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Modelling heavy tails and skewness

in film returns

W. D. Walls

Department of Economics, University of Calgary, Calgary,
Alberta, Canada T2N 1N4
E-mail: wdwalls@ucalgary.ca

The average of box-office revenue is dominated by extreme outcomes, with
most films earning little and most revenues flowing to a few blockbusters.
In this paper the skewness and heavy tails of film returns are formally
modelled using skew-Normal and skew-t distributions. Logarithmic
skew-Normal and skew-t models of the distribution of box-office revenue
are fitted conditional on star actors and directors, budget, release pattern,
genre, rating, and year of release. The estimates show significantly
more skewness and heavier tails than the log-Normal distribution.
It is also found that a wide theatrical release has a much smaller
impact on box-office revenue when heavy tails and skewness are explicitly
modelled.

I. Introduction

Few products have more commercially uncertain

success rates than motion pictures. Each film –

whether an original screenplay, an adaptation of a

novel, a remake of an earlier film, a sequel, a prequel,

or a knockoff of a recently successful film – is a

unique combination of creative and technical inputs

and there are no known formulas for financial

success: high-budget films featuring star actors

sometimes fail miserably (e.g., Waterworld ) and

moderate-budget films featuring non-marquee actors

sometimes become box-office hits (e.g., My Big Fat

Greek Wedding). The few successful films earn a

disproportionately large share of total box-office

revenues as their success in previous weeks seems

to propagate further success.
Part of the difficulty in modelling film returns is

similar to the problem of modelling asset returns in

general: events that are distant from the sample mean

occur with a frequency that is improbably large to

have been drawn from a Normal distribution.

Simply said, the tails of the empirical distribution of

returns are ‘heavier’ – contain more probability mass

– than the tails of a Normal (or even a log-Normal)

distribution. In addition to the higher-than-Normal

probability of extreme events, the distribution of

returns is asymmetric with an upper tail that is longer

and heavier than the lower tail.
Several recent papers by De Vany and Walls (1999,

2002, 2004) have documented the extreme uncertainty

associated with motion-picture success. In their

papers the unconditional distribution of movie

returns is modelled using the Pareto distribution

and most recently the Lévy-stable distribution. The

stable distribution – initially proposed as a model

of asset returns by Mandelbrot (1963) and Fama

(1963) – captures the skewness and heavy tails of

movie returns. In addition to providing a good fit

to the movie data, the central limit theorem can be
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appealled to in applying the the stable distribution.

Advances in statistical computation have made it
possible to estimate the unconditional stable density

as was done by De Vany and Walls (2004). However,
estimation of the stable distribution conditional

on a set of explanatory variables – the type of
regression framework used by applied researchers –

poses an overwhelming computational problem.

In this paper a sensible alternative way to model
skewness and heavy tails in applied work is proposed

and applied.
Recent advances in the statistical theory of non-

symmetric density functions have resulted in the

skew-Normal and skew-t distributions (and their
logarithmic versions). These distributions augment

the well-known Normal and student-t distributions
by adding a skewness parameter. It is also feasible

to estimate a regression model with skew-normal
or skew-t random disturbances using standard max-

imum likelihood techniques. The skew-t regression
model is particularly appealing in the present

application where the data are characterized by
heavy tails and skewness, and where the interest

is in making statistical inference on the regression
coefficients. Unlike some other distributions – such

as those in the Lévy-stable family – the skew-t

model can not appeal to the central limit theorem;
in this respect it is an ad hoc statistical model.

However, the skew-t model is intuitively appealing
in that it extends the Normal distribution by permit-

ting tails that are heavy and asymmetric. The skew-t
model can be estimated using standard statistical

software, making it a tool within the reach of all
applied researchers.

In the following section the skew-Normal and

skew-t distributions as statistical models of skewness
and heavy tails are discussed. In Section III the

conditional distribution of film returns is estimated.
The results are compared to those obtained by

applying standard statistical techniques to the data
set and to the results obtained by other researchers.

It is concluded in Section IV that the skew-tmodel is a
practical tool for use in applications and that is a good

approximation to the computationally impractical
asymmetric Lévy-stable regression model.

