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Problem definition: We investigate the optimal sales compensation scheme in the context of private infor-

mation and unobservable actions, while considering common operational factors encountered in practice

including inventory costs, lost sales, and ordering delegation. Methodology/results: Based on an agency

model with general demand and cost functions, we derive optimality conditions for implementable contracts

that can achieve the second-best outcome in such scenarios. The contracts are in the forms of a menu with

linear compensation for demand or sales, incorporating inventory costs. Moreover, the contracts feature

adjustments in compensation corresponding to the ordering level if it is delegated. Managerial implica-

tions: Our study reveals that, under reasonably mild conditions, optimal sales contracts can still maintain

relatively simple forms, even when confronted with common operational factors and generalized demand

and cost functions. However, the contracts must be tailored to suit the operational settings, incorporating

adjustments based on inventory costs, lost sales, and ordering delegation. Intriguingly, neither the loss of

demand information nor the delegation of inventory decisions would compromise system efficiency at opti-

mum.

Key words : optimal contract, sales and operations planning, supply/demand mismatch, demand censoring,

inventory delegation

1. Introduction

Sales compensation design is vital for motivating sales teams and driving firm success. Its

impact spans various dimensions, including gathering market information and stimulating

demand. However, despite extensive research on the design, a gap exists in understanding

how sales forces interact with operational factors, such as supply and demand mismatch,

censored demand information due to lost sales, and ordering delegation, which can sub-

stantially impact a firm’s profitability. Indeed, effectively managing the supply and demand

mismatch poses a formidable challenge across diverse industries like groceries, fashion,

electronics, and pharmaceuticals. These sectors grapple with product characteristics such
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as short life-cycles and lengthy lead time, leading to rapid inventory depreciation and

high demand uncertainty. Pharmaceutical companies face excess inventories and short-

ages simultaneously (Ebel et al. 2013). Major retailers like Wal-Mart and Whole Foods

have struggled with shortages, resulting in disappointed customers (Dudley 2014, Peterson

2018). These mismatches have led to financial losses amounting to billions of dollars.

The root causes of these losses are attributed not only to product characteristics but also

to ineffective coordination between sales divisions or retail outlets and central offices. In

practice, firms employ varied approaches to inventory management, with some delegating

ordering decisions to sales divisions or retail outlets. The rationale for delegation is based

on the belief that the sales divisions, being in close proximity to customers and the local

market, possess valuable information and insights regarding evolving customer preferences,

local competition dynamics, sales events, and the current financial conditions and purchas-

ing intentions of major clients. This proximity could allow the sales divisions to gather

real-time data and firsthand knowledge that can inform inventory decisions. However, the

sales divisions may not always leverage their superior information in a manner that aligns

with the firm’s best interest. This misalignment becomes particularly pronounced when the

sales divisions are incentivized through sales commissions or bonuses tied to meeting sales

targets. These incentives encourage them to boost sales by maintaining ample available

inventory, resulting in systematic over-ordering or inflated demand forecasts.

Caro and Gallien (2010) reported Zara’s inventory ordering process, which granted store

managers full control or direct influence over inventory decisions at centralized distribu-

tion centers through order placements. However, these managers, whose compensation was

tied to total sales in their stores, were enticed to frequently order more than necessary,

especially when facing potential rationing risk from distribution centers. Similarly, a global

pharmaceutical company, as documented by Scheele et al. (2018), relied on sales forecasts

for monthly inventory decisions but found a systematic over-forecasting, with an average

inflation of 16.2%. This could be blamed on the company’s incentive system, which included

a sales bonus but lacked rewards or penalties based on forecast accuracy. Moreover, Van

Donselaa et al. (2010) examined a European supermarket chain where store managers

were empowered to freely adjust recommended inventory orders. Granting this autonomy

resulted in an average inventory increase of 9.6% over the centralized replenishment system.
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On the contrary, many prominent retail chains in the United States, such as Wal-Mart,

Target and Whole Foods, have implemented centrally controlled inventory systems. The

rationale behind this practice is grounded in the theory of efficiency. To prepare the goods

at a distribution center according to store layouts and deliver them directly to the store

shelves “just in time” based on the orders of the central system may achieve significant

cost efficiency, while reducing the likelihood of local excess inventory. However, without

effectively leveraging the superior information of the retail outlets, the centrally controlled

system may result in substantial stock shortages, as reported in the previous news articles.

Besides the private information held by the sales divisions and retail outlets, their efforts

play a critical role in influencing and improving demand through activities such as client vis-

its, enhanced customer services, and product consultations (Dudley 2014, Peterson 2018).

However, neither their private information nor their efforts might be revealed to the firm,

particularly when the actual demand information is potentially censored by the inventory

level due to lost sales. This prompts the question of how firms can leverage sales divi-

sion insights, incentivize efforts, and manage inventory effectively. To address this gap, we

develop an agency model encompassing hidden action (sales division effort) and hidden

information (local market conditions). By placing minimal constraints on the demand and

cost functions, our model subsumes a broad spectrum of models found in the existing liter-

ature, and our results remain robust across exceptionally diverse scenarios. We incorporate

the supply and demand mismatch, the demand information censoring, and the inventory

ordering role into the model, which leads to four setups: demand-based contracting with

controlled inventory, sales-based contracting with controlled inventory, demand-based con-

tracting with delegated inventory, and sales-based contracting with delegated inventory.

Our analysis not only highlights the subtle differences in these setups, which can be

ascribed to operational factors, but also provides actionable mechanisms to address the

central question mentioned above. Specifically, we demonstrate that linear commission

contracts in the form of menus (MLC) are highly effective in achieving the second-best

outcome under similarly mild conditions in all of these scenarios. This finding holds true for

the assumed general demand and cost functions, ensuring the practical implementability

of these mechanisms in real-world environments. Therefore, there is no need to undertake

organizational restructuring solely for the purpose of aligning incentives, for instance, for

the aforementioned firms that employ different strategies to manage their operations.
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These commission contracts, however, differ for different setups. The optimal contracts

in the benchmark setting would not properly incentivize the agent in any of those scenarios

involving operational factors. In the setting closest to the benchmark, where the demand is

contractible and the inventory decision is centrally controlled, the commission rates need to

be adjusted lower compared to the benchmark case, taking into account the inventory costs,

which in turn motivates a lower effort level. Conversely, the transfer payments need to be

adjusted higher depending on the desired inventory level. In the setting where the contracts

must be written based on sales due to censored demand information, the commission rates

and the transfer payments need be adjusted, according not only to the inventory costs

but also to the expected sales function. As a result of the loss of demand information, the

commission rates in the menu may need to vary more in order to incentivize the agent to

truthfully report her private information and exert the second-best effort.

When the inventory decision is delegated, it becomes crucial to incorporate incentives

into the contracts to motivate the agent to make the second-best inventory decision. In

the scenario where the demand is contractible, the commission rates at their optimum

remain the same as in the case where the inventory decision is centralized. However, besides

the standard terms, the transfer payments are structured with terms that depend on the

chosen inventory level, mimicking a centralized newsvendor payoff function. Notably, the

motivation for effort and information revelation is decoupled from the motivation for the

inventory decision in this scenario. In contrast, in the more intricate case where the con-

tracts must be based on sales, the commissions are contingent upon the inventory level

selected by the agent. As a result, the terms in the transfer payments used to incentivize

the inventory decision must be structured taking into account the commission rates.

1.1. Related Literature

Our work is related to the marketing and economics literature on the optimal agency com-

pensation scheme. Basu et al. (1985) characterized the firm’s optimal contract under a

setting with pure hidden action (i.e., demand-enhancement efforts). Their findings empha-

sized the necessity of a convex increasing scheme, tailored to compensate agents with

an escalating marginal cost of effort. Consequently, the firm’s optimal contract exhibits

a convex increase in sales. Laffont and Tirole (1986) and Rao (1990) explored scenarios

featuring both hidden action and hidden information and demonstrated the optimality of

linear contracts within the general contract space. Each linear contract comprises a fixed
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salary and a commission rate contingent on the agent’s truthful report of the local market

condition. This optimality result not only holds theoretical elegance but also sheds light

on the widespread adoption of linear compensation schemes, which stand as one of the

two most prevalent incentive structures in practice (see Li et al. 2020). However, the mar-

keting and economic literature largely assumes unlimited supplies, implying that demand,

irrespective of its magnitude, can always be met without incurring extra costs. This per-

spective overlooks a central operational issue, namely, the potential supply and demand

mismatch. In contrast, our work complements this oversight by integrating supply and

demand mismatch as well as delegation of inventory decisions. We show that the optimal

scheme can still retain a linear structure but with a new compensation component contin-

gent on operational metrics. Moreover, we find that neither demand information censoring

nor delegation of inventory decisions results in efficiency loss.

Our work falls into the growing body of studies on salesforce compensation with con-

siderations of operational factors. Chen (2005) compared a forecast-based compensation

scheme with a menu of linear contracts in a model where the agent possesses private infor-

mation of the market condition, which aids the firm’s production and inventory planning.

