that d = 0 cannot be rejected (against the alternative d 6 0), 
then we conclude that the variables are not cointegrated. (Cointegration can be rejected 
by this method. Failing to reject does not confirm it, of course. But having failed to reject 
the presence of cointegration, we will proceed as if our finding had been affirmative.)

Example 21.8    Cointegration in Consumption and Output
In the example presented at the beginning of this discussion, we proposed precisely the sort 
of test suggested by Phillips and Ouliaris (1990) to determine if (log) consumption and (log) 

15See, for example, Davidson and MacKinnon (1993).
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GDP are cointegrated. As noted, the logic of our approach is sound, but a few considerations 
remain. The Dickey–Fuller critical values suggested for the test are appropriate only in a 
few cases, and not when several trending variables appear in the equation. For the case of 
only a pair of trended variables, as we have here, one may use infinite sample values in the 
Dickey–Fuller tables for the trend stationary form of the equation. (The drift and trend would 
have been removed from the residuals by the original regression, which would have these 
terms either embedded in the variables or explicitly in the equation.) Finally, there remains an 
issue of how many lagged differences to include in the ADF regression. We have specified 
one, although further analysis might be called for. [A lengthy discussion of this set of issues 
appears in Hayashi (2000, pp. 645–648).] Thus, but for the possibility of this specification 
issue, the ADF approach suggested in the introduction does pass muster. The sample value 
found earlier was -4.63. The critical values from the table are -3.45 for 5% and -3.67 for 
2.5%. Thus, we conclude (as have many other analysts) that log consumption and log GDP 
are cointegrated.

The Johansen (1988, 1992) and Stock and Watson (1988) methods are similar, so 
we will describe only the first one. The theory is beyond the scope of this text, although 
the operational details are suggestive. To carry out the Johansen test, we first formulate 
the VAR,

yt = �1yt - 1 + �2yt - 2 + g + �pyt - p + Et.

The order of the model, p, must be determined in advance. Now, let zt denote the vector 
of M(p - 1) variables,

zt = [∆yt - 1, ∆yt - 2, c, ∆yt - p + 1].

That is, zt contains the lags 1 to p - 1 of the first differences of all M variables. Now, 
using the T available observations, we obtain two T * M matrices of least squares 
residuals,

 D = the residuals in the regressions of ∆yt on zt,

 E = the residuals in the regressions of yt - p on zt.

We now require the M2 canonical correlations between the columns in D and those 
in E. To continue, we will digress briefly to define the canonical correlations. Let d1* 
denote a linear combination of the columns of D, and let e1* denote the same from E. We 
wish to choose these two linear combinations so as to maximize the correlation between 
them. This pair of variables are the first canonical variates, and their correlation r1* is the 
first canonical correlation. In the setting of cointegration, this computation has some 
intuitive appeal. Now, with d1* and e1* in hand, we seek a second pair of variables d2* and e2* 
to maximize their correlation, subject to the constraint that this second variable in each 
pair be orthogonal to the first. This procedure continues for all M pairs of variables. It 
turns out that the computation of all these is quite simple. We will not need to compute 
the coefficient vectors for the linear combinations. The squared canonical correlations 
are simply the ordered characteristic roots of the matrix,

R* = RDD
-1/2RDEREE

-1 REDRDD
-1/2,

where Rij is the (cross-) correlation matrix between variables in set i and set j, for 
i, j = D, E.
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Finally, the null hypothesis that there are r or fewer cointegrating vectors is tested 
using the test statistic,

traCE tEst = -T a
M

i= r + 1
ln[1 - (r i*)

2].

If the correlations based on actual disturbances had been observed instead of estimated, 
then we would refer this statistic to the chi-squared distribution with M - r degrees 
of freedom. Alternative sets of appropriate tables are given by Johansen and Juselius 
(1990) and Osterwald-Lenum (1992). Large values give evidence against the hypothesis 
of r or fewer cointegrating vectors.

