
power laws

A power law is the form taken by a remarkable number of regularities in
economics, and is a relation of the type Y ¼ kXa, where Y and X are var-
iables of interest, a is called the power law exponent, and k is a constant.
Many economic laws take the form of power laws, in particular macroeco-
nomic scaling laws, the distribution of income, wealth, size of cities and
firms, and the distribution of financial variables such as returns and trading
volume. This article surveys the empirical evidence and the theoretical ex-
planations for the occurrence of power laws.

A power law (PL), also known as a scaling law, is the form taken by a
remarkable number of regularities or ‘laws’ in economics, and is a relation of
the type Y ¼ kXa, where Y and X are variables of interest, a is called the
power law exponent, and k is a typically unremarkable constant.

A special type is the distributional PL, also called a Pareto law. For in-
stance, the probability that a firm has more than x employees is proportional
to 1=xz, for some positive number z : PðS4xÞ ¼ k=xz, for some k, at least in
the upper tail or most of it. The exponent z is independent of the units in
which the law is expressed. A special case is Zipf’s law, which is a Pareto law
with z ’ 1.

Understanding what gives rise to the scaling law, and explaining the pre-
cise value of the exponent (for example, why it is equal to 1 rather than any
other number) is a challenge that has fascinated successive generations.
Schumpeter (1949, p. 155) wrote: ‘Few if any economists seem to have re-
alized the possibilities that such invariants hold for the future of our science.
In particular, nobody seems to have realized that the hunt for, and the
interpretation of, invariants of this type might lay the foundations for an
entirely novel type of theory.’ Champernowne (1953) and Simon (1955) made
great strides towards realizing Schumpeter’s vision, and the quest continues.

Power laws are also of great interest outside of economics. Understanding
PLs is a large part of the theory of critical phenomena, in which many
materials behave identically around phase transitions – a phenomenon
physicists call ‘universality’, and which is still only partially understood.
Power laws have proven useful for describing and understanding networks.
Biology has also many scaling regularities; for example, the daily energy
intake of an animal of mass M is proportional to the M3/4. This regularity
was explained (Brown and West, 2000) via simple physical reasoning, which
eschews the need to talk about the feathers and the hair of animals. Simpler
and deeper principles underlie the regularities instead. The same holds for
economic laws. Power laws give the hope of robust, detail-independent eco-
nomic laws.

Theory: forces that generate power laws

Proportional random growth

Getting a power law. To explain distributional PLs, a central mechanism is
proportional random growth (Sornette, 2001). The process was developed in
economics by Champernowne (1953) and Simon (1955). Things are more
tractable in continuous time (see Gabaix, 1999).

Take the example of cities in an economy with a constant number of cities
and a fixed total population. When the system grows, the same reasoning



applies after normalization – S is the normalized size of a city, for example as
a multiple of the median city population. Suppose that each city i has a
population Si

t and, between t and tþ 1, increases by a growth rate gitþ1:

Si
tþ1 ¼ gitþ1S

i
t, ð1Þ

and suppose that the gitþ1 are identically and independently distributed, with
density f ðgÞ, at least in the upper tail. Call GtðxÞ ¼ PðSi

t4xÞ the counter-
cumulative distribution function. The equation of motion of G is:
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Hence:
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Its steady state distribution G, if it exists, satisfies
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One can try the functional form GðSÞ ¼ a=Sz, where a is a constant. Plugging
it in (2) gives: 1 ¼

R
N

0
gzf ðgÞ dg, that is
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The steady state distribution is (in the upper tail) Pareto, with an exponent z
that satisfies eq. (3).

To make sure that the steady state distribution exists, one needs some
friction, for example a force that prevents small cities from becoming too
small.

Getting a Zipf’s law. We see that proportional random growth leads to a
PL. Why should the exponent z ¼ 1 appear in so many economic systems?
An answer is the following (see Gabaix, 1999; Luttmer, 2007; Rossi-Hansb-
erg and Wright, 2007). Suppose that the random growth process (1) holds
through most of the distribution, and that the system has constant size.
Then, E½Stþ1� ¼ E½g�E½St�. As the system has constant size, then we need
E½Stþ1� ¼ E½St�, hence E½g� ¼ 1. That means that z ¼ 1 is a solution of eq.
(3). In other words, to get Zipf’s law we need a random growth process with
small frictions.

In sum, proportional random growth with frictions leads to PLs, and
proportional random growth with small frictions leads to a special type of
PL- namely Zipf’s law.

Inheritance via algebraic transformation

Power laws have excellent inheritance and aggregation properties. The prop-
erty of being distributed according to a PL is conserved under addition,
multiplication, power transformation, min, and max. The general rule is that,
when we combine two PL variables, the fatter-tailed (that is, the one with the
smaller exponent) dominates. Call zX the PL exponent of X, with zX ¼ þN

if X is thinner than any PL, for example is a Gaussian. For X and Y in-
dependent random variables, and b40 a constant, we have:
zXþY ¼ zX�Y ¼ zmax X ;Yð Þ ¼ min zX ; zYð Þ, zmin X ;Yð Þ ¼ zX þ zY , zaX ¼ zX , zXa ¼

zX=a (see Jessen and Mikosch, 2006). Those properties generate new PLs
from old ones. For instance, if mutual funds are PL distributed, then many
of their actions (for example, trading volumes, or the price movements they
create) will be PL distributed (Gabaix et al., 2006).
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Equilibrium economic mechanisms

Optimization with PL objective function. The early example is the Allais–Ba-
umol–Tobin model of demand for money (see also Mulligan and Shleifer,
2005; Gabaix et al., 2003). Costs and benefits are power functions of the
variables of interest, so that maximization also yields a PL – there, money
demand is proportional to the interest rate to the power �1=2. PL in, PL out.