Sohoni et al. (2011) compared piece-wise convex compensation schemes and quota-based

compensation schemes, taking the sales variance into account. Khanjari et al. (2014) exam-

ined the performance of a menu of linear contracts for a retailer- or manufacturer-employed

sales agent. Unlike these papers that focus on specific contract forms, we consider the most

general contract space within which we characterize an optimal compensation scheme.

Chu and Lai (2013) and Dai and Jerath (2013) studied the optimal contract problem

under full information with censored demand and hidden action and showed the optimality

of the simple and commonly-used sales-quota-based bonus scheme when the agent is pro-

tected by limited liability—a specific type of risk aversion. Our model differs from theirs

in two aspects. First, we allow the agent to have private information of her local market

condition, which is common in practice. Notably, the agent is risk-neutral in our study

because the agency problem with hidden information and hidden action under risk aversion

(or limited liability) is intractable in most scenarios, let alone the addition of inventory

delegation. Second, inventory delegation was not considered in their models, where the firm

decides the inventory after offering the contract to the agent. Dai et al. (2021) incorpo-

rated both demand censoring and agent multitasking into their agency problem, where the
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agent is responsible for enhancing demand through marketing effort and available inven-

tory through operational effort. They unveiled the general optimality of contracts with

a bang-bang structure under mild assumptions. Our work differs in two ways. First, Dai

et al. (2021) did not consider the presence of private information, a pivotal component

central to our model. Second, they treated the available inventory as a stochastic outcome

resulting from the agent’s operational effort, rather than a direct decision variable, as is

the case in our study. Furthermore, our findings diverge from those presented in the three

aforementioned papers. We demonstrate that neither demand censorship nor inventory

delegation compromises the system efficiency. In particular, when the inventory decision

is made by the sales division, the classical menu of linear contracts falls short in moti-

vating the right order quantity. However, convenient adjustments to the linear contracts

can swiftly realign it with the attainment of the second-best outcome. These findings hold

practical relevance, particularly in scenarios where sales divisions are typically large and

risk-neutral, and inventory decisions are entrusted to them.

Chen et al. (2016) considered an agent not only exerting sales effort but also acquir-

ing information and found that the forecast-based contract can outperform the menu of

linear contracts. Xiao and Xiao (2020) delineated the optimal contract with the consider-

ation of supply and demand mismatch. They showed that the S-shaped scheme is optimal

under deterministic demand and that a tailor-made concave (quadratic) scheme is optimal

under stochastic demand. However, these studies either assumed that the firm decides the

inventory or assumed that the inventory is exogenously provided.

The remainder of the paper is organized as follows. Section 2 describes the model.

In Sections 3 and 4, we analyze the optimal compensation under inventory control and

delegation, respectively. We discuss the insights in Section 5 and conclude in Section 6.

2. The Model

A risk-netural firm needs to design a contract for its risk-netural sales division (or retail

store) in a local market (herein referred to as the “agent”), who is responsible for selling a

product at a unit price p. Due to her closer proximity to local customers compared to the

firm, the agent possesses superior information on market conditions, denoted by Θ. To be

precise, we assume that the agent directly observes the actual condition Θ= θ, while the

firm is only privy to the distribution of Θ, denoted by F (·) (with density f(·) and support
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[θ, θ̄]). We refer to the agent that observes condition θ as the θ-type agent. The agent can

invest effort, denoted by e, into promoting demand, subject to a convex and increasing

cost function C(e). The θ-type agent exerting e effort results in a deterministic output

R(e, θ), which reflects the predictable portion of the actual sales volume. To account for

market uncertainty, we represent the demand function as d= d(R(e, θ), ϵ), where ϵ stands

for a stochastic shock following a distribution G (with density g(·)).

To ease our analysis, for any given pair of output level r and type θ, we conversely

define an effort function E(r, θ) such that R(E(r, θ), θ) = r. Consequently, instead of the

preceding model where the agent selects an effort level e entailing a cost of C(e), we can

amalgamate θ and e into r and contemplate an equivalent model, where the θ-type agent

chooses an output level r incurring a cost of K(r, θ)≡C(E(r, θ)). This reformulated model

will be our focus throughout the paper. As an example, if we consider the demand and

cost functions of Chen (2005), d= θ+ e+ ϵ and C(e) = e2/2, the corresponding demand

and cost functions in our equivalent model will be d= r+ ϵ and K(r, θ) = (r− θ)2/2.

We adhere to the standard assumption of increasing hazard rate, i.e., H(θ) ≡ (1 −

F (θ))/f(θ) decreases in θ. In addition, we introduce the following regularity assumptions

regarding the demand, effort, and cost functions (throughout the paper, the numbered sub-

scripts applied to multivariate functions denote partial derivatives relative to the respective

variables).

Assumption 1. All functions are three times continuously differentiable. Moreover,

(C) C1 > 0, C11 > 0, C111 ≥ 0;

(D) d1 > 0, d2 > 0, d11 ≤ 0;

(E) E1 > 0, E2 < 0, E11 ≥ 0, E12 ≤ 0, E22 ≥ 0, E112 ≤ 0, E122 ≥ 0.

These regularity assumptions are commonly employed in agency theory, and their inter-

pretations follow conventional norms. For instance, the cost for effort is convex and accel-

erating. The demand increases in the type, effort and shock, but may exhibit a diminishing

pattern. For the implicit effort function, E1 > 0 indicates that a higher output requires a

higher effort, while E2 < 0 implies that a higher-type agent needs less effort to reach a

certain output level; E12 ≤ 0 suggests that the additional effort required for a unit increase

in output is less for a higher-type agent (i.e., E1 decreases in θ); E122 ≤ 0 indicates that

this counterbalancing interplay between the output level and the agent’s type on effort



Author: Article Short Title
8

is less pronounced for a higher-type agent (i.e., E12 decreases in θ), and so forth. Our

comprehensive model subsumes a multitude of classical models found in the agency liter-

ature (see, e.g., Laffont and Tirole 1986, Rao 1990, Chen 2005, Chen et al. 2016), such as

d= θ+ e+ ϵ, d= θeϵ and d= θe+ ϵ, and also encompasses more intricate demand forms,

such as d= (θ+ e)ϵ+ ln(1+ θ+ e+ ϵ) and d= θeϵ+
√
1+ θe+ ϵ.

The determination of the order quantity (or equivalently, the inventory level), denoted

by Q, can either be made by the firm or the agent. We refer to the former scenario as

the “control” setting and the latter as the “delegation” setting. We introduce an auxiliary

quantity function l(r,Q), established by the equation d(r, l(r,Q)) = Q. For instance, if

d= r+ ϵ, then l(r,Q) =Q− r. As per Assumption (D), it is evident that l1 < 0 and l2 > 0.

In line with the conventional inventory literature, we assume that the firm’s production

cost is c per unit and the agent’s hassle cost is h per unit. The results derived in this paper

can be extended to any scenario with convexly increasing production and hassle costs.

The realized sales, denoted by s, signifies the demand censored by the inventory level,

expressed as s(r,Q, ϵ) =min{d(r, ϵ),Q}. For ease of notation, we denote D(r)≜ Eϵ[d(r, ϵ)]

and S(r,Q)≜Eϵ[s(r,Q, ϵ)] as the expected demand and realized sales, respectively.

Hinging on the contracting scenarios, the firm may receive accurate demand information

or only observe realized sales, thereby having the option of contracting either on demand

(i.e., uncensored) or on sales (i.e., censored). We look at all four settings: demand-based

control environment (CD), sales-based control environment (CS), demand-based delega-

tion environment (DD), and sales-based delegation environment (DS). Our focus in the

main paper lies on menus of linear commission contracts (MLC) for the purpose of imple-

mentability.

3. The Control Setting

This section focuses on the control setting where the firm decides the inventory level based

on the market condition θ reported by the agent. By the revelation principle, we can,

without loss of optimality, restrict our attention to the class of direct mechanisms that

comprise a payment and a quantity, i.e., {T (d, θ),Q(θ)} or {T (s, θ),Q(θ)}, depending on

the availability of demand or sales information. The firm incurs the production cost cQ(θ)

and the agent incurs the hassle cost hQ(θ). When the selling season commences, the θ-type

agent selects an output level r, incurring the cost, K(r, θ), and then the demand d(r, ϵ) is
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materialized, resulting in sales s=min{d,Q(θ)}. Any excess demand is lost, or the leftover

inventory is salvaged at zero value. Finally, the firm collects the sales revenue ps, and the

agent receives the compensation T (d, θ) or T (s, θ).

In the following, we present the formulation for the demand-based contracting setting.

To ensure the agent’s truthtelling, the firm needs to impose the incentive-compatibility

constraint (IC). Specifically, when the θ-type agent chooses the θ̂-type contract, she earns:

π(θ, θ̂) =max
r≥0

Eϵ[T (d(r, ϵ), θ̂)]−hQ(θ̂)−K(r, θ).