21.3.4  E  stimating Cointegration Relationships

Both of the testing procedures discussed earlier involve actually estimating the 
cointegrating vectors, so this additional section is actually superfluous. In the Engle and 
Granger framework, at a second step after the cointegration test, we can use the residuals 
from the static regression as an error correction term in a dynamic, first-difference 
regression, as shown in Section 21.3.2. One can then test down to find a satisfactory 
structure. In the Johansen test shown earlier, the characteristic vectors corresponding 
to the canonical correlations are the sample estimates of the cointegrating vectors. Once 
again, computation of an error correction model based on these first-step results is a 
natural next step. We will explore these in an application.

21.3.5  Appli  cation: German Money Demand

The demand for money has provided a convenient and well-targeted illustration of 
methods of cointegration analysis. The central equation of the model is

	 mt - pt = m + byt + git + et,� (21-8)

where mt, pt, and yt are the logs of nominal money demand, the price level, and output, 
and i is the nominal interest rate (not the log of). The equation involves trending 
variables (mt, pt, yt), and one that we found earlier appears to be a random walk with 
drift (it). As such, the usual form of statistical inference for estimation of the income 
elasticity and interest semielasticity based on stationary data is likely to be misleading.

Beyer (1998) analyzed the demand for money in Germany over the period 1975 
to 1994. A central focus of the study was whether the 1990 reunification produced a 
structural break in the long-run demand function. (The analysis extended an earlier 
study by the same author that was based on data that predated the reunification.) One 
of the interesting questions pursued in this literature concerns the stability of the long-
term demand equation,

	 (m - p)t - yt = m + git + et.� (21-9)

The left-hand side is the log of the inverse of the velocity of money, as suggested by 
Lucas (1988). An issue to be confronted in this specification is the exogeneity of the 
interest variable—exogeneity [in the Engle, Hendry, and Richard (1993) sense] of 
income is moot in the long-run equation as its coefficient is assumed (per Lucas) to 
equal one. Beyer explored this latter issue in the framework developed by Engle et al. 
(see Section 21.3.5).
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Variable m �m �2m p �p �2p �4p ��4p

Spec. TS RW RW TS RW/D RW RW/D RW
Lag 0 4 3 4 3 2 2 2
DFt -1.82 -1.61 -6.87 -2.09 -2.14 -10.6 -2.66 -5.48
Crit.Value -3.47 -1.95 -1.95 -3.47 -2.90 -1.95 -2.90 -1.95

Variable y �y RS �RS RL �RL (m − p) �(m − p)

Spec. TS RW/D TS RW TS RW RW/D RW/D
Lag 4 3 1 0 1 0 0 0
DFt -1.83 -2.91 -2.33 -5.26 -2.40 -6.01 -1.65 -8.50
Crit.Value -3.47 -2.90 -2.90 -1.95 -2.90 -1.95 -3.47 -2.90

Table 21.5  Augmented Dickey–Fuller Tests for Variables in the Beyer Model

The analytical platform of Beyer’s study is a long-run function for the real money 
stock M3 (we adopt the author’s notation)

	 (m - p)* = d0 + d1y + d2RS + d3RL + d4∆4p,� (21-10)

where RS is a short-term interest rate, RL is a long-term interest rate, and ∆4p is the 
annual inflation rate—the data are quarterly. The first step is an examination of the 
data. Augmented Dickey–Fuller tests suggest that for these German data in this period, 
mt and pt are I(2), while (mt - pt), yt, ∆4pt, RSt, and RLt are all I(1). Some of Beyer’s 
results which produced these conclusions are shown in Table 21.5. Note that although 
both mt and pt appear to be I(2), their simple difference (linear combination) is I(1), 
that is, integrated to a lower order. That produces the long-run specification given by 
(21-10). The Lucas specification is layered onto this to produce the model for the long-
run velocity,

	 (m - p - y)* = d0* + d2*RS + d3*RL + d4*∆4p.� (21-11)