Matching talents in the upper tail. Another way to generate PLs is in
matching the talent of individuals with large firms or audiences. For instance,
Gabaix and Landier (2008) study the market for executives. They derive that,
in the upper tail of all well-behaved distributions, if TðxÞ is the talent of an
individual in the x upper quantile, then T 0ðxÞ is approximately a power
function xa. As a result, the competitive matching process generates a PL
relation between CEO pay and firm size, and a PL of the pay distribution.
Huge differences in pay reward minuscule differences in talent. The PL form
of T 0 is likely to be useful in other superstars markets.

Empirics: the main power laws of economics

Old macroeconomic scaling laws

The first quantitative law of economics is probably the quantity theory of
money, which, not coincidentally, is a scaling relation. It states that the price
level P is proportional to the mass of money in circulation M, divided by the
gross domestic product Y, times a pre-factor V: P ¼ VM=Y . If the money
supply doubles while GDP remains constant, prices double – a nice scaling
law, relevant to policy.

More modern, we have Kaldor’s stylized facts on economic growth: with K
the capital stock, Y GDP, L population, r the interest rate, K=Y , wL=Y , and
r, are roughly constant across time and countries. Explaining these facts led
Solow to his growth model.

Reasonably old and well-established laws

Income and wealth. The first PL is the Pareto law of income or wealth, which
states that the tail distribution of income (or, respectively, wealth), is PL. The
tail exponent of income seems to vary between 1.5 and 3, while the tail
exponent of wealth is more stable. While, starting with Champernowne
(1953), many models have been proposed to explain it (mainly along the lines
of random growth), it is intriguingly unclear why the exponent is rather
stable across economies.

Firm sizes. The bulk of the distribution of firm sizes is well described by a
Zipf’s law (Figure 1). This severely constrains models of firm growth, and
means that idiosyncratic shocks of large firms may affect GDP (Gabaix,
2006). Zipf’s law holds for different measures of firm sizes and countries
(Axtell, 2001; Fujiwara et al., 2004; Gabaix and Landier, 2008).

City sizes. In the upper tail, Zipf’s law holds generally well across times
and countries (Gabaix and Ioannides, 2004).

Gibrat’s law for the growth rate of cities is shown in the United States by
Ioannides and Overman (2003).

Roberts’ law for executive compensation. Across times and countries, an
executive heading a firm of size S earns an amount proportional to Sk, for a
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k around 1=3. Superstars models explain the presence of this scaling (Gabaix
and Landier, 2006), but the reason for the 1/3 value remains a mystery.

More recently proposed laws

Power law of stock market activity: returns, trading volume, and trading fre-
quency. Following Mandelbrot, the following regularities have been found.
Stock market returns (over one minute to one week) have PL tails, with an
exponent around 3 (Gopikrishnan et al., 1999). Individual trades have a PL
exponent around 1.5 (Gopikrishnan et al. 2000). The number of trades ex-
ecuted over a short horizon has an exponent close to 3 (Plerou et al., 2000).
There is no consensus about the origins for those regularities. The fat tails of
the returns might come from GARCH effects. One view (Gabaix et al., 2003;
2006) attributes it to the trades of large institutional investors in relatively
illiquid markets, which creates spikes in returns and volume, and generates
empirically found exponents.

Supply of regulations. Mulligan and Shleifer (2005) establish another can-
didate law. In U.S. states, the quantity of regulation is a PL of population.

Estimation of power laws

How does one estimate a distributional PL? We take the example of n cities
in the upper tail, ordering them by size, Sð1Þ � � � � � SðnÞ. One method is
Hill’s estimator:

bzHill
¼ n� 1ð Þ

,Xn�1

i¼1

ln S ið Þ � ln S nð Þ

� �
which has a standard error bzHill

n�1=2. The second method is a ‘log rank log
size regression’, where bz is the slope in the regression of the log rank i on the
log size:

ln i � sð Þ ¼ constant�bzOLS
ln SðiÞ þ noise

which has a standard error standard error of bzOLS
� ðn=2Þ�1=2. s is a shift,
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Figure 1 Note: Log frequency ln f ðSÞ vs. log size ln S of U.S. firm sizes for 1997.

OLS fit gives a slope of 1þ z ¼ 2:059(s.e.=0.054; R2=0.992). This corresponds to a

frequency f ðSÞ ¼ kS�2:059, that is, a power law distribution with exponent z ¼ 1:059.

Indeed, if PðSize4SÞ ¼ kS�z the density is f ðSÞ ¼ kzS�ðzþ1Þ. This is very close to

Zipf’s law, which says that z ¼ 1. Source: Reprinted with permission from Fig. 1 from

Robert L. Axtel, Science 293, 1818–20 (7 September 2001)
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s ¼ 0 is typical, but s ¼ 1=2 is optimal (Gabaix and Ibragimov, 2006). Both
methods have pitfalls, as true errors are often larger than nominal standard
errors (Embrechts, Kluppelberg and Mikosch, 1997; Gabaix and Ioannides,
2004).

Xavier Gabaix
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