Let r(θ, θ̂) be the maximizer (if it does not exist then π(θ, θ̂) =∞, which is not what the

firm wants) and denote r(θ) = r(θ, θ) and π(θ) = π(θ, θ). The IC constraint follows:

π(θ)≥ π(θ, θ̂), ∀θ, θ̂ ∈ [θ, θ̄]. (IC)

The individual-rationality constraint (IR) to ensure the agent’s participation follows:

π(θ)≥ 0, ∀θ ∈ [θ, θ̄]. (IR)

Under these two conditions, the firm’s profit follows:

Π(T,Q) =EΘ,ϵ[pmin{d(r(Θ), ϵ),Q(Θ)}− cQ(Θ)−T (d(r(Θ), ϵ),Θ)]

=EΘ,ϵ[pS(r(Θ),Q(Θ))− cQ(Θ)−T (d(r(Θ), ϵ),Θ)].

Therefore, the firm’s mechanism design problem is:

max
T,Q

Π(T,Q) (PCD)

s.t. (IC) and (IR).

In the CS setting, the firm’s mechanism design problem, denoted as (PCS), can be for-

mulated by replacing demand with sales. To solve these problems in the contract space,

our approach first derives an upper bound and then establishes sufficient conditions under

which MLC can achieve the upper bound, resulting in the second-best outcome.

Proposition 1. (PCD) and (PCS) have a common upper bound, where the outcome

(r∗(θ),Q∗(θ)) solves the following system of equations:pS1(r,Q)−K1(r, θ)+K12(r, θ)H(θ) = 0,

pS2(r,Q)− c−h= 0.
(1)
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The first branch of Eq. (1) is the balance equation from the sales aspect, where pS1(r,Q)

is the marginal return of the output, while K1(r, θ)−K12(r, θ)H(θ) is the overall marginal

cost, comprising the marginal cost associated with the output and the one attributed to

the information rent. The second branch is the balance equation from the operational

aspect, where pS2(r,Q) is the marginal return from increasing inventory, while c+ h is

the overall marginal cost, comprising the production cost and the hassle cost. An ideal

outcome must have marginal returns equal to marginal costs on both fronts. We can verify

that S1(r,Q) =
∫ l(r,Q)

−∞ d1(r, ϵ)dG(ϵ) and S2(r,Q) = 1−G(l(r,Q)). Moreover, by definition,

d(r, l(r,Q)) = Q, i.e., l(r,Q) represents the quantity to match the output level with the

inventory level. Hence, we can rewrite Eq. (1) as follows for clearer insight:p
∫ G−1( p−c−h

p
)

−∞ d1(r, ϵ)dG(ϵ)−K1(r, θ)+K12(r, θ)H(θ) = 0,

l(r,Q) =G−1(p−c−h
p

).
(2)

G−1(p−c−h
p

) is the safety stock level that optimally balances the mismatch cost arising from

the random noise ϵ. The ratio p−c−h
p

corresponds to the firm’s targeted fill rate and aligns

with the critical fractile in the classical newsvendor literature.

Proposition 2. The second-best outcome (r∗(θ),Q∗(θ)) can be implemented by MLC if

d

dθ

K1(r
∗(θ), θ)

D1(r∗(θ))
≥ 0, ∀θ ∈ [θ, θ̄] (D)

or

d

dθ

K1(r
∗(θ), θ)

S1(r∗(θ),Q∗(θ))
≥ 0, ∀θ ∈ [θ, θ̄], (S)

depending on the availability of demand or sales information, respectively.

The above proposition establishes sufficient conditions under which MLC achieves the

upper bound and hence results in the second-best outcome for both settings. Commission

contracts provide the agent with payments linearly increasing in demand, based on com-

mission rates. To induce the second-best effort, commission rates must cover the agent’s

marginal cost for each unit increase in contractible output due to her effort. Moreover, to

induce truthful reporting, an agent who reports a higher market condition should be offered

a commission contract with a higher marginal return on the realized contractible output,

ensuring that agents observing inferior market conditions have no incentive to mimic. As
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a result, the commission rates must increase with the agent’s type, which is captured by

Conditions (D) and (S). When these conditions are met, we can characterize the optimal

MLCs to achieve the second-best outcome, as shown below.

Proposition 3. The optimal MLCs, TCD(d, θ) = αCD(θ)d + βCD(θ) and TCS(s, θ) =

αCS(θ)s+βCS(θ), for (PCD) and (PCS) can be characterized respectively by:αCD(θ) = K1(r∗(θ),θ)
D1(r∗(θ))

,

βCD(θ) =−αCD(θ)D(r∗(θ))+K(r∗(θ), θ)+hQ∗(θ)−
∫ θ

θ
K2(r

∗(z), z)dz;

and αCS(θ) = K1(r∗(θ),θ)
S1(r∗(θ),Q∗(θ))

,

βCS(θ) =−αCS(θ)S(r
∗(θ),Q∗(θ))+K(r∗(θ), θ)+hQ∗(θ)−

∫ θ

θ
K2(r

∗(z), z)dz.

The difference between Conditions (D) and (S), as well as the optimal contracts, arises

from the fact that in the CD setting, the commission is paid based on realized demand,

whereas in the CS setting, it is paid based on realized sales. In the former (latter), the

commission rates must cover the agent’s marginal cost for each unit increase in demand

(sales) due to her effort. Conditions (D) and (S) ensure the monotonicity of the commission

rates with respect to the agent’s type and enable the proposed MLCs to achieve effective

screening. It is evident that S1(r
∗(θ),Q∗(θ)) < D1(r

∗(θ)), which implies that αCS(θ) >

αCD(θ). When contracting based on sales, the presence of demand information censoring

naturally dissuades the agent from generating output (compared to contracting based on

demand), as any realized demand beyond the inventory level does not contribute to her

compensation. Consequently, to induce the same ideal output level, the firm must offer

a higher commission rate. On the other hand, the base payments of the optimal MLCs

guarantee that the agent’s payoff precisely matches her information rent in both settings.

The establishment of these conditions and MLCs poses significant technical challenges.

This is the first characterization of such results in functional forms in the existing literature.

4. The Delegation Setting

In this section, we study the scenarios where the inventory ordering decision is delegated

to the agent. The sequence of events is modified as follows. First, before the selling season,

the firm offers the agent a direct mechanism T (d,Q, θ) or T (s,Q, θ). Second, the agent
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observes the realized value of market condition Θ= θ and truthfully reports θ given that

it is in her best interest to do so. The agent requests inventory Q, fulfilled by the firm,

for which the firm and the agent incur the inventory cost cQ and hQ, respectively. Third,

the selling season starts, the agent selects an output level r, incurring the cost, K(r, θ),

and then the demand d(r, ϵ) is materialized, resulting in sales s=min{d,Q}. Any excess

demand is lost, or the leftover inventory is salvaged at zero value. Finally, the firm collects

the sales revenue ps, and the agent receives the compensation T (d,Q, θ) or T (s,Q, θ).

In the demand-based contracting setting, the agent’s profit can be written as:

π(θ, θ̂) = max
(r,Q)≥0

Eϵ[T (d(r, ϵ),Q, θ̂)]−hQ−K(r, θ).

Denote the maximizers of π(θ, θ̂) by r(θ, θ̂) and Q(θ, θ̂), and let r(θ) = r(θ, θ), Q(θ) =

Q(θ, θ), and π(θ) = π(θ, θ). When ensuring truthtelling, the firm earns:

Π(T ) =EΘ,ϵ[pS(r(Θ),Q(Θ))− cQ(Θ)−T (d(r(Θ), ϵ),Θ)].

The firm’s problem, (PDD), is to maximize Π(T ) subject to the agent’s (IC) and (IR)

constraints. We can similarly formulate the firm’s problem in the sales-based contracting

setting, (PDS), by replacing the demand function with sales.

Despite the inventory decision being delegated to the agent, Proposition 4 demonstrates

that the second-best outcome and the sufficient conditions for MLCs to achieve the second

best, as characterized for the inventory-controlled settings, continue to apply.

Proposition 4. The second-best outcome characterized in Proposition 1 and the suf-

ficient Conditions (D) and (S) characterized in Proposition 2 for MLCs to achieve the

second-best outcome remain the same for (PDD) and (PDS), respectively.

When the inventory decision is delegated to the agent, the firm needs to incentivize

the agent not only to truthfully report the market condition and exert sales effort but

also to choose an optimal inventory level. As such, the firm faces more restrictions than

in inventory-controlled settings, and thus the upper bound characterized there remains

to upper bound the firm’s problems in inventory-delegated settings. More intriguingly,

Proposition 4 asserts that these two incentivization tasks can be coordinated, and the

upper bound, and therefore the second-best outcome, is achievable with MLCs under the

same sufficient conditions. Because the sufficient conditions only apply to the commission
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rates, this result indicates that the incentivization of the inventory decision does not affect

the incentivization of information revelation and sales effort. Apparently, if the firm were

to simply offer the MLCs characterized in the previous section to the agent, the incentives

would be misaligned. The inventory level would only appear in the hassle cost term, i.e.,

hQ, in the agent’s profit function, incentivizing her to opt for no inventory. Conversely, if

the agent were exempted from inventory costs, she would inflate the inventory request, as

discussed in the news articles mentioned in the introduction. It is worth noting that sales

quota-based contracts could also lead to similar outcomes, as the marginal compensation

becomes infinitely large when sales approach the quota. These deficiencies arise due to

their inadequate consideration of the cost and performance implications of inventory.