21.3.5.a  C  ointegration Analysis and a Long-Run Theoretical Model

For (21-10) to be a valid model, there must be at least one cointegrating vector that 
transforms zt = [(mt - pt), yt, RSt, RLt, ∆4pt] to stationarity. The Johansen trace 
test described in Section 21.3.3 was applied to the VAR consisting of these five I(1) 
variables. A lag length of two was chosen for the analysis. The results of the trace test 
are a bit ambiguous; the hypothesis that r = 0 is rejected, albeit not strongly (sample 
value = 90.17 against a 95% critical value = 87.31) while the hypothesis that r … 1 
is not rejected (sample value = 60.15 against a 95% critical value of 62.99). (These 
borderline results follow from the result that Beyer’s first three eigenvalues—canonical 
correlations in the trace test statistic—are nearly equal. Variation in the test statistic 
results from variation in the correlations.) On this basis, it is concluded that the 
cointegrating rank equals one. The unrestricted cointegrating vector for the equation 
with a time trend added, is found to be

	 (m - p) = 0.936y - 1.780∆4p + 1.601RS - 3.279RL + 0.002t.� (21-12)
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(These are the coefficients from the first characteristic vector of the canonical correlation 
analysis in the Johansen computations detailed in Section 21.3.3.) An exogeneity test—
we have not developed this in detail; see Beyer (1998, p. 59), Hendry and Ericsson (1991), 
and Engle and Hendry (1993)—confirms weak exogeneity of all four right-hand-side 
variables in this specification. The final specification test is for the Lucas formulation 
and elimination of the time trend, both of which are found to pass, producing the 
cointegration vector,

(m - p - y) = -1.832∆4p + 4.352RS - 10.89RL.

The conclusion drawn from the cointegration analysis is that a single-equation model 
for the long-run money demand is appropriate and a valid way to proceed. A last step 
before this analysis is a series of Granger causality tests for feedback between changes in 
the money stock and the four right-hand-side variables in (21-12) (not including the trend). 
The test results are generally favorable, with some mixed results for exogeneity of GDP.

21.3.5.b  T  esting for Model Instability

Let zt = [(mt - pt), yt, ∆4pt, RSt, RLt] and let zt - 1
0  denote the entire history of zt up 

to the previous period. The joint distribution for zt, conditioned on zt - 1
0  and a set of 

parameters, �, factors one level further into

f(zt � zt - 1
0 , Ψ) = f[(m - p)t � yt, ∆4pt, RSt, RLt, zt - 1

0 , �1]

* g(yt, ∆4pt, RSt, RLt � zt - 1
0 , �2).

The result of the exogeneity tests carried out earlier implies that the conditional 
distribution may be analyzed apart from the marginal distribution—that is, the 
implication of the Engle, Hendry, and Richard results noted earlier. Note the partitioning 
of the parameter vector. Thus, the conditional model is represented by an error correction 
form that explains ∆(m - p)t in terms of its own lags, the error correction term, and 
contemporaneous and lagged changes in the (now established) weakly exogenous 
variables as well as other terms such as a constant term, trend, and certain dummy 
variables which pick up particular events. The error correction model specified is

	  ∆(m - p)t = a
4

i= 1
ci∆(m - p)t - i + a

4

i= 0
d1,i∆(∆4pt - i

) + a
4

i= 0
d2,i∆yt - i

	  + a
4

i= 0
d3,i∆RSt - i + a

4

i= 0
d4,i∆RLt - i + l(m - p - y)t - 1

	  + g1RSt - 1 + g2RLt - 1 + dt
=F + vt,� (21-13)

where dt is the set of additional variables, including the constant and five one-period 
dummy variables that single out specific events such as a currency crisis in September, 
1992.16  The model is estimated by least squares, “stepwise simplified and reparameterized.” 
(The number of parameters in the equation is reduced from 32 to 15.17)

16Beyer (1998, p. 62, footnote 4).
17The equation ultimately used is ∆(mt - pt) = h[∆(m - p)t - 4, ∆∆4pt, ∆2yt - 2, ∆RSt - 1 + ∆RSt - 3, ∆2RLt, RSt - 1, 
 RLt - 1, ∆4pt - 1, (m - p - y)t - 1, d)t].
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The estimated form of (21-13) is an autoregressive distributed lag model. We proceed 
to use the model to solve for the long-run, steady-state growth path of the real money 
stock, (21-10). The annual growth rates ∆4m = gm, ∆4p = gp, ∆4y = gy and (assumed) 
∆4RS = gRS = ∆4RL = gRL = 0 are used for the solution18

1
4

 (gm - gp) =
c4

4
 (gm - gp) - d1,1gp +

d2,2

2
 gy + g1RS + g2RL + l(m - p - y).