II. Statistical Models of Heavy Tails
and Skewness

Several statistical models have been proposed to
account for the non-Normal distribution of data
from the physical and social sciences. The stable
Paretian model was proposed by Mandelbrot (1963)
to account for the heavy tails of financial data; other
authors have suggested the student-t distribution with
the appropriate degrees of freedom as a natural
alternative to the Normal distribution. The stable
Paretian model can account for skewness and heavy
tails, but is computationally intractable to condition
on a vector of covariates in a regression-like
framework.1 The multivariate student-t distribution
permits regression analysis of film returns allowing
for heavy tails, but it does not allow for asymmetry.
Several recent empirical papers in finance have
employed various statistical models to capture
the skewness and heavy tails in the distribution of
financial returns using non-standard distributions
that make it difficult for applied researchers to
condition the distribution on a vector of explanatory
variables.2 In this section, is proposed the use of the
logarithmic versions of the skew-Normal and skew-t
distributions as models of film returns that explicitly
account for skewness, and skewness and heavy
tails, respectively, in a multivariate regression-like
framework of analysis that is familiar to financial
economists and other social scientists.

The skew-normal distribution

Azzalini (1985, 1986) defines a continuous random
variable Z to have a skew-Normal distribution,
denoted SNð0, 1, �Þ, if it has density function

2�ðzÞ�ð�zÞ ð1Þ

where � and � denote the density and distribution
functions, respectively, of a standard Normal Nð0, 1Þ
variate.3 The skew-Normal distribution is essentially
a Normal distribution that has been augmented by
the addition of a shape parameter � 2 ð�1, þ1Þ
that quantifies the skewness of the distribution;
when � ¼ 0, the skew-Normal distribution simplifies

1Walls (1997) estimates the unconditional distribution of movie revenues using Pareto and parabolic Pareto distributions;
Hand (2001) and Maddison (2004) also perform similar calculations on different data sets. De Vany and Walls (2004) model
the unconditional distribution of motion-picture profit using the stable Paretian model. Walls (2005) estimates the conditional
distribution of movie revenues using a symmetric stable Paretian regression model that fixes the skewness parameter at zero.
No prior work has modelled the conditional distribution of movie returns without imposing symmetry.
2 For example, Harris and Kucukozmen (2001) use the exponential generalized beta and skew generalized t distributions,
and Brannas and Nordman (2003) apply the log-generalized gamma and Pearson type IV specifications.
3 The development in this and the following subsection closely follows the simplified exposition of Azzalini and Kotz (2002).
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to the standard Normal distribution. In the empirical
application the distribution of the variable y ¼ � þ !z
is analysed where � is the location parameter and
!>0 is the scale parameter. Azzalini and Dalla
Valle (1996) and Azzalini and Capitanio (1999)
formally derive the statistical properties of the
multivariate skew-Normal distribution.

The skew-t distribution

The skew-Normal distribution can naturally be
extended to obtain the skew-t distribution to account
for heavier-than-Normal tails. The connection
between the skew-Normal and skew-t distributions
is analogous to that between the Normal and
student-t distributions.4 The standard skew-t
distribution is obtained by considering the
transformed variable

~zz ¼ z=ðv=d f Þ1=2 ð2Þ

where v is distributed �2 with d f degrees of freedom
and is statistically independent of z. In the empirical
application the distribution of the variable ~yy ¼ � þ ! ~zz
is analysed. Azzalini and Capitanio (2003) provide
a formal detailed treatment of the properties of
the skew-t distribution, including its multivariate
extension.

The skew-Normal and skew-t distributions can be

fit using their log-transformed versions. These are

referred to as log-skew-Normal and log-skew-t

distributions and they are related to the distributions

described above in the same way that the log-Normal

distribution corresponds to the Normal distribution.

In the empirical analysis that follows, unconditional

log-skew-Normal and log-skew-t distributions are

fitted to motion-picture revenue data.