In the following, we present the optimal MLCs that can motivate the agent to request

the right inventory level, induce truthful reporting, and achieve the most desired output.

Proposition 5. The optimal MLCs, TDD(d,Q, θ) = αDD(θ)d+βDD(θ)+γDD(θ)Q−Q2

and TDS(s,Q, θ) = αDS(θ)s+βDS(θ)− γDS(θ)Q, for (PDD) and (PDS) can be characterized

respectively by:
αDD(θ) = K1(r∗(θ),θ)

D1(r∗(θ))
,

βDD(θ) =−αDD(θ)D(r∗(θ))+K(r∗(θ), θ)+hQ∗(θ)−
∫ θ

θ
K2(r

∗(z), z)dz− γDD(θ)Q
∗(θ)+Q∗(θ)2,

γDD(θ) = 2Q∗(θ)+h;

and
αDS(θ) = K1(r∗(θ),θ)

S1(r∗(θ),Q∗(θ))
,

βDS(θ) =−αDS(θ)S(r
∗(θ),Q∗(θ))+K(r∗(θ), θ)+hQ∗(θ)−

∫ θ

θ
K2(r

∗(z), z)dz+ γDS(θ)Q
∗(θ),

γDS(θ) = αDS(θ)
c+h
p

−h.

From Proposition 5, we observe that the commission rates of the optimal MLCs remain

the same as those in the inventory-controlled settings. However, the base payments now

depend on the requested inventory level. The two cases regarding whether demand or sales

are contractible represent subtle differences.

In the DD setting where contracts are contingent on the realized demand, this metric

is unaffected by the inventory level, and vice versa. Consequently, the firm’s goal of stim-

ulating the agent to generate the most desired output is not entangled with its goal of
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motivating the agent to order the right quantity. The firm can employ the same commis-

sion rate used in TCD(d, θ) to effectively induce r∗(θ), and a separate term included in

the base payment, γDD(θ)Q−Q2, to induce the right inventory request. Note that this

inventory term satisfies the first-order condition at the optimal inventory level Q∗(θ), and

it is unrelated to the commission rate. The agent would be penalized for any deviation

from requesting Q∗(θ). In contrast, in the DS setting where contracts are contingent on

the realized sales, this metric is influenced not only by the demand but also by the inven-

tory level. As such, despite similar problem formulations, the inducements of the output

and the inventory decision become intertwined. Although the commission rate, set to elicit

the ideal output level r∗(θ), is unaffected by the inventory level, the term to induce the

optimal inventory request now depends on the commission rate. Specifically, the instru-

ment, γDS(θ), consists of two parts. The constant term, −h, is introduced to compensate

the agent for her hassle cost. The type-dependent term, αDS(θ)
c+h
p
, where the ratio c+h

p
is

derived from 1−G(l(r∗(θ),Q∗(θ))), is designed to neutralize the spillover effect from the

sales commission to the inventory decision. The overall base payments align the agent’s

payoff with her information rent in both cases.

5. Managerial Discussion

Throughout Sections 3 and 4, our analysis has demonstrated that the same pair of ideal

output and inventory levels can be implemented by MLCs, as long as two sufficient condi-

tions are met. Hence, we arrive at one of the key revelations from this paper: under these

conditions, the fundamental trade-offs regarding the benefits and costs of demand enhance-

ment and demand fulfillment remain intact irrespective of demand information censoring

or inventory delegation. That is, neither demand information censoring nor the delega-

tion of inventory decisions impedes the incentivization of truth-telling or compromises the

overall efficiency of the system.

Proposition 6. When Conditions (D) and (S) are satisfied, ΠCD =ΠCS =ΠDD =ΠDS.

This theoretical finding is not only intriguing but also offers valuable insights for man-

agerial decision-making. It asserts the possibility of maintaining the second-best outcome

regardless of whether the inventory decision is centralized or delegated, and whether the

demand information is censored or uncensored. As discussed in the introduction, certain

firms (such as Wal-Mart and Whole Foods) favor centralized inventory decisions, while
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others (such as Zara, a global pharmaceutical company, and a European supermarket chain

mentioned in news articles) typically delegate these decisions to their salesforce or local

stores. Despite various factors influencing these preferences, our study demonstrates that,

under reasonably mild conditions, appropriately designed simple commission contracts can

align incentives, gather information, and effectively motivate effort and inventory decisions

in each case, eliminating the need for organizational restructuring solely to align incentives.

It is important to note that the contracts employed in these scenarios differ in their

characteristics and value. First, different from the conventional results in prior literature

(e.g. Laffont and Tirole 1986, Rao 1990), the ideal effort level to induce now must take into

account the inventory costs, while the commission rates need to incorporate the inventory

costs that the agent incurs to supply effort. Second, if the demand information is censored,

the commission rates need to be structured based on the expected sales function that

involves the inventory level. Third, if the inventory decision is delegated, the commission

contracts need to include an incentive term contingent on the requested inventory that

penalizes any deviation from the optimal inventory level. To illustrate these distinctions,

we present a specific example in the following.

Consider an additive demand function, given by d = θ + e+ ϵ, and a quadratic effort

cost function, represented by C(e) = e2/2. It can be verified that both Conditions (D) and

(S) hold. The second-best effort level follows: e∗(θ) = p− c− h−H(θ), while the second-

best inventory decision satisfies: Q∗(θ) = p− c−h+ θ−H(θ)+G−1(p−c−h
p

). These optimal

decisions can be effectively executed through contracts in both controlled and delegated

inventory scenarios, regardless of whether or not the demand information is censored.

Figure 1 illustrates the comparisons between the contracts used in controlled inventory

scenarios and the benchmark, which represents a situation with abundant free inventory.

In the case where the demand information is not censored, the commission rates, depicted

by the dash-dotted curve in the left subplot, shift downward in parallel with respect to the

benchmark rates represented by the solid curve. This shift reflects the reduction in effort

after considering the unit inventory cost c+ h. However, when the demand information

is censored by the inventory level, the commission rates depicted by the dashed curve,

exhibit a steeper slope. This steeper slope is necessary to motivate the agent to reveal

information and exert the second-best effort. The reason for this is that a higher θ implies a

greater likelihood of the actual demand information being censored, leading to a “reduced”
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compensation. Therefore, the commission rates in the menu need to vary more when sales

are used for contracting, compared to the case where the demand is contractible. Regarding

the transfer payment, the comparisons are reversed (note that the agent’s reservation

profit is zero). Firstly, after accounting for the inventory cost, a higher transfer payment is

required for the agent, represented by the dash-dotted curve in the right subplot, compared

to the benchmark case represented by the solid curve. Secondly, the transfer payment under

censored demand information, depicted by the dashed curve, decreases at a faster rate

to negative values than that without demand information censoring. This is because the

agent receives a higher commission under information censoring as θ increases, resulting

in a larger decrease in the transfer payment to extract rent.
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(a) Commission rates as functions of θ.
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(b) Fixed transfers as functions of θ.

Figure 1 Parameters: p= 8, c= 3, h= 1, Θ∼U [1,5] and ϵ∼U [−1,1].

When the inventory decision is delegated to the agent and the second-best inventory

level is implemented, both the commission rate and the transfer payment align with their

counterparts under controlled inventory decisions. Therefore, we do not provide a separate

depiction. Instead, Figure 2 showcases the agent’s profit functions in relation toQ under the

contracts outlined in the propositions. Recall that the inventory level affects the commission

when the information is censored, whereas it does not in the other case. In this figure,

the agent’s profit function with censored demand information, depicted by the dashed

curve, exhibits a smaller curvature compared to the counterpart with complete demand

information represented by the solid curve. Nevertheless, the agent makes the same best

profit when she selects the second-best inventory level.
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Figure 2 Agent’s profits as functions of Q in the delegation setting. Parameters: p= 8, c= 3, h= 1, Θ∼U [1,5],

ϵ∼U [−1,1], and θ= 3.

The above findings offer several important managerial takeaways. First, simplicity reigns

supreme: when the requisite condition is met, the optimal outcome can be attained by

convenient compensation schemes, even when confronted with intricate demand and cost

functions. Second, adaptability is key: compensation schemes need be tailored to accom-

modate the nuances of different operational aspects, ranging from the presence or absence

of demand information to the delegation of inventory decision to the sales division. Finally,

a rather unexpected revelation emerges from our research: under these optimality condi-

tions, neither demand information censoring nor inventory delegation poses a threat to

system efficiency. This underscores the resilience of well-designed compensation schemes

in achieving desired outcomes.