This equation is solved for (m - p)* under the assumption that gm = (gy + gp),

(m - p)* = dn0 + dn1gy + y + dn2∆4p + dn3RS + dn4RL.

Analysis then proceeds based on this estimated long-run relationship.
The primary interest of the study is the stability of the demand equation pre- 

and postunification. A comparison of the parameter estimates from the same 
set of procedures using the period 1976 to 1989 shows them to be surprisingly 
similar, [(1.22 - 3.67gy), 1, -3.67, 3.67, -6.44] for the earlier period and 
[(1.25 - 2.09gy), 1, -3.625, 3.5, -7.25] for the later one. This suggests, albeit informally, 
that the function has not changed (at least by much). A variety of testing procedures 
for structural break led to the conclusion that in spite of the dramatic changes of 1990, 
the long-run money demand function had not materially changed in the sample period.

21.4	N onstationary Panel Data

In Section 11.10, we began to examine panel data settings in which T, the number of 
observations in each group (e.g., country), became large as well as n. Applications include 
cross-country studies of growth using the Penn World Tables,19 studies of purchasing power 
parity,20 and analyses of health care expenditures.21 In the small T cases of longitudinal, 
microeconomic data sets, the time-series properties of the data are a side issue that is 
usually of little interest. But when T is growing at essentially the same rate as n, for example, 
in the cross-country studies, these properties become a central focus of the analysis.

The large T, large n case presents several complications for the analyst. In the 
longitudinal analysis, pooling of the data is usually a given, although we developed several 
extensions of the models to accommodate parameter heterogeneity (see Section 11.10). 
In a long-term cross-country model, any type of pooling would be especially suspect. 
The time series are long, so this would seem to suggest that the appropriate modeling 
strategy would be simply to analyze each country separately. But this would neglect the 
hypothesized commonalities across countries such as a (proposed) common growth rate. 
Thus, the time-series panel data literature seeks to reconcile these opposing features of 
the data.

As in the single time-series cases examined earlier in this chapter, long-term 
aggregate series are usually nonstationary, which calls conventional methods (such as 

18The division of the coefficients is done because the intervening lags do not appear in the estimated equation.
19Im, Pesaran, and Shin (2003) and Sala-i-Martin (1996).
20Pedroni (2001).
21McCoskey and Selden (1998).
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those in Section 11.10) into question. A focus of the recent literature, for example, is 
on testing for unit roots in an analog to the platform for the augmented Dickey–Fuller 
tests (Section 21.2),

∆yit = riyi,t - 1 + a
Li

m= 1
gim∆yi,t - m + ai + bit + eit.

Different formulations of this model have been analyzed, for example, by Levin, Lin, and 
Chu (2002), who assume ri = r; Im, Pesaran, and Shin (2003), who relax that restriction; 
and Breitung (2000), who considers various mixtures of the cases. An extension of the 
KPSS test in Section 21.2.5 that is particularly simple to compute is Hadri’s (2000) LM 
statistic,

LM =
1
n

 a
n

i= 1
a a T

t= 1Eit
2

T 2sn e
2 b = a n

i= 1KPSSi

n
.