Skew-normal and skew-t regression analysis

Using the skew-Normal and skew-t distributions, the
distribution of movie revenues are fitted conditional
on a vector of movie attributes in a regression-like
framework. The distribution of motion-picture
revenue is quantified conditional on budget, opening
screens, whether or not the movie is a sequel (or
prequel), whether or not the director or the actors
are stars, the genre, the rating category, and the

year of release in the form of a logarithmic linear
regression

log Revenuei ¼ �0þ �1 log Budgeti

þ �2 log Opening Screensiþ �3 Sequeli

þ �4 Stariþ �
0
1 Genreiþ �

0
2 Ratingi

þ � 03 Yeariþ�i ð3Þ

where i indexes individual movies; Star and Sequel are
indicator variables equal to unity when a movie
contains a star or is a sequel, respectively, and zero
otherwise; the �s are column vectors of coefficients
conformable to the sets of indicator variables
denoting particular genres, ratings, and release
years; and the random disturbance �i follows a
Normal, skew-Normal, or skew-t distribution
depending on the model being estimated. This basic
linear regression equation for cinema box-office
revenue has been employed by several previous
researchers.5 Estimation of the log-linear specification
allows the parameters on Budget and Opening Screens
to be interpreted as elasticities. Also, since film
revenues must be positive numbers, modelling their
logarithm is the natural transformation to make.
However, as will be shown below, the logarithmic
transformation of revenues alone – i.e., the log-
Normal distribution – does not capture the
skewness and heavy tails of box-office revenue.

III. Data Description and Estimation Results

The data are drawn from the population of movies
released domestically from 1985 to 1996.6 The data
were extracted from ACNielson EDI, Inc.’s historical
database. The EDI data are compiled from the
North American distributor-reported box-office
figures and are widely regarded as the standard
industry source for published information on motion
picture theatrical revenues. The EDI figures are cited
and republished by many major industry publications
including Daily Variety and Weekly Variety. From
the EDI database, all films for which data the
variables of interest were available were selected.
The resulting sample of complete cases contained
1989 movies. A detailed description and cross-
tabulation of the entire sample of EDI data is
contained in De Vany and Walls (1999).

4Any good mathematical statistics book will have a thorough treatment of the log-Normal distribution. See, for example,
the discussion in Hogg and Craig (1978).
5A partial listing of papers would include Smith and Smith (1986), Prag and Cassavant (1994), Litman and Ahn (1998) and
Ravid (1999).
6 In standard industry parlance ‘domestic’ refers to the USA and Canada.
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In the sample, box-office revenue ranged from a low

of 1304 to a high of 245 million, with a mean of 17.2

million. The average budget for these films was 11.9

million with a low of 4801 and a high of 114 million.

The largest-grossing movies in the sample include

Batman, The Lion King, Home Alone, Forrest Gump,

and Jurassic Park. The largest-budget films in the

sample include Space Jam, Eraser, True Lies,

Terminator 2: Judgment Day, and Waterworld .

Release patterns in the sample also vary widely,

with some movies opening on a single theatre screen

and the widest release opening on 3012 screens,

with the average being 844 screens.
First the unconditional log-skew-Normal and

log-skew-t distributions were fitted to motion-picture

revenue data.7 The log-skew-Normal and log-skew-t

distributions gave similar fits to the revenue data,

with their respective location parameters being

17.997 and 17.967, and their respective skewness

parameters being �5:483 and �5:403.8 The estimated

value of the degrees-of-freedom of the skew-t

distribution was 108.167 with an estimated standard

error of 279.919. With such a large value of degrees-

of-freedom, there is little difference between the two

fitted distributions. The fitted skew-t distribution is

plotted over a histogram of log revenue in Fig. 1.

A plot of the fitted skew-Normal distribution is

nearly identical.
The analysis proceeds by estimating the

conditional distribution of film revenues as set out

in Equation 3. Estimates of the skew-Normal

and skew-t regression models are displayed in the

columns of Table 1. Of primary methodological
interest are the coefficients on skewness (�) and tail
thickness (df). In both models it is found that the
skewness coefficient differs statistically from zero at
a marginal significance level much less than 0.01.
Further, from the skew-t model it is found that the
tails of the distribution are substantially heavier
than Normal, with the estimated degrees-of-freedom
parameter equal to approximately six with an
estimated standard error of about one. The param-
eter estimates in Table 1 clearly indicate that the
Normal model and the skew-Normal model are
both statistically rejected in favour of the more
general skew-t model.