6. Conclusion

In this study, we delved into the intricate realm of designing compensation schemes for a

firm’s sales division, where the challenges of hidden information and hidden actions abound.

Our analytical approach was firmly grounded in the classical agency model, allowing us

to explore scenarios where both sales and operational factors come into play, including

supply and demand mismatch, demand information censoring, and inventory delegation.

Notably, our analysis considered highly generalized demand and cost functions. As such,

our model subsumes a broad spectrum of models found in the existing literature, and our

results remain robust across exceptionally diverse scenarios.

Our investigation commenced with a benchmark model stripped of operational fea-

tures, focusing on the fundamental question of how to achieve the second-best outcome.
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Intriguingly, we established that the implementation of this optimal outcome hinges on

the fulfillment of a specific condition, rooted in the inherent characteristics of demand

and cost functions. This insight offers a clear and elegant path for designing compensation

schemes under diverse circumstances. Venturing further, we probed four distinct models,

each representing a unique operational setup. Remarkably, we unearthed similar optimality

conditions that pave the way for attaining the second-best outcome through the exclusive

use of implement-friendly linear commission contracts or by complementing them with

quantity-related components. Our study not only offers valuable insights into the intricate

task of compensation scheme design but also highlights the robustness and adaptability

of these schemes in addressing complex real-world challenges. It provides a foundation for

firms to navigate the intricate interplay between hidden information, hidden actions, and

operational realities in their quest for optimal performance and efficiency.

We conclude by discussing a couple of extensions to our study. Firstly, while we estab-

lish the conditions that ensure the optimality of MLC, it is worth exploring mechanisms

when these conditions are not satisfied. In Appendix B, we investigate menus of quadratic

commission contracts (MQC), of which MLC is a special case. Our investigation uncovers

interesting technical findings. When these conditions are not met, MQC can still achieve

the second-best outcome and be optimal if the demand is contractible and subject to mild

restrictions on its derivatives. The analysis also reveals that within such environments, the

conditions are both sufficient and necessary for the optimality of MLC. However, if the

contracts must rely on sales, the validity of these results is compromised. That is, with

censored demand information, the conditions are no longer necessary conditions for the

optimality of MLC; moreover, if the conditions are not met, MQC may lose its optimal-

ity, and characterizing the optimal mechanism becomes challenging. Differently, inventory

delegation does not affect these conditions. Hence, our investigation shows that in a more

complex environment, different operational factors such as inventory delegation versus lost

sales can have distinct effects on the parties’ profits, in addition to influencing compensa-

tion design. Secondly, our study assumes that the agent is risk-neutral, which is reasonable

for relatively large sales divisions. However, when the agent is risk-averse, including limited

liability, the mechanism design problem involving hidden information, hidden action and

operational factors becomes significantly more challenging. Addressing these aspects would

require making valuable technical advancements in future research.
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Appendix A: Proofs

The following lemmas are useful. For notational convenience, let F̄ = 1−F and Ḡ= 1−G.

Lemma 1. The cost function K(r, θ) satisfies: K1 > 0, K2 < 0, K11 > 0, K12 < 0, K112 ≤ 0, and K122 ≥ 0.

Proof of Lemma 1. The monotonic properties of K(r, θ)≡C(E(r, θ)) follows from:

K1(r, θ) =C1(E(r, θ))︸ ︷︷ ︸
>0

E1(r, θ)︸ ︷︷ ︸
>0

> 0

K2(r, θ) =C1(E(r, θ))︸ ︷︷ ︸
>0

E2(r, θ)︸ ︷︷ ︸
<0

< 0

K11(r, θ) =C11(E(r, θ))︸ ︷︷ ︸
>0

E1(r, θ)
2︸ ︷︷ ︸

>0

+C1(E(r, θ))︸ ︷︷ ︸
>0

E11(r, θ)︸ ︷︷ ︸
≥0

> 0

K12(r, θ) =C11(E(r, θ))︸ ︷︷ ︸
>0

E1(r, θ)︸ ︷︷ ︸
>0

E2(r, θ)︸ ︷︷ ︸
<0

+C1(E(r, θ))︸ ︷︷ ︸
>0

E12(r, θ)︸ ︷︷ ︸
≤0

< 0

K112(r, θ) =C111(E(r, θ))︸ ︷︷ ︸
≥0

E2(r, θ)︸ ︷︷ ︸
<0

E1(r, θ)
2︸ ︷︷ ︸

≥0

+2C11(E(r, θ))︸ ︷︷ ︸
>0

E1(r, θ)︸ ︷︷ ︸
>0

E12(r, θ)︸ ︷︷ ︸
≤0

+C11(E(r, θ))︸ ︷︷ ︸
>0

E2(r, θ)︸ ︷︷ ︸
<0

E11(r, θ)︸ ︷︷ ︸
≥0

+C1(E(r, θ))︸ ︷︷ ︸
>0

E112(r, θ)︸ ︷︷ ︸
≤0

≤ 0

K122(r, θ) =C111(E(r, θ))︸ ︷︷ ︸
≥0

E1(r, θ)︸ ︷︷ ︸
>0

E2(r, θ)
2︸ ︷︷ ︸

>0

+C11(E(r, θ))︸ ︷︷ ︸
>0

(E12(r, θ)︸ ︷︷ ︸
≤0

E2(r, θ)︸ ︷︷ ︸
<0

+E1(r, θ)︸ ︷︷ ︸
>0

E22(r, θ)︸ ︷︷ ︸
≥0

)

+C11(E(r, θ))︸ ︷︷ ︸
>0

E2(r, θ)︸ ︷︷ ︸
<0

E12(r, θ)︸ ︷︷ ︸
≤0

+C1(E(r, θ))︸ ︷︷ ︸
>0

E122(r, θ)︸ ︷︷ ︸
≥0

≥ 0. □

Lemma 2. In (PCD), (PCS), (PDD), and (PDS), we all have π′(θ) =−K2(r(θ), θ) and EΘ[π(Θ)] = π(θ)−

EΘ[K2(r(Θ),Θ)H(Θ)]. Consequently, it is without loss of optimality for the firm to restrict to compensation

schemes that induce π(θ) = 0.

Proof. The proofs for all four problems are essentially identical. We take the one for (PCS) for illustration.

We can rewrite π(θ) as

π(θ) = max
θ̂∈[θ,θ̄],r≥0

Eϵ[T (min{d(r, ϵ),Q(θ̂)}, θ̂)]−hQ(θ̂)−K(r, θ).

Note that θ only appears in K(r, θ). By the envelope theorem, we have

π′(θ)≡ dπ(θ)

dθ
=

∂

∂θ

[
Eϵ[T (min{d(r, ϵ),Q(θ̂)}, θ̂)]−hQ(θ̂)−K(r, θ)

] ∣∣∣
θ̂=θ

r=r(θ)

=−K2(r(θ), θ)

and this yields

EΘ[π(Θ)] =−
∫ θ̄

θ

π(θ)dF̄ (θ) =−π(θ)F̄ (θ)|θ̄θ︸ ︷︷ ︸
=π(θ)

+

∫ θ̄

θ

F̄ (θ)dπ(θ)︸ ︷︷ ︸
=
∫ θ̄
θ

π′(θ) F̄ (θ)
f(θ)

dF (θ)

= π(θ)+EΘ[π
′(Θ)H(Θ)] = π(θ)−EΘ[K2(r(Θ),Θ)H(Θ)]

Since, on the other hand,

EΘ[π(Θ)] =EΘ,ϵ[T (min{d(r(Θ), ϵ),Q(Θ)})−hQ(Θ)−K(r(Θ),Θ)],
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we have

Π(T ) =EΘ[pS(r(Θ),Q(Θ))−π(Θ)− (c+h)Q(Θ)−K(r(Θ),Θ)]

=EΘ[pS(r(Θ),Q(Θ))+K2(r(Θ),Θ)H(Θ)− (c+h)Q(Θ)−K(r(Θ),Θ)]−π(θ),

and thus it is optimal for the firm to have π(θ) = 0. □

Lemma 3. The expected realized sales S is concave in (r,Q).