This is the sample average of the KPSS statistics for the n countries. Note that it includes 
two assumptions: that the countries are independent and that there is a common se

2 for 
all countries. An alternative is suggested that allows se

2 to vary across countries.
As it stands, the preceding model would suggest that separate analyses for each 

country would be appropriate. An issue to consider, then, would be how to combine, 
if possible, the separate results in some optimal fashion. Maddala and Wu (1999), for 
example, suggested a “Fisher-type” chi-squared test based on P = -2Σi ln pi, where pi 
is the p value from the individual tests. Under the null hypothesis that ri equals zero, the 
limiting distribution is chi squared with 2n degrees of freedom.

Analysis of cointegration, and models of cointegrated series in the panel data setting, 
parallel the single time-series case, but also differ in a crucial respect.22 Whereas in the 
single time-series case, the analysis of cointegration focuses on the long-run relationships 
between, say, xt and zt for two variables for the same country, in the panel data setting, 
say, in the analysis of exchange rates, inflation, purchasing power parity or international 
R & D spillovers, interest may focus on a long-run relationship between xit and xmt for 
two different countries (or n countries). This substantially complicates the analyses. It is 
also well beyond the scope of this text. Extensive surveys of these issues may be found 
in Baltagi (2005, Chapter 12) and Smith (2000).

21.5	S ummary and Conclusions

This chapter has completed our survey of techniques for the analysis of time-series 
data. Most of the results in this chapter focus on the internal structure of the individual 
time series themselves. While the empirical distinction between, say, AR(p) and 
MA(q) series may seem ad hoc, the Wold decomposition theorem assures that with 
enough care, a variety of models can be used to analyze a time series. This chapter 
described what is arguably the fundamental tool of modern macroeconometrics: the 
tests for nonstationarity. Contemporary econometric analysis of macroeconomic data 
has added considerable structure and formality to trending variables, which are more 

22See, for example, Kao (1999), McCoskey and Kao (1999), and Pedroni (2000, 2004).
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common than not in that setting. The variants of the Dickey–Fuller and KPSS tests for 
unit roots are indispensable tools for the analyst of time-series data. Section 21.4 then 
considered the subject of cointegration. This modeling framework is a distinct extension 
of the regression modeling where this discussion began. Cointegrated relationships and 
equilibrium relationships form the basis of the time-series counterpart to regression 
relationships. But, in this case, it is not the conditional mean as such that is of interest. 
Here, both the long-run equilibrium and short-run relationships around trends are of 
interest and are studied in the data.

Key Terms and Concepts

•	Augmented Dickey–Fuller 
test

•	Autoregressive integrated 
moving-average (ARIMA) 
process

•	Bounds test
•	Canonical correlation
•	Cointegrated

•	Cointegration
•	Cointegration rank
•	Cointegrating vector
•	Common trend
•	Data-generating process 

(DGP)
•	Dickey–Fuller test
•	Equilibrium error

•	Integrated of order one
•	Nonstationary process
•	Phillips–Perron test
•	Random walk
•	Random walk with drift
•	Superconsistent
•	Trend stationary process
•	Unit root

Exercise

1.	 Find the first two autocorrelations and partial autocorrelations for the MA(2) 
process

et = vt - u1vt - 1 - u2vt - 2.

Applications

1.	 Using the macroeconomic data in Appendix Table F5.2, estimate by least squares 
the parameters of the model ct = b0 + b1yt + b2ct - 1 + b3ct - 2 + et, where ct is the 
log of real consumption and yt is the log of real disposable income.
a.	 Use the Breusch and Pagan LM test to examine the residuals for autocorrelation.
b.	 Is the estimated equation stable? What is the characteristic equation for the 

autoregressive part of this model? What are the roots of the characteristic 
equation, using your estimated parameters?

c.	 What is your implied estimate of the short-run (impact) multiplier for change in 
yt on ct? Compute the estimated long-run multiplier.

2.	 Carry out an ADF test for a unit root in the rate of inflation using the subset of 
the data in Appendix Table F5.2 since 1974.1. (This is the first quarter after the oil 
shock of 1973.)

3.	 Estimate the parameters of the model  in Example 10.4 using two-stage least 
squares. Obtain the residuals from the two equations. Do these residuals appear 
to be white noise series? Based on your findings, what do you conclude about the 
specification of the model?
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