Now some simple diagnostic plots are examined to
check the appropriateness of the skew-t distribution.
In Fig. 2 the fit of the theoretical distribution
is visually checked by examining the probability–
probability (PP) plot. In the PP-plots the empirical
cumulative distribution function is plotted against the
theoretical Normal cumulative distribution function
in the left panel and against the theoretical skew-t
cumulative distribution function in the right panel
for log revenue. If the theoretical cumulative distri-
bution approximates the observed distribution well,
then all points in the PP-plots should fall onto the
diagonal line. It is seen that there is noticeable diver-
gence from the diagonal line for the Normal PP-plot.
However, the skew-t distribution approximates the
empirical distribution quite well as evidenced by
the diagonal plot in the right panel of the figure.

Now the substantive coefficients reported in Table 1
are discussed. The coefficient on log Budget
represents the elasticity of box-office revenue with
respect to the film’s production budget. In the
skew-t model the estimate is 0.74 with a standard
error of about 0.047. The corresponding elasticity
estimate for the skew-Normal model was about
0.65, a substantially smaller elasticity that is nearly
two standard errors less than the estimate from the
skew-t model.

The coefficient on Star in the skew-t regression is
about 0.73 as compared to 0.84 for the skew-Normal
model; in each model the estimated standard error
is less than 0.05 so the estimates differ by more
than two standard errors. But to give an economic
interpretation to coefficients on dummy variables in
logarithmic regression, one must be subtracted from
the exponentiated coefficient on the dummy variable
(Halvorsen and Palmquist, 1980). This results in

log Revenue

D
en

si
ty

8 10 12 14 16 18

0.00

0.05

0.10

0.15

0.20

0.25

Fig. 1. Skew-t fit to the data

7 The statistical models were estimated in the R language (Ihaka and Gentleman, 1996) using the ‘sn’ library developed by
Adelchi Azzalini.
8 The differences between the skew-Normal and skew-t estimates of location and skewness are small relative to their estimated
standard errors of 0.051 and 0.038, respectively.
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Stars increasing revenues by a factor of expð0:73Þ �
1 ¼ 1:075 or 7.5% as compared to the factor of
expð0:84Þ � 1 ¼ 1:316 or 31.6% in the skew-Normal
model. In practical term, this enormous difference in
‘star power’ would erroneously be attributed to stars
by ignoring the heavy tails of the skew-t model. The
coefficient on log Opening Screens in both models is
estimated to be about 0.27 with a standard error
of about 0.02. This coefficient is the elasticity of
total box-office revenue with respect to opening
screens. While each coefficient differs statistically
from zero, the estimates from the two regression

model are nearly identical in comparison to their
standard errors.

In both the skew-Normal and skew-t models, the
coefficient on Sequel is positive but not statistically
different from zero. The coefficients on individual
genres and years of release generally do not differ
statistically from zero. However the coefficients on
the R and PG-13 ratings indicate that these categories
of films have statistically lower returns than G rated
movies, a result that confirms the earlier finding
of De Vany and Walls (2002) based on the Pareto
distribution.

Table 1. Skew-Normal and skew-t regression estimates

Skew-Normal model Skew-t model

Variable Coefficient Std error Coefficient Std error

Constant 5.8713 0.8656 3.9201 0.8731
log Budget 0.6473 0.0427 0.7435 0.0472
Star 0.8428 0.0472 0.7296 0.0413
Sequel 0.4146 0.5385 0.2759 0.4654
log Opening Screens 0.2725 0.0193 0.2728 0.0204

Genre
Action �0.1802 0.5362 �0.2899 0.4642
Adventure �0.1038 0.5662 �0.2110 0.4971
Animated 0.5007 0.6147 0.3025 0.5530
Black comedy �0.2055 0.5985 �0.2518 0.5312
Comedy 0.2072 0.5307 0.0886 0.4596
Drama 0.2158 0.5284 0.0992 0.4566
Fantasy 0.3212 0.5875 0.1153 0.5159
Horror 0.1716 0.5546 0.1052 0.4795
Musical 0.0493 0.5881 �0.1419 0.5231
Romantic comedy 0.2797 0.5414 0.1177 0.4716
Sci-Fi �0.0373 0.5776 �0.1486 0.5058
Suspense �0.3101 0.5435 �0.4109 0.4724
Western 0.2224 0.6577 �0.0728 0.5845