Proof. Recall that Q= d(r, l(r,Q)). We have

0 =
∂Q

∂r
=

∂

∂r
d(r, l(r,Q)) = d1(r, l(r,Q))+ d2(r, l(r,Q))l1(r,Q)

1 =
∂Q

∂Q
=

∂

∂Q
d(r, l(r,Q)) = d2(r, l(r,Q))l2(r,Q)

which implies d1(r, l(r,Q))l2(r,Q) =−l1(r,Q). Then we have

S(r,Q) =

∫ l(r,Q)

−∞
d(r, ϵ)g(ϵ)dϵ+QḠ(l(r,Q))

S1 = d(r, l(r,Q))︸ ︷︷ ︸
=Q

g(l(r,Q))l1(r,Q)+

∫ l(r,Q)

−∞
d1(r, ϵ)g(ϵ)dϵ−Qg(l(r,Q))l1(r,Q) =

∫ l(r,Q)

−∞
d1(r, ϵ)g(ϵ)dϵ

S2 = d(r, l(r,Q))︸ ︷︷ ︸
=Q

g(l(r,Q))l2(r,Q)+ Ḡ(l(r,Q))−Qg(l(r,Q))l2(r,Q) = Ḡ(l(r,Q))

S11 =

∫ l(r,Q)

−∞
d11(r, ϵ)︸ ︷︷ ︸

≤0

g(ϵ)dϵ+ d1(r, l(r,Q))︸ ︷︷ ︸
>0

g(l(r,Q))l1(r,Q)< 0

S12 =−g(l(r,Q))l1(r,Q)> 0

S22 =−g(l(r,Q))l2(r,Q)< 0

det(S) = S11S22 −S2
12 ≥−d1(r, l(r,Q))g(l(r,Q))l1(r,Q)g(l(r,Q))l2(r,Q)− [g(l(r,Q))l1(r,Q)]2 = 0

which implies the Hessian of S is negative semidefinite and thus S is concave in (r,Q). □

Proof of Proposition 1. Per Lemma 2, in either (PCD) or (PCS), the firm’s objective is to maximize

EΘ[M(r(Θ),Q(Θ),Θ)], where

M(r,Q, θ)≡ pS(r,Q)− (c+h)Q−K(r, θ)+K2(r, θ)H(θ).

We can derive the second-order condition (SOC) of M(r,Q, θ) and use Lemmas 1 and 3 to show its strict

concavity in (r,Q) given θ fixed. Then, its system of first-order conditions (FOC) uniquely determines the

optimal pair of decisions (r∗,Q∗):{
M1(r,Q, θ)≡ pS1(r,Q)−K1(r, θ)+K12(r, θ)H(θ) = 0,

M2(r,Q, θ)≡ pS2(r,Q)− c−h= 0.

We further have the following monotone properties. The second equation above does not contain θ and thus

directly gives a relation between r and Q. Define Q⋆(r) = argmaxQ pS(r,Q)−cQ−hQ (if Q⋆(r) is not unique,

we can pick any branch, but by strict concavity it has to be unique at r= r∗(θ)). By its definition,

max
r,Q

M(r,Q, θ) =max
r

M(r,Q⋆(r), θ) =⇒ r∗(θ) = argmax
r

M(r,Q⋆(r), θ).
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The cross partial derivative of M(r,Q⋆(r), θ) w.r.t. (r, θ) is

∂

∂r

(
∂M(r,Q⋆(r), θ)

∂θ

)
=

∂2

∂r∂θ
[−K1(r, θ)+K2(r, θ)H(θ)] =−K12︸︷︷︸

<0

+K122︸ ︷︷ ︸
≥0

H︸︷︷︸
≥0

+K12︸︷︷︸
<0

H ′︸︷︷︸
≤0

> 0,

which meansM(r,Q⋆(r), θ) is supermodular in (r, θ), and thus by Topkis’ Theorem, r∗(θ) is strictly increasing

in θ. Take the derivative w.r.t. r on both sides of M2(r,Q
⋆(r), θ) = 0 and we have

−pg(l(r,Q⋆))︸ ︷︷ ︸
≥0

(
l1(r,Q

⋆)︸ ︷︷ ︸
<0

+ l2(r,Q
⋆)︸ ︷︷ ︸

>0

dQ⋆

dr

)
= 0

which implies dQ⋆

dr
≥ 0 and thus Q∗(θ) =Q⋆(r∗(θ)) is increasing in θ. □

We merge the proofs of Propositions 2 and 3 together.

Proofs of Propositions 2 and 3. For ease of notation, we omit the subscripts.

We first consider (PCD) and TCD(d, θ). By the definition of α(θ) and by Condition (D), we have α′(θ)≥ 0.

Under TCD, we have

π(θ, θ̂) =max
r≥0

Eϵ[α(θ̂)d(r, ϵ)+β(θ̂)]−hQ(θ̂)−K(r, θ)

=max
r≥0

α(θ̂)D(r)+β(θ̂)−hQ(θ̂)−K(r, θ).

The cross partial derivative of the maximand w.r.t. (r, θ) is −K12(r, θ)> 0, which implies strict supermodu-

larity, and thus r(θ, θ̂) is strictly increasing in θ.

Under truthtelling, we have

π(θ) =max
r≥0

α(θ)D(r)+β(θ)−hQ(θ)−K(r, θ).

The FOC of the maximand w.r.t. r is α(θ)D1(r) −K1(r, θ) = 0, and the second-order condition (SOC),

α(θ)D11(r)−K11(r, θ)< 0, implies the strict concavity of maximand and the uniqueness of the maximizer.

It can be verified that given the proposed α(θ), r = r∗(θ) is the root, i.e., r(θ) = argmaxr≥0 π(θ) = r∗(θ).

Therefore, the firm’s ideal output r∗(θ) is induced, which leads to the firm’s ideal profit. The proposed

instrument β(θ) is set to guarantee that π(θ) =−
∫ θ

θ
K2(r

∗(z), z)dz.

To show that TCD satisfies (IC), we proceed as follows. By the envelope theorem, we have

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
α(θ)D(r)+β(θ)−hQ(θ)−K(r, θ)

]∣∣∣
r=r(θ)

= α′(θ)D(r(θ))+β′(θ)−hQ′(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)D(r(θ))+hQ′(θ).

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
α(θ̂)D(r)+β(θ̂)−hQ(θ̂)−K(r, θ)

]∣∣∣
r=r(θ,θ̂)

= α′(θ̂)D(r(θ, θ̂))+β′(θ̂)−hQ′(θ̂)

= α′(θ̂)(D(r(θ, θ̂))−D(r(θ̂))).

Recall that α′(θ̂) ≥ 0 and that r(θ, θ̂) is strictly increasing in θ. If θ̂ < θ, then d(r(θ, θ̂), ϵ) > d(r(θ̂), ϵ) and

thus ∂π(θ,θ̂)

∂θ̂
> 0; if θ̂ > θ, then d(r(θ, θ̂), ϵ)< d(r(θ̂), ϵ) and thus ∂π(θ,θ̂)

∂θ̂
< 0; and if θ̂ = θ, then d(r(θ, θ̂), ϵ) =

d(r(θ̂), ϵ). This implies θ= argmaxθ̂ π(θ, θ̂).
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We then consider (PCS) and TCS(s, θ). By the definition of α(θ) and by Condition (S), we have α′(θ)≥ 0.

Under the proposed contract TCS(s, θ), we have

π(θ, θ̂) =max
r≥0

α(θ̂)S(r,Q(θ̂))+β(θ̂)−hQ(θ̂)−K(r, θ).

Since the cross partial derivative of the maximand w.r.t. (r, θ) is −K12(r, θ)> 0, which implies strict super-

modularity, r(θ, θ̂) is strictly increasing in θ.

Under truthtelling, we have

π(θ) =max
r≥0

α(θ)S(r,Q(θ))+β(θ)−hQ(θ)−K(r, θ).

The FOC of the maximand w.r.t. r is α(θ)S1(r,Q(θ)) − K1(r, θ) = 0, and the SOC, α(θ)S11(r,Q(θ)) −

K11(r, θ)< 0, implies that the maximizer is unique. It can be verified that given the proposed α(θ), r= r∗(θ)

is the root. The proposed instrument β(θ) is set to guarantee that π(θ) =−
∫ θ

θ
K2(r

∗(z), z)dz.

To show that TCS satisfies (IC), we proceed as follows. By the envelope theorem, we have

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
α(θ)S(r,Q(θ))+β(θ)−hQ(θ)−K(r, θ)

]∣∣∣
r=r(θ)

= α′(θ)S(r(θ),Q(θ))+α(θ)S2(r(θ),Q(θ))Q′(θ)+β′(θ)−hQ′(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)S(r(θ),Q(θ))−α(θ)Q′(θ)S2(r(θ),Q(θ))+hQ′(θ)

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
α(θ̂)S(r,Q(θ̂))+β(θ̂)−hQ(θ̂)−K(r, θ)

]∣∣∣
r=r(θ,θ̂)

= α′(θ̂)︸ ︷︷ ︸
≥0

[S(r(θ, θ̂),Q(θ̂))−S(r(θ̂),Q(θ̂))] +α(θ̂)Q′(θ̂)︸ ︷︷ ︸
≥0

[S2(r(θ, θ̂),Q(θ̂))−S2(r(θ̂),Q(θ̂))].

Note that both S(r,Q) and S2(r,Q) are increasing in r. Following the same reasoning as before, we have

θ= argmaxθ̂ π(θ, θ̂). □

Proof of Proposition 4. The analysis procedure is identical to that in the proof of Proposition 3, as we

have the same expression of M(r,Q, θ), so that we can derive the exact same upper-bound pair of decisions,

(r∗,Q∗). To show that this upper bound is attainable under Condition (D) in (PDD) or under Condition (S)

in (PDS), we proceed to the proof of the subsequent proposition. □

Proof of Proposition 5. For ease of notation, we omit the subscripts.