Rating category
PG �0.3961 0.2627 �0.2378 0.2524
PG-13 �0.5852 0.2649 �0.4411 0.2524
R �0.5570 0.2636 �0.4154 0.2513

Year of release
1986 �0.3300 0.2160 �0.3525 0.1975
1987 �0.3407 0.2132 �0.3395 0.1969
1988 �0.5998 0.2092 �0.5299 0.1931
1989 �1.0960 0.2038 �1.0189 0.1888
1990 �0.7099 0.2094 �0.6895 0.1917
1991 �0.4959 0.2089 �0.4761 0.1911
1992 �0.6121 0.2141 �0.6214 0.1966
1993 �0.3961 0.2192 �0.4641 0.2027
1994 �0.4519 0.2212 �0.5326 0.2033
1995 �0.5176 0.2169 �0.5421 0.1986
1996 �0.6401 0.2129 �0.7070 0.1962

� (skewness) �1.9198 0.1504 �1.2131 0.1503
df (tail weight) 6.0525 0.9740
log-Likelihood �3660.041 �3636.552
Observations 1989 1989
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For the purpose of direct comparison, estimates
obtained using least-squares regression and minimum
absolute deviation (MAD) regression are reported
in Table 2. The least-squares regression corresponds
to maximum likelihood estimation of a standard
log-Normal regression and the MAD regression
corresponds to modelling the median, a technique
often used by practitioners when data have influential
outlying observations.9

The coefficient estimate on log Budget is about 0.71
in the least-squares regression and 0.73 in the median
regression; both of these estimates lie in the interval
between the skew-Normal and skew-t estimates. The
coefficient on Star in the least-squares model is 0.84,
approximately the same as the estimate from the
skew-Normal model. But the estimate on Star
from the median regression is about 0.64, substan-
tially smaller than any of the other estimates.
The coefficient on log Opening Screens in the least-
squares regression and the median regression is about
0.35, which is substantially larger and statistically
different than the estimate obtained form the skew-
Normal and skew-t models.

The estimates differ substantially from those

obtained by some other researchers, most notably

Litman and Ahn (1998). Their estimates imply an

elasticity of box-office gross with respect to budget

of 0.23 which is substantially – and statistically –

smaller than the present estimate of 0.74.10 Their

estimates also imply an elasticity of box-office gross

with respect to opening screens of 0.65 as compared

to the estimate of 0.27.11

Litman and Ahn (1998) report that Budget and
Screens are statistically different from zero in their

model; however, they can not reject the hypothesis

that the coefficients on Star and the Rating variables

are zero. It is difficult to speculate on the reasons for

their particular results, though it could be related to

their specification search12 or their truncated sample

of data that includes only 241 films.13

IV. Conclusions

The motion-picture market has a winner-take-all
property where a small proportion of successful
films earns the majority of box-office revenue. The
average return across films is dominated by extreme
events, namely those few films that populate the long
upper tail of the distribution of returns. To be useful
in practice a statistical model of film returns
should capture (1) the asymmetry implied by the
winner-take-all property, (2) the heavy tails implied
by the importance of extreme events, and (3) allow
returns to be conditioned on a vector of explanatory
variables.