We first consider (PDD) and TDD(d,Q, θ). By the definition of α(θ) and by Condition (D), we have α′(θ)≥

0. Under the proposed contract TDD, we have π(θ, θ̂) =maxr,Q≥0N(r,Q, θ, θ̂), where

N(r,Q, θ, θ̂) = α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ).

Note that in the maximand, the term involving Q is γ(θ̂)Q − Q2 − hQ, which by the FOC leads to

Q(θ, θ̂) =Q(θ̂) = γ(θ̂)−h

2
, ∀θ ∈ [θ, θ̄]. Provided Q(θ̂), the cross partial derivative of the maximand w.r.t. (r, θ)

is −K12(r, θ)> 0, so r(θ, θ̂) is strictly increasing in θ. Moreover, r(θ, θ̂) has to satisfy the FOC

α(θ̂)D1(r)−K1(r, θ) = 0.
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It can be verified that under truthtelling (i.e., θ = θ̂) and given the proposed instruments {α(θ), γ(θ)}, the
pair (r∗,Q∗) is the unique root. The proposed β(θ) is set to guarantee that π(θ) =−

∫ θ

θ
K2(r

∗(z), z)dz.

To show that TDD satisfies (IC), we proceed as follows. By the envelope theorem,

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
α(θ)D(r)+β(θ)+ γ(θ)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ)
Q=Q(θ)

= α′(θ)D(r(θ))+β′(θ)+ γ′(θ)Q(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)D(r(θ))− γ′(θ)Q(θ)

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ,θ̂)

Q=Q(θ,θ̂)

= α′(θ̂)D(r(θ, θ̂))+β′(θ̂)+ γ′(θ̂)Q(θ, θ̂)

= α′(θ̂)︸ ︷︷ ︸
≥0

(D(r(θ, θ̂))−D(r(θ̂)))+ γ′(θ̂)(Q(θ, θ̂)−Q(θ̂)︸ ︷︷ ︸
=0

).

The rest of the analysis is the same as that in the proof of Proposition 3, and we have θ= argmaxθ̂ π(θ, θ̂).

We then consider (PDS) and TDS(s,Q, θ). By the definition of α(θ) and by Condition (D), we have α′(θ)≥
0. Under the proposed contract TDS, we have π(θ, θ̂) =maxr,Q≥0N(r,Q, θ, θ̂), where

N(r,Q, θ, θ̂) = α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ).

Note that in the maximand, the term involving Q is γ(θ̂)Q − Q2 − hQ, which by the FOC leads to

Q(θ, θ̂) =Q(θ̂) = γ(θ̂)−h

2
, ∀θ ∈ [θ, θ̄]. Provided Q(θ̂), the cross partial derivative of the maximand w.r.t. (r, θ)

is −K12(r, θ)> 0, so r(θ, θ̂) is strictly increasing in θ. Moreover, r(θ, θ̂) has to satisfy the FOC

α(θ̂)D1(r)−K1(r, θ) = 0.

It can be verified that under truthtelling (i.e., θ = θ̂) and given the proposed instruments {α(θ), γ(θ)}, the
pair (r∗,Q∗) is the unique root. The proposed β(θ) is set to guarantee that π(θ) =−

∫ θ

θ
K2(r

∗(z), z)dz.

To show that TDS satisfies (IC), we proceed as follows. By the envelope theorem,

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
α(θ)D(r)+β(θ)+ γ(θ)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ)
Q=Q(θ)

= α′(θ)D(r(θ))+β′(θ)+ γ′(θ)Q(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)D(r(θ))− γ′(θ)Q(θ)

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ,θ̂)

Q=Q(θ,θ̂)

= α′(θ̂)D(r(θ, θ̂))+β′(θ̂)+ γ′(θ̂)Q(θ, θ̂)

= α′(θ̂)︸ ︷︷ ︸
≥0

(D(r(θ, θ̂))−D(r(θ̂)))+ γ′(θ̂)(Q(θ, θ̂)−Q(θ̂)︸ ︷︷ ︸
=0

).

The rest of the analysis is the same as that in the proof of Proposition 3, and we have θ= argmaxθ̂ π(θ, θ̂). □

Proof of Proposition 6. Because the upper-bound pair (r∗,Q∗) is attainable under Condition (D) in

(PCD) and (PDD) and under Condition (S) in (PCS) and (PDS), the firm’s resulting optimal profits in all

four settings become identical.
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Appendix B: The optimality of MQC under demand-based contracting

In this appendix, by additionally assuming d12 ≥ 0 and d112 ≥ 0, we show that in the demand-based contract-

ing problems, i.e., (PCD), and (PDD), the upper-bound outcome (r∗,Q∗) can be consistently implemented by

a menu of quadratic contracts (MQC), regardless of Condition (D). In contrast, proposing a quadratic com-

pensation scheme in the sales-based contracting problems, (PCS), and (PDS), results in an ill-behaved agent’s

profit maximization problem, wherein the uniqueness of r∗(θ) is no longer verifiable. This contrast sheds

light on how the operation factor, which is the censorship of demand information here, can fundamentally

alter the optimal contact.

For notational convenience, define Φ(r) =Eϵ[d(r, ϵ)
2]. We need the following lemmas.

Lemma 4. Let Z be a random variable, A(z) and B(z) be two monotonic functions of z. If one is increasing

and the other is decreasing, then E[A(Z)B(Z)]≤E[A(Z)]E[B(Z)]. If both are increasing or decreasing, then

E[A(Z)B(Z)]≥E[A(Z)]E[B(Z)].

Proof. Let Z1 and Z2 be two independent identical copies of the random variable Z. If one of A(z) and

B(z) is increasing and the other is decreasing, then we have

E[(A(Z1)−A(Z2))(B(Z1)−B(Z2))]≤ 0

⇐⇒ E[A(Z1)B(Z1)]︸ ︷︷ ︸
=E[A(Z)B(Z)]

+E[A(Z2)B(Z2)]︸ ︷︷ ︸
=E[A(Z)B(Z)]

≤E[A(Z1)B(Z2)]︸ ︷︷ ︸
=E[A(Z)]E[B(Z)]

+E[A(Z2)B(Z1)]︸ ︷︷ ︸
=E[A(Z)]E[B(Z)]

⇐⇒E[A(Z)B(Z)]≤E[A(Z)]E[B(Z)].

The same trick can be used to prove the statement when both functions are increasing or decreasing. □

Lemma 5. We have

d

dr

Φ1(r)

D1(r)
> 0.

Proof. First we have

d

dr

Φ1(r)

2D1(r)
=

d

dr

Eϵ[d(r, ϵ)d1(r, ϵ)]

Eϵ[d1(r, ϵ)]
=

Eϵ[d(r, ϵ)d11(r, ϵ)+ d1(r, ϵ)
2]Eϵ[d1(r, ϵ)]−Eϵ[d(r, ϵ)d1(r, ϵ)]Eϵ[d11(r, ϵ)]

Eϵ[d1(r, ϵ)]2
.

Since d(r, ϵ), d1(r, ϵ) and d11(r, ϵ) are all increasing in ϵ, per Lemma 4, the numerator is

Eϵ[d(r, ϵ)d11(r, ϵ)+ d1(r, ϵ)
2]Eϵ[d1(r, ϵ)︸ ︷︷ ︸

>0

]−Eϵ[d(r, ϵ)d1(r, ϵ)]Eϵ[d11(r, ϵ)︸ ︷︷ ︸
<0

]

≥(Eϵ[d(r, ϵ)]Eϵ[d11(r, ϵ)] +Eϵ[d1(r, ϵ)
2])Eϵ[d1(r, ϵ)]−Eϵ[d(r, ϵ)]Eϵ[d1(r, ϵ)]Eϵ[d11(r, ϵ)]

=Eϵ[d1(r, ϵ)
2]Eϵ[d1(r, ϵ)]> 0.

Proposition 7. For (PCD), the contract TCD(d, θ) = δCDd
2 +αCD(θ)d+βCD(θ) is optimal, where

δCD =min

{
0, min

θ∈[θ,θ̄]

d
dθ

K1(r
∗(θ),θ)

D1(r∗(θ))

d
dθ

Φ1(r∗(θ))
D1(r∗(θ))

}

αCD(θ) =
K1(r

∗(θ), θ)− δCDΦ1(r
∗(θ))

D1(r∗(θ))

βCD(θ) =−[δCDΦ(r
∗(θ))+αCD(θ)D(r∗(θ))] +K(r∗(θ), θ)+hQ∗(θ)−

∫ θ

θ

K2(r
∗(z), z)dz.
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Proof. We show that the proposed MQC implements (r∗,Q∗). For ease of notation, we omit the sub-

scripts. Because r∗(θ) strictly increases in θ, so does Φ1(r
∗(θ))

D1(r∗(θ))
by Lemma 5, and thus δ is well-defined.