Recent advances in the statistical theory of

non-symmetric density functions make it feasible to

estimate a regression model with skew-Normal or

skew-t random disturbances using standard

maximum likelihood techniques. The skew-t

regression model is particularly appealing in
economics and finance where the data are character-

ized by heavy tails and skewness, and where interest

is in analysing conditional distributions. However,

the skew-t model is intuitively appealing in that it

extends the Normal distribution by permitting tails

that are heavy and asymmetric. Also, the skew-t

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

PP-plot for Normal Distribution PP- plot for Skew-t Distribution

Fig. 2. Probability plot of skew-t regression residuals

9 The MAD estimator is also a maximum likelihood estimator when the disturbances follow a two-tailed exponential
distribution. See Judge et al. (1985, pp. 836–37) and the references cited therein for further discussion.
10 They do not explicitly report elasticities in their paper. The elasticity has been calculated using their estimate regression
coefficient on budget of 0.38254, their reported average budget of 31.38 million and average box-office revenue of 51.24.
11 Again, Litman and Ahn (1998) do not explicitly report elasticity estimates in their paper. Point elasticity has been calculated
using their estimated regression coefficient of 0.01982, and their reported average screens of 1669.9 and average box-office
gross of 31.38 million.
12 Litman and Ahn (1998) are more honest than most empirical researchers in stating that their regression results, ‘represent
the final ‘best fit’ after initial screening of different groups of independent variables through correlation analysis’ (p. 188).
13 Their sample of data includes only the films listed in Variety’s Top-100 chart for the years 1993–1995 inclusive.
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model is computationally straightforward and estim-

able using standard statistical software that is freely

available.14 In this respect, the skew-t model appears

to be a practical approximation to the computation-

ally overwhelming asymmetric Lévy-stable regression

model.
In the empirical analysis logarithmic skew-Normal

and skew-t models of the distribution of box-office

revenue have been fitted conditional on star actors

and directors, budget, release pattern, genre, rating,

and year of release. Statistical evidence is found

of skewness and heavy tails that leads to a clear

rejection of the log-Normal model implicit in

log-linear regression analysis. It is also found that

a wide theatrical release has a much smaller impact

on box-office revenue when heavy tails and skewness

are modelled explicitly.
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Table 2. Least-squares and median regression estimates

Least-squares Median regression

Variable Coefficient Std error Coefficient Std error

Constant 3.5093 0.9139 3.2511 0.8347
log Budget 0.7086 0.0468 0.7291 0.0437
Star 0.8441 0.1039 0.6367 0.0967
Sequel �0.0150 0.5701 �0.1461 0.5014
log Opening Screens 0.3501 0.0176 0.3565 0.0163

Genre
Action �0.6770 0.5668 �0.7407 0.4987
Adventure �0.6832 0.5961 �0.7539 0.5275
Animated �0.1592 0.6418 �0.3235 0.5700
Black comedy �0.4392 0.6339 �0.7055 0.5635
Comedy �0.3057 0.5598 �0.4786 0.4917
Drama �0.2124 0.5589 �0.3336 0.4913
Fantasy �0.0562 0.6215 �0.3802 0.5513
Horror �0.2196 0.5885 �0.2926 0.5199
Musical �0.4183 0.6196 �0.7681 0.5495
Romantic comedy �0.2814 0.5705 �0.4463 0.5022
Sci-Fi �0.5799 0.6097 �0.6769 0.5402
Suspense �0.8769 0.5722 �0.8932 0.5043
Western �0.2838 0.6879 �0.6292 0.6107

Rating category
PG �0.4447 0.2722 �0.1676 0.2513
PG-13 �0.6273 0.2736 �0.3698 0.2523
R �0.5583 0.2725 �0.3028 0.2512

Year of release
1986 �0.3619 0.2282 �0.5156 0.2129
1987 �0.3766 0.2253 �0.4835 0.2098
1988 �0.6852 0.2215 �0.7148 0.2062
1989 �1.2642 0.2151 �1.1188 0.2003
1990 �0.7818 0.2220 �0.7957 0.2066
1991 �0.4818 0.2212 �0.5822 0.2058
1992 �0.6480 0.2263 �0.7968 0.2105
1993 �0.4613 0.2309 �0.6920 0.2151
1994 �0.5086 0.2333 �0.7641 0.2169
1995 �0.6122 0.2286 �0.6588 0.2131
1996 �0.6903 0.2245 �0.9380 0.2093

R2 0.5106 0.3188
Observations 1989 1989

14Readers are referred to the web page for The R Project for Statistical Computing at www.R-project.org.
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donation of the computing resources used in the
production of this research, and Adelchi Azzalini
for helpful comments on an earlier version of this
paper.
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