Essentially, δ is set to guarantee that α′(θ)≥ 0. To see this, notice that by definition, δ≤ 0 and

δ≤ min
θ∈[θ,θ̄]

d
dθ

K1(r
∗(θ),θ)

D1(r∗(θ))

d
dθ

Φ1(r∗(θ))
D1(r∗(θ))

≤
d
dθ

K1(r
∗(θ),θ)

D1(r∗(θ))

d
dθ

Φ1(r∗(θ))
D1(r∗(θ))

.

Therefore,

α′(θ) =
d

dθ

(
K1(r

∗(θ), θ)

D1(r∗(θ))
− δCD

Φ1(r
∗(θ))

D1(r∗(θ))

)
=

d

dθ

K1(r
∗(θ), θ)

D1(r∗(θ))
−δCD︸ ︷︷ ︸

≥0

d

dθ

Φ1(r
∗(θ))

D1(r∗(θ))︸ ︷︷ ︸
>0

≥ d

dθ

K1(r
∗(θ), θ)

D1(r∗(θ))
−

d
dθ

K1(r
∗(θ),θ)

D1(r∗(θ))

d
dθ

Φ1(r∗(θ))
D1(r∗(θ))

d

dθ

Φ1(r
∗(θ))

D1(r∗(θ))
= 0.

Under the proposed contract, we have

π(θ, θ̂) =max
r≥0

Eϵ[δd(r, ϵ)
2 +α(θ̂)d(r, ϵ)+β(θ̂)]−hQ(θ̂)−K(r, θ)

=max
r≥0

δΦ(r)+α(θ̂)D(r)+β(θ̂)−hQ(θ̂)−K(r, θ).

Because limr→−∞ π(θ, θ̂) =−∞, r(θ, θ̂) = argmaxr≥0 π(θ, θ̂) is well-define. To show that the above maximand

has a unique maximizer, we will use the following fact: if a continuously differentiable function is strictly

concave at every stationary point, then its stationary point is unique and is the maximizer. The FOC gives

Eϵ[(2δd(r, ϵ)+α(θ̂))d1(r, ϵ)]−K1(r, θ) = 0,

and to validate the SOC

2 δEϵ[d1(r(θ, θ̂), ϵ)
2]︸ ︷︷ ︸

≤0

+Eϵ[(α(θ̂)+ 2δd(r(θ, θ̂), ϵ))d11(r(θ, θ̂), ϵ)]−K11(r(θ, θ̂), θ)︸ ︷︷ ︸
>0

< 0

locally at r= (θ, θ̂), it suffices to show that the middle term is negative. In the FOC, since α(θ̂)+2δd(r(θ, θ̂), ϵ)

decreases in ϵ and d1(r(θ, θ̂), ϵ) increases in ϵ, per Lemma 4, we have

0<K1(r(θ, θ̂), θ) =Eϵ[(2δd(r(θ, θ̂), ϵ)+α(θ̂))d1(r(θ, θ̂), ϵ)]︸ ︷︷ ︸
FOC

≤Eϵ[2δd(r(θ, θ̂), ϵ)+α(θ̂)]Eϵ[d1(r(θ, θ̂), ϵ)︸ ︷︷ ︸
>0

]

=⇒ Eϵ[2δd(r(θ, θ̂), ϵ)+α(θ̂)]≥ K1(r(θ, θ̂), θ)

Eϵ[d1(r(θ, θ̂), ϵ)]
> 0.

Since d11(r(θ, θ̂), ϵ) increases in ϵ, per Lemma 4 again, we have

Eϵ[(α(θ̂)+ 2δd(r(θ, θ̂), ϵ))d11(r(θ, θ̂), ϵ)]≤Eϵ[α(θ̂)+ 2δd(r(θ, θ̂), ϵ)]︸ ︷︷ ︸
>0

Eϵ[d11(r(θ, θ̂), ϵ)︸ ︷︷ ︸
≤0

]≤ 0,

which verifies the SOC. Consequently, r(θ, θ̂) is unique.

Since θ only appears in K(r, θ) in the maximand, the cross partial derivative of the maximand is simply

−K12 > 0, which implies the strict supermodularity, and thus r(θ, θ̂) is strictly increasing in θ.
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Under truthtelling, we have

π(θ) =max
r≥0

δΦ(r)+α(θ)D(r)+β(θ)−hQ(θ)−K(r, θ).

The FOC of the maximand w.r.t. r is

δΦ1(r)+α(θ)D1(r)−K1(r, θ) = 0,

and it can be easily checked that given the proposed instruments δ and α(θ), r = r∗(θ) is the root, i.e.,

the firm’s ideal output r∗(θ) is induced so that its ideal profit is attained. We remark that the proposed

instrument β(θ) is set to guarantee that π(θ) =−
∫ θ

θ
K2(r

∗(z), z)dz.

We show that this MQC satisfies (IC). With a little abuse of notations, we simply write r(θ) = r∗(θ) and

Q(θ) =Q∗(θ). By the envelope theorem, we have

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
δΦ(r)+α(θ)D(r)+β(θ)−hQ(θ)−K(r, θ)

]∣∣∣
r=r(θ)

= α′(θ)D(r(θ))+β′(θ)−hQ′(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)D(r(θ))+hQ′(θ).

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
δΦ(r)+α(θ̂)D(r)+β(θ̂)−hQ(θ̂)−K(r, θ)

]∣∣∣
r=r(θ,θ̂)

= α′(θ̂)D(r(θ, θ̂))+β′(θ̂)−hQ′(θ̂)

= α′(θ̂)[D(r(θ, θ̂))−D(r(θ̂))].

The rest of the analysis is the same as that in the proof of Proposition 3, and we have θ= argmaxθ̂ π(θ, θ̂). □

Proposition 8. For (PDD), the contract TDD(d, θ) = δDDd
2 + αDD(θ)d + βDD(θ) + γDD(θ)Q − Q2 is

optimal, where

δDD =min

{
0, min

θ∈[θ,θ̄]

d
dθ

K1(r
∗(θ),θ)

D1(r∗(θ))

d
dθ

Φ1(r∗(θ))
D1(r∗(θ))

}

αDD(θ) =
K1(r

∗(θ), θ)− δDDΦ1(r
∗(θ))

D1(r∗(θ))

γDD(θ) = 2Q∗(θ)+h

βDD(θ) =−[δDDΦ(r
∗(θ))+αDD(θ)D(r∗(θ))+ γDDQ

∗(θ)−Q∗(θ)2]

+K(r∗(θ), θ)+hQ∗(θ)−
∫ θ

θ

K2(r
∗(z), z)dz.

Proof. We show that the proposed MQC implements (r∗,Q∗). Note that δDD = δCD and αDD(θ) =

αCD(θ), so δDD is well-defined and α′
DD(θ)≥ 0. For ease of notation, we omit the subscripts. We have

π(θ, θ̂) = max
r,Q≥0

δΦ(r)+α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ).

Note that in the maximand, the term involving Q is γ(θ̂)Q − Q2 − hQ, which by the FOC leads to

Q(θ, θ̂) =Q(θ̂) = γ(θ̂)−h

2
, ∀θ ∈ [θ, θ̄]. Provided Q(θ̂), the cross partial derivative of the maximand w.r.t. (r, θ)

is −K12(r, θ)> 0, so r(θ, θ̂) is strictly increasing in θ. The term involving r is δΦ(r)+α(θ̂)D(r)−K(r, θ), and
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with the same argument as in Proposition 7 (because the two FOC’s have identical expressions), r(θ, θ̂) =

argmaxr≥0 π(θ, θ̂) is well-defined, unique, and increasing in θ. It can be verified that under truthtelling (i.e.,

θ = θ̂) and given the proposed instruments {α(θ), γ(θ)}, the pair (r∗,Q∗) is the root. The proposed β(θ) is

set to guarantee that π(θ) =−
∫ θ

θ
K2(r

∗(z), z)dz.

We show that this MQC satisfies (IC). By the envelope theorem,

−K2(r(θ), θ) = π′(θ) =
∂

∂θ

[
δΦ(r)+α(θ)D(r)+β(θ)+ γ(θ)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ)
Q=Q(θ)

= α′(θ)D(r(θ))+β′(θ)+ γ′(θ)Q(θ)−K2(r(θ), θ)

=⇒ β′(θ) =−α′(θ)D(r(θ))− γ′(θ)Q(θ)

By the envelope theorem again, we have

∂π(θ, θ̂)

∂θ̂
=

∂

∂θ̂

[
δΦ(r)+α(θ̂)D(r)+β(θ̂)+ γ(θ̂)Q−Q2 −hQ−K(r, θ)

]∣∣∣ r=r(θ,θ̂)

Q=Q(θ,θ̂)

= α′(θ̂)D(r(θ, θ̂))+β′(θ̂)+ γ′(θ̂)Q(θ, θ̂)

= α′(θ̂)︸ ︷︷ ︸
≥0

[D(r(θ, θ̂))−D(r(θ̂))] + γ′(θ̂)(Q(θ, θ̂)−Q(θ̂)︸ ︷︷ ︸
=0

).

The rest of the analysis is the same as that in the proof of Proposition 3, and we have θ= argmaxθ̂ π(θ, θ̂